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ABSTRACT
We consider strongly stratified forced turbulence in a plane–parallel layer with helicity and
corresponding large-scale dynamo action in the lower part and non-helical turbulence in the
upper. The magnetic field is found to develop strongly concentrated bipolar structures near the
surface. They form elongated bands with a sharp interface between opposite polarities. Unlike
earlier experiments with imposed magnetic field, the inclusion of rotation does not strongly
suppress the formation of these structures. We perform a systematic numerical study of this
phenomenon by varying magnetic Reynolds number, scale-separation ratio, and Coriolis num-
ber. We focus on the formation of a current sheet between bipolar regions where reconnection
of oppositely oriented field lines occurs. We determine the reconnection rate by measuring
either the inflow velocity in the vicinity of the current sheet or by measuring the electric field
in the reconnection region. We demonstrate that for large Lundquist numbers, S > 103, the
reconnection rate is nearly independent of S in agreement with results of recent numerical
simulations performed by other groups in simpler settings.
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1 IN T RO D U C T I O N

The mechanism for the formation of sunspots and active regions
is still not understood. One popular model assumes that the solar
dynamo generates thin, strong magnetic flux tubes of ∼105 G near
the tachocline (D’Silva & Choudhuri 1993). Part of these tubes
can become magnetically buoyant and rise to the surface creating
sunspots and active regions (Parker 1955; Choudhuri, Schüssler &
Dikpati 1995); see also Fan (2009) for a review. So far neither
numerical (Guerrero & Käpylä 2011) nor observational (Fan 2009;
Zhao et al. 2013; Getling, Ishikawa & Buchnev 2016) studies have
confirmed this scenario. Furthermore, the flux tubes are expected to
expand as they rise, hence their strength weakens and some sort of
re-amplification mechanism must complement this model to match
the observational properties of sunspots.

An alternative mechanism for the formation of active regions
and sunspots is based on the negative effective (mean-field)
magnetic pressure instability (NEMPI). Analytical studies (Klee-
orin, Rogachevskii & Ruzmaikin 1989, 1990; Kleeorin, Mond
& Rogachevskii 1993, 1996; Kleeorin & Rogachevskii 1994;
Rogachevskii & Kleeorin 2007) supported by direct numerical
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simulations (DNS; Brandenburg et al. 2012; Käpylä et al. 2012,
2016) have shown that in stratified turbulence in the presence of a
background magnetic field, the effective magnetic pressure (the sum
of turbulent and non-turbulent contributions) can become negative.
This effect can give rise to a large-scale instability (Rogachevskii &
Kleeorin 2007; Kemel et al. 2013), i.e. NEMPI, which can lead to the
concentration of a weak background magnetic field. Once the field
becomes strong enough – more than the local equipartition value –
the effective magnetic pressure is no longer negative and NEMPI
is not excited. DNS of stratified turbulence have demonstrated that
NEMPI can produce magnetic field concentrations (Brandenburg,
Kleeorin & Rogachevskii 2010; Brandenburg et al. 2011; Kemel
et al. 2013; Jabbari et al. 2014) from background magnetic fields
that can be either perpendicular or parallel to the density gradient in
both spherical and rectangular domains. In the latter case, spot-like
structures near the surface (Brandenburg, Kleeorin & Rogachevskii
2013; Brandenburg et al. 2014) are obtained. A further general-
ization to a two-layer model (Warnecke et al. 2013, 2016) with
non-helical forcing in the lower layer and no forcing in the upper
has been successful in generating bipolar magnetic structures with
intriguing dynamical behaviour. Furthermore, mean-field simula-
tions have shown that the concentration of a background magnetic
field by NEMPI can operate even in the presence of dynamo action
(Jabbari et al. 2013).
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Turbulent reconnection of magnetic bipoles 4047

Nevertheless, there are two limitations to the aforementioned
studies: (a) it is necessary to have a weak initial background mag-
netic field to excite NEMPI, and (b) the maximum strength of the
magnetic field in the non-linear stage of NEMPI can be at most
three times larger than the local equipartition value. Mitra et al.
(2014) and Jabbari et al. (2015) have circumvented these limita-
tions, respectively, in their Cartesian and spherical models by using
a two-layer arrangement of forced stratified turbulence in which the
bottom layer is helically forced and the top layer is non-helically
forced. In both of these cases, a large-scale dynamo develops in
the bottom layer and provides a background magnetic field that is
concentrated by stratified turbulence in the top layer to generate in-
tense magnetic structures of strengths that can be close to five times
the equipartition value. It is not clear that NEMPI is the relevant
mechanism that gives rise to the magnetic structures observed by
Mitra et al. (2014) or Jabbari et al. (2015). Although Mitra et al.
(2014) have not measured the effective magnetic pressure, they
did detect large-scale downflows at the location of the magnetic
flux concentrations. Similar downflows have been found previously
in forced turbulence with an imposed vertical field (Brandenburg
et al. 2013, 2014), where NEMPI was found to lead to magnetic
spot formation. In the work of Jabbari et al. (2015), NEMPI could
only be excited in those parts of the domain where the strength of
the dynamo-generated field was sufficiently below the equipartition
magnetic field. Nevertheless, also in that case formation of spots
coincided with downflows.

The purpose of this study is two-fold. On the one hand, using
the model of Mitra et al. (2014), we perform a systematic numer-
ical study of the formation and decay of bipolar regions by vary-
ing different parameters of the problem, in particular the magnetic
Reynolds number and the scale-separation ratio. Furthermore, we
study the effects of rotation through the Coriolis term in the same
model. As emphasized by Mitra et al. (2014) and Jabbari et al.
(2015), the lifetime of the sharp interface between the bipolar re-
gions is much longer than what one estimates from the effects of
turbulent diffusion. This suggests that the sharp interface is con-
stantly being maintained by converging flows, which lead to the
formation of a current sheet between two polarities and the occur-
rence of turbulent reconnection.

Magnetic reconnection is a fundamental plasma process that is
believed to play an important role in different astrophysical, geo-
physical, and laboratory plasma phenomena, e.g. solar flares, coro-
nal mass ejections, coronal heating, magnetospheric substorms and
tearing mode instabilities in magnetic confinement fusion devices
(Zweibel & Yamada 2009; Loureiro, Schekochihin & Uzdensky
2013; Priest 2014). A classical model of reconnection was suggested
by Parker (1957) and Sweet (1958); see also their later works (Sweet
1969; Parker 1994). According to the Sweet–Parker model, the re-
connection rate is proportional to the square root of the magnetic
diffusivity of the plasma. This would imply that in the astrophysi-
cally relevant limit of very small magnetic diffusivity (or very large
Lundquist number), the Sweet–Parker reconnection rate would go
to zero. Hence, for reconnection to be relevant in the astrophysi-
cal context it is necessary to find models of fast reconnection in
which the reconnection rate is independent of Lundquist number
in the asymptotic limit of large Lundquist number. Recently, fast
reconnection has been studied in DNS of turbulent magnetohydro-
dynamics in both two and three dimensions (Kowal et al. 2009;
Loureiro et al. 2009; Huang & Bhattacharjee 2010; Loureiro et al.
2012; Beresnyak 2013; Oishi et al. 2015), and at least two com-
peting models: by Lazarian & Vishniac (1999), Eyink, Lazarian &
Vishniac (2011) and by Uzdensky, Loureiro & Schekochihin (2010),

Loureiro et al. (2013), have been proposed, see e.g. Lazarian et al.
(2015) for a review. To investigate the role of magnetic reconnection
in our model, we zoom in on the flow around the sharp interface,
study the dynamics of the current sheet in this region and mea-
sure the reconnection rate to determine which regime of turbulent
reconnection is relevant to our system.

2 TH E MO D EL

2.1 Basic equations

To perform DNS of an isothermally stratified layer, we solve the
equations for the velocity U , the magnetic vector potential A, and
the density ρ and, in some cases, also in the presence of non-
vanishing angular velocity � = � ẑ,

ρ
DU
Dt

= J × B − 2� × ρU − c2
s ∇ρ + ∇ · (2νρS) + ρ( f + g),

(1)

∂A
∂t

= U × B + η∇2 A, (2)

∂ρ

∂t
= −∇ · ρU, (3)

where the operator D/Dt = ∂/∂t + U · ∇ is the advective deriva-
tive, Sij = 1

2 (Ui,j + Uj,i) − 1
3 δij∇ · U is the traceless rate of strain

tensor (the commas denote partial differentiation), ν is the kinematic
viscosity, cs is the isothermal sound speed, μ0 is the vacuum per-
meability, η is the magnetic diffusivity, B = ∇ × A is the magnetic
field, and J = ∇ × B/μ0 is the current density.

We perform simulations in a cubic domain of size L3. This implies
that the smallest wavenumber which fits into the box is 1 (k1 =
2π/L = 1). We apply the same boundary condition as Mitra et al.
(2014), i.e. we use periodic boundary conditions in the x- and y-
directions, stress-free perfect conductor boundary conditions at the
bottom of the domain, (z = −L/2) and stress-free vertical field
conditions at the top (z = +L/2).

The stratification is isothermal with constant gravity given by
g = (0, 0, −g), so the density scaleheight is Hρ = c2

s /g. In all the
cases considered below, we have k1Hρ = 1 and L/Hρ = 2π. In
this setup, the density contrast across the domain is exp(Lz/Hρ) =
exp 2π ≈ 535. Since we have adopted an isothermal equation of
state, there is no possibility of convection. We apply random volume
forcing to drive turbulence. It is defined by a function f that is
δ-correlated in time and monochromatic in space. It consists of
random non-polarized waves whose direction and phase change
randomly at each time step. To simulate the two-layer model of
Mitra et al. (2014), we define the forcing profile such that we have
helical forcing in the lower part of the domain (z < z�) and non-
helical forcing in the upper (z > z�). Here, z� is the position of the
border between helical and non-helical forcing; in our model we
choose z� = −Hρ . The helical forcing leads to the generation of
a large-scale magnetic field in the lower layer due to α2 dynamo
action. The field then diffuses to the upper layer where the magnetic
bipolar spots are expected to form. For more details regarding the
forcing profile, see Mitra et al. (2014).

This setup is chosen to demonstrate the physical effects in isola-
tion. In particular, the region of the dynamo generating large-scale
weakly non-uniform magnetic field is separated from the region
where the strongly non-uniform bipolar magnetic region is formed.
This arrangement can also mimic a non-uniform spatial distribution
of kinetic helicity and α effect in the solar convective zone, e.g. the
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4048 S. Jabbari et al.

Table 1. Summary of the runs. The reference run is shown in bold.

Run ReM kf/k1 z�/Hρ λ/ηt0k
2
1

D 16 30 −1 0.042
RM0 10 30 −1 0.05
RM1 50 30 − 1 0.014
RM1zs 50 30 π 0.013
RM1k 50 5 −1 0.024
RM2 130 30 −1 0.005
RM3 260 30 −1 0.002
RM4 300 30 −1 0.001

α is larger in the deeper parts of the convective zone (Krivodubskii
1984).

2.2 Parameters of the simulations

To solve equations (1)–(3), we perform DNS with the PENCIL CODE.1

It uses sixth-order explicit finite differences in space and a third-
order accurate time-stepping method. We use a numerical resolution
of 256 × 252 × 256 mesh points in the x-, y-, and z-directions. We
choose our units such that cs = g = μ0 = 1. Our simulations are
characterized by the fluid Reynolds number, Re ≡ urms/νkf, and the
magnetic Prandtl number, PrM = ν/η, so the magnetic Reynolds
number is ReM ≡ Re PrM = urms/ηkf. Here, kf/k1 is the forcing
wavenumber, which takes a value of 30 in most of our simulations.
We also study the case kf/k1 = 5. In all runs we keep, PrM = 0.5
and vary ReM.

As the value of the turbulent velocity is set by the local strength
of the forcing, which is uniform, the turbulent velocity is also statis-
tically uniform over depth, and therefore we choose to define urms

as the root-mean-square velocity based on a volume average in the
statistically steady state. On the other hand, the density varies over
several orders of magnitude as a function of depth and hence we de-
fine the mean density ρ as a a horizontally and temporally averaged
density at each depth. The magnetic field is expressed in units of
the local equipartition value, Beq ≡ √

μ0ρ urms. Time is measured
in turbulent-diffusive times, τtd = (ηt0k

2
1)−1, where ηt0 = urms/3kf

is the estimated turbulent magnetic diffusivity.
Most of the parameters are similar to those of Mitra et al. (2014),

but we vary ReM and also consider cases with rotation. We also
study the effect of the scale-separation ratio, kf/k1, by changing kf

to investigate its effect on the formation and evolution of bipolar
structures. Table 1 shows all runs with their parameters.

We characterize the reconnection of the bipolar magnetic struc-
tures by the Lundquist number, S:

S = VAL/η, (4)

where VA = B/
√

μ0ρ is the Alfvén velocity, and L is a typical
length scale, which is here taken to be the length of the current
sheet.

3 PRO PE RT IE S O F T H E DY NA M O

The magnetic field in our model is the result of a large-scale dy-
namo. We recall that the forcing in the momentum equation is
fully helical in the lower 30 per cent of the box and non-helical in
the rest. We expect that the α2 dynamo generates an exponentially
growing magnetic field during the early phase when the field is

1 https://github.com/pencil-code

Figure 1. Butterfly diagrams B(xc, yc, z, t)/Beq(z) for Run RM1 through
cross-sections xc/Hρ = π, and either yc/Hρ = 1.8 (top panel) or −1.8
(middle panel), as well as Bx(xc, yc, zc, t)/Beq through xc/Hρ = π,
yc/Hρ = −1.8, for both zc/Hρ = 2 (black line) and zc/Hρ = −1.5 (blue
line) versus time (lower panel). The white dashed lines in the upper two
panels indicate the position of z� and in the second panel the dashed blue
and black horizontal lines show the locations where Bx(xc, yc, zc, t)/Beq is
plotted versus t.

weak. The dynamo-generated field has a periodic behaviour with
dynamo waves propagating in the deeper part of the domain, where
the forcing is helical (z/Hρ < −1). To study the dynamo proper-
ties, we plot the butterfly diagram in Fig. 1. The upper panel shows
the butterfly diagram at y/Hρ = 1.8 and the middle panel presents
the same plot for y/Hρ = −1.8. The upward speed of the pattern
increases as one moves towards the surface. The non-dimensional
growth rate is given as λ̃ = λ/urmskf , where λ = dln Brms/dt, and
its value decreases with increasing magnetic Reynolds number (see
Table 1 and the lower panel of Fig. 2). The large-scale magnetic
field expands upward into the region with non-helical forcing due
to turbulent magnetic diffusion. In this region, density is lower, so
the field strongly exceeds the equipartition value. Here, the field
evolution is highly non-linear and driven by the dynamo wave from
beneath.

To measure the period of the dynamo cycle, we plot in the lower
panel of Fig. 1 the value of Bx/Beq as a function of time for two
different depths, z/Hρ = −1.5 (inside the helical region; blue curve)
and z/Hρ = 2 (near the surface; black curve). In Run D, the value
of the period is about 1.6τ td for ReM = 16. This is consistent with
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Turbulent reconnection of magnetic bipoles 4049

Figure 2. Upper panel: normalized dynamo frequency, ω̃, as a function of
ReM. The solid lines show the best fit to our data points (red closed circles)
and the data points of Brandenburg et al. (2008, blue open circles). Lower
panel: normalized growth rate of dynamo, λ̃, as a function of ReM. The solid
line shows the best fit to our data points.

the result of Mitra et al. (2014), where a period of the dynamo wave
of 1.5τ td was determined.

In the upper panel of Fig. 2, we show the dependence of
the normalized dynamo frequency, ω̃ = ω/ηt0k

2
1 , on the magnetic

Reynolds number, ReM. The fit overplotted on the data has the form

ω̃ ≈ 11 Re−0.36
M . (5)

Although the large-scale dynamo that develops in this problem is
an α2 dynamo, the functional dependence of ω on ReM is similar
to that of a non-linear α� dynamo in a Cartesian domain with lin-
ear shear (Käpylä & Brandenburg 2009). In that case, ω ∝ ηtk

2
1 is

proportional to the quenched turbulent magnetic diffusivity, ηt. In
a separate study of a non-linear α2 dynamo, the quenched values
of ηt were found to be proportional to Re−0.3

M for 2 ≤ ReM ≤ 600
(Brandenburg et al. 2008). The scaling of the resulting values of
ηtk

2
1 with ReM is comparable to that of the frequencies found by

Käpylä & Brandenburg (2009), but both are about six times smaller
than those of the non-linear α2 dynamo in the present case, where
ω̃ ≈ 1.8 Re−0.3

M has been found; cf. Fig. 2. However, for much larger
magnetic Reynolds numbers, ω̃ as well as the growth rate of the
large-scale dynamo instability might become independent of ReM.
Interestingly, the normalized growth of the dynamo displays a sim-
ilar dependence on ReM; see the lower panel of Fig. 2. Specifically,
we find λ̃ ≈ 0.0012 Re−0.38

M .
The cyclic behaviour of the dynamo-generated magnetic field is

also shown in a series of snapshots in Fig. 3, where we present
Bx/Beq in the yz-plane at different times. As one can see, dynamo
waves propagate towards the surface and the evolution of the polar-
ities is similar.

4 M AG N E T I C ST RU C T U R E S

As mentioned above, the evolution and formation of the magnetic
structures is similar to that of Mitra et al. (2014) and Jabbari et al.

Figure 3. Time evolution of Bx/Beq in the yz-plane through x/Hρ = π for
Run RM1.

(2015). For ReM =10, 16, and 50, bipolar magnetic structures of
superequipartition strength form in about half a turbulent-diffusive
time and continue to evolve. For higher ReM, structures form at later
times and survive much longer compared to the case with a smaller
ReM of 10 or 16. However, the type of structures are otherwise
similar for all ReM.

4.1 Production of sharp fronts

In this paper, we are interested in the time when structures develop
and form ‘stripy’ patterns at the surface (see Figs 4 and 5). We
concentrate on the phase in the evolution when different polarities
move close together to form a current sheet between magnetic fields
of the opposite polarities. Fig. 5 illustrates the time evolution of
Bz/Beq at the surface (z/Hρ = π). One can see the formation of a
sharp boundary between two polarities in the right column, third
panel of this figure (t/τ td = 2.75). It is clear from Fig. 5 that the
characteristic time of the formation of the elongated structures is
of the order of the period of the dynamo wave, i.e. the turbulent-
diffusion time (compare this figure with Fig. 3 for instance).

The magnetic surface structures are formed by a redistribution of
magnetic flux so that regions of highly concentrated magnetic field
are separated by regions of low magnetic field. This effect can be
seen in Fig. 6, where we show a visualization of Bz/Beq in the same
temporal and spatial frame as Fig. 3.

MNRAS 459, 4046–4056 (2016)

 at U
niversity of C

olorado on M
ay 19, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


4050 S. Jabbari et al.

Figure 4. Three-dimensional visualization of vertical magnetic field, Bz at
the surface (colour-coded) together with three-dimensional volume render-
ing of the vertical component of the magnetic field for Run RM1.

Figure 5. Time evolution of Bz/Beq in the xy-plane at the top surface for
Run RM1.

Figure 6. Time evolution of Bz/Beq in the yz-plane through x/Hρ = π for
Run RM1.

4.2 Relation to downflows

As follows from previous related studies of forced turbulence (Mi-
tra et al. 2014), the magnetic flux concentrations tend to form in
regions with downflows. To study this effect, we plot in the upper
panel of Fig. 7 the large-scale horizontal velocity,

〈
(Ux,Uy)

〉
k6

(blue

arrows), together with a grey-scale representation of B2
z /B

2
eq(z) at

the surface for t/τ td = 2.46. Here, 〈·〉k6
denotes Fourier filtering,

applied to obtain smoother contours. We see that there are positions
where the horizontal velocity around or near the edge of the each
spot is high. Furthermore, the horizontal velocity is small where the
field is strong, which is consistent with the presence of downflows.
This is shown in the lower panel of Fig. 7, where we plot 〈Uz〉k6

in an xz-plane through y/Hρ = −1.5. There are indeed clear down-
flows below the magnetic flux concentration. This is in agreement
with previous studies of magnetic field concentrations in one-layer
turbulence.

4.3 Scale separation

Previous studies of magnetic flux concentrations in turbulence with
weak imposed magnetic field have shown that NEMPI forms mag-
netic concentrations only when the scale-separation ratio, kf/k1, is
about 15 or larger (Brandenburg et al. 2014). Therefore, we per-
form a simulation with kf/k1 = 5 to study whether the formation
of structures is still possible in such a model. Fig. 8 presents the

MNRAS 459, 4046–4056 (2016)
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Turbulent reconnection of magnetic bipoles 4051

Figure 7. Upper panel: velocity vectors, 〈Ux〉k6
and

〈
Uy

〉
k6

(blue ar-

rows) plotted on a grey-scale representation of B2
z /B2

eq(z) at the surface
and t/τ td = 2.46 for Run RM1. Lower panel: visualization of 〈Uz〉k6

on
xz-plane at y/Hρ = −1.5 (red dashed line on the upper panel).

visualization of Bz at the surface of the box for such a simulation.
Surprisingly, in our stratified two-layer forcing model, the bipolar
magnetic structures continue to form, and follow a similar evolution
as in the case with higher scale-separation ratio. The only differ-
ence is the time delay in the formation of the first structure and their
irregular and fast motions.

The other interesting case is when we apply a forcing profile that
is helical in the entire domain (Run RM1zs). In such a system, we
expect the formation of a bipolar structure at much earlier times,
because the large-scale dynamo is now allowed to work in the entire
domain so we should observe propagating dynamo waves at all
depths. Our results confirm this already at a time of around 0.37τ td,
when a magnetic structure develops at the surface and the evolution
of the structures occurs faster than in the two-layer simulations.

4.4 Evolution of bipolar structures

To investigate the evolution of the bipolar magnetic structures in
more detail, we study the motion in the vicinity of the magnetic
structures. In the early stage of the formation of bipolar structures,
they tend to have round yin-yang shapes and each polarity rotates
clockwise, independently of each other. When the structures move
close enough to each other, their motion is no longer indepen-
dent. After the formation of the elongated structures (see Fig. 5 at
t/τ td = 1.51 and 1.82), one can see an anti-clockwise rotation at
the border between opposite polarities (at t/τ td = 2.13 and 2.44 in
this figure), which tends to break the connection and destroys the
elongated structure. We suggest that the clockwise rotation of struc-
tures is due to the presence of a strong large-scale magnetic helicity

Figure 8. Same as Fig. 5 but for Run RM1k with kf = 5.

Table 2. Summary of the runs with rotation. The reference run is shown
in bold.

Run Co θ λ/ηt0k
2
1

RM1 0 0 0.014
R1 0.037 0 0.041
R2 0.37 0 0.040
R3 0.74 0 0.033
R4 0.37 π/4 0.040
R5 0.37 π/2 0.040
R6 − 0.37 0 0.040
R7 1.4 0 0.015

associated with the structure. In other words, the travelling dynamo
waves reach the surface and affect the evolution and motion of the
magnetic structures. The anti-clockwise rotation, however, might
be driven either by some instability, which occurs when opposite
magnetic fields come close to each other (e.g. an instability similar
to tearing instability during reconnection) or it might be caused by
the interaction of two rotating polarities that are now coupled.

4.5 The effect of rotation

In this work, we also study the effect of rotation on the formation and
the evolution of the magnetic structures. We perform simulations
with different Coriolis numbers, Co = 0.03, 0.3, 0.7, and 1.4. Table 2
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Figure 9. Time evolution of Bz/Beq, together with By/Beq and Bz/Beq vectors for Run RM1.

shows the parameters of these runs. Previous studies showed that for
Co larger than 0.1, rotation suppresses the formation of magnetic
structures by NEMPI, see Losada et al. (2013) and Jabbari et al.
(2014). However, our present study shows that in our two-layer
dynamo model, magnetic structures survive for Co as large as 1.4.
It should also be noted that the combination of stratification and
rotation leads to the generation of an additional contribution to the
kinetic helicity in the system (Krause & Rädler 1980; Kleeorin
& Rogachevskii 2003; Jabbari et al. 2014). This contribution is
either constructive if Co < 0 (producing extra positive helicity)
or destructive if Co > 0 (producing negative helicity). This could
modify the dynamo action, but in the present case the Coriolis
number is still too small for the rotation-induced helicity to be
important; see fig. 5 of Jabbari et al. (2014).

One of the possible reasons for the existence of magnetic struc-
tures for moderate rotation rates (Co ≤ 1.4) is the large-scale dy-
namo that increases the magnetic flux. Indeed, NEMPI cannot create
a new flux, but can only redistribute it by forming magnetic concen-
trations in certain small regions. Since the dynamo systematically
produces new magnetic flux, and NEMPI redistributes it, the mag-
netic concentrations survive even for a moderate rotation.

It turns out that in the presence of rotation with Co > 0, there is
a delay in the formation of bipolar structures and the development
of their shape during the early stage. In the case without rotation,
the structure has spherical-like shape in the early stage of formation
before it becomes elongated. This does not happen at finite rotation
with Co > 0. In the presence of rotation, even in the early stage of
bipolar structure formation, it has a random elongated shape, which
changes rapidly in time. In the presence of rotation, it takes more
time for the magnetic structures to become intense and concentrated.

5 R E C O N N E C T I O N IN T H E U P P E R L AY E R S

The production of sharp fronts can be seen in Figs 5 and 6, where
we plot Bz/Beq in two different planes. During the evolution of the
magnetic structures, the bipolar regions evolve into stripes of oppo-
site polarities separated by a current sheet; see Fig. 4. In Fig. 9, we
zoom in on the sharp front in Bz/Beq, where we also see vectors
of By/Beq and Bz/Beq in the yz-plane for our reference run. By
comparing the field lines with Fig. 10, one can see a similar recon-
figuration of magnetic field lines during spot evolution. It is clear
from this figure that field lines with opposite signs of Bz/Beq are
reconnected and a y component of the magnetic field is generated.

On a time-scale that lies somewhere between the resistive diffu-
sion and Alfvén time-scales, magnetic reconnection occurs which
causes the magnetic field topology to change and leads to the con-
version of magnetic energy to thermal energy, kinetic energy and
even particle acceleration; see the sketch in Fig. 10. According to
the Sweet–Parker theory (Parker 1957; Sweet 1958, 1969; Parker

Figure 10. Upper panel: formation of a current sheet before the reconnec-
tion. Lower panel: magnetic configuration after the reconnection.

1994), hereafter SP theory, the rate of reconnection, Vrec depends
on the Lundquist number, S:

Vrec = VAS−1/2. (6)

In the turbulent regime of reconnection, Vrec is independent of
the Ohmic resistivity (Lazarian & Vishniac 1999); see also Eyink
et al. (2011). This conclusion is supported by numerical simulations
(Kowal et al. 2009). According to Lazarian & Vishniac (1999), the
upper limit for the reconnection rate is

Vrec ∼ VAM2
A, (7)

where MA = urms/VA is the Alfvén Mach number.
For large Lundquist numbers, and in the turbulent regime of re-

connection, Vrec is independent of S. This conclusion is confirmed by
recent numerical simulations (Loureiro et al. 2009; Huang & Bhat-
tacharjee 2010). For S > 104, the Sweet-Parker current sheet is un-
stable (Biskamp 1986; Loureiro et al. 2005, 2012; Oishi et al. 2015).
For spontaneous magnetic reconnection, according to magnetohy-
drodynamic numerical simulations (Loureiro et al. 2009; Huang &
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Table 3. Summary of the reconnection parameters.

Run ReM η t/τ td Lz urms/cs VE/cs VA/cs MA S S−1/2 VE/VA M2
A Vin/cs Vin/VA

RM0 10 3 × 10−4 0.97 0.025 0.125 0.04 0.319 0.39 26 0.196 0.127 0.149 0.033 0.104
D1 16 2 × 10−4 0.65 0.0246 0.12 0.0136 0.231 0.52 28 0.188 0.0589 0.27 0.0101 0.0437
D1 16 2 × 10−4 0.84 0.0247 0.118 0.0206 0.299 0.4 37 0.165 0.0689 0.156 0.0212 0.0709
D1 16 2 × 10−4 0.97 0.123 0.104 0.0067 0.169 0.62 104 0.098 0.0397 0.379 0.0075 0.0444
RM1 50 5.7 × 10−5 2.87 0.0493 0.115 0.0107 0.228 0.5 187 0.073 0.047 0.254 0.0154 0.068
RM1 50 5.7 × 10−5 2.92 0.0493 0.120 0.0151 0.275 0.44 226 0.067 0.055 0.191 0.0211 0.077
RM1 50 5.7 × 10−5 2.99 0.0986 0.122 0.0099 0.323 0.38 531 0.043 0.031 0.143 0.0176 0.055
RM1 50 5.7 × 10−5 3.04 0.1478 0.126 0.0120 0.395 0.32 973 0.032 0.03 0.102 0.0184 0.047
RM1 50 5.7 × 10−5 3.09 0.1971 0.123 0.0108 0.441 0.28 1449 0.026 0.025 0.078 0.0145 0.033
RM1 50 5.7 × 10−5 3.16 0.1971 0.117 0.0071 0.435 0.27 1429 0.027 0.016 0.072 0.0093 0.022
RM1 50 5.7 × 10−5 3.21 0.5914 0.118 0.0121 0.395 0.3 3893 0.016 0.031 0.089 0.0137 0.035
RM1 50 5.7 × 10−5 3.34 1.7987 0.109 0.0061 0.322 0.34 9653 0.010 0.019 0.115 0.0112 0.035
RM1 50 5.7 × 10−5 3.46 1.3306 0.103 0.0060 0.239 0.43 5300 0.014 0.025 0.186 0.0092 0.039
RM1 50 5.7 × 10−5 3.58 0.9363 0.096 0.0075 0.176 0.55 2747 0.019 0.043 0.298 0.0104 0.059
RM1 50 5.7 × 10−5 3.71 0.4435 0.092 0.0053 0.130 0.71 961 0.032 0.041 0.501 0.0043 0.033
RM1 50 5.7 × 10−5 3.83 0.3450 0.094 0.0101 0.089 1.06 512 0.044 0.11 1.116 0.0107 0.12
RM2 130 2 × 10−5 1.6 2.4147 0.092 0.0039 0.183 0.50 22 095 0.0067 0.0213 0.253 0.0058 0.032
RM2 130 2 × 10−5 1.65 1.7987 0.093 0.0089 0.181 0.51 16 278 0.0078 0.0492 0.264 0.0094 0.052
RM2 130 2 × 10−5 1.7 1.4045 0.094 0.0074 0.187 0.50 13 132 0.0087 0.0396 0.253 0.0091 0.049
RM2 130 2 × 10−5 1.75 1.1581 0.091 0.0080 0.194 0.47 11 234 0.0094 0.0412 0.220 0.0094 0.049
RM2 130 2 × 10−5 1.8 0.8131 0.092 0.0080 0.187 0.49 7603 0.0115 0.0428 0.242 0.0094 0.050
RM2 130 2 × 10−5 1.9 0.5174 0.088 0.0051 0.151 0.58 3906 0.0160 0.0338 0.340 0.0074 0.049
RM3 260 1. × 10−5 3.04 0.468 0.09 0.005 0.198 0.455 9266 0.011 0.024 0.207 0.005 0.024
RM3 260 1. × 10−5 3.24 0.665 0.088 0.006 0.178 0.494 11 837 0.009 0.033 0.245 0.005 0.028
RM3 260 1. × 10−5 3.33 2.538 0.086 0.004 0.165 0.521 41 877 0.005 0.026 0.272 0.004 0.024
RM3 260 1. × 10−5 3.43 1.848 0.086 0.005 0.159 0.541 29 383 0.006 0.032 0.293 0.003 0.021
RM3 260 1. × 10−5 3.53 1.010 0.086 0.006 0.154 0.558 15 554 0.008 0.035 0.312 0.003 0.021
RM3 260 1. × 10−5 3.63 0.542 0.087 0.022 0.094 0.926 5094 0.014 0.233 0.857 0.007 0.070

Bhattacharjee 2010; Beresnyak 2013), the rate of the reconnection,
Vrec, for S > 104 is of the order of

Vrec ∼ (1−3) × 10−2VA. (8)

To determine Vrec, one can use two approaches. In one approach,
the value of the inflow in the vicinity of the current sheet is measured
(as sketched in Fig. 10). For a turbulent plasma, on the other hand,
one can use a more general and accurate method. In this approach,
one uses Ohm’s law:

ημ0 J = E + U × B, (9)

so that the rate of the reconnection, Vrec, can be determined as
Vrec � VE, where

VE = 〈|E|〉
〈|B|〉 = η〈|μ0 J |〉 − 〈|U × B|〉

〈|B|〉 , (10)

and angular brackets denote averaging along the z-direction (along
the largest side of the current sheet, i.e. perpendicular to the current,
see Fig. 10). Thus, the method of determining Vrec in numerical
simulations is as follows: (i) find the region with the current sheet
that is separating magnetic fields of opposite polarities; (ii) use
different instants of the formation of the current sheet and determine
the value of Vrec, the length of the current layer,Lz, in the z-direction,
the Alfvén speed VA in these instants. Finally, we determine S−1/2

and M2
A = u2

rms/V
2

A, and compare these quantities with the obtained
value of Vrec/VA. We recall that the length of the current sheet Lz

enters in the definition S = VALz/η, and the time when Lz reaches
its maximum value marks the starting time of reconnection.

To determine Vrec, we use x-averaged data, average over the in-
terval (z1, z2), where Lz = z2 − z1 is the length of the current sheet.

Next, we measure the value of Vrec as VE(y∗) and Vin(y∗), while y∗

is a point, which is in the vicinity of the current sheet. Fig. 10, upper
panel, already shows the position of Vrec, which is the same for both
Vin and VE.

The resulting values of Vrec are summarized in Table 3. For com-
parison, we measure both the velocity VE using equation (10) and the
incoming velocity Vin in the vicinity of the current sheet (in the case
of a two-dimensional flow in the xz-plane it is in the y-direction).
We normalize these velocities by 〈VA〉, because VA varies with time
(see Fig. 11). In this section, in order to be able to compare the
results of different runs, we use (t − trec)/τ td for the normalized
time, where trec is the time when the reconnection starts for each
individual Run. Fig. 11 presents the time evolution of the differ-
ent quantities in three separate panels: 〈|B|〉 and 〈|E|〉 in the upper
panel, VA/〈VA〉 and urms/〈urms〉 in the middle panel, and finallyLzk1

in the lower panel. The different colours represent different values
of ReM. One can see that, urms/〈urms〉 does not change strongly with
time and VA/〈VA〉 changes when ReM is smaller (ReM = 50). This
implies that the major change in S comes from the change in the
length of the current sheet (see the lower panel of Fig. 11).

To check which regime of magnetic reconnection is appropriate,
we plot in Fig. 12 VE as a function of S. By comparing the curves
for different magnetic Reynolds numbers, ReM = 50, 130, 260, it
is clear that our data points are consistent with the turbulent regime
of reconnection (Loureiro et al. 2009, 2012; Huang & Bhattachar-
jee 2010; Beresnyak 2013), where the reconnection rate is nearly
independent of S. Fig. 13 demonstrates that the reconnection rates
obtained from the measurements of Vin and VE are similar.

The dependence of the reconnection rate on MA is shown in
Fig. 14. To compare the resulting data from our simulations with
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Figure 11. Upper panel: time evolutions of 〈|B|〉 (solid) and 〈|E|〉 (dot-
ted), both normalized by their time-averaged value. Different colours are
related to three different ReM (Runs RM1, RM2, and RM3). Middle panel:
time evolutions of VA/〈VA〉 (stars), and urms/〈urms〉 (circles) for Runs RM1
(black), RM2 (blue), and RM3 (red). Lower panel: time evolutions of Lzk1

(triangles) for Runs RM1 (black), RM2 (blue), and RM3 (red).

Figure 12. Reconnection rate VE/〈VA〉 normalized by the mean Alfvén
speed versus S. The colours represent the value of ReM [Runs RM1 (circles),
RM2 (stars), and RM3 (triangles)].

the model of Lazarian & Vishniac (1999), we also plot the linear fit
to the data points in Fig. 14. It is clear that our data points strongly
deviate from the predicted M2

A line, and are thus inconsistent with
Lazarian & Vishniac (1999). However, Vrec is weakly dependent

Figure 13. Reconnection rate VE/〈VA〉 normalized by the mean Alfvén
speed versus Vin/〈VA〉. The colours represent the value of ReM [Runs RM1
(circles), RM2 (stars), and RM3 (triangles)].

Figure 14. VE normalized by 〈VA〉 as a function of MA. The solid line
presents the best linear fit. Different colours present different values of ReM

[ReM=50 (Run RM1), black circles, ReM=130 (Run RM2), blue stars, and
ReM=260 (Run RM3), red triangles].

on the Ohmic resistivity (see Figs 12 and 14), in agreement with
Lazarian & Vishniac (1999).

6 C O N C L U S I O N S

In this paper, we have extended the results of Mitra et al. (2014)
to higher magnetic Reynolds numbers and have investigated the
effects of rotation at different Coriolis numbers. Our results demon-
strate that in the two-layer model with helical forcing in the lower
part and non-helical forcing in the upper, sharp bipolar spots form at
the surface, expand and then develop stripy structures. The observed
effects are similar for different values of ReM and Co. In our present
simulations, for Co as large as 1.4, we still observe the formation of
the intense bipolar structures. This value is significantly larger than
what was previously obtained in studies of magnetic flux concentra-
tions in rotating turbulence with an imposed weak magnetic field.
One of the plausible explanations for this is the large-scale dynamo
which increases magnetic flux. By contrast, NEMPI cannot produce

MNRAS 459, 4046–4056 (2016)

 at U
niversity of C

olorado on M
ay 19, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Turbulent reconnection of magnetic bipoles 4055

new flux, but only redistribute it, forming magnetic concentrations
in small regions. Thus, the large-scale dynamo systematically pro-
duces new magnetic flux, while NEMPI redistributes it. This could
be the reason why the magnetic concentrations survive even for
moderate rotation. Although there are dynamo-generated magnetic
fields in our simulations, which is more realistic compared to several
previous models with an imposed magnetic field, we still observe
evidence for downflows at the locations of magnetic structure for-
mation, similar to Brandenburg et al. (2014), Mitra et al. (2014),
and Jabbari et al. (2015).

What is surprising is the long lifetime of the resulting bipolar re-
gions, which exceeds several turbulent diffusion times. We suggest
that the main reason why these intense magnetic structures survive
longer is the magnetic reconnection phenomenon in the vicinity of
the current sheet between opposite magnetic polarities. We have
determined the reconnection rate for a range of different param-
eters and have shown that for high Lundquist numbers, S > 103,
the measured reconnection rate is nearly independent of S. This
result is consistent with recent numerical simulations in a turbulent
regime of reconnection performed by other groups (Loureiro et al.
2009; Huang & Bhattacharjee 2010; Loureiro et al. 2012; Beresnyak
2013). The measured reconnection rate is weakly dependent on the
Alfvén Mach number, MA, which is inconsistent with predictions
of Lazarian & Vishniac (1999). On the other hand, the reconnection
rate is also weakly dependent on the Ohmic resistivity, in agreement
with Lazarian & Vishniac (1999).

In this work, we have also investigated the effects of varying the
scale-separation ratio, kf/k1. Contrary to earlier studies of NEMPI,
for kf/k1 as small as five, bipolar magnetic structures still form.
Our previous studies of unipolar magnetic concentrations with an
imposed weak mean magnetic field have shown that, although the
effective magnetic pressure (the sum of turbulent and non-turbulent
contributions) becomes negative even for moderate scale separation
ratio (about 3–5), the large-scale instability (NEMPI) is excited only
if the scale-separation ratio is large enough (>15). This suggests
that the phenomenon we find in our DNS cannot be understood
solely in terms of NEMPI.

In the more complicated two-layer system with a dynamo-
generated magnetic field, two instabilities (dynamo and possibly
NEMPI or the magnetic buoyancy instability) may be excited. We
stress that in both, our two-layer model with dynamo-generated
magnetic field and in turbulent systems with an imposed magnetic
field where NEMPI is known to be excited, strong density stratifi-
cation plays an important role. Furthermore, there is evidence for
the existence of downflows at the locations of magnetic structures
in both systems. However, in our two-layer model the formation of
bipolar regions is still observed for smaller scale separation ratios
than what was required for a turbulent system with an imposed
magnetic field where NEMPI was excited.

The process maintaining the bipolar structures may be related to
or associated with NEMPI. It may also be possible that the positive
magnetic pressure associated with the strong dynamo-generated
magnetic field in non-linear stage of evolution is responsible for
the formation of the sharp interface of the bipolar structures found
in the upper layers, where the plasma beta is no longer very large.
However, a conclusive answer cannot be given at present. To ar-
rive at a more definitive conclusion regarding the mechanism of
bipolar structure formation, it would be desirable to measure the
effective magnetic pressure tensors in our two-layer model and to
study their parameter dependencies in more detail. This requires the
development of an adequate test-field method. This is a subject of
a separate study.
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