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ABSTRACT

Context. The large-scale magnetic fields of stars and galaxies are often described in the framework of mean-field dynamo theory.
At moderate magnetic Reynolds numbers, the transport coefficients defining the mean electromotive force can be determined from
simulations. This applies analogously also to passive scalar transport.
Aims. We investigate the mean electromotive force in the kinematic framework, that is, ignoring the back-reaction of the magnetic
field on the fluid velocity, under the assumption of axisymmetric turbulence determined by the presence of either rotation, density
stratification, or both. We use an analogous approach for the mean passive scalar flux. As an alternative to convection, we consider
forced turbulence in an isothermal layer. When using standard ansatzes, the mean magnetic transport is then determined by nine, and
the mean passive scalar transport by four coefficients. We give results for all these transport coefficients.
Methods. We use the test-field method and the test-scalar method, where transport coefficients are determined by solving sets of
equations with properly chosen mean magnetic fields or mean scalars. These methods are adapted to mean fields which may depend
on all three space coordinates.
Results. We find the anisotropy of turbulent diffusion to be moderate in spite of rapid rotation or strong density stratification.
Contributions to the mean electromotive force determined by the symmetric part of the gradient tensor of the mean magnetic field,
which were ignored in several earlier investigations, turn out to be important. In stratified rotating turbulence, the α effect is strongly
anisotropic, suppressed along the rotation axis on large length scales, but strongly enhanced at intermediate length scales. Also the
Ω× J effect is enhanced at intermediate length scales. The turbulent passive scalar diffusivity is typically almost twice as large as the
turbulent magnetic diffusivity. Both magnetic and passive scalar diffusion are slightly enhanced along the rotation axis, but decreased
if there is gravity.
Conclusions. The test-field and test-scalar methods provide powerful tools for analyzing transport properties of axisymmetric tur-
bulence. Future applications are proposed ranging from anisotropic turbulence due to the presence of a uniform magnetic field to
inhomogeneous turbulence where the specific entropy is nonuniform, for example. Some of the contributions to the mean electromo-
tive force which have been ignored in several earlier investigations, in particular those given by the symmetric part of the gradient
tensor of the mean magnetic field, turn out to be of significant magnitude.
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1. Introduction

Stellar mixing length theory is a rudimentary description of tur-
bulent convective energy transport. The mixing length theory of
turbulent transport goes back to Prandtl (1925) and, in the stel-
lar context, to Vitense (1953). The simplest form of turbulent
transport is turbulent diffusion, which quantifies the mean flux
of a given quantity, e.g., momentum, concentration of chemi-
cals, specific entropy or magnetic fields, down the gradient of its
mean value. In all these cases essentially a Fickian diffusion law
is established, where the turbulent diffusion coefficient is propor-
tional to the rms velocity of the turbulent eddies and the effective
mean free path of the eddies or their correlation length.

Mean-field theories, which have been elaborated, e.g., for
the behavior of magnetic fields or of passive scalars in turbulent
media, go beyond this concept. In the case of magnetic fields,
the effects of turbulence occur in a mean electromotive force,
which is related to the mean magnetic field and its derivatives in
a tensorial fashion. Examples for effects described by the mean
magnetic field alone, without spatial derivatives, are the α-effect
(Steenbeck et al. 1966) and the pumping of mean magnetic flux

(Rädler 1966, 1968; Roberts & Soward 1975); for more infor-
mation on these topics see, e.g., Krause & Rädler (1980) or
Brandenburg & Subramanian (2005). Likewise the mean pas-
sive scalar flux contains a pumping effect (Elperin et al. 1996).
In both the magnetic and the passive scalar cases turbulent dif-
fusion occurs, which is in general anisotropic. The coupling be-
tween the mean electromotive force and the magnetic field and
its derivatives, or mean passive scalar flux and the mean scalar
and its derivatives, is given by turbulent transport coefficients.

On the analytic level of the theory the determination of these
transport coefficients is only possible with some approximations.
The most often used one is the second-order correlation approx-
imation (SOCA), which has delivered so far many important
results. Its applicability is however restricted to certain ranges
of parameters like the magnetic Reynolds number or the Péclet
number. In spite of this restriction, SOCA is an invaluable tool,
because it allows a rigorous treatment within the limits of its
applicability. It is in particular important for testing numerical
methods that apply in a wider range.

In recent years it has become possible to compute the full set
of turbulent transport coefficients numerically from simulations
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of turbulent flows. The most accurate method for that is the test-
field method (Schrinner et al. 2005, 2007). In addition to the
equations describing laminar and turbulent flows, one solves a
set of evolution equations for the small-scale magnetic or scalar
fields which result from given mean fields, the test fields. By
selecting a sufficient number of independent test fields, one ob-
tains a corresponding number of mean electromotive forces or
mean scalar fluxes and can then compute in a unique way all the
associated transport coefficients.

Most of the applications of the test-field method are based
on spatial averages that are taken over two coordinates. In the
magnetic case this approach has been applied to a range of dif-
ferent flows including isotropic homogeneous turbulence (Sur
et al. 2008; Brandenburg et al. 2008a), homogeneous shear flow
turbulence (Brandenburg et al. 2008b) without and with helic-
ity (Mitra et al. 2009), and turbulent convection (Käpylä et al.
2009). One of the main results is that in the isotropic case, for
magnetic Reynolds numbers Rm larger than unity, the turbulent
diffusivity is given by 1

3τu
2
rms, where the correlation time τ is,

to a good approximation, given by τ = (urmskf)−1. Here, urms
is the rms velocity of the turbulent small-scale flow and kf is
the wavenumber of the energy-carrying eddies. For smaller Rm,
the turbulent diffusivity grows linearly with Rm. Furthermore,
if the turbulence is driven isotropically by polarized waves, the
flow becomes helical and there is an α effect. In the kinematic
regime (for weak magnetic fields), the α coefficient is propor-
tional to ω · u, where ω = ∇ × u is the vorticity of the small-
scale flow, u. In the passive scalar case, test scalars are used to
determine the transport coefficients. Results have been obtained
for anisotropic flows in the presence of rotation or strong mag-
netic fields (Brandenburg et al. 2009), linear shear (Madarassy
& Brandenburg 2010), and for irrotational flows (Rädler et al.
2011).

The present paper deals with the magnetic and the passive
scalar case in the above sense. Its goal is to compute the transport
coefficients for axisymmetric turbulence, that is, turbulence with
one preferred direction, given by the presence of either rotation
or density stratification or, if the relevant directions coincide, of
both. (Axisymmetric turbulence can be defined by requiring that
any averaged quantity depending on the turbulent velocity field
is invariant under any rotation of this field about the preferred
axis.) Note that a dynamo-generated magnetic field will in gen-
eral violate the assumption of axisymmetric turbulence. To avoid
this problem while still being able to investigate the general ef-
fects arising from only one preferred direction, we assume such
fields to be weak so as not to affect the assumption of axisym-
metry of the turbulence. An imposed uniform magnetic field in
the preferred direction would still be allowed, but this case will
not be investigated in this paper; see Brandenburg et al. (2009)
for numerical investigations of passive scalar transport with a
uniform field.

Except for a few comparison cases, we always consider flows
in a slab between stress-free boundaries. This is the simplest ex-
ample of flows that are non-vanishing on the boundary and com-
patible with axisymmetric turbulence. To facilitate comparison
with earlier work on forced turbulence, we consider an isother-
mal layer even in the density-stratified case, i.e., there is no con-
vection, and the flow is driven by a prescribed random forcing.
This is similar to earlier work on forced homogeneous turbu-
lence (Brandenburg et al. 2008a,b, 2009), but now we will be
able to address questions regarding vertical pumping as well
as helicity production and α effect in the presence of rotation.
This setup allows us to isolate effects of density stratification
from those originating from the nonuniformities of turbulence

intensity and local correlation length. In addition to isothermal
stratification, we assume an isothermal equation of state and
thus do not consider an equation for the specific entropy. Hence,
no Brunt-Väisälä oscillations can occur. This assumption would
need to be relaxed for studying turbulent convection, which will
be the subject of a future investigation.

2. Mean-field concept in turbulent transport

2.1. Mean electromotive force

The evolution of the magnetic field B in an electrically conduct-
ing fluid is assumed to obey the induction equation,

∂B
∂t
= ∇ × (U × B − ηJ) , (1)

where U is the velocity and η the microscopic magnetic diffu-
sivity of the fluid, and J is defined by J = ∇ × B (so that J/μ0
with μ0 being the magnetic permeability is the electric current
density). We define mean fields as averages, assume that the av-
eraging satisfies (exactly or approximately) the Reynolds rules,
and denote averaged quantities by overbars1. The mean magnetic
field B is then governed by

∂B
∂t
= ∇ ×

(
U × B + E − ηJ

)
, (2)

where E = u × b is the mean electromotive force resulting from
the correlation of velocity and magnetic field fluctuations, u =
U − U and b = B − B.

We focus attention on the mean electromotive force E in
cases in which the velocity fluctuations u constitute axisymmet-
ric turbulence, that is, turbulence with one preferred direction,
which we describe by the unit vector ê. Until further notice we
accept the traditional assumption according to whichE in a given
point in space and time is a linear homogeneous function of B
and its first spatial derivatives in this point. Then, E can be rep-
resented in the form

E = −α⊥B − (α‖ − α⊥)(ê · B)ê − γê × B

−β⊥J − (β‖ − β⊥)(ê · J)ê − δê × J (3)

−κ⊥K − (κ‖ − κ⊥)(ê · K)ê − μê × K

with nine coefficients α⊥, α‖, . . ., μ2. Like J = ∇ × B, also K is
determined by the gradient tensor ∇B. While J is given by its
antisymmetric part, K is a vector defined by K = ê · (∇B)S with
(∇B)S being the symmetric part of ∇B. A more detailed expla-
nation of (3) is given in Appendix A. If ê is understood as polar
vector (for example∇ρ/|∇ρ|, where ρ is the mean mass density),
then K is axial and γ, β⊥, β‖ and μ are true scalars, but α⊥, α‖, δ,
κ⊥ and κ‖ pseudoscalars. (Scalars are invariant but pseudoscalars
change sign if the turbulent velocity field is reflected at a point or

1 The Reynolds rules imply that F +G = F + G, F = F, FG = FG,
∂F/∂x = ∂F/∂x and ∂F/∂t = ∂F/∂t for any fluctuating quantities F
and G.
2 Note that the signs in front of some individual terms on the right-
hand side of (3), in particular of those with α⊥ and α‖ (perpendicular
and parallel α effect) as well as γ (pumping in the z direction), may
differ from the signs used in other representations.
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at a plane containing the preferred axis.) Sometimes it is useful
to interpret ê as an axial vector (for exampleΩ/|Ω|withΩ being
an angular velocity). Then, K is a polar vector, β⊥, β‖, δ, κ⊥, κ‖
and μ are true scalars but α⊥, α‖ and γ pseudoscalars.

We may split E and B into parts E⊥ and B⊥ perpendicular to
ê and parts E‖ and B‖ parallel to it. Then (3) can be written in
the form

E⊥ = −α⊥B⊥ − γê × B⊥ − β⊥J⊥ − δê × J⊥

− κ⊥K⊥ − μê × K⊥ (4)

E‖ = −α‖B‖ − β‖J‖ − κ‖K‖.
Let us return to (3). In the simple case of homogeneous isotropic
turbulence we have α⊥ = α‖ and β⊥ = β‖, and all remaining co-
efficients vanish. Then, (3) takes the form E = αB − ηt J with
properly defined α and ηt. These two coefficients have been de-
termined by test-field calculations (Sur et al. 2008; Brandenburg
et al. 2008a).

In several previous studies of E, more general kinds of turbu-
lence (that is, not only axisymmetric turbulence) have been con-
sidered, but with a less general definition of mean fields, which
were just horizontal averages. More precisely, Cartesian coordi-
nates (x, y, z) were adopted and the averages were taken over all
x and y so that they depend on z and t only (Brandenburg et al.
2008a,b). This definition implies remarkable simplifications. Of
course, we then have Jz = 0. Further, there are no non-zero com-
ponents of ∇B other than Bx,z and By,z, for ∇ · B = 0 requires
Bz,z = 0, and these components can be expressed as compo-
nents of J , viz. Bx,z = Jy and By,z = −Jx. (Here and in what
follows, commas denote partial derivatives.) This again implies
K = − 1

2 ê × J . As a consequence, this definition of mean fields
reduces (3) to

E = −α⊥B − (α‖ − α⊥)(ê · B)ê − γê × B

−β†J − δ† ê × J , (5)

where β† = β⊥ + 1
2μ and δ† = δ − 1

2κ⊥. Of course, α⊥, α‖, γ, β†

and δ† are independent of x or y. Clearly, β⊥ and μ as well as δ
and κ⊥ have no longer independent meanings. From (2) we may
conclude that ∂Bz/∂t = 0. If we restrict ourselves to applications
in which Bz vanishes initially, it does so at all times and the term
with α‖ − α⊥ in (5) disappears. Then, only the four coefficients
α⊥, γ, β† and δ† are of interest. They can be determined by test-
field calculations using two test fields independent of x and y
(Brandenburg et al. 2008a,b).

In this paper we go beyond the aforementioned assumptions
in the following respects. Firstly, we relax the assumption that
E in a given point in space is a homogeneous function of B and
its first spatial derivatives in this point. Instead, we admit a non-
local connection between E and B. For simplicity, however, we
further on assume that E at a given time depends only on B at the
same time, that is, we remain with an instantaneous connection
between E and B. This approximation requires that the mean
field varies slowly on a time scale much longer than the turnover
time of the turbulence; see Hubbard & Brandenburg (2009) for
a more general treatment of rapidly changing fields. Secondly,
we consider mean fields no longer as averages over all x and y.
We define B at a point (x, y) in a plane z = const by averaging

over some surroundings of this point in this plane so that it still
depends on x and y. In that sense we generalize (3) so that

E(x) = −
∫ (
α⊥(x, ξ)B(x − ξ)
+
(
α‖(x, ξ) − α⊥(x, ξ)

)(
ê · B(x − ξ))ê

+γ(x, ξ) ê × B(x − ξ)
+β⊥(x, ξ) J(x − ξ)
+
(
β‖(x, ξ) − β⊥(x, ξ)

)(
ê · J(x − ξ))ê

+δ(x, ξ) ê × J(x − ξ) (6)

+κ⊥(x, ξ) K(x − ξ)
+
(
κ‖(x, ξ) − κ⊥(x, ξ)

)(
ê · K(x − ξ))ê

+μ(x, ξ) ê × K(x − ξ)) d3ξ.

As a consequence of the axisymmetry of the turbulence, the co-
efficients α⊥, α‖, . . ., μ depend only via ξ2x + ξ

2
y on ξx and ξy. We

consider them also as symmetric in ξz. The integration is over
all ξ space. Of course, E, B, J , and K may depend on t. For
simplicity, however, the argument t has been dropped.

Let us subject (6) to a Fourier transformation with respect to
ξ. We define it by

F(ξ) = (2π)−3
∫

F̃(k) exp(ik · ξ) d3k. (7)

Remembering the convolution theorem we obtain

E(x) = −(2π)−3
∫ (
α̃⊥(x, k)B̃(k)

+
(
α̃‖(x, k) − α̃⊥(x, k)

)(
ê · B̃(k)

)
ê

+ γ̃(x, k) ê × B̃(k)

+ β̃⊥(x, k) J̃(k) +
(
β̃‖(x, k) − β̃⊥(x, k)

)(
ê · J̃(k)

)
ê

+ δ̃(x, k) ê × J̃(k) (8)

+ κ̃⊥(x, k)K̃(k) +
(
κ̃‖(x, k) − κ̃⊥(x, k)

)(
ê · K̃(k)

)
ê

+ μ̃(x, k) ê × K̃(k)
)

exp(ik · x) d3 k ;

see Chatterjee et al. (2011) for a corresponding relation in the
case of horizontally averaged magnetic fields that depend only
on z. Like α⊥, α‖, . . ., μ, the α̃⊥, α̃‖, . . ., μ̃ are real quantities.
They depend only via k⊥ = (k2

x + k2
y)

1/2 on kx and ky and are
symmetric in kz, i.e., depend only via k‖ = |kz| on kz. Due to the
reality of the α⊥, α‖, . . ., μ and their symmetry in ξx, ξy and ξz
we have

α̃⊥(x, k) =
∫
α⊥(x, ξ) cos kxξx cos kyξy cos kzξz d3ξ (9)

and analogous relations for α̃‖, . . ., μ̃. We note that α̃⊥, . . ., μ̃,
taken at k = 0, agree with α⊥, . . ., μ in Eq. (3).

2.2. Mean passive scalar flux

There are interesting analogies between turbulent transport of
magnetic flux and that of a passive scalar (cf. Rädler et al. 2011).
Assume that the evolution of a passive scalar C, e.g., the concen-
tration of an admixture in a fluid, is given by

∂C
∂t
= −∇ · (UC − D∇C), (10)
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where D is the microscopic (molecular) diffusivity. Then the
mean scalar C has to satisfy

∂C
∂t
= −∇ · (U C + F − D∇C), (11)

where F = uc is the mean passive scalar flux, u stands again for
the fluctuations of the velocity and c = C−C for the fluctuations
of C. Consider again axisymmetric turbulence with a preferred
direction given by the unit vector ê. Assume that F in a given
point in space and time is determined by C and its gradient G =
∇C in this point. Then we have

F = −γCCê − βC
⊥G − (βC

‖ − βC
⊥)(ê · G)ê − δCê × G, (12)

with coefficients γC , βC⊥, βC
‖ and δC . If ê is a polar vector, γC

is a scalar but δC a pseudoscalar, and if ê is an axial vector, γC

is a pseudoscalar but δC a scalar, while βC⊥ and βC
‖ are always

scalars. We note that ∇ · (δCê × G) is only unequal zero if δC is
not constant but varies in the direction of ê × G.

We may split F and G into parts F⊥ and G⊥ perpendicular
to ê, and parts F ‖ and G‖ parallel to it, and give (12) the form

F⊥ = −βC
⊥G⊥ − δC ê × G⊥

F ‖ = −γC êC − βC
‖ G‖. (13)

Let us now relax the assumption that F in a given point in space
and time is determined by C and G in this point. Analogously
to the magnetic case we consider a non-local but instantaneous
connection between F and C. Then we have

F (x) = −
∫ (
γC(x, ξ) ê C(x − ξ)
+βC
⊥(x, ξ)G(x − ξ)

+
(
βC
‖ (x, ξ) − βC

⊥(x, ξ)
) (

ê · G(x − ξ)) ê (14)

+δC(x, ξ) ê × G(x − ξ)
)

d3ξ.

As α⊥, α‖, . . ., μ in the magnetic case, γC , βC⊥, βC
‖ and δC de-

pend only via ξ2x + ξ
2
y on ξx and ξy, and we consider them also as

symmetric in ξz. The integration is again over all ξ space. Note
that F , C, and G may, even if it is not explicitly indicated, de-
pend on t. Applying the Fourier transformation defined by (7)
on (14), we arrive at

F (x) = −(2π)−3
∫ (
γ̃C(x, k) ê C̃(k)

+β̃C
⊥(x, k)G̃(k)

+
(
β̃C
‖ (x, k) − β̃C

⊥(x, k)
) (

ê · G̃(k)
)
ê (15)

+δ̃C(x, k) ê × G̃(k)
)

exp(ik · x) d3k,

where γ̃C⊥, β̃C⊥, β̃C
‖ and δ̃C are real quantities. They depend only

via k2
x + k2

y on kx and ky, and only via k‖ on kz, and they satisfy
relations analogous to (9). We note that γ̃C , β̃C⊥, β̃C

‖ , and δ̃C at
k = 0 agree with γC , βC⊥, βC

‖ , and δC in (12).

3. Simulating the turbulence

We assume that the fluid is compressible and its flow is governed
by the equations

DU
Dt
= f + g − ∇h − 2Ω × U + ρ−1∇ · (2νρS)

Dh
Dt
= −c2

s∇ · U. (16)

Here, f means a random force which primarily drives isotropic
turbulence (e.g., Haugen et al. 2004), g the gravitational force,
and h the specific enthalpy. An isothermal equation of state, p =
ρc2

s , has been adopted with a constant isothermal sound speed
cs. In general a fluid flow in a rotating system is considered, Ω
is the angular velocity which defines the Coriolis force. As usual
ρ means the mass density, ν the kinematic viscosity and S the
trace-free rate of strain tensor, Si j =

1
2 (Ui, j + U j,i) − 1

3δi j∇ · U.
The influence of the magnetic field on the fluid motion, that is
the Lorentz force, is ignored throughout the paper.

The numerical simulation is carried out in a cubic domain of
size L3, so the smallest wavenumber is k1 = 2π/L. In most of
the cases a density stratification is included with g = (0, 0,−g),
so the density scale height is Hρ = c2

s/g. The number of scale
heights across the domain is equal to Δ ln ρ, where Δ denotes the
difference of values at the two edges of the domain. The forc-
ing is assumed to work with an average wavenumber kf . The
scale separation ratio is then given by kf/k1, for which we usu-
ally adopt the value 5. This means that we have about 5 eddies
in each of the three coordinate directions.

The flow inside the considered domain depends on the
boundary conditions. Unless indicated otherwise we take the top
and bottom surfaces z = z1 and z = z2 with z2 = −z1 = L/2 as
stress-free and adopt periodic boundary conditions for the other
surfaces.

4. Computing the transport coefficients

4.1. Test-field method

In the magnetic case the coefficients α⊥, α‖, . . ., μ are deter-
mined by the test-field method (Schrinner et al. 2005, 2007;
Brandenburg et al. 2008a). This method works with a set of test
fields B, called BT, and the corresponding mean electromotive
forces E, called ET. For the latter we have ET = u × bT, where
the bT obey

bT = ∇ × aT

∂aT

∂t
= U × bT + u × BT +

(
u × bT

)′
+ η∇2aT, (17)

with U and u taken from the solutions of (16). For the boundaries
z = const we choose conditions which correspond to an adjacent
perfect conductor, for the x and y directions periodic boundary
conditions.

We define four test fields by

B1s = (B0 sx sy sz, 0, 0), B1c = (B0 sx sy cz, 0, 0)

B2s = (0, 0, B0 sx sy sz), B2c = (0, 0, B0 sx sy cz) (18)

with a constant B0. Here and in what follows we use the abbre-
viations

sx = sin kxx, cx = cos kxx

sy = sin kyy, cy = cos kyy (19)

sz = sin kzz, cz = cos kzz.
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We recall that test-fields need not to be solenoidal (see Schrinner
et al. 2005, 2007).

We denote the mean electromotive forces which correspond
to the test fields (18) by E1s, E1c, E2s, and E2c. With the presen-
tation (6) and relations like (9) we find

E1s
x = −B0

(
α̃⊥ sx sy sz −

(
δ̃ − 1

2
κ̃⊥

)
kz sx sy cz

)

E1s
y = −B0

(
γ̃ sx sy sz +

(
β̃⊥ +

1
2
μ̃

)
kz sx sy cz

)

E1s
z = B0 β̃‖ky sx cy sz (20)

E2s
x = −B0

((
β̃⊥ − 1

2
μ̃

)
ky sx cy sz +

(
δ̃ +

1
2
κ̃⊥

)
kx cx sy sz

)

E2s
y = B0

((
β̃⊥ − 1

2
μ̃

)
kx cx sy sz −

(
δ̃ +

1
2
κ̃⊥

)
ky sx cy sz

)

E2s
z = −B0

(
α̃‖ sx sy sz + κ̃‖kz sx sy cz

)
and corresponding relations for E1c

x , . . . ,E2c
z , whose right-hand

sides can be derived from those in (20) simply by replacing sz
and cz by cz and − sz, respectively.

In view of the assumed axisymmetry of the turbulence, we
consider α⊥, α‖, . . ., μ in what follows as independent of x and
y but admit a dependence on z. When multiplying both sides of
Eqs. (20) and of the corresponding ones for E1c

x , . . . ,E2c
z with

sx sy, sx cy or cy sy and averaging over all x and y, we obtain a
system of equations, which can be solved for α̃⊥, α̃‖, . . ., μ̃. The
result reads

α̃⊥ = −〈bss( szE1s
x + czE1c

x )〉
α̃‖ = −〈bss( szE2s

z + czE2c
z )〉

γ̃ = −〈bss( szE1s
y + czE1c

y )〉
β̃⊥ = − 1

2 〈Bss( czE1s
y − szE1c

y ) + Bsc( szE2s
x + czE2c

x )〉
= − 1

2 〈Bss( czE1s
y − szE1c

y ) − Bcs( szE2s
y + czE2c

y )〉
β̃‖ = 〈Bsc( szE1s

z + czE1c
z )〉 (21)

δ̃ = 1
2 〈Bss( czE1s

x − szE1c
x ) − Bcs( szE2s

x + czE2c
x )〉

= 1
2 〈Bss( czE1s

x − szE1c
x ) − Bsc( szE2s

y + czE2c
y )〉

κ̃⊥ = −〈Bss( czE1s
x − szE1c

x ) + Bcs( szE2s
x + czE2c

x )〉
= −〈Bss( czE1s

x − szE1c
x ) + Bsc( szE2s

y + czE2c
y )〉

κ̃‖ = −〈Bss( czE2s
z − szE2c

z )〉
μ̃ = −〈Bss( czE1s

y − szE1c
y ) − Bsc( szE2s

x + czE2c
x )〉

= −〈Bss( czE1s
y − szE1c

y ) + Bcs( szE2s
y + czE2c

y )〉,
where

bss = 4 sx sy/B0, Bss = bss/kz

Bcs = 4 cx sy/kxB0, Bsc = 4 sx cy/kyB0. (22)

The angle brackets indicate averaging over x and y. Although
the relations (21) and (22) contain kx, ky and kz as independent
variables, the α̃⊥, α̃‖, . . ., μ̃ should vary only via k⊥ = (k2

x+k2
y)

1/2

with kx and ky, and only via k‖ with kz.

4.2. Test-scalar method

In the passive-scalar case the coefficients γC , βC⊥, βC
‖ , and δC are

determined by the test-scalar method with test scalars C
T

and

the corresponding fluxes F T. For the latter, we have F T = ucT,
where cT obeys

∂cT

∂t
= −∇ ·

(
UcT + uC

T
+ (ucT)′ − D∇cT

)
. (23)

Again U and u are taken from the solutions of (16).

We define two test-scalars C
Ts

and C
Tc

by

C
s
= C0 sx sy sz, C

c
= C0 sx sy cz, (24)

where C0 is a constant and the abbreviations (19) are used.
From (14) we then have

F s
x = −C0(β̃C

⊥kx cx sy sz − δ̃Cky sx cy sz)

F s
y = −C0(β̃C

⊥ky sx cy sz + δ̃Ckx cx sy sz) (25)

F s
z = −C0(γ̃C

⊥ sx sy sz + β̃C
‖ kz sx sy cz)

and analogous relations for F c
x, . . . ,F

c
z with sz and cz replaced

by cz and −sz, respectively.
Analogous to the magnetic case, we assume that γC , βC⊥,

βC
‖ , and δC are independent of x and y but may depend on z.

Analogous to (21) we find here

γ̃C = −〈css( szF s
z + czF c

z)〉
β̃C
⊥ = −〈Ccs( szF s

x + czF c
x)〉 = −〈Csc( szF s

y + czF c
y)〉

β̃C
‖ = −〈Css( czF s

z − szF c
z)〉 (26)

δ̃C = 〈Csc( szF s
x + czF c

x)〉 = −〈Ccs( szF s
y + czF c

y)〉,
where css, Css, Csc, and Ccs are defined like bss, Bss, Bsc, and Bcs,
with C0 at the place of B0. The angle brackets indicate again
averaging over x and y. Note that γ̃C , β̃C⊥, β̃C

‖ , and δ̃C should

depend only via k⊥ = (k2
x + k2

y)
1/2 on kx and ky, and only via k‖

on kz.

4.3. Validation using the Roberts flow

For a validation of our test-field procedure for the determination
of the coefficients occurring in (3) we rely on the Roberts flow.
We define it here by

u = u0(− cos k0x sin k0y, sin k0x cos k0y,

2 f cos k0x cos k0y), (27)

with some wavenumber k0 and a factor f which characterizes
the ratio of the magnitude of uz to that of ux and uy. We further
define mean fields as averages over x and y with an averaging
scale which is much larger than the period length 2π/k0 of the
flow pattern. When calculating the mean electromotive force E
for this flow, we assume that it is a linear homogeneous func-
tion of B and its first spatial derivatives and adopt the second-
order correlation approximation. Although the Roberts flow is
far from being axisymmetric, the result for E can be written in
the form (3), and we have

α⊥ =
u2

0 f

2ηk0
, α‖ = γ = 0

β⊥ =
u2

0(1 + 4 f 2)

16ηk2
0

, β‖ =
u2

0

8ηk2
0

, δ = 0

κ⊥ = κ‖ = 0, μ = −u2
0(1 − 4 f 2)

8ηk2
0

= 2(β⊥ − β‖). (28)
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It agrees with and can be deduced from results reported in Rädler
et al. (2002a,b). As for the passive scalar case, an analogous
analytical calculation of the mean scalar flow F leads to (12)
with

γC = 0, βC
⊥ =

u2
0

8Dk2
0

, βC
‖ =

u2
0 f 2

2Dk2
0

, δC = 0. (29)

We may proceed from the local connection of E with B and its
derivatives considered in (3) to the non-local ones given by (6)
or (8). As a consequence of the deviation of the flow from ax-
isymmetry, we can then no longer justify that coefficients like
α⊥(ξ) depend only via ξ2x + ξ

2
y on ξx and ξy, and coefficients like

α̃⊥(k) only via k⊥ on kx and ky. This applies analogously to the
connection of F with C and its derivatives and to coefficients
like β⊥(ξ) and β̃⊥(k).

A test-field calculation of the coefficients α̃⊥, α̃‖, . . ., μ̃, as
well as γ̃C , . . ., δ̃C, has been carried out under the conditions of
the second-order correlation approximation with u given by (27)
and f = 1/

√
2. Figure 1 shows the results obtained for α̃⊥, β̃⊥,

β̃‖ and μ̃, as well as β̃C⊥ and β̃C
‖ , as functions of k⊥/kf , with kf =√

2k0, for two fixed ratios k‖/k⊥. In the limit k⊥/kf 
 1 these
coefficients take just the values of α⊥, β⊥, β‖, μ, βC⊥ and βC

‖ given
in (28) and (29). For larger values of k⊥/kf , as to be expected, the
α̃⊥, β̃⊥, β̃‖, μ̃, β̃C⊥ and β̃C

‖ depend also on the ratio of kx and ky.

4.4. Dimensionless parameters and related issues

Within the framework of this paper, the coefficients α⊥, α‖, . . .,
μ as well as α̃⊥, α̃‖, . . ., μ̃, and likewise γC , βC⊥, . . ., δC and γ̃C ,
β̃C⊥, . . ., δ̃C , have to be considered as functions of several di-
mensionless parameters. In the magnetic case these are the mag-
netic Reynolds number Rm = urms/ηkf and the magnetic Prandtl
number Pm = ν/η, in the passive scalar case the Péclet number
Pe = urms/Dkf and the Schmidt number Sc = ν/D, further the
Mach number Ma = urms/cs, the gravity parameter Gr = g/c2

s kf ,
the Coriolis number Co = 2Ω/urmskf , as well as the scale sepa-
ration ratio kf/k1.

Throughout the rest of the paper we give the coefficients α⊥,
α‖, γ, and γC as well as α̃⊥, α̃‖, γ̃, and γ̃C in units of urms/3,
the remaining coefficients β⊥, . . ., δC and β̃⊥, . . ., δ̃C in units of
urms/3kf. The numerical calculations deliver these coefficients as
functions of z and t. To avoid boundary effects, we average these
results over −2 ≤ k1z ≤ 1 (see Fig. 3 below). The resulting time
series are averaged over a range where the results are statistically
stationary, i.e., there is no trend in the time series. Error bars
are defined by comparing the maximum departure of an average
over any one third of the time series with the full time average.

In the case of isotropic turbulence it has been observed that
many of the transport coefficients enter an asymptotic regime as
soon as Rm exceeds unity (Sur et al. 2008). While this should
be checked in every new case again (see below), it is impor-
tant to realize that, according to several earlier results (see also
Brandenburg et al. 2009), only values of Rm below unity are
characteristic of the diffusively dominated regime, while for Rm
exceeding unity the transport coefficients turn out to be nearly
independent of the value of Rm.

We are often interested in the limit k⊥, k‖ → 0, in which the
α̃⊥, α̃‖, . . . δ̃C turn into the α⊥, α‖ . . . δC . In this limit, however,
the test fields and test scalars defined by (18) and (24) vanish.
Unless specified otherwise, we approach this limit by choosing
the smallest possible non-zero |kx|, |ky| and |kz|, that is, by putting
kx = ky = kz = k1.

Fig. 1. The coefficients α̃⊥, β̃⊥, β̃‖, and μ̃, as well as β̃C
⊥ and β̃C

‖ for the
Roberts flow, calculated in the second-order correlation approximation,
as functions of k⊥/kf , where kf =

√
2k0 is the effective wavenumber of

the flow. Results obtained with kx = ky and k‖/k⊥ = 1/
√

2 ≈ 0.7 or
k‖/k⊥ = 1/16

√
2 ≈ 0.004 are represented by open squares and dotted

lines or by open diamonds and dashed lines, respectively. Results with
kx/ky = 0.75 [k⊥ = (3, 4, 0)k1] or kx/ky = 5 [k⊥ = (5, 1, 0)k1] and
k‖/k⊥ = 0.2 are indicated by open or filled circles, respectively. Orange
and black symbols correspond to the first and second expressions for β̃⊥
and μ̃ in (21) or for β̃C

⊥ in (26).

In the figures of the next section results for α̃⊥, α̃‖, . . . δ̃C are
represented. In all cases in which they are considered as results
for the limit k⊥, k‖ → 0 they are simply denoted as α⊥, α‖ . . . δC
in the text.
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5. Results

5.1. Homogeneous rotating turbulence

Let us first consider homogeneous turbulence in a rotating sys-
tem, that is, under the influence of the Coriolis force. The angular
velocityΩ responsible for this force defines the preferred direc-
tion of the turbulence, ê = Ω/|Ω|. In this case we expect only
contributions to the mean electromotive force E from a spatially
varying mean magnetic field B, and contributions to the passive
scalar flux F from a spatially varying mean passive scalar C.
That is, in (3) we have only the terms with β⊥, β‖, δ, κ⊥, κ‖,
and μ, and in (12) only those with βC⊥, βC

‖ , and δC . The terms

with β⊥ and β‖, as well as those with βC⊥ and βC
‖ , characterize

anisotropic mean-field diffusivities, and that with δ corresponds
to the “Ω × J effect” (Rädler 1969a,b, 1976; Krause & Rädler
1971, 1980; Rädler et al. 2003), while the δC term vanishes un-
derneath the divergence and is therefore without interest.

Figure 2 shows the dependence of the aforementioned co-
efficients on Co for Rm ≈ Pe ≈ 9 and kf/k1 = 5. The val-
ues of β⊥, β‖, βC⊥ and βC

‖ , which remain finite for Co → 0,
are always close together. The other four coefficients vary lin-
early with Co as long as Co is small. Specifically, we find
δ̃ ≈ −0.1 Co, δ̃C ≈ −Co, as well as κ̃⊥ ≈ −0.3 Co and κ̃‖ ≈ −Co.
These coefficients reach maxima at Co ≈ 1. For rapid rotation,
|Co| � 1, all coefficients approach zero like 1/Co. In particular,
we have β⊥ ≈ 1.2/Co and the same for β‖, βC⊥, and βC

‖ , further

κ̃⊥ ≈ −0.5/Co, κ̃‖ ≈ −1.2/Co, δ̃ ≈ −0.3/Co, and δ̃C ≈ −0.6/Co.
Furthermore, we find that, within error bars, α⊥, α‖, γ, and γC

are indeed zero.

5.2. Stratified turbulence

Owing to the presence of boundary conditions at the top and bot-
tom of our domain and the lack of scale separation for our default
choice of kf/k1 = 5, the turbulence is in all cases anisotropic,
even if gravity is negligible. The ratio of the vertical and horizon-

tal velocity components, 2u2
‖/u

2⊥, is no longer, as in the isotropic

case, equal to unity. For moderate stratification (g/c2
sk1 ≈ 1), not

too large |z|, and kf/k1 = 5, it takes a value of about 0.9. It de-
creases when the ratio kf/k1 is decreased; see Table 1. Figure 3

shows the z dependence of 2u2
‖/u

2⊥. For strong stratification and
a high degree of scale separation, e.g. kf/k1 = 30, the mentioned
ratio comes close to unity. Note, however, that smaller values of

2u2
‖/u

2⊥ can be can be achieved in the non-isothermal case when
the effects of buoyancy become important.

5.2.1. Stratified nonrotating turbulence

For axisymmetric turbulence in a nonrotating system showing
any kind of stratification in the representation (3) of E only the
four coefficients γ, β⊥, β‖, and μ can be non-zero. Likewise, in
the representation (12) of F only the three coefficients γC , βC⊥,
and βC

‖ can be non-zero. Figure 4 shows their dependence on Gr.
It appears that γ is always close to zero, while γC shows a lin-
ear increase for not too strong gravity. At the same time, β⊥,
β‖, βC⊥, and βC

‖ remain approximately constant. We find that μ
is negative and its modulus is mildly increasing with increasing
stratification, but the error bars are large.

Fig. 2. Co dependence of transport coefficients in a model with rotation
but zero density stratification, Rm ≈ 9, Pm = Sc = 1, Gr = 0, kf/k1 = 5.

Table 1. Dependence of the density contrast ρbot/ρtop and the degree

of anisotropy 2u2
‖ /u

2⊥, for three different values of kf/k1, on the density
stratification g/c2

s k1 for nonrotating turbulence.

g/c2
s k1 ρbot/ρtop 2u2

‖ /u
2⊥

kf = 1.5k1 kf = 5k1 kf = 30k1

0 0 0.84 0.99 1.00
0.5 23 0.84 0.97 1.00
1 540 0.66 0.90 0.99

Notes. The values of 2u2
‖ /u

2⊥ have been obtained as averages over the
range −2 ≤ k1z ≤ 1.

5.2.2. Stratified rotating turbulence

For turbulence under the influence of gravity and rotation, all
nine coefficients α⊥, . . ., μ are in general non-zero, as well as
all four coefficients γC , . . ., δC . If both gravity and rotation are
so small that E is linear in g and Ω, more precisely E contains
gmΩn, where n and m mean integers, only with n + m ≤ 1, α⊥
and α‖ vanish but γ, β⊥, δ and κ⊥ may well be unequal to zero.
If n + m ≤ 2, all nine coefficients may indeed be non-zero.

Results for stratified rotating turbulence are shown in Fig. 5.
The error bars are now bigger than either with just rotation or
just stratification. For Co → 0, the coefficients β⊥, β‖, μ, βC⊥,
βC
‖ and δC remain finite. As Co is increased, their moduli show

some decline. On the other hand the moduli of α⊥, α‖, γ, δ, κ⊥,
κ‖ and γC increase with Co as long as it is smaller than some
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Fig. 3. Anisotropy 2u2
‖/u

2⊥ of nonrotating turbulence for different strati-
fications, g/c2

s k1, and different degrees of scale separation, kf/k1.

Fig. 4. Gr dependence of the transport coefficients in a model with den-
sity stratification but zero rotation, Pm = Sc = 1, Rm ≈ 22, Co = 0,
kf/k1 = 5.

value below unity but decrease again for larger Co. Both α⊥ and
α‖ are negative, which is expected for g and Ω being antipar-
allel to each other. Interestingly, μ is finite for small values of
Co, in agreement with the result when there is only stratification
(Fig. 4), but with a modest amount of rotation, μ is suppressed
and grows only when Co has reached values around unity.

Fig. 5. Co dependence of transport coefficients in a model with rotation
and density stratification, Pm = Sc = 1, Rm ≈ 10, Gr ≈ 0.16, kf/k1 = 5.

5.3. Wavenumber dependence

So far we have considered the coefficients α̃⊥, α̃⊥, . . ., δ̃C in the
limit k = |k| → 0, that is, k⊥, k‖ → 0. However, their behavior
for larger k, in particular for k up to several kf , is of interest, too.
Most of them decrease like k−2 as k grows and can be fitted to
a Lorentzian profile, as has been found in earlier calculation us-
ing the test-field method; see Brandenburg et al. (2008a), where
in fact the dependence on k‖ was considered. Even earlier work
that was not based on the test-field method showed a declin-
ing trend (Miesch et al. 2000; Brandenburg & Sokoloff 2002).
Nevertheless, as is shown in Fig. 6, there are also some coeffi-
cients that first increase with k‖, have a maximum near k‖ = kf
and only then decrease with growing k‖. Examples for such a be-
havior are α̃‖, δ̃, and κ̃⊥, while κ̃‖ peaks slightly below k‖ = 0.5kf.

The dependence of the coefficients under discussion on k⊥ is
shown in Fig. 7. Note that our test fields vanish for k⊥ = 0, so no
values are shown for this case. Note also that −α̃‖, −δ̃, and −κ̃‖,
which have maxima for k‖/kf ≈ 1 or k‖/kf ≈ 0.5, show a clear
monotonic decline with k⊥. Only −κ̃⊥ has maxima with respect
to both k‖/kf and k⊥/kf.

Most of the results presented in Fig. 7 have been calculated
with kx = ky, a few single ones for α̃⊥, β̃⊥, κ̃⊥ and β̃C⊥ also with
kx/ky = 0.75 and kx/ky = 0.2. While the results for β̃⊥ and β̃C⊥
agree well for all these values of kx/ky, there are significant dis-
crepancies with α̃⊥ and κ̃⊥.
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Fig. 6. k‖ dependence of transport coefficients in a model with rotation
and density stratification, k⊥ =

√
2k1, Pm = Sc = 1, Rm = 12, Co = 1.0,

Gr = 0.16, kf/k1 = 5.

5.4. Dependencies on Rm and Pe

Let us finally consider the dependence of all transport coeffi-
cients on Rm or Pe for a case where they are all expected to
be finite. Therefore we choose again the case with Co = 1 and
Gr = 0.16, which was also considered in Figs. 5–7, and keep
Pm = Sc = 1.

The results are shown in Fig. 8. As expected, some of the
quantities increase approximately linearly with Rm if Rm < 1,
or with Pe if Pe < 1, and seem to level off to constant values
for larger values of Rm, or Pm, although the uncertainty tends to
increase significantly.

6. Conclusions

In this paper we have dealt with the mean electromotive force
and the mean passive scalar flux in axisymmetric turbulence and
have calculated the transport coefficients that define these quan-
tities. Unlike most of the earlier work, we have no longer as-
sumed that mean fields are defined as planar averages but admit
a dependence on all three space coordinates. The number of test
fields and test scalars is the same (4 and 2, respectively) as in
earlier work using planar averages, so the computational cost is
unchanged.

We may conclude from general symmetry considerations
that the mean electromotive force E has altogether nine contri-
butions: three defined by the mean magnetic field B, three by the

Fig. 7. Same as Fig. 6, but k⊥ dependence, k‖ = k1. The filled and open
circles denote results for α⊥, β⊥, κ⊥, and βC

⊥ obtained with kx/ky = 0.75
[k⊥ = (3, 4, 0)k1] and kx/ky = 0.2 [k⊥ = (1, 5, 0)k1], respectively.

mean current density J , and three by the vector K, which is the
projection of the symmetric part of the gradient tensor∇B of the
magnetic field on the preferred direction. In many representa-
tions of E the last three contributions have been ignored. Our
results underline that this simplification is in general not justi-
fied. The corresponding coefficients κ⊥, κ‖ and μ are in general
not small compared to β⊥, β‖ and δ.

It has been known since long that a stratification of the tur-
bulence intensity, that is, a gradient of u2, causes a pumping of
magnetic flux (Rädler 1966, 1968, 1969b). It remained however
uncertain whether the same effect occurs if a preferred direction
is given by a gradient of the mean mass density ρ while the tur-
bulence intensity is spatially constant. In our calculations, which
correspond to this assumption, the value of γ is not clearly dif-
ferent from zero. This suggests that a gradient of the mass den-
sity alone is not sufficient for pumping, what is also in agree-
ment with results of Brandenburg et al. (2011). This is even
more remarkable as the corresponding coefficient γC which de-
scribes the transport of a mean passive scalar is noticeably dif-
ferent from zero. Pumping down the density gradient is indeed
expected (Elperin et al. 1995). An explanation of these results
would be very desirable.

In homogeneous rotating turbulence, apart from an
anisotropy of the mean-field conductivity, theΩ×J effect occurs
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Fig. 8. Dependencies of the transport coefficients on Rm or Pe in a model
with rotation and density stratification, Pm = Sc = 1, Co = 1.0, Gr =
0.16, kf/k1 = 5.

(Rädler 1969a,b). In the passive scalar case again an anisotropy
of the mean diffusivity is possible. Even if the flux proportional
to Ω × ∇C is non-zero, it cannot influence C.

Let us turn to the induction effects described by K. If the
preferred direction is given by a polar vector, the corresponding
contribution to the mean electromotive force can only be propor-
tional to ê × K. We found such a contribution in the case of the
Roberts flow and also, for turbulence subject the Coriolis force,
in the results presented in Figs. 2 and 4–7.

Contributions to the mean electromotive force as described
here by K occur also in earlier calculations, e.g. Kitchatinov
et al. (1994) or Rüdiger & Brandenburg (1995). As a conse-
quence of other notations, however, this is not always obvious.
For example, Rüdiger & Brandenburg (1995) consider a mean
electromotive force of the form

E = −η‖J + (η‖ − ηT)( ẑJz − ẑ × ∇Bz) (30)

with two coefficients η‖ and ηT (Eq. (18) of their paper with μ0 J ,
in the sense of the definition introduced here, replaced by J; ẑ
is our ê). It is equivalent to our representations (3) or (4) of E if
we put there β⊥ = 1

2 (η‖ + ηT), β‖ = ηT, μ = η‖ − ηT and all other
coefficients equal to zero. This implies β⊥−β‖ = μ/2, which is in
agreement with the relation for μ in Eq. (28) for the Roberts flow.
The latter equality is also approximately obeyed for turbulence

in the presence of rotation, stratification, and both; see Figs. 2, 4
and 5, respectively.

If there is moderate rotation (Co ≈ 1), but no stratification,
we have β⊥ > β‖; see Fig. 2. This means, e.g., that for a mag-
netic field without a component in the direction of the rotation
axis the diffusion along this axis is enhanced compared with that
in the perpendicular direction. In the passive scalar case we have
βC
‖ > β

C⊥, which implies that the diffusion along the rotation axis
is enhanced, too. However, stratification enlarges β‖ −β⊥ and di-
minishes βC

‖ −βC⊥ so that the diffusion along the rotational axis is
decreased in both cases considered. In the presence of rotation
and density stratification all three contributions to the mean elec-
tromotive force described by K are in general non-zero. Here,
|κ⊥| is smaller than |κ‖|. There is now also an α effect, which is
necessarily anisotropic, and |α‖| is typically only half as big as
|α⊥|; see Fig. 5.

The present work is applicable to investigations of stellar
convection either with or without rotation, and it would provide
a more comprehensive description of turbulent transport proper-
ties than what has been available so far (Käpylä et al. 2009). The
methods utilized in this paper can be extended to a large class of
phenomena in which turbulence with just one preferred direction
plays an important role. Examples for that include turbulence un-
der the influence of a strong magnetic field and/or an externally
applied electric field leading to a current permeating the system.
Turbulence generated by the Bell (2004) instability is an exam-
ple. In addition to density stratification, there can be a systematic
variation of the turbulence intensity in one direction. A further
example is entropy inhomogeneity combined with gravity giv-
ing rise to Brunt-Väisälä oscillations. Pumping effects also exist
in homogeneous flows if the turbulence is helical (Mitra et al.
2009; Rogachevskii et al. 2011). By contrast, shear problems or
other types of problems with two or more preferred directions
that are inclined to each other (e.g., turbulence in a local domain
of a rotating stratified shell at latitudes different from the two
poles) are not amenable to such a study. Of course, although we
refer here to axisymmetric turbulence, problems in axisymmet-
ric cylindrical geometry are also not amenable to this method,
because the turbulence must be homogeneous in one plane.
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Appendix A: Derivation of relation (3)

We start from the aforementioned assumption according to
which E is linear and homogeneous in B and its first spatial
derivatives,

Ei = ai jB j + bi jk(∇B) jk. (A.1)

Here ai j and bi jk are tensors determined by the fluid flow. The
gradient tensor (∇B) jk can be split into an antisymmetric part,
which can be expressed by J , and a symmetric part (∇B)S

jk.
Therefore we may also write

Ei = ai jB j − bi jJ j − ci jk(∇B)S
jk (A.2)
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with new tensors bi j and ci jk, the latter being symmetric in j
and k. From the further assumption that the flow constitutes an
axisymmetric turbulence we may conclude that ai j, bi j and ci j jk
are axisymmetric tensors. Defining the preferred direction by the
unit vector ê we then have

ai j = a1δi j + a2εi jlêl + a3êiê j,

bi j = b1δi j + b2εi jlêl + b3êiê j,

ci jk = c1δ jkêi + c2(δi jêk + δikê j) (A.3)

+c3(εi jlêlêk + εiklêlê j) + c4êiê jêk,

with coefficients a1, a2, . . ., c4 determined by the fluid flow.
Taking (A.2) and (A.3) together and considering that

(δi jêk + δikê j)(∇B)S
jk = 2Ki,

(εi jlêlêk + εiklêlê j)(∇B)S
jk = −2(ê × K)i, (A.4)

êiê jêk(∇B)S
jk = (ê · K)êi,

we find

E = a1B − a2ê × B − a3(ê · B)ê

+b1 J − b2ê × J − b3(ê · J)ê (A.5)

+2c2K − 2c3ê × K + c4(ê · K)ê.

Since (∇B)ii = 0 there is no contribution with c1. With a proper
renaming of the coefficients (A.5) turns into (3).
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