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Turbulent front speed in the Fisher equation: Dependence on Damköhler number
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Direct numerical simulations and mean-field theory are used to model reactive front propagation in a turbulent
medium. In the mean-field approach, memory effects of turbulent diffusion are taken into account to estimate
the front speed in cases in which the Damköhler number is large. This effect is found to saturate the front speed
to values comparable with the speed of the turbulent motions. By comparing with direct numerical simulations,
it is found that the effective correlation time is much shorter than for nonreacting flows. The nonlinearity of the
reaction term is found to make the front speed slightly faster.
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I. INTRODUCTION

It is well known that the propagation speed of a flame front
is greatly enhanced if a mixture of fuel and oxygen is in a
turbulent state. This topic of turbulent premixed combustion
was pioneered by Damköhler [1] some 70 years ago, and is
reviewed extensively in recent literature [2–4]. In spite of its
importance, the question of burning velocities in a turbulent
medium continues to be of major importance even today [5–7].

Much of the current work is based on the original
Damköhler paradigm for premixed combustion. He distin-
guishes two regimes, which are usually referred to as large-
scale and small-scale turbulence. In the small-scale turbulence
regime, also referred to as the distributed reaction zone regime,
the turbulent flame speed is computed using a formula in
which the microscopic diffusivity is replaced by the sum
of microscopic and turbulent diffusivities. This is possible
because there is good scale separation. This implies that the
turbulent front thickness (i.e., the thickness of the flame brush)
is much broader than the scale of the turbulent eddies. This
regime is characterized by small Damköhler numbers. In the
opposite case of large Damköhler numbers, the turbulent front
thickness is smaller than the scale of the turbulent eddies and
can therefore no longer be described by turbulent diffusion.
This regime is characterized as that of large-scale turbulence.
In this case, the turbulent front speed reaches its maximal
value, which is given by the rms velocity of the turbulence in
the direction of front propagation.

The regime of large-scale turbulence is subdivided further
into regimes of corrugated and wrinkled flamelets, depending
essentially on the ratio of Reynolds number to Damköhler
number, which is also related to the Karlovitz number. When
the Reynolds number is small compared with the Damköhler
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number (small Karlovitz number), the flame front is merely
wrinkled, but for large Reynolds numbers (large Karlovitz
number) it becomes corrugated and can consist of isolated
flamelets detached from other parts of the front. In the present
paper, we will mainly be concerned with the flame speed rather
than the question of whether the flame front is wrinkled or
corrugated.

In turbulent combustion, the averaged flame speed, sT , is
usually normalized by the corresponding laminar flame speed,
sL, and one is interested in the dependence on the normalized
turbulent velocity, v′. For the regime of large-scale turbulence,
the speed-up ratio of turbulent to laminar flame speed is given
by the geometric increase of the wrinkled surface area of the
flame front. Damköhler assumed that the increase in surface
area is proportional to the ratio of the turbulent velocity of the
eddies to the laminar flame speed. This leads to the expectation
that the dependence of sT on v′ is given by [2]

sT /sL = 1 + v′/sL. (1)

This equation captures the expected limiting cases that sT

should not become larger than v′ for v′ � sL and that sT = sL

in the absence of turbulence, that is, for v′ = 0. However,
unsatisfactory agreement with measurements motivated the
search for other dependencies. For example, Pocheau [8]
derives the more general formula

sT /sL = [1 + (v′/sL)n]1/n, (2)

where n is a parameter. This formula obeys the aforementioned
limiting case for any value of n. Pocheau [8] contrasts the
formula with another one proposed by Yakhot [9],

sT /sL = exp[(v′/sT )2], (3)

where sT < v′ for v′ → ∞. Yet another fit formula is given by

sT /sL = 1 + CW (v′/sL)m (4)

with fit parameters CW and m = 0.7 [10]. Both (3) and
(4) have a front speed less than v′ for v′ → ∞, provided
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FIG. 1. Comparison of different expressions for the normalized
front speed, sT /sL, as a function of the turbulent velocity, v′/sL. The
labels n = 1 and n = 2 refer to Eqs. (1) and (2), while Y88 and W85
refer to Eqs. (3) and (4).

m < 1 in Eq. (4). As can be seen from Fig. 1, the different
proposals for the front speed are quite similar, making it
difficult to use measurements to distinguish between them.
Furthermore, realistic descriptions of flame properties are
hampered by the fact that feedback on the flow by the
actual combustion process depends on the specific case and
is not easy to model. The feedback on the flow is therefore
usually ignored. It might, therefore, be useful to return to
a simple model of front propagation that can be treated in
more detail and to address the unsettled question regarding the
different proposals in Eqs. (1)–(4) for the dependence of sT

on v′. Following Kerstein [11], we consider here the Fisher
equation, which is also known as the Kolmogorov-Petrovskii-
Piskunov (KPP) equation [12]. An important difference from
earlier work is the fact that we solve this equation in the
three-dimensional case in the presence of a turbulent velocity
field.

The Fisher or KPP equation is a simple scalar equation
that possesses propagating front solutions. This equation
is familiar in biomathematics [13] as a simple model for
the spreading of diseases. It has also been amended by an
advection term to describe the interaction with a turbulent
velocity field in one [14] and multiple [15] dimensions,
the effects of cellular flows [16], and the scaling of the
front thickness [17]. Furthermore, the equation has also been
modified to account for different interacting species, which
can be used to model the spreading of autocatalytically
polymerizing left- and right-handed nucleotides [18]. Given
that C is a passive (albeit reacting) scalar, the Fisher equation
does ignore any feedback on the flow and is therefore well-
suited to help clarify questions regarding the relation between
sT and v′.

In the present paper, we consider both direct numerical
simulations (DNS) of this equation in three dimensions as well
as its averaged form where the effects of turbulence are being
parametrized by a non-Fickian diffusion equation. Such an
equation allows for the ballistic spreading of a passive scalar
concentration on short time scales, which is expected to be
important when the front propagates at a speed comparable to
that of the turbulence itself.

II. THE FISHER EQUATION

A simple model of front propagation is the Fisher equation,
which, in the simplest case, is a one-dimensional partial
differential equation [12,13,19,20],

∂C

∂t
= C

τc

(
1 − C

C0

)
+ D

∂2C

∂x2
, (5)

for the concentration C. Here, τc is the chemical reaction time,
D is the diffusivity, and C0 is some saturation value above
which further growth is quenched. Equation (5) corresponds
to an autocatalytic reaction where a reactantR yields a product
P at a rate k that is itself proportional to the concentration of
the products, [P], that is,

R k−→ P with k = [P]/τcC0. (6)

This can then also be written as P + R → 2P . Saturation
of the product concentration, C = [P], results from the fact
that the total mass is conserved, that is, [R] + [P] = C0 =
const. The evolution equation for the concentration C = [P]
is then given by Eq. (5).

This equation has two solutions: an unstable solution,
C = 0, and a stable one, C = C0. The diffusion term seeds
the neighboring regions that are in an unstable state, which
promotes the rapid transition from C = 0 to C = C0. This
leads to the propagation of the transition front in the direction
down the gradient of C with a front speed [13]

sL = 2
√

D/τc, (7)

where the subscript L refers to the laminar front speed.
In many cases of practical interest, the diffusion coefficient

D is rather small and is hardly relevant when there is rapid
advection through fluid motions. In that case, the govern-
ing equations become advection-reaction-diffusion equations.
This can be written as

∂C

∂t
+ ∇ · (UC) = C

τc

(
1 − C

C0

)
+ D∇2C, (8)

where U is the flow speed. If the flow is turbulent and has
zero mean, there can be circumstances in which the average
concentration C can be described by an equation similar to
Eq. (5), but with C being replaced by the mean value C, and
D being replaced by some turbulent diffusivity Dt , that is,

∂C

∂t
= C

τc

(
1 − C

C0

)
+ DT

∂2C

∂x2
, (9)

where DT = D + Dt is the total (i.e., the sum of microscopic
and turbulent) diffusivity. We have assumed here that the
mean concentration shows a systematic variation in the
x direction, and we have thus assumed averaging over the y and
z directions, so C(x,t) can be described by a one-dimensional
evolution equation.

Given the similarity between Eqs. (5) and (9), one would
expect that in the turbulent case with appropriate initial
conditions, the effective turbulent propagation speed sT of the
front can still be described by an expression similar to Eq. (7),
but with D being replaced by DT , that is, sT = 2

√
DT /τc. A

useful estimate for the turbulent diffusivity is Dt = urms/3kt ,
where kt is the wave number of the energy-carrying eddies
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and urms is the rms velocity of the turbulence [21]. Thus,
for Dt � D, the effective value of sT is expected to be
2(urms/3τckt )1/2. On the other hand, one cannot expect the
front speed to increase indefinitely with decreasing τc. Indeed,
one would not expect sT to exceed the rms velocity of the
turbulence in the direction of front propagation. Following
common practice, we denote it by v′. Under the assumption of
isotropy, v′ is related to the three-dimensional rms velocity by
v′ = urms/

√
3.

An important nondimensional measure of τc is the
Damköhler number, which is the ratio of the turnover time,
(urmskt )−1, to τc. This number is defined here as

Da = (τcurmskt )
−1. (10)

Note that our definition of Da is based on the wave number
kt rather than the scale 2π/kt , which would have reduced
the numerical value of Da by a factor of 2π . For small
values of Da, we expect sT ≈ 2v′ Da1/2, while for large values
one expects sT ≈ v′ [8]. Thus, a more general formula is
expected to be

s2
T = v′2f (Da), (11)

where f (Da) increases linearly with Da for Da 	 1 and
f (Da) ≈ 1 for Da � 1. This saturation behavior can also be
interpreted as a reduction of the effective value of τc [22]. An
important goal of this paper is to determine the form of the
function f (Da).

III. NON-FICKIAN DIFFUSION

The Fickian diffusion approximation made in Eq. (9) for
the mean concentration C becomes invalid if C varies rapidly
in time, and in principle also in space. This is indeed expected
to be the case when Da � 1. For rapid time variations, Eq. (9)
attains then an extra time derivative and takes the form [23]

τ
∂2C

∂t2
+ ∂C

∂t
= C

τc

(
1 − C

C0

)
+ DT

∂2C

∂x2
, (12)

which is a damped wave equation with relaxation time τ and
an additional reaction term. The presence of the nonlinearity
in the reaction term leads to an additional contribution in the C

equation that has been ignored here (see Appendix for a more
consistent treatment).

Without the reaction term, Eq. (12) is also known as the
telegraph equation. This equation emerges naturally when
computing turbulent transport coefficients using the τ approx-
imation [24]. Evidence for the existence of the wave term has
been found from isotropic forced turbulence simulations [23].
A nondimensional measure of τ is given by the Strouhal
number,

St = τurmskt = τu2
rms/3Dt, (13)

where the first equality is useful for turbulence simulations
where τurmskt is readily evaluated, while the second equality
is useful for the mean-field model, where kt does not appear
explicitly and Dt and urms are given.

Using DNS of forced turbulence with a passive scalar, the
value of St has been determined to be around 3 by relating triple
corrections to quadratic ones [23]. Although we consider the

value of St as being fairly well constrained, we do consider
later a range of different values.

The purpose of this section is to study solutions of Eq. (12)
that can then be compared with DNS of the Fisher equation
coupled with the Navier-Stokes equations for obtaining a
turbulent velocity that enters Eq. (8). We consider first the case
in which D is negligible and we solve Eq. (12) for different
values of Da in a one-dimensional domain that was chosen long
enough so that the front speed can be determined accurately
enough. We use a numerical scheme that is second order in
space and third order in time [25]. In some cases, a resolution
of 215 ≈ 3 × 104 mesh points was necessary.

We study first the dependence of the front speed on Da
for a range of different values of St and D 	 Dt . Here, sT

is determined by differentiating the concentration integrated
over the whole domain,

sT (t) = d

dt

∫
C

C0
dz, (14)

and approximating the asymptotic front speed with the value
at the time when the front has reached the other end of the
domain. This quantity is also known as the reaction speed.
This is indicated by C reaching a small fraction (e.g., 10−6) of
C0. The result is shown in Fig. 2. For small values of Da, the
front speed is independent of the value of St and we reproduce
the anticipated result, that is, f (Da) = 4 Da. For larger values
of Da, the front speed reaches eventually a constant value.
However, the limiting value depends on St. Our results are
well reproduced by the fit formula

s2
T

v′2 ≡ f (Da, St) ≈ 4 Da

1 + 3 St Da
. (15)

This formula obeys the anticipated limiting behaviors for small
and large values of Da, provided St ≈ 4/3. The numerically
determined data agree quite well with Eq. (15). However, in
some cases the numerical data are somewhat uncertain and
depend also slightly on resolution and domain size.

In the DNS presented below, where the numerical resolution
is still limited, the value of D is often not negligible. Its value
is characterized by the Peclet number,

Pe = urms/Dkt ≈ 3Dt/D. (16)

FIG. 2. Dependence of the front speed of solutions of Eq. (12)
on Da for different values of St and Pe = ∞. The lines represent fits
given by Eq. (15).
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FIG. 3. Dependence of the front speed of solutions of Eq. (12)
on Da for different values of Pe and St = 3. The lines represent fits
given by Eq. (18).

For small values of Da, the expression for the front speed
should be sT = 2

√
(Dt + D)/τc. Using Dt = urms/3kt and

v′ = urms/
√

3, together with the definitions Eqs. (10) and (16)
for Da and Pe, respectively, we can express the ratio sT /v′ as

sT /v′ = 2
√

(1 + 3Pe−1)Da (for Da 	 1). (17)

For larger values of Da we solve Eq. (12) numerically. A good
fit formula for f is given by

f (Da, St, Pe) ≈ 4Da

(
3

Pe
+ 1

1 + 3St Da

)
. (18)

Note that f increases linearly with Da for small Da 	
(3St)−1 	 1/9 and also for intermediate values of Pe with 3 	
Pe 	 9 St Da. On the other hand, when both Da and Pe are
large, with 3 	 9 St Da 	 Pe, we have f = 4/3St = const.
In Fig. 3, we compare the fit formula with the numerically
obtained front speeds for different values of Pe, keeping
St = 3. The agreement is again quite good.

In turbulent combustion, it is customary to plot the
normalized front speed, sT /sL, as a function of the normalized
turbulent velocity, v′/sL. Using our definitions of Da and
Pe in Eqs. (10) and (16), respectively, we have v′/sL =
(Pe/12 Da)1/2 and find

sT

sL

=
[

1 + 1

3St/4 + εv′/sL

(
v′

sL

)2 ]1/2

, (19)

where we have defined ε = kt�F , with �F = (τcD/12)1/2

being a measure for the laminar flame thickness. Note that
ε can also be expressed in terms of Da and Pe via

ε = (12Da Pe)−1/2. (20)

A more familiar quantity is the ratio �/�F = ε−1, where
� = k−1

t is the typical eddy scale. Even if we can assume
the value of St to be given, ε is not a fixed quantity. It
is therefore clear that there cannot be a unique relationship

FIG. 4. Dependence of sT /sL and v′/sL for ε = 0 (solid line),
0.3 (dotted), 1 (dashed), and 3 (dash-dotted). Note that there is no
unique relationship between sT /sL and v′/sL.

between sT /sL and v′/sL. Instead, there must be a family of
solutions depending on the value of ε; see Fig. 4.

IV. DNS OF THE FISHER EQUATION

We now consider DNS of Eq. (8) where U is obtained by
solving the Navier-Stokes equation for an isothermal gas with
a forcing term that is δ correlated in time. The forcing function
consists of plane waves whose wave vector is random and its
length is within a narrow window around some mean forcing
wave number kt . Since the gas is compressible and the density
ρ is not constant, Eq. (8) now takes the form

∂C

∂t
+ U · ∇C = C

τc

(
1 − C

C0

)
+ ∇ ·

(
ρD∇C

ρ

)
, (21)

which we solve together with the momentum and continuity
equations,

∂U
∂t

= −U · ∇U − c2
s ∇ ln ρ + f + Fforce, (22)

∂ρ

∂t
= −∇ · ρU, (23)

where Fforce = ν(∇2U + 1
3∇∇ · U + 2S∇ ln ρ) is the viscous

force, S = 1
2 [∇U + (∇U)T] − 1

3 I∇ · U is the traceless rate of
strain tensor, I is the unit matrix, ν is the kinematic viscosity,
and cs = const is the isothermal sound speed. The forcing
function f is of the form

f (x,t) = Re{N f k(t) exp[ik(t) · x + iφ(t)]}, (24)

where x is the position vector. The wave vector k(t) and the
random phase −π < φ(t) � π change at every time step. For
the time-integrated forcing function to be independent of the
length of the time step δt , the normalization factor N has to be
proportional to δt−1/2. On dimensional grounds it is chosen to
be N = f0cs(ktcs/δt)1/2, where f0 is a nondimensional forcing
amplitude. The value of the coefficient f0 is chosen such
that the maximum Mach number stays below about 0.5. Here
we choose f0 = 0.02. We force the system with nonhelical
transversal waves,

f k = (k × e) /
√

k2 − (k · e)2, (25)
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TABLE I. Summary of the runs discussed in this paper.

Run A Re Pe Da Ka kt/k1 sT /v′ sT /sL v′/sL �/�F

A1 1 117 117 0.2 14.6 5.0 0.97 7.50 7.75 15.0
A2 1 115 115 0.5 4.8 5.1 1.60 7.03 4.38 26.3
A3 1 122 49 1.6 3.6 5.1 2.33 3.77 1.61 30.4
A4 1 121 12 4.8 4.8 5.1 3.55 1.63 0.46 26.3
A5 1 120 4 15.9 3.6 5.1 7.29 1.16 0.16 30.3
B1 4 38 513 1.6 3.6 1.6 1.88 9.76 5.19 98.9
B2 2 41 164 4.9 3.6 1.6 2.21 3.69 1.67 98.8
B3 2 165 165 4.9 3.6 1.6 2.52 4.22 1.67 98.9
B4 2 41 16 4.9 36.4 1.6 2.80 1.47 0.53 31.3
B5 2 40 16 50.3 3.6 1.6 7.25 1.19 0.16 98.9

where e is an arbitrary unit vector not aligned with k; note that
| f k|2 = 1.

In the x direction, we use periodic boundary conditions for
U and ρ and ∂C/∂x = 0 for C, while we use periodic boundary
conditions in the y and z directions. The simulations were
performed with the PENCIL CODE [26], which uses sixth-order
explicit finite differences in space and a third-order accurate
time-stepping method [25].

For the calculations we use units where k1 = cs = ρ0 = 1.
However, most of the results are presented in an explicitly
nondimensional form by normalizing with respect to relevant
quantities such as the rms velocity of the turbulence or the
turnover time. Our simulations are characterized by several
nondimensional parameters. In addition to the values of Da
and Pe, defined in Eqs. (10) and (16), respectively, there is
the Schmidt number, Sc = ν/D. In those cases in which the
Damköhler number was large, we had to increase the value
of D in order to resolve the flame front. This was done by
decreasing Sc to values below unity. The degree of scale
separation is given by the ratio kt/k1.

V. RESULTS

In the following, we present results for the uniform aspect
ratio, A = Lx/Ly = 1 with kt/k1 = 5 (series A), and A = 2
or 4 with kt/k1 = 1.6 (series B). Our runs of series A and
B are summarized in Table I. The resolution in the y and
z directions is always 2562 mesh points, but it is larger in
the x direction in runs where the aspect ratio A is larger
than unity. In Fig. 5, we show the concentration C on the
periphery of the computational domain at different times for
τc = 3/csk1, which corresponds to Da = 0.5; see Table I.

FIG. 6. Mean concentration and the instantaneous front speed as
functions of time.

One sees clearly how the front spreads and propagates in
the negative-x direction. The front speed is determined in the
same way as for the mean-field model, that is, using Eq. (14),
except that C is computed from the actual C. This can also be
formulated as a volume integral,

sT (t) = 1

LxLy

d

dt

∫
C

C0
dV. (26)

In Fig. 6, we show examples of the evolution of the mean
concentration and the instantaneous front speed as functions
of time for series A. The resulting ratios sT /v′, sT /sL, v′/sL,
and �/�F are summarized in Table I for series A and B.

In most of the cases considered in this paper, the value
of Pe is not in the asymptotic regime. It might, therefore, be
sensible to compare the relative front speed, sT /v′, against the
function f (Da, St, Pe). This is done in Fig. 7, where we show
the nondimensional front speed, sT /v′, versus f (Da, St, Pe),
for three values of St using values of Da and Pe, as evaluated
from Eqs. (10) and (16). Surprisingly, the best fit is obtained
for rather small values of St of 0.03. This suggests that, for the
present applications, the relevant value of τ is much smaller
than in the case of a nonreacting passive scalar.

Next, we plot sT /v′ versus Da for different values of Pe;
see Fig. 8 using the previously inferred value St = 0.03. The
data points from the DNS tend to lie between the curves for
Pe = 1 and 10, even though most of the actual values of Pe

FIG. 5. (Color online) Visualization of the concentration C on the periphery of the box at different times for Run A2. Here, T = (urmskt )−1

is the turnover time.

016304-5



BRANDENBURG, HAUGEN, AND BABKOVSKAIA PHYSICAL REVIEW E 83, 016304 (2011)

FIG. 7. Relative front speed as a function of f for three values of
St. The squares indicate runs where the fluid is at rest and the front is
moving through the domain, while the asterisks denote runs with an
inlet velocity chosen such that the front is approximately stationary
within the domain. The solid line gives the theoretically expected
result, sT /v′ = f (Da, St, Pe)1/2. Note that the best agreement with
the theoretical values is achieved for St = 0.03.

are beyond Pe = 10. This too suggests some inconsistency
between the DNS and the mean-field description in terms of
the telegraph equation. Finally, we plot the DNS results in a
state diagram of sT /sL versus v′/sL using St = 0.03; see Fig. 9.
The data lie between the theoretical curves for �/�F = 10 and
100, which is roughly in agreement with the values given in
Table I.

FIG. 8. Relative turbulent front speed vs Da. The squares indicate
runs where the fluid is at rest and the front is moving through the
domain, while the asterisks denote runs with an inlet velocity chosen
such that the front is approximately stationary within the domain. For
the latter, big asterisks denote cases in which Pe > 10. The lines give
the theoretical expectations for St = 0.03 and Pe = 1 (solid line),
10 (dotted), and 100 (dashed line).

FIG. 9. Turbulent front speed vs turbulence intensity for ε =
0.1 (solid line), 1 (dotted), and 10 (dashed) using St = 0.03. The
squares indicate runs where the fluid is at rest and the front is moving
through the domain, while the asterisks denote runs with an inlet
velocity chosen such that the front is approximately stationary within
the domain. For the latter, big asterisks denote cases in which Pe > 10.
The lines give the theoretical expectations.

VI. CONCLUSIONS

In the present work, the Fisher equation has served as a
simple model equation for front propagation in a turbulent
flow. The model has similarities with turbulent combustion,
but is much simpler. Nevertheless, it is clear that even this
simple model harbors surprises that one might have overlooked
under more complex conditions. Using three-dimensional
simulations, we have been able to compare with the associated
mean-field model. For small Damköhler numbers, the effective
front speed can be approximated by replacing the diffusivity
by a turbulent value. However, for Damköhler numbers larger
than unity, this simple procedure fails, because it would
suggest front speeds that exceed the characteristic speed of the
turbulent eddies. A simple remedy is then to use a non-Fickian
diffusion law for the turbulent diffusion and to retain the
time derivative in the expression for the concentration flux.
Earlier work [23] did already confirm the principal validity
of this approach and resulted in an estimate for the relevant
relaxation time, which is characterized by the Strouhal number.
The current work shows that the best fit to the simulation data
can be achieved with a Strouhal number that is as small as 0.03,
which is about 100 times smaller than the earlier-determined
value for passive scalar diffusion in forced turbulence. This
difference is connected with the presence of a reaction term in
the evolution equation for the passive scalar concentration.
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APPENDIX: MEAN-FIELD EFFECT
OF THE REACTION TERM

In order to assess the effect of neglecting the reaction term
in the analysis presented earlier, we present now a simple
mean-field theory for the Fisher equation using the τ equation.
We start with the passive scalar equation with a reaction term as
given by Eq. (8), split C = C + c and U = U + u into mean
and fluctuating parts, neglect the molecular diffusion term for
simplicity, and define the mean concentration flux F = uc

and the mean-squared concentration, H = c2, so the equation
for the mean concentration is

∂C

∂t
= −∇ · (U C + F ) + C

τc

(
1 − C

C0

)
− H

τcC0
, (A1)

so the equation for the fluctuations is, to linear order in the
fluctuations,

∂c

∂t
= −∇ · (Uc + uC) + c

τc

(
1 − 2C

C0

)
+ · · · , (A2)

where the dots denote higher-order terms for which we shall
adopt a general closure assumption. Next, we derive evolution
equations for F and H, ignore a mean flow for simplicity, and
assume ∇ · u = 0, so we have

∂F
∂t

= −D̃t∇C + F
τc

(
1 − 2C

C0

)
− F

τ
, (A3)

∂H
∂t

= −2F · ∇C + 2
H
τc

(
1 − 2C

C0

)
− H

τ
. (A4)

In Eqs. (A3) and (A4), we can write the last two terms as
−F/τF and −H/τH, respectively, where

1

τF (C)
= 1

τ
− 1

τc

(
1 − 2C

C0

)
, (A5)

1

τH(C)
= 1

τ
− 2

τc

(
1 − 2C

C0

)
. (A6)

TABLE II. Dependence of sT /v′ without and with H in a model
for Pe = 10. Note the slight increase of sT /v′ in the presence of H
compared to the case in which it is neglected.

Da sT /v′(without H) sT /v′(with H)

0.10 0.25 0.25
0.30 0.44 0.47
0.50 0.59 0.65
0.61 0.66 0.73

On sufficiently long time scales we may ignore the time
derivatives in Eqs. (A3) and (A4), so we arrive at closed
expressions for F and H, which we insert into Eq. (A1),
to obtain

∂C

∂t
+ U c · ∇C = C

τc

(
1 − C

C0

)
+ DT ∇2C, (A7)

where Uc(C) is a new effective advection speed and DT =
D + Dt is again the sum of turbulent and microscopic
diffusivities with

Uc(C) = 2Dt

τH
τc

∇C

C0
, Dt (C) = τF (C) v′2. (A8)

One may expect that the term Uc slows down the propagation
speed of the front, because it is directed up the concentration
gradient. Note that the sign of the Uc term is opposite to that of
a similar term in the so-called G equation [2,10] of turbulent
front propagations, which is, however, not an equation for
the flame brush but for the detailed position of the wrinkled
flame front (at G = 0) with an advection speed that is given
by u − sLn̂, where n̂ = ∇G/|∇G| is a unit vector normal
to the flame front, but it enters with a minus sign and thus
corresponds to an enhanced speed down the gradient of G.
However, by solving Eq. (A1) with Eqs. (A3) and (A4), it
turns out that when the H term is included, it accelerates the
front; see Table II. Note also that the coefficient Dt is reduced
and can even become negative in the unstable part of the front
where C = 0 (or at least C < C0/2); see Eqs. (A5) and (A8).
In that case our expression for turbulent diffusion becomes
invalid and one has to include higher-order derivatives that
would guarantee stability at small length scales.
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