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ABSTRACT

Aims. We study turbulent transport coefficients that describe the evolution of large-scale magnetic fields in turbulent convection.
Methods. We use the test field method, together with three-dimensional numerical simulations of turbulent convection with shear
and rotation, to compute turbulent transport coefficients describing the evolution of large-scale magnetic fields in mean-field theory
in the kinematic regime. We employ one-dimensional mean-field models with the derived turbulent transport coefficients to examine
whether they give results that are compatible with direct simulations.
Results. The results for the α-effect as a function of rotation rate are consistent with earlier numerical studies, i.e. increasing magnitude
as rotation increases and approximately cos θ latitude profile for moderate rotation. Turbulent diffusivity, ηt, is proportional to the
square of the turbulent vertical velocity in all cases. Whereas ηt decreases approximately inversely proportional to the wavenumber
of the field, the α-effect and turbulent pumping show a more complex behaviour with partial or full sign changes and the magnitude
staying roughly constant. In the presence of shear and no rotation, a weak α-effect is induced which does not seem to show any
consistent trend as a function of shear rate. Provided that the shear is large enough, this small α-effect is able to excite a dynamo
in the mean-field model. The coefficient responsible for driving the shear-current effect shows several sign changes as a function of
depth but is also able to contribute to dynamo action in the mean-field model. The growth rates in these cases are, however, well
below those in direct simulations, suggesting that an incoherent α-shear dynamo may also act in the simulations. If both rotation and
shear are present, the α-effect is more pronounced. At the same time, the combination of the shear-current and Ω × J-effects is also
stronger than in the case of shear alone, but subdominant to the α-shear dynamo. The results of direct simulations are consistent with
mean-field models where all of these effects are taken into account without the need to invoke incoherent effects.
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1. Introduction

The solar magnetic field is thought to arise from a complicated
interplay of turbulence, rotation, and large-scale shear flows (e.g.
Ossendrijver 2003, and references therein). Whilst numerical
simulations of simple systems using fully periodic boxes and
externally forced idealised flows exhibiting large-scale dynamos
have been around for some time (e.g. Brandenburg 2001, 2005a;
Brandenburg et al. 2001; Mininni et al. 2005; Brandenburg &
Käpylä 2007; Yousef et al. 2008a,b; Käpylä & Brandenburg
2009) and dynamos driven by the magnetorotational instabil-
ity exhibit large-scale dynamos (e.g. Brandenburg et al. 1995;
Hawley et al. 1996), convection simulations have not been able
to produce appreciable large-scale magnetic fields until recently
(Rotvig & Jones 2002; Browning et al. 2006; Brown et al. 2007;
Käpylä et al. 2008, hereafter Paper I; Hughes & Proctor 2009).
The main ingredient missing in many earlier simulations was
a large-scale shear flow and boundary conditions which allow
magnetic helicity fluxes out of the system. Indeed, the shear
flow plays a dual role in dynamos: it not only generates new
magnetic fields by stretching, but it also drives magnetic helic-
ity fluxes along constant isocontours of shear which can allow
efficient dynamo action (Vishniac & Cho 2001; Brandenburg
& Subramanian 2005; Paper I). Recently, however, large-scale
dynamos have also been found from rigidly rotating convection
simulations without shear (Käpylä et al. 2009a).

Although large-scale magnetic fields can clearly be obtained
from simulations, the origin of these fields in many cases (e.g.
Yousef et al. 2008a,b; Paper I; Hughes & Proctor 2009) is
still uncertain. In the mean-field framework (e.g. Moffatt 1978;
Parker 1979; Krause & Rädler 1980; Rüdiger & Hollerbach
2004), the dynamo process is described by turbulent transport
coefficients that govern the evolution of large-scale magnetic
field. The evolution equation for the large-scale part is obtained
from the standard induction equation by decomposing magnetic
and velocity fields into their mean and fluctuating parts, i.e.
B = B + b, U = U + u, which leads to

∂B
∂t
= ∇ × (U × B + E − ημ0 J), (1)

where η is the molecular magnetic diffusivity, J = μ−1
0 ∇ × B

is the current density, and μ0 is the vacuum permeability. The
remaining term, E ≡ u × b, is the electromotive force describing
the effects of small-scale turbulence on the evolution of mean
fields and can be represented in terms of the mean fields and
their derivatives

Ei = αi jB j + ηi jkB j,k + . . . , (2)

where αi j and ηi jk are tensorial coefficients, commas denote par-
tial derivatives, and summation over repeated indices is assumed.
Expression (2) is valid if the mean fields vary slowly in space and
time.
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Whilst mean-field models have been quite successful
in reproducing many aspects of the solar magnetism (e.g.
Ossendrijver 2003), they have often been hampered by the poor
knowledge of the turbulent transport coefficients which could
only be computed analytically using unrealistic or unjustified
approximations, such as first order smoothing (FOSA). More re-
cently, numerical models of convection in local Cartesian geom-
etry have been employed to compute some of these coefficients
in more realistic setups (Brandenburg et al. 1990; Ossendrijver
et al. 2001, 2002; Giesecke et al. 2005; Käpylä et al. 2006a;
Cattaneo & Hughes 2006; Hughes & Cattaneo 2008). To date,
however, only coefficients relevant for the αi j term in Eq. (2)
have been determined from convection simulations. This is due
to the limitations of the method used where a uniform magnetic
field is imposed and the resulting electromotive force is mea-
sured. Furthermore, if the Lorentz force is retained in the simu-
lations, dynamo-generated magnetic fields may grow to satura-
tion, leading to quenching even if the imposed field is weak. At
large magnetic Reynolds numbers such quenching can be very
strong if there are no magnetic helicity fluxes, suggesting there-
fore small values of α even for weak imposed fields.

During recent years an improved scheme of extracting tur-
bulent transport coefficients has appeared which is referred to
as the test field method (Schrinner et al. 2005, 2007). In the test
field method the velocity field of the simulation is used in a num-
ber of induction equations, which all correspond to a given set
of large-scale test fields which do neither evolve nor react back
onto the velocity field. The test fields are orthogonal so the co-
efficients can be obtained by matrix inversion. This method has
been used successfully in setups where the turbulence is due to
isotropic forcing without shear (Sur et al. 2008, Brandenburg
et al. 2008b) and with shear (Brandenburg et al. 2008a; Mitra
et al. 2009), respectively. Moreover, the method has been used
to extract dynamo coefficients from more realistic setups where
the turbulence is driven by supernovae (Gressel et al. 2008) and
the magnetorotational instability (Brandenburg 2005b, 2008).

In the present paper we apply the method for the first time
to convection simulations. We also seek to understand the dy-
namos reported in Paper I by applying the derived coefficients in
a one-dimensional mean-field model. In the case of convection
with rigid rotation it is likely that the large-scale fields are due
to the turbulent α-effect that is present in helical flows (Käpylä
et al. 2009a). However, when shear is present, there are vari-
ous mechanisms that can generate large-scale fields: in helical
flows a finite α-effect (e.g. Rädler et al. 2003; Rädler & Stepanov
2006; Rüdiger & Kitchatinov 2006) with shear can excite a clas-
sical αΩ or α-shear-dynamo (e.g. Brandenburg & Käpylä 2007;
Käpylä & Brandenburg 2009). Even if the mean value of α is
zero, strong enough fluctuations about zero in combination with
shear can drive an incoherent α-shear dynamo (e.g. Vishniac
& Brandenburg 1997; Proctor 2007). Finally, the shear-current
(Rogachevskii & Kleeorin 2003, 2004; Kleeorin & Rogachevskii
2008) and Ω × J (Rädler 1969; Rädler et al. 2003; Pipin 2008)
effects may operate even in nonhelical turbulence. If both rota-
tion and shear are present in the system it is not obvious how
to distinguish between the shear-current and Ω × J effects. In
the present paper we are able to extract the relevant turbulent
transport coefficients responsible for most of these processes and
determine which one of them is dominant in the different cases
with the help of a one-dimensional mean-field model. In order
to facilitate comparisons between the mean-field models and the
direct simulations presented in Paper I, we use identical setups
and overlapping parameter regimes as those used in Paper I in
the determination of the transport coefficients.

2. Model and methods

The setup is similar to that used by, e.g., Brandenburg et al.
(1996), Ossendrijver et al. (2001, 2002), and Käpylä et al. (2004,
2006a) and in Paper I. A small rectangular portion of a star is
modelled by a box situated at colatitude θ. The coordinate sys-
tem is such that (x, y, z) corresponds to (θ, φ, r) in a spherical co-
ordinate system. The dimensions of the domain are in most cases
(Lx, Ly, Lz) = (4, 4, 2)d, where d is the depth of the convectively
unstable layer, and it is also used as our unit length. The box is
divided into three layers, an upper cooling layer, a convectively
unstable layer, and a stable overshoot layer (see below). The fol-
lowing set of equations for compressible hydrodynamics is being
solved:

D ln ρ
Dt

= −∇ · U, (3)

DU
Dt
=−S Uxŷ − 1

ρ
∇p + g − 2Ω × U +

1
ρ
∇ · 2νρS, (4)

De
Dt
= − p
ρ
∇ · U + 1

ρ
∇ · K∇T + 2νS2 − e − e0

τ(z)
, (5)

where D/Dt = ∂/∂t + (U + U
(S )

) · ∇, and U
(S )
= (0, S x, 0)

is the imposed large-scale shear flow. The kinematic viscosity is
given by ν, ρ is the density, U is the velocity, and g = −g ẑ is
the gravitational acceleration. The fluid obeys an ideal gas law
p = ρe(γ−1), where p and e are the pressure and internal energy,
respectively, and γ = cP/cV = 5/3 is the ratio of specific heats
in constant pressure and volume. The internal energy is related
to the temperature via e = cVT , and K is the heat conductivity.
The rate of strain tensor S is given by

Si j =
1
2

(U j,i + Ui, j) − 1
3
δi j∇ · U. (6)

The last term of Eq. (5) describes cooling at the top of the do-
main, where τ(z) is a cooling time which has a profile smoothly
connecting the upper cooling layer and the convectively unstable
layer below.

The coordinates (z1, z2, z3, z4) = (−0.85, 0, 1, 1.15)d give the
vertical positions of the bottom of the box, the bottom and top
of the convectively unstable layer, and the top of the box, re-
spectively. We use a K(z) profile such that the associated hy-
drostatic reference solution is piecewise polytropic with indices
(m1,m2,m3) = (3, 1, 1). The cooling layer near the top makes
that layer nearly isothermal and hence stably stratified. The bot-
tom layer is also stably stratified, and the middle layer is convec-
tively unstable.

Stress-free boundary conditions are used for the velocity,

Ux,z = Uy,z = Uz = 0. (7)

In the absence of shear the x and y directions are periodic
whereas if shear is present, shearing-periodic conditions are used
in the x direction. A constant temperature gradient is main-
tained at the bottom of the box which leads to a steady influx of
heat due to the constant heat conductivity. The simulations were
made with the Pencil Code1, which uses sixth-order explicit
finite differences in space and third order accurate time stepping
method. Resolutions of up to 2563 mesh points were used.

1 http://www.nordita.org/software/pencil-code/

http://www.nordita.org/software/pencil-code/


P. J. Käpylä et al.: Alpha effect and turbulent diffusion from convection 635

2.1. Units, nondimensional quantities, and parameters

Dimensionless quantities are obtained by setting

d = g = ρ0 = cP = μ0 = 1, (8)

where ρ0 is the density at z2. The units of length, time, velocity,
density, entropy, and magnetic field are then

[x] = d, [t] =
√

d/g, [U] =
√

dg, [ρ] = ρ0,

[s] = cP, [B] =
√

dgρ0μ0. (9)

The simulations are then governed by the dimensionless num-
bers

Pr =
ν

χ0
, Re =

urms

νkf
, Ra =

gd4

νχ0

(
− 1

cP

ds
dz

)
zm

, (10)

where χ0 = K/(ρmcP) is the thermal diffusivity, kf = 2π/d is
an estimate of the wavenumber of the energy-carrying eddies,
and ρm is the density in the middle of the unstable layer at
zm =

1
2 (z3 − z2). Our choice of kf is somewhat arbitrary because

it is difficult to define a single length scale which would describe
the flow in a highly inhomogeneous system such as stratified
convection. The vertical extent of convective cells, however, is
almost always of the order of the depth of the convectively un-
stable layer which suggests that d could be used as the length
scale describing convection. In the nonrotating case, this is also
close to the horizontal size of the convective eddies. The entropy
gradient, measured at zm in the non-convecting initial state, is
given by(
− 1

cP

ds
dz

)
zm

=
∇ − ∇ad

HP
, (11)

with ∇ad = 1 − 1/γ and ∇ = (∂ ln T/∂ ln p)zm, and HP is the
pressure scale height.

The amount of stratification is determined by the parameter

ξ0 =
(γ − 1)e0

gd
, (12)

where e0 is the internal energy at z4. We use ξ0 = 1/3 in all
models.

2.2. The test field method

We employ the test field method (Schrinner et al. 2005, 2007),
which is implemented into the Pencil Code, to determine tur-
bulent transport coefficients. The uncurled induction equation in
the shearing box approximation can be written in terms of the
vector potential in the Weyl gauge as

DA
Dt
= −S Ay x̂ + U × B − ημ0 J , (13)

where D/Dt = ∂/∂t+S x∂/∂y, A is the magnetic vector potential,
and B = ∇ × A is the magnetic field. The relative importance of
magnetic diffusion over viscous and inertial forces can be char-
acterized respectively in terms of magnetic Prandtl and Reynolds
numbers

Pm =
ν

η
, Rm ≡ urms

ηkf
= Pm Re. (14)

In most cases we use Pm = 5 and Rm ≈ 35, see Table 1. When
we vary Rm in the range from roughly 1.5 to 150, we keep

Re ≈ 15 and vary Pm in the range 0.1−10. We decompose the
fields into their mean and fluctuating parts according to

A = A + a, U = U + u, B = B + b, J = J + j, (15)

where the overbars denote a horizontal average and lowercase
quantities denote fluctuations around these averages. The equa-
tion for the mean vector potential is then

DA
Dt
= −S Ay x̂ − U × B + u × b − ημ0 J . (16)

Subtracting (16) from (13) gives an equation for the fluctuating
field which reads

Da
Dt
= −S ay x̂ + U × b + u × B + u × b − u × b − ημ0 j. (17)

Instead of using the actual mean fields B in this equations, they
are replaced by orthogonal test fields B

p,q
and a separate Eq. (17)

is solved for each one of them. Here we follow the same proce-
dure as in Brandenburg et al. (2008a) and Mitra et al. (2009) and
limit the study to mean magnetic fields that depend on z only.
We use test fields

B
1c
= B0(cos kz, 0, 0), B

2c
= B0(0, cos kz, 0), (18)

B
1s
= B0(sin kz, 0, 0), B

2s
= B0(0, sin kz, 0), (19)

where k is the wavenumber of the test field. In most models we
use k/k1 = 1, where k1 = 2π/Lz. The electromotive force can be
written as

Ei = αi jB j − ηi jμ0J j, (20)

where ηi1 = ηi23 and ηi2 = −ηi13. The 4+4 coefficients are
then obtained by inverting a simple matrix equation, relating the
rank-2 tensor components to rank-3 tensor components.

Owing to the use of periodic boundary conditions in the hor-
izontal directions, the z-component of the mean magnetic field
is conserved and equal to the initial value, i.e. B3 = 0. Therefore
the value of α33 is here of no interest.

It is convenient to discuss the results in terms of the quanti-
ties

γ = 1
2 (α21 − α12), εγ = 1

2 (α21 + α12), (21)

ηt =
1
2 (η11 + η22), εη = 1

2 (η11 − η22), (22)

δ = 1
2 (η21 − η12). (23)

Furthermore, the remaining or otherwise important coefficients
are analyzed individually. The most important of these are the
diagonal components of αi j and η21. The former are responsible
for the generation of magnetic fields in helical turbulence and
the latter can drive the mean-field shear-current dynamo in non-
helical turbulence with shear (Rogachevskii & Kleeorin 2003,
2004).

To normalize our results, we use isotropic expressions of α
and ηt as obtained from first order smoothing, i.e.

α0 =
1
3 urms, ηt0 =

1
3 urmsk

−1
f , (24)

where the root mean square velocity is a volume average and the
Strouhal number,

St = τcurmskf , (25)

has been assumed to be of the order of unity. In order to actually
compare our results with those of FOSA, anisotropic expressions
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Table 1. Summary of the runs. The numbers are given for the statistically saturated state. Here, k̃ = k/k1, Ma = urms/(gd)1/2, and LH = Lx = Ly.

Run grid Pr Ra Rm Pm Sh Co θ Ma k̃ LH

A 1283 1.37 3.1 × 105 37 5 0 0 – 0.046 1 4
B 1283 1.37 3.1 × 105 35 5 0 0.36 0◦ 0.043 1 4
C 1283 1.37 3.1 × 105 46 5 –0.14 0 – 0.058 1 4
D 1283 1.37 3.1 × 105 35 5 –0.18 0.36 0◦ 0.044 1 4
A1 1283 1.37 3.1 × 105 37 5 0 0 – 0.046 0 4
A2 1283 1.37 3.1 × 105 37 5 0 0 – 0.046 1 4
A3 1283 1.37 3.1 × 105 38 5 0 0 – 0.048 2 4
A4 1283 1.37 3.1 × 105 38 5 0 0 – 0.048 3 4
B1 64 × 1282 1.37 3.1 × 105 33 5 0 0.38 0◦ 0.042 1 2
B2 1283 1.37 3.1 × 105 35 5 0 0.36 0◦ 0.043 1 4
B3 256 × 1282 1.37 3.1 × 105 32 5 0 0.40 0◦ 0.040 1 8
B4 1283 0.69 6.1 × 105 1.6 0.1 0 0.32 0◦ 0.049 1 4
B5 1283 0.69 6.1 × 105 3.2 0.2 0 0.32 0◦ 0.050 1 4
B6 1283 0.69 6.1 × 105 7.8 0.5 0 0.33 0◦ 0.049 1 4
B7 1283 0.69 6.1 × 105 16 1 0 0.32 0◦ 0.050 1 4
B8 1283 0.69 6.1 × 105 32 2 0 0.32 0◦ 0.050 1 4
B9 1283 0.69 6.1 × 105 75 5 0 0.34 0◦ 0.047 1 4

B10 2563 0.69 6.1 × 105 155 10 0 0.33 0◦ 0.049 1 4
B11 1283 1.37 3.1 × 105 35 5 0 0.36 0◦ 0.044 0 4
B12 1283 1.37 3.1 × 105 35 5 0 0.36 0◦ 0.043 1 4
B13 1283 1.37 3.1 × 105 35 5 0 0.36 0◦ 0.045 2 4
B14 1283 1.37 3.1 × 105 35 5 0 0.36 0◦ 0.045 3 4
B15 1283 1.37 3.1 × 105 35 5 0 0.07 0◦ 0.044 1 4
B16 1283 1.37 3.1 × 105 33 5 0 0.15 0◦ 0.042 1 4
B17 1283 1.37 3.1 × 105 35 5 0 0.36 0◦ 0.044 1 4
B18 1283 1.37 3.1 × 105 33 5 0 0.78 0◦ 0.041 1 4
B19 1283 1.37 3.1 × 105 29 5 0 1.74 0◦ 0.037 1 4
B20 1283 1.37 3.1 × 105 20 5 0 6.43 0◦ 0.025 1 4
B21 1283 1.37 3.1 × 105 35 5 0 0.36 0◦ 0.044 1 4
B22 1283 1.37 3.1 × 105 36 5 0 0.35 15◦ 0.045 1 4
B23 1283 1.37 3.1 × 105 37 5 0 0.34 30◦ 0.046 1 4
B24 1283 1.37 3.1 × 105 38 5 0 0.33 45◦ 0.048 1 4
B25 1283 1.37 3.1 × 105 37 5 0 0.34 60◦ 0.047 1 4
B26 1283 1.37 3.1 × 105 40 5 0 0.32 75◦ 0.050 1 4
B27 1283 1.37 3.1 × 105 43 5 0 0.29 90◦ 0.054 1 4
C1 1283 1.37 3.1 × 105 43 5 –0.03 0 – 0.054 1 4
C2 1283 1.37 3.1 × 105 42 5 –0.06 0 – 0.052 1 4
C3 1283 1.37 3.1 × 105 46 5 –0.14 0 – 0.058 1 4
C4 1283 1.37 3.1 × 105 66 5 –0.19 0 – 0.083 1 4
D1 1283 1.37 3.1 × 105 37 5 –0.03 0.06 0◦ 0.046 1 4
D2 1283 1.37 3.1 × 105 37 5 –0.07 0.15 0◦ 0.043 1 4
D3 1283 1.37 3.1 × 105 37 5 –0.18 0.36 0◦ 0.044 1 4
D4 1283 1.37 3.1 × 105 37 5 –0.36 0.73 0◦ 0.044 1 4
D5 1283 1.37 3.1 × 105 37 5 –0.83 1.66 0◦ 0.038 1 4

need to be used. Such expressions have been computed in the
past (e.g. Rädler 1980; see also Käpylä et al. 2006a) and are
given for the α-effect, γ, and ηt by

α(0)
xx = −2τcuz∂xuy, (26)

α(0)
yy = −2τcux∂yuz, (27)

γ(0) = −τc∂zu2
z , (28)

η(0)
t0 = τcu2

z , (29)

where we have used integration by parts and assumed that τc
does not depend on spatial coordinates. The correlation time can
be presented in terms urms and kf by assuming a value for St.

2.3. Averaging and error estimates

In the present study a mean quantity is considered to be a hori-
zontal average, defined via

F =
1

LxLy

∫ 1
2 Ly

− 1
2 Ly

∫ 1
2 Lx

− 1
2 Lx

F(x + x′, y + y′, z, t) dx′dy′. (30)

Except for special terms such as the shear terms in Eqs. (4)
and (13), this formulation corresponds to simple horizontal av-
eraging (for details see Brandenburg et al. 2008a). An additional
time average over the statistically steady part of each simulations
is also applied. The fluctuating magnetic fields bp,q are reset to
zero after periodic time intervals in order to avoid the complica-
tions arising from the growth of these fields; see the more thor-
ough discussions in Sur et al. (2008) and Mitra et al. (2009).
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We estimate errors by computing the standard deviation σ
for each depth and dividing this by the square root of the num-
ber of independent realizations N of the dynamo coefficients.
We consider the time series between two resets of the field bp,q

to represent an independent realization. For a typical run, N is
between five and ten.

2.4. Corresponding mean-field models

In order to determine how well the derived dynamo coefficients
describe the dynamos seen in direct simulations of Paper I, we
construct a one-dimensional mean-field model where the test
field results can be used directly as inputs. We start from the
mean-field induction equation, Eq. (1), which can be written us-
ing the vector potential

Ȧi = −U j,iA j + αi jB j − (ηi j + ηδi j)μ0 J j (31)

where the dot on Ȧi denotes a time derivative and U j,iA j =

(S Ay, 0, 0) is the shear term. The mean magnetic field is given
by B = (−A

′
y, A

′
x, 0), the mean current density is given by μ0 Ji =

−A
′′
i , and primes denote z-derivatives. The coefficients αi j and

ηi j are taken directly from the test field results leaving little free-
dom in the model. We can, however, turn on and off any compo-
nent of αi j and ηi j when needed in order to study the effects of
the different coefficients individually.

3. Results

In a similar fashion as in Paper I we perform four types of sim-
ulations which we label as follows: in set A neither rotation nor
shear is present whereas in set B rotation is added. In set C only
shear is present, and finally in set D both rotation and shear are
used. Parameters such as the strengths of rotation and shear, as
measured by Co and Sh, respectively, are varied within each set
to probe the parameter space. Summary of the runs is presented
in Table 1.

The fluid Reynolds numbers in our simulations are quite
modest so we cannot consider our flows to be highly turbulent.
However, the flows are irregular enough to remain time depen-
dent in all cases, as can also be seen from various animations2.

3.1. Set A: no rotation nor shear (Co = Sh = 0)

The simplest case we can consider with the present setup is one
with no rotation and no shear. In that case no net helicity gener-
ation or α-effect are expected. However, due to the density strat-
ification, the turbulence is inhomogeneous. This can lead to a
non-zero pumping, or γ-effect (e.g. Krause & Rädler 1980).

The horizontally and temporally averaged transport coeffi-
cients from Run A with Co = Sh = 0 and Rm ≈ 37 are
presented in Fig. 1. The results show that the kinetic helic-
ity is small and that the mean values of the diagonal elements
of αi j are of the order of 0.1α0 with errors clearly larger than
the mean. Vanishing diagonal elements of αi j is in accordance
with expectations from symmetry arguments. There is however
a non-zero pumping effect directed upward (downward) in the
lower (upper) part of the convectively unstable layer. The sign
of the pumping is inconsistent with the diamagnetic effect, i.e.
γ ∝ −∂zu2

z (e.g. Rädler 1968) and differs from earlier results
from convection simulations using the imposed field method

2 http://www.helsinki.fi/~kapyla/movies.html

Fig. 1. The three topmost panels show the time-averaged vertical pro-
files of kinetic helicity, αxx , and αyy, respectively. The fourth and fifth
panels show γ with εγ, and ηt with εη, respectively. The lowermost panel
shows δ (solid line) and ηyx (dashed). From Run A with Co = Sh = 0,
and Rm ≈ 37. The shaded areas between the thinner lines indicate error
estimates as described in Sect. 2.3. The vertical lines at z = (0, d) denote
the base and top of the convectively unstable layer.

(Ossendrijver et al. 2002; Käpylä et al. 2006a) and other di-
agnostics (e.g. Nordlund et al. 1992; Tobias et al. 1998, 2001;
Ziegler & Rüdiger 2003). However, this result is obtained for
test fields for which k/k1 = 1, whereas the imposed field re-
sults use a uniform field with k/k1 = 0. For a uniform test field
the pumping effect indeed changes sign and is thus consistent
with the earlier numerical studies and the diamagnetic effect
(see the upper panel of Fig. 2). The FOSA-prediction, Eq. (28)
for the turbulent pumping is in qualitative agreement with the

http://www.helsinki.fi/~kapyla/movies.html
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811498&pdf_id=1
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Fig. 2. Coefficients γ (top panel) and ηt (bottom panel) as functions of k
from Runs A1–A4 with Rm ≈ 37, and Co = Sh = 0. The dotted lines
show the FOSA results for γ and η, according to Eqs. (28) and (29),
respectively, with St ≈ 1.59.

simulation result for k/k1 = 0 but opposite to the results for k/k1
greater than that.

At first glance the magnitude of the turbulent diffusivity
seems quite high: the maximum value is more than six times the
isotropic reference value ηt0 suggesting that St ≈ 6. However,
the high value of ηt turns out to be related to the normalization:
if an anisotropic expression, i.e. Eq. (29), is plotted alongside
ηt the Strouhal number is roughly 1.6, not six, for our standard
case k/k1 = 1, see the lower panel of Fig. 2. The profile of the
turbulent diffusivity coincides with that of the vertical velocity
squared as predicted by Eq. (29). When k is increased, the pro-
file of ηt stays roughly the same and the magnitude diminishes
roughly in proportion to k−1. The quantities εγ, εη, δ, ηxy, and ηyx
are compatible with zero in all runs in set A.

3.2. Set B: only rotation (Co � 0, Sh = 0)

When rotation (corresponding to the north pole, θ = 0) is added
to the system, non-zero negative kinetic helicity is produced due
to the fact that g · Ω < 0. Although the α-effect is not directly
proportional to the helicity in the anisotropic case of stratified
convection, it can still be a useful proxy. Figure 3 shows the re-
sults for Run B with Co ≈ 0.36 and Rm ≈ 35. We find that
the diagonal components of αi j are positive in the upper part of
the convectively unstable region where the helicity is most neg-
ative. The negative maxima at the base of the convection zone
are, however, not reflected by the kinetic helicity. The results in
Fig. 3 were obtained for k/k1 = 1. The profiles of αxx and αyy
are more in line with the profile of the helicity for k/k1 = 0 (see
Sect. 3.2.3 for more details on the k-dependence).

In comparison to Run A, the pumping coefficient γ shows a
deeper maximum in the upper half of the convection zone and
somewhat decreased value in the lower half. The profile and
magnitude of the turbulent diffusivity are similar to those in the
nonrotating case. The coefficients ηyx and ηxy are equal in mag-
nitude and of opposite sign. This leads to a positive (negative) δ
in the convection zone (overshoot layer) with magnitude peaking
close to twice ηt0. The quantities εγ and εη are small, as expected
from symmetry arguments

3.2.1. Dependence on horizontal system size

The profiles and magnitudes of the two diagonal components
of α are very close to each other in our standard case (Run B)

Fig. 3. Same as Fig. 1, but for Run B; Co ≈ 0.36, θ = Sh = 0, and
Rm ≈ 35.

shown in Fig. 3. Although the number of convection cells in the
domain is quite small (of the order of ten or less), the isotropy
of α is a preliminary indication that the horizontal system is still
large enough to give representative results relevant for a larger
ensemble. If the system size is too small, the derived turbulent
transport coefficients may no longer be meaningful (Hughes &
Cattaneo 2008). In order to study the convergence of our results,
we have performed simulations with three box sizes where the
horizontal extent LH ≡ Lx = Ly is either 2d, 4d, or 8d, respec-
tively, and the vertical extent of the box is kept unchanged. These
runs are labeled (from the smallest to the largest) as B1, B2,
and B3, where B2 is the same as Run B (cf. Fig. 3). All three
runs are relatively slowly rotating with Co ≈ 0.36, Sh = 0, and
Rm ≈ 35. The results are shown in Fig. 4. It is obvious that the
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Fig. 4. From top to bottom: kinetic helicity, αxx , αyy, γ, ηt, and δ as
functions of horizontal system size from Runs B1–B3. The linestyles
are as indicated in the lowermost panel. Co ≈ 0.36, θ = 0, Sh = 0 and
Rm ≈ 35 in all runs.

differences between the runs are very small and the two larger
systems are virtually identical. The only statistically significant
difference is the anisotropy of α in the convectively unstable re-
gion for Run B1 with the smallest system size. We can thus be
fairly confident that the standard box size with LH = 4d is suf-
ficiently large. This is consistent with the results of Hughes &
Cattaneo (2008) who found that the ratio LH/d needs to be larger
than two for the value of α to be reasonably representative of the
system.

3.2.2. Dependence on Rm

One of the basic expected properties of turbulent dynamos is that
they should be “fast”, i.e. the growth rate of the dynamo, and

Fig. 5. From top to bottom: kinetic helicity, αxx , αyy, γ, ηt, and δ as
functions of Rm from Runs B4–B10. The linestyles are as indicated in
the lowermost panel. Co ≈ 0.33, θ = Sh = 0 and Re ≈ 15 in all runs.

thus the transport coefficients, should not depend on the molec-
ular magnetic diffusion provided that Rm 	 1. Figure 5 shows
the transport coefficients as functions of Rm for fixed Re ≈ 15,
Co ≈ 0.33, and θ = Sh = 0 from Runs B4–B10. The magnetic
Reynolds and Prandtl numbers vary in the ranges 1.6 . . .155
and 0.1 . . .10, respectively. We find that the transport coeffi-
cients show no statistically significant dependence on Rm for
Rm >∼ 8. The only appreciable departures occur for the two low-
est Reynolds numbers. However, our definition of the Reynolds
number depends on kf (=2π/d) which is not as well defined as in,
e.g., forced turbulence simulations, so the coefficients may de-
pend on η for values somewhat larger than Rm = 1 in the present
case. These results agree with those obtained for isotropic
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Fig. 6. From top to bottom: α, γ, ηt, and δ as functions of k for runs
B11–B14 with Rm ≈ 35 and Co ≈ 0.36. Linestyles as indicated in the
lowermost panel.

turbulence (Sur et al. 2008; Brandenburg et al. 2008a; Mitra et al.
2009).

3.2.3. Dependence on wavenumber k

The results for nonrotating convection (see Fig. 2) indicate that
at least the pumping effect can experience not only a change
in magnitude but also a qualitative change when the wavenum-
ber of the test field is varied (for corresponding details see
Brandenburg et al. 2008b). It is of great interest to study whether
similar effects can occur for the α-effect. Our results for the stan-
dard case of Rm ≈ 35 and Co ≈ 0.36 from runs B11–B14 are
shown in Fig. 2. According to symmetry arguments, the diagonal
components of αi j are the same for θ = 0. We confirm this nu-
merically (see the two previous sections) and combine the data
of the α-effect into a single coefficient α. The same applies to
the FOSA expressions, Eqs. (26), (27), which we combine into
α(0) = 1

2 (α(0)
xx + α

(0)
yy ). For k/k1 = 0, the α-effect shows a more

uniform positive value in the convectively unstable region than
for k/k1 = 1. For larger k the negative region in the deeper lay-
ers shifts towards the top and the maxima of the profile dimin-
ish. The pumping coefficient and turbulent diffusion behave very
much the same as in the nonrotating case, cf. Fig. 2. The coeffi-
cient δ diminishes rapidly as k increases. The FOSA expression
for the α-effect is in qualitative accordance with the k/k1 = 0 re-
sult, but fails to capture the details of the profile (see also Käpylä
et al. 2006a). The Strouhal number required to match η(0)

t with ηt
is 1.37 which is somewhat smaller than in the nonrotating case.

Fig. 7. From top to bottom: kinetic helicity, α, γ, ηt, and δ as functions
of rotation from Runs B15–B20. The linestyles are as indicated in the
second panel from the bottom. θ = 0, Sh = 0, and Rm ≈ 20 . . . 35.

3.2.4. Dependence on Co

The α-effect from rotating convection simulations in setups simi-
lar to ours has been studied in numerous papers in the past using
the imposed field method (e.g. Ossendrijver et al. 2001, 2002;
Käpylä et al. 2006a). Our results for the Coriolis number depen-
dence of the kinetic helicity, α, γ, ηt and δ from Runs B15–B20
are shown in Fig. 7. We find that the kinetic helicity and α in-
crease monotonically as functions of rotation in accordance with
the results of Ossendrijver et al. (2001). The vertical pumping
effect shows little dependence on rotation although the Coriolis
number changes by two orders of magnitude.

Interestingly, the turbulent diffusivity shows a marked de-
crease for rapid rotation. The coefficient δ is positive in the con-
vection zone and negative in the overshoot layer for slow rota-
tion. The magnitude increases rapidly until Co ≈ 0.2, after which
δ changes sign near the top. This negative region increases with
rotation. Similar results, i.e. monotonically decreasing ηt and a
first increasing and then decreasing δ were obtained from forced
turbulence simulations by Brandenburg et al. (2008a).
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The combined effect of increasing α and decreasing ηt sug-
gests that the large-scale dynamo was possibly subcritical in
the runs with only rotation in Paper I and other earlier studies
(e.g. Nordlund et al. 1992; Brandenburg et al. 1996; Cattaneo &
Hughes 2006; Tobias et al. 2008), but that it could be excited
for more rapid rotation. The validity of this conjecture is given
some credibility by Käpylä et al. (2009a) who find clear large-
scale dynamo action for Co > 4 for a similar setup as used here
and in Paper I. More detailed discussion of these results can be
found in the aforementioned reference.

3.2.5. Dependence on θ

The latitude dependence of the coefficients for Co ≈ 0.29−0.36
and Rm ≈ 35−43 from Runs B21–B27 is shown in Fig. 8. The
colatitude is varied from 0◦ (north pole) to 90◦ (equator) in incre-
ments of 15 degrees. The kinetic helicity and the diagonal com-
ponents of αi j decrease monotonically towards the equator. The
latter are approximately equal and show a similar latitude depen-
dence. This is consistent with the results of Ossendrijver et al.
(2002) and Käpylä et al. (2006a) with a comparable Coriolis
number3. Vertical pumping also decreases monotonically from
the pole to the equator. The equatorial profile of γ is quite simi-
lar to the nonrotating run, cf. Fig. 1. The trend is similar to that
seen in earlier studies, e.g. Käpylä et al. (2006a). The variation
of ηt is smaller than for the other components, but a weak in-
creasing trend from the pole towards the equator is seen. The
coefficient δ shows a clear decreasing trend as a function of co-
latitude and is consistent with zero at the equator – in accordance
with symmetry considerations.

3.3. Set C: only shear (Co = 0, Sh � 0)

3.3.1. Simulation results

The next case to consider is that of shear only. We use uniform
shear of the form U = (0, S x, 0), where S < 0, resulting in
g · (∇ × U) > 0, and positive kinetic helicity, as expected. See
Fig. 9 for representative results from Run C with Sh ≈ −0.14
and Rm ≈ 46. We find that introducing shear into the system
produces an anisotropic α-effect. The profile of the αxx compo-
nent is similar, but of opposite sign, to that in the case with only
rotation; see, e.g., Fig. 3. The magnitude of this component is
also quite large, i.e. up to twice the estimate α0 already for rather
weak shear of Sh ≈ −0.14. The αyy coefficient, relevant for dy-
namo excitation, is positive, but the magnitude is only about one
fifth of αxx. Moreover, the error bars are so large that the value
is hardly statistically significant. These results demonstrate that
linking the α-effect to the negative of the kinetic helicity can
be misleading. Figure 10 shows the coefficients as functions of
shear for Runs C1–C4. We have to restrict the study to rather
modest values of Sh because shear, in the absence of rotation,
promotes generation of large-scale vorticity (e.g. Elperin et al.
2003; Käpylä et al. 2009b). Although our largest value of Sh is
still rather modest, the αxx component is quite large, up to three
times α0. The αyy component, however, remains small and posi-
tive for all values of Sh without a consistent trend as a function
of shear.

The turbulent pumping in Run C has a similar profile as in
the cases with Co = Sh = 0 (Run A) and Co � 0 (Run B)
with k/k1 = 1 with downward pumping near the surface and

3 The definition of Coriolis number in the present study is smaller by
a factor of 2π in comparison to previous studies.

Fig. 8. From top to bottom: kinetic helicity, αxx , αyy, γ, ηt, and δ as
functions of colatitude θ from Runs B21–B27. The linestyles are as
indicated in the lowermost panel. Co ≈ 0.29−0.36 and Rm ≈ 35−43 in
all runs.

upward pumping in the lower part of the convectively unstable
region. The profile and magnitude of the turbulent diffusivity
is also very similar to previous cases. The pumping effect and
turbulent diffusivity are decreased when the magnitude of Sh is
greater than 0.06. The results for increasing α and decreasing ηt
as functions of shear are opposite to those obtained from heli-
cally forced turbulence with shear (Mitra et al. 2009). However,
the comparison for the α-effect should be done with caution be-
cause in Mitra et al. (2009) α arises essentially due to the exter-
nal forcing and is only modified by the action of shear whereas in
the present case α is due to the interaction of shear, stratification,
and turbulence themselves.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811498&pdf_id=8


642 P. J. Käpylä et al.: Alpha effect and turbulent diffusion from convection

Fig. 9. Same as Fig. 1, but for Run C with no rotation and just shear;
Co = 0, Sh ≈ −0.14, and Rm ≈ 46.

The ηyx component, which can drive a mean-field shear-
current dynamo for ηyxS > 0, is of interest because it can pro-
vide an explanation for the dynamos seen in recent dynamo sim-
ulations (Paper I; Hughes & Proctor 2009). In the present case
where S < 0, ηyx should be negative to excite the shear-current
dynamo. There appear to be consistently negative regions of ηyx
at the interface of the convectively unstable region and the over-
shoot layer, and in the upper layers of the convection zone. The
upper negative region is more pronounced for Sh = −0.06 and
Sh = −0.14. However, the errors of these quantities are of the
same order of magnitude as the mean value, cf. the bottom panel
of Fig. 9. These results tend to agree with earlier findings from

Fig. 10. From top to bottom: kinetic helicity, αxx , αyy, γ, ηt, and ηyx as
functions of shear from Runs C1–C4. The linestyles are as indicated in
the second panel from the below. Co = 0 and Rm ≈ 42−46 in all runs.

forced turbulence (Brandenburg et al. 2008a; Mitra et al. 2009)
where ηyx for the most part was positive or compatible with zero.

3.3.2. Mean-field dynamo models

In Paper I clear large-scale dynamo action was found from a
simulation with Sh ≈ −0.08 whereas for Sh ≈ −0.03 the so-
lution was marginal. In the range −0.08 > Sh > −0.22 the
growth rate of the large-scale field was proportional to the mod-
ulus of the shear parameter S . Bearing these results in mind
and having obtained the turbulent transport coefficients for the
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Fig. 11. Growth rates λ from a one-dimensional mean-field model with
transport coefficients from Runs C1–C4 presented in Fig. 10. Linestyles
as indicated in the lower panel.

corresponding parameter regime we are in a position to apply
the test field results in a mean-field dynamo model.

Using the full test field results for αi j and ηi j in the corre-
sponding mean-field model indicates that a dynamo is excited
for −Sh > 0.14, see the growth rates of the large-scale field pre-
sented Fig. 11. It is interesting to study what are the relative im-
portances of the different effects: first we turn off the off-diagonal
components of ηi j in which case the magnetic field is generated
by the α-effect and the shear-current effect is absent. We find that
the growth rate decreases but is still positive for the same cases
as before. On the other hand, a “pure” shear-current dynamo, i.e.
where αi j = ηxy = 0, is also excited for the same runs with a very
similar λ as in the α-shear case. In comparison to the simulations
of Paper I, we find that the growth rates from the mean-field
model are consistently significantly smaller. These results and
the fact that no dynamo was found for −Sh = 0.06 would seem
to indicate that an incoherent α-shear dynamo (e.g. Vishniac
& Brandenburg 1997) is also operating in the full simulations.
However, we should remain cautious when comparing the direct
simulations and the mean-field model because the transport co-
efficients were determined for a single value of k whereas many
other wavenumbers are available in the simulations.

3.4. Set D: rotation and shear (Co � 0, Sh � 0)

3.4.1. Simulation results

When rotation is added to the system where a large-scale shear
is already imposed, the vorticity generation is suppressed (e.g.
Yousef et al. 2008b; Paper I) and it is possible to study higher
values of Sh. Representative results for Run D with Co ≈ 0.36,
Sh ≈ −0.18, and Rm ≈ 35 are shown in Fig. 12. The results for
the kinetic helicity and αyy seem to behave additively when com-
paring with the runs with only rotation (Run B; Fig. 3) and only
shear (Run C; Fig. 9). The αxx component is somewhat smaller
than in Run C with shear only which is consistent with oppo-
sitely signed contributions due to shear and rotation.

We note that in a recent paper, Hughes & Proctor (2009)
found that the α-effect is virtually unchanged when shear is
added to a rotating system. In their case the shear profile is
proportional to cos y. The resulting large-scale vorticity is then
Wz ∝ sin y which leads to α(W)

i j ∝ (G ·W)δi j ∝ sin y (e.g. Rädler
& Stepanov 2006) where G symbolically denotes the inhomo-
geneity of the turbulence. However, Hughes & Proctor (2009)
show a volume average of α over the full upper half of the do-
main in which case the contribution of α(W) cancels out. This

Fig. 12. Same as Fig. 1, but for Run D with both rotation and shear;
Co ≈ 0.36, Sh ≈ −0.18, and Rm ≈ 37.

explains the absence of any modifications of α due to shear in
their case, but for us this is not the case because for our shear
profile Wz = S = const.

The profile of γ is quite similar to the rotating case, i.e.
Run B; see Fig. 3, with the exception that the off-diagonal com-
ponents of αi j show considerable anisotropy as manifested by
the parameter εγ. The turbulent diffusion shows a profile com-
mon to all the other simulations, but here the diagonal compo-
nents of ηi j show evidence of mild anisotropy with εη peaking
near the middle of the convectively unstable region with a max-
imum value of εη ≈ ηt0. The quantity δ is compatible with zero
whereas ηyx exhibits a similar profile and magnitude as δ does
in the rotating case, cf. Fig. 3, which indicates that ηxy ≈ ηyx, as
opposed to ηxy ≈ −ηyx in Run B.
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Fig. 13. From top to bottom: kinetic helicity, αxx , αyy, γ, ηt, and ηyx as
functions of Coriolis number for Runs D1–D5. The linestyles are as
indicated in the lowermost panel. Sh = − 1

2 Co and Rm ≈ 37 in all runs.

The kinetic helicity and the turbulent transport coefficients as
functions of Co, keeping the ratio −S/Ω = 1 constant, are shown
in Fig. 13. The helicity is increasing in a similar fashion as, al-
beit slower than, in the absence of shear, compare with Fig. 7.
The components of the α-effect are highly anisotropic with the
main contribution of αxx being due to shear and that of αyy due
to rotation (compare with Figs. 7 and 10). The value of αxx is
somewhat decreased in comparison to the cases with shear only
whereas αyy is almost unaffected. This is in qualitative agree-
ment with adding the contributions of runs from Sets B and C
with corresponding Co and Sh, respectively.

The profiles of γ and ηt are similar to those with only rota-
tion. The differences of γ and ηt as a function of Co are small and

Fig. 14. Same as Fig. 11 but for Runs D1–D5 shown in Fig. 13.

for the most part fall within the error bars. The profile of ηyx is
very similar to δ in the case of only rotation with negative values
near the base and top of the convectively unstable region with
positive values in between. The profile and magnitude of ηyx
remains essentially fixed for Co >∼ 0.15. We note that in the
simulations with shear and rotation the Ω × J-effect may also
contribute to the generation of large-scale magnetic fields (e.g.
Rädler 1969; Rädler et al. 2003; Pipin et al. 2008). It is, how-
ever, not altogether clear how to disentangle the transport coef-
ficients responsible for the shear-current and Ω × J-dynamos in
the present case. Thus the off-diagonal components of ηi j con-
tain contributions from both effects in Set D.

3.4.2. Mean-field dynamo models

We follow here the same procedure as in Sect. 3.3.2 to study
dynamo excitation for the Runs D1–D5. Using the full αi j and
ηi j tensors in the one-dimensional mean-field model indicates
that all of the runs in Fig. 13 are capable of driving a dynamo.
Neglecting the off-diagonal components of ηi j decreases λ by ap-
proximately a third whereas for a pure shear-current dynamo the
growth rate is roughly half of the model where the full αi j and
ηi j tensors were used. For an α-shear dynamo λ is positive for all
runs except the slowest rotation case with Co = 0.07 whereas for
the combined shear-current and Ω × J-dynamo also Co = 0.15
is mildly subcritical. It is interesting to note that the simulation
results of Paper I fall roughly on top of the uppermost line, i.e.
where the full αi j and ηi j are used, in Fig. 14. This is in con-
trast to the case of only shear where the growth rates from the
mean-field model were clearly smaller than in the corresponding
simulations of Paper I. However, the mean-field model does not
reproduce the declining growth rate for Co >∼ 1.1 that is observed
in the direct simulations.

4. Conclusions

We obtain turbulent transport coefficients governing the evo-
lution of large-scale magnetic fields from turbulent convection
simulations with the test field method. We study the system size
and magnetic Reynolds number dependences of the coefficients.
This is important because spurious results can be expected for
small Reynolds numbers or when the aspect ratio of the domain
is too small (Hughes & Cattaneo 2008). We find that for our
standard system size, LH/d = 4, the coefficients are essentially
identical to those obtained with a horizontal extent that is twice
as large. As a function of Rm, all the coefficients are essentially
constant for Rm >∼ 8. This is in accordance with the theory but
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at odds with results from certain imposed field calculations (e.g.
Cattaneo & Hughes 2006). In these calculations the magnetic
field is allowed to evolve until saturation which can cause strong
quenching even if the imposed field itself is weak. This is partic-
ularly important if closed boundary conditions for the magnetic
field are imposed, in which case magnetic helicity conserva-
tion can lead to catastrophic quenching (Vainshtein & Cattaneo
1992). More reliable results for the kinematic α-effect with the
imposed field method can be obtained by resetting the magnetic
field before it grows too large or develops substantial gradients
(e.g. Ossendrijver at al. 2002; Käpylä et al. 2006a). More de-
tailed comparison of the imposed field and test field methods is
important, but beyond the scope of the present study.

The earlier determinations of transport coefficients from con-
vection simulations have used the imposed field method (e.g.
Ossendrijver et al. 2001, 2002; Käpylä et al. 2006a) which yields
the components of αi j but does not deliver ηi j because the im-
posed field is uniform. The test field method does not suffer from
this restriction and ηi j and the k-dependence of the coefficients
can be extracted. We find that for k/k1 = 0, i.e. for a uniform
field, the results for α and γ are consistent with those obtained
from imposed field calculations, provided the magnetic field is
reset before it grows too large and substantial gradients develop.
As k is increased, however, the qualitative behaviour of the coef-
ficients changes. This is indicated by a partial sign change of α
and a complete sign change of γ; see Figs. 2 and 6.

The turbulent diffusivity shows a robust behaviour regard-
less of the parameters of the simulations: the profile is propor-
tional to the vertical velocity squared, u2

z , as predicted by FOSA
(e.g. Rädler 1980). The value of ηt decreases almost proportional
to k−1, and shows a declining trend as a function of rotation and
shear.

For the present parameters, the α-effect increases monotoni-
cally as rotation is increased. As a function of latitude, the diag-
onal components of αi j have a similar magnitude and peak near
the pole with declining values towards the equator. The α-effect
induced by shear is highly anisotropic: the αxx component has
a similar profile and magnitude, but opposite sign, as αxx and
αyy in the case of only rotation. This component also increases
monotonically as a function of shear, whereas the shear-induced
αyy remains small regardless of the strength of the shear. In the
runs where rotation and shear are present, the diagonal compo-
nents of αi j are roughly the sums of the corresponding coeffi-
cients in the cases with rotation and shear alone.

In addition to the α-effect, the ηyx component can contribute
to a shear-current dynamo when ηyxS > 0. In our case, where
S < 0, such dynamo action is possible if ηyx < 0. We find that
this coefficient shows negative regions near the base and near the
top of the convectively unstable region, but the errors are of the
same order of magnitude as the negative mean values in most
cases.

In order to connect to earlier work, we use the test field re-
sults in a one-dimensional mean-field model in order to under-
stand the excitation of dynamos using identical setups as in di-
rect simulations (Paper I). We study here only the cases with
shear and consider large-scale dynamos in the rigidly rotating
case elsewhere (Käpylä et al. 2009a). The presently used dy-
namo model ignores k-dependence and is therefore likely to
be too simple to fully describe the large-scale fields in the di-
rect simulations. Nevertheless, the present results, taken at face
value, seem to indicate that in the case with shear alone the de-
rived dynamo coefficients are not sufficient to explain the dy-
namo but that an additional incoherent α-shear dynamo might

be needed. This conjecture is based on the fact that mean-field
α-shear and shear-current dynamos are both excited with simi-
lar growth rates which, however, are significantly smaller than
those obtained from direct simulations in Paper I. Furthermore,
a large-scale dynamo was marginal for Sh = −0.03 in Paper I,
whereas for Sh = −0.06 it was found to be slightly subcritical in
the present study. On the other hand, for the case with both shear
and rotation, no additional incoherent effects seem to be needed.
We find that in this case the regular α-shear dynamo produces
larger growth rates than the combined shear-current and Ω × J
dynamo but neither effect alone seems to be strong enough to
explain the dynamos in Paper I.

On a more general level, mean-field dynamo models of the
Sun and other stars rely on parameterisations of turbulent trans-
port coefficients. Even today, the majority of solar dynamo mod-
els bypass this problem and ignore most of the turbulent effects
and rely on phenomenological descriptions of the α-effect and
turbulent diffusion that are not without problems theoretically.
On the other hand, some attempts have been made to incorpo-
rate the results for the transport coefficients from imposed field
studies in mean-field models of the solar magnetism (e.g. Käpylä
et al. 2006b; Guerrero & de Gouveia Dal Pino 2008) and mod-
els employing more general turbulence models have recently ap-
peared (e.g. Pipin & Seehafer 2009). We feel that this is a worthy
cause to follow further with the present results.
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