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ABSTRACT
The turbulent diffusion tensor describing the evolution of the mean concentration of a passive
scalar is investigated for non-helically forced turbulence in the presence of rotation or a
magnetic field. With rotation, the Coriolis force causes a sideways deflection of the flux of
mean concentration. Within the magnetohydrodynamics approximation there is no analogous
effect from the magnetic field because the effects on the flow do not depend on the sign
of the field. Both rotation and magnetic fields tend to suppress turbulent transport, but this
suppression is weaker in the direction along the magnetic field. Turbulent transport along the
rotation axis is not strongly affected by rotation, except on shorter length-scales, i.e. when
the scale of the variation of the mean field becomes comparable with the scale of the energy-
carrying eddies. These results are discussed in the context of anisotropic convective energy
transport in the Sun.
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1 IN T RO D U C T I O N

In the outer 30 per cent of the Sun, energy is transported mainly by
convection through the exchange of fluid parcels. This process tends
to smear out entropy gradients by making the gas nearly isentropic
on the average. Any remaining entropy gradients lead to a mean
entropy flux whose negative divergence leads to a local change in
the entropy. This entropy flux is equal to the negative gradient of the
mean entropy multiplied by some turbulent diffusivity coefficient.
Using mixing length theory, this turbulent diffusion coefficient is
found to be of the order of the turbulent velocity times some mixing
length, which is often taken as a free parameter (Vitense 1953).

With rotation, the smearing out of entropy gradients is signifi-
cantly reduced due to lateral mixing generated by Coriolis deflec-
tions (Julien et al. 1996). Such deflections cause fluid parcels to lose
their heat content to the sides before they can ascend or descend and
transport heat vertically. This additional mixing explains why the
smearing out of entropy gradients is heavily reduced by rotation.
Rotational effects on the turbulent diffusivity were already studied
by Weiss (1965) and Durney & Roxburgh (1971) who found that
the turbulent diffusion tensor becomes anisotropic with respect to
the direction of the rotation axis. The components of the anisotropic
diffusion tensor can be computed using the first-order smoothing
approximation (Rüdiger 1989; Kitchatinov, Rüdiger & Pipin 1994).
These calculations show that the enhancement of turbulent diffu-
sion along the direction of rotation corresponds to a latitudinal heat
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flux towards the pole, making it slightly hotter. Turbulent convec-
tion simulations by Rüdiger et al. (2005) confirm this, but they also
show that the radial heat flux is slightly smaller near the poles,
which is explained by the effect of stratificational anisotropy. This
agrees with earlier results of Rieutord et al. (1994) and Käpylä,
Korpi & Tuominen (2004). Rüdiger et al. (2005) also established
the presence of an azimuthal turbulent heat flux and found it to
be negative, that is in the westward direction. This was surprising
in view of the result of Kitchatinov et al. (1994) who found it to
be either zero (for a simple mixing length model) or positive (for
a turbulence model with finite-time correlation effects). However,
their result was based on a sign error (Rüdiger, private communica-
tion). Furthermore, if there is also stratification, the simple mixing
length model of Kitchatinov et al. (1994) predicts that the sign of
the flux should agree with that of the corresponding component
of the Reynolds stress tensor and hence negative, which is then in
agreement with the convection simulations of Rüdiger et al. (2005).

Diffusive processes also play a role in the evolution of the mean
magnetic field and the mean momentum. In recent years, it has
become possible to compute the relevant diffusion coefficients to-
gether with other (e.g. non-diffusive) turbulent transport coefficients
using turbulence simulations. In the case of magnetic fields, a fairly
accurate method is the test field method in which one solves an ad-
ditional set of passive evolution equations for the departures from
the corresponding set of prescribed mean fields (Brandenburg 2005;
Schrinner et al. 2005, 2007; Brandenburg et al. 2008a).

In cases of poor scale separation, i.e. when the scale of the mean
field is only a few times larger than the typical scale of the tur-
bulence, the multiplication with a diffusion coefficient must be
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replaced by a convolution with an integral kernel. A similar situa-
tion also applies to cases where the time-scale of the variation of the
mean fields becomes comparable with the turnover time. In such
cases, the test field method has also been used to determine the in-
tegral kernels (Brandenburg et al. 2008a; Hubbard & Brandenburg
2008). If the turbulence is anisotropic and/or inhomogeneous, the
diffusion coefficients or kernels are replaced by tensors. Again, the
test field method allows an accurate determination of all relevant
tensor components.

In this paper, we apply the test field method to the turbulent dif-
fusion of entropy in cases where the turbulence is homogeneous,
but anisotropic due to the presence of rotation or a magnetic field.
The former problem has recently been addressed by Rüdiger et al.
(2005), who evaluated the actual fluxes in stratified turbulent con-
vection. However, convection necessarily imposes an additional
anisotropy in the direction of gravity, so it becomes harder to disen-
tangle the effects of gravity and rotation. Here, we focus on the case
of forced turbulence in the absence of gravity; using an isothermal
equation of state. In that case, the evolution equation of entropy is
similar to that of a passive scalar.

The effect of rotation on turbulent diffusion is important for
modelling the possibility of latitudinal entropy gradients in rotating
stars, that is, perpendicular to the radial direction of the energy
flux. Latitudinal entropy gradients could be important for producing
a significant baroclinic term that would balance the curl of the
Coriolis force and could therefore be important for explaining the
observation that the contours of constant angular velocity in the Sun
are not parallel to the rotation axis (Kitchatinov & Rüdiger 1995;
Thompson et al. 2003). The effect of a magnetic field on turbulent
heat diffusion is important in the theory of sunspots (e.g. Kitchatinov
& Mazur 2000) where the energy transport is suppressed in an
anisotropic fashion (Rüdiger & Hollerbach 2004). Furthermore,
anisotropic passive scalar transport is important in connection with
understanding the partial lithium depletion in the Sun (Rüdiger &
Pipin 2001).

2 PR E L I M I NA RY C O N S I D E R AT I O N S

We make use of the fact that in the absence of gravity, and with an
isothermal equation of state the evolution of entropy is passive, i.e.
there is no feedback on the momentum equation. We can therefore
consider the evolution equation for a passive scalar concentration
per unit volume C, which obeys

∂C

∂t
= −∇ · (UC) + κ∇2C, (1)

where κ is the diffusivity and U is the velocity. We note that in the
compressible case there is an extra term −κ∇ · (C∇ln ρ) on the
right-hand side of equation (1) where ρ is the density.

The evolution of the mean concentration C is obtained by aver-
aging equation (1), which yields

∂C

∂t
= −∇ · (U C + uc) + κ∇2C, (2)

where uc ≡ F is the mean flux of the concentration density. Under
the assumption that the spatial and temporal scales of the mean
field are well separated from those of the turbulence, one can make
a generalized Fickian diffusion ansatz of the form:

F i = −κij∇jC, (3)

where κ ij is the turbulent diffusion tensor. In the absence of good
scale separation, the multiplication with a diffusion tensor must be

replaced by a convolution with an integral kernel. We discuss this
case near the end of the paper, but ignore this for now.

The turbulent diffusion tensor is a proper tensor, so in the presence
of rotation and in the absence of helicity it has only even powers
of the pseudo vector � and odd powers of � combined with odd
powers of the Levi–Civita tensor. It must therefore have the general
form (Kitchatinov et al. 1994),

κij = κtδij + κ�εijk�̂k + κ���̂i�̂j , (4)

where �̂ = �/|�| is the unit vector along the rotation axis and
κ t, κ� and κ�� are functions of the Coriolis, Peclet and Schmidt
numbers, that are defined by

Co = 2�

urmskf
, Pe = urms

κkf
, and Sc = ν

κ
, (5)

respectively. Incidentally, we note that κ� contributes an anti-
symmetric component to the turbulent diffusion tensor, which does
not contribute to divergence of flux. Similarly, in the presence of a
magnetic field B with unit vector B̂ = B/|B|, the diffusion tensor
must have the form

κij = κtδij + κBεijkB̂k + κBBB̂i B̂j , (6)

but here κB = 0 because the diffusion tensor can only depend on the
Lorentz force which is quadratic in B, so κ ij must be invariant under
a change of sign of B (Kitchatinov et al. 1994). Thus, we have only
κ t and κBB that are functions of |B|/Beq, Pe and Sc, where

Beq = 〈
μ0ρU2

〉1/2
(7)

is the equipartition field strength, and μ0 is the vacuum permeability.
By adding rotation or by imposing a magnetic field, the flow

becomes anisotropic. The degree of anisotropy is characterized by
the parameter

ε = 1 − u2
⊥/u2

‖, (8)

where u2
⊥ and u2

‖ are the velocity dispersions perpendicular and
parallel to the direction of anisotropy, �̂ or B̂. In practice, we take
these directions to be the z direction, in which case u2

‖ = u2
z and u2

⊥
is calculated as (1/2)(u2

x + u2
y). Isotropy implies ε = 0.

3 ME T H O D

We simulate turbulence by solving the compressible hydromagnetic
equations with an imposed random forcing term and an isothermal
equation of state, so that the pressure p is related to ρ via p =
ρc2

s , where cs is the isothermal sound speed. We consider a periodic
Cartesian domain of size L3. In the presence of an imposed field
B0, we write the total field as B = B0 + ∇ × A, where A is the
magnetic vector potential. In the non-magnetic case, we put B0 =
0, and with A = 0 initially, we have B = 0 for all times, and the
hydromagnetic equations reduce to the Navier–Stokes equations for
ρ and U,

D ln ρ

Dt
= −∇ · U, (9)

DU
Dt

= −2� × U − c2
s ∇ ln ρ + f + Fvisc + FLor, (10)

where FLor = 0 in the non-magnetic case, i.e. there is no Lorentz
force, D/Dt = ∂/∂t + U · ∇ is the advective derivative, � is the
background angular velocity, Fvisc = ρ−1∇ · 2ρνS is the viscous
force, ν is the kinematic viscosity, Sij = (1/2)(Ui,j + Uj,i) −
(1/3)δij∇ · U is the traceless rate of strain tensor, and f is a random
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forcing function consisting of plane transversal waves with random
wavevectors k such that |k| lies in a band around a given forcing
wavenumber kf . The vector k changes randomly from one time-
step to the next. This method is described for example in Haugen,
Brandenburg & Dobler (2004). The forcing amplitude is chosen
such that the Mach number Ma = urms/cs is about 0.1.

In the magnetic case, we have a finite Lorentz force FLor =
J × B/ρ, where J = ∇ × B/μ0 is the current density, μ0 is the
vacuum permeability, and we solve the uncurled induction equa-
tion in the form
∂A
∂t

= U × B + η∇2 A, (11)

where η is the magnetic diffusivity, which is assumed constant.
The test scalar equation is obtained by subtracting equation (2)

from equation (1), which yields

∂c

∂t
= −∇ · (Uc + uC + uc − uc) + κ∇2c, (12)

where c = C − C and u = U − U are the fluctuating values of
concentration and velocity and uc is the mean flux of concentration
density. We restrict ourselves to the case of two-dimensional mean
fields, C = C(x, z, t), that are obtained by averaging over the y
direction. In the spirit of the test field method, we solve equation (1)
for a pre-determined set of four different mean fields,

C
c0 = C0 cos kx, C

s0 = C0 sin kx, (13)

C
0c = C0 cos kz, C

0s = C0 sin kz, (14)

where C0 is a normalization factor, that will drop out in the deter-
mination of κ ij since equation (3) is linear. For each of these mean
fields C

pq
, we obtain a separate evolution equation for cpq ,

∂cpq

∂t
= −∇ · (Ucpq + uC

pq + ucpq − ucpq ) + κ∇2cpq, (15)

where p, q = c, s or 0. In this way, we calculate four different
fluxes, Fpq = ucpq , and compute the six relevant components of
κ ij,

κi1 = −
〈

cos kxF s0
i − sin kxF c0

i

〉
/k, (16)

κi3 = −
〈

cos kzF 0s

i − sin kzF 0c

i

〉
/k, (17)

for i = 1, . . . , 3. Here, angular brackets denote volume averages. The
expressions for κ i1 and κ i3 in equations (16) and (17) differ in that
the superscripts s0 and c0 are replaced by 0s and 0c, respectively.
Note that the components of κ ij for j = 2 are irrelevant for mean
fields that are independent of y.

The method provides the functions κ t, κ� and κ�� (or κB and
κBB) as functions of z and t. Unless otherwise specified, we quote
averages over z and t. Error bars are calculated by averaging the
results first over z and then over subsequent time intervals �t whose
length corresponds to one correlation time, that is �t urms kf = 1.
This results in a number of independent measurements from which
we calculate the standard deviation, which is what we quote as the
error.

The simulations have been carried out using the PENCIL code1

which is a high-order finite-difference code (sixth order in space
and third order in time) for solving the compressible hydro-
magnetic equations. As of revision r10245, the test scalar equa-
tions are implemented into the public-domain code similar to

1 http://www.nordita.org/software/pencil-code

the way described above and are invoked by compiling with
TESTSCALAR=testscalar.2 The numerical resolution used in the
simulations depends on the Peclet number and reaches 2563 mesh-
points for our runs with Pe ≈ 200.

4 R ESULTS

As in earlier work on determining the turbulent magnetic diffusivity
using the test field method, we present our results for the relevant
components of κ ij by normalizing them with respect to the reference
value

κt0 = 1
3 urmsk

−1
f . (18)

This is motivated by the first order smoothing result κt = 1
3 τu2

rms

and the assumption that the Strouhal number St = τ urms kf is about
unity (Brandenburg et al. 2004). We focus on the case kf/k1 ≈ 3,
which is a compromise of having enough wavenumbers between kf

and the dissipation wavenumber (which is where an inertial range
can develop), and leaving some room for scales larger than that of
the energy-carrying eddies corresponding to wavenumber kf . On a
few occasions, we also consider other values of kf/k1.

We begin by considering the case with rotation and no magnetic
field. In Fig. 1, we compare the dependence of κ t, κ�, and κ�� on
Co for fixed values of Pe = 1.8 and 120, using Sc = 1 in all cases.
Note that κ t shows a mild decline with Co while both κ� and κ��

are positive and increase with Co. For Pe = 1.8, the results can be
fitted to expressions of the form κ t ≈ 0.7/[1 + (0.3 Co)2], κ� ≈
0.25 Co/[1 + (0.5 Co)2], and κ�� ≈ 0.05 Co/[1 + (0.05 Co)2].
For larger values of Pe, the dependence of κ t and κ� on Co is
qualitatively similar, but the dependence of κ�� on Co now shows
indications of a sign change for larger values of Co. A positive
κ� would agree with the result of Rüdiger et al. (2005), although
their result was explained to be due to the additional effect of
stratification.

The dependence of κ t, κ� and κ�� on Pe for Co = 0.5 and
Sc = 1 is shown in Fig. 2. As expected, for very small values of
Pe, all three functions go to zero like κ t/κ t0 ≈ 0.4 Pe and κ�/κ t0 ≈
0.05 Pe2, while κ�� is close to zero and, within error bars, essentially
compatible with zero. For large values of Pe, both κ t and κ� seem
to reach asymptotic values, while for κ�� there is no clear trend.
An asymptotic value of κ t was expected based on the analogy with
the magnetic case where the magnetic diffusivity was also found
to reach an asymptotic value for large Reynolds numbers (Sur,
Brandenburg & Subramanian 2008).

In all our cases, we find that κ� is positive. This result is in
agreement with that of Rüdiger et al. (2005), who define a quantity
χ̃ such that χ̃� = −κ�. They point out that in spherical coordi-
nates (r , θ , φ) a finite κ� corresponds to a finite κ rφ which, in turn,
leads to a finite azimuthal heat flux. Its astrophysical importance is
limited because the azimuthal average of its divergence vanishes.
However, Rüdiger et al. (2005) stress that the sign and magnitude
of κ� provides an important test of mean-field theory. Their re-
sult was motivated using a result from the mixing-length model
of Kitchatinov et al. (1994) that κ ij should be proportional to the
Reynolds-stress tensor uiuj . A positive κ� would correspond to a
negative κ rφ , which could be explained by a negative uruφ that is
expected for stratified turbulence with dominant vertical turbulent
velocities. This argument, which is originally due to Gough (1978),
does not apply in our case. However, a positive value of κ� is an

2 http://pencil-code.googlecode.com/
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Figure 1. Co dependence of κ t, κ� and κ�� for Pe = 1.8 and 120. For
Pe = 1.8, the results can be fitted to expressions described in the text, while
for larger values of Pe the dependences tend to be more complicated. The
dashed lines indicate the behaviour expected from the simple treatment of
the τ approximation in Appendix A. The slope of the dashed lines in the
middle and last panel is therefore 1. For these runs, the anisotropy parameter
ε varies between 0 and 0.04.

immediate consequence of the Coriolis force producing system-
atic sideway motions; see Fig. 3. That is, suppose there exists a
mean concentration gradient in, say, the positive x-direction, that
is ∇C ∼ x̂. Then a small fluid parcel that is moving in the down-
gradient direction, u ∼ −∇C, would experience, via the Coriolis
acceleration, a deflection into the positive y-direction. The mean ef-
fect of such deflections would be to produce a positive coherent flux
in the direction given by −∇C × �̂, and thus κ� must be positive.
A positive value of κ� can also be explained using the pressureless
τ approximation which predicts κ�/κ t = Co; see Appendix A. This
underlines the potential usefulness of the τ approximation in mean-
field theory, even if this approach is used in its most rudimentary
form.

The simple treatment of the τ approximation in Appendix A
predicts that κ t declines with increasing values of Co, while both
κ� and κ�� increase and are positive. This is in agreement with
the simulations, but quantitative details are not reproduced: in the
simulations the decline of κ t as well as the increase of κ� and κ��

are slower than what is predicted by the simple treatment of the τ

approximation. There could be several reasons for this departure
of the simulations from theory. First, the definition of Co is not

Figure 2. Pe dependence for Co = 0.5 keeping Sc = 1 in all cases. The
resolution is increased with increasing values of Pe and reaches 2563 for the
run with the largest value of Pe.

Figure 3. Sketch illustrating the systematic sideway motion caused by the
Coriolis force and its effect on the flux and hence the sign of κ�.

unique. However, even for small values of Pe the functions κ t, κ�

and κ�� would require different scaling factors on Co to fit the
results (see above). Secondly, the feedback of rotational effects on
the Reynolds stresses are not taken into account in the simple form
of the τ approximation. On the other hand, the rotational anisotropy
parameter ε remains fairly small (below 0.04) even for the largest
values of Co considered. The correlation f c was neglected, but this
should be permissible in the current case with δ-correlated forcing;
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Figure 4. Dependence on the magnetic field strength for Pe = 1.8 (dashed)
and for Pe in the range 12–15 (solid). For these runs, the anisotropy parameter
ε varies between 0 and 0.04.

see Sur, Subramanian & Brandenburg (2007) for the corresponding
case with magnetic fields. Finally, the neglect of the pressure term
in the simple form of the τ approximation is not justified, and a
more rigorous treatment might alter the results significantly.

Next, we consider the case with a magnetic field and look at the
dependence of κ t and κBB on the magnetic field strength for fixed
Pe = 1.8; see Fig. 4. The function κB is also plotted, but, as expected,
it is compatible with zero. Again, κ t decreases with increasing field
strength, but κBB is finite and positive, and increases with B0.

The dependence of κ t and κBB on Pe is shown in Fig. 5. Both
functions increase with Pe as long as Pe is below about 10, and then
seem to level off, although it would be desirable to confirm this for
larger values of Pe. The Pe dependence of κ t is similar to that for
B0 = 0 and Co = 0.6 where κ t goes to zero with decreasing Pe like
0.4 Pe, and κBB ≈ 0.05 Pe2, which is reminiscent of the behaviour
of κ� for B0 = 0 and Co = 0.6.

Finally, we consider the dependence of the components of κ ij

on the wavenumber k of the test scalar in equations (16) and (17).
A dependence of κ ij on k reflects the fact that there is poor scale
separation, i.e. k/kf is not very small. In such a case (as already dis-
cussed in Section 2), the multiplication with a turbulent diffusivity
in equation (3) must be replaced by a convolution with an integral
kernel, as in Brandenburg, Rädler & Schrinner (2008b) for the case
of magnetic diffusion and α effect. In Fourier space, the convolution

Figure 5. Pe dependence for Co = 0 and B0/Beq = 1.3. The dotted lines in
the first and last panel correspond to 0.4 Pe and 0.05 Pe2, respectively. For
the run with the largest value of Pe, we have ε = 0.20.

corresponds to a multiplication. As long as we consider monochro-
matic mean fields (proportional to eik·x for a single wavevector), the
values of the numerically determined components of κ ij correspond
to the value of the Fourier transform κ̃ij at wavevector k. The full
integral kernel can then be assembled by determining the full k
dependence and then Fourier transforming back into real space.

In Fig. 6, we show the resulting dependences κ̃t(k), κ̃�(k), and
κ̃��(k), similar to earlier work on turbulent magnetic diffusion
(Brandenburg et al. 2008b). It turns out that both κ̃t and κ̃� can
be fitted reasonably well to a Lorentzian,

κ̃i = κ̃i0

1 + (ak/kf )2
, (19)

where a ≈ 0.62. This value of a is close to the corresponding
value for turbulent magnetic diffusion where a ≈ 0.5 was found
for the isotropic case (Brandenburg et al. 2008b) and a ≈ 0.7 in
the anisotropic case with shear, but no rotation (Mitra et al. 2009).
However, the coefficients κ̃t0 and κ̃�0 depend on value of kf/k1. For
kf/k1 = 3, we find κ̃t0/κt0 = 1.4 and κ̃�0 ≈ 0.3, while for kf/k1 =
8 we find κ̃t0/κt0 = 1.5 and κ̃�0/κt0 ≈ 0.5. To make the curves for
different values of kf and Pe more nearly overlap, we have scaled
κ t by a factor s t = kf/k1, κ� by a factor s� = (kf/k1)1.7, and κ��

by a factor s� = (kf/k1)0.5.
A surprising result occurs for κ̃��(k) which takes large negative

values for k/kf ≈ 1, but tends to vanish for k → 0. This means that
the diffusion of mean fields along the axis of rotation is strongly
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Figure 6. Wavenumber dependence of κ t, κ� and κ�� for Co = 0.6 and
kf/k1 = 8 with Pe = 70 compared with the case kf/k1 = 3 with Pe = 17.
In the upper two panels, the lines represent curves of the form (19) with
a = 0.62 and 0.5, respectively. For these runs, the anisotropy parameter ε is
around 0.003 for the runs with kf/k1 = 8 and Pe = 70 and around 0.036 for
the runs with kf/k1 = 3 and Pe = 17.

suppressed once its typical length-scale becomes comparable with
the scale of the energy-carrying eddies.

The two cases shown in Fig. 6 differ not only in the value of
kf/k1 (3 and 8), but also in the value of Pe (17 and 70). In order to
show that the dependence of the scaling coefficients κ̃t0 and κ̃�0 is
primarily due to the change in kf/k1 we plot in Fig. 7 the dependence
of κ t, κ� and κ�� on the forcing wavenumber kf/k1 for k = 0 with
Co = 0.6 and Pe ≈ 17. It turns out that both κ t and κ� decrease
with kf like k−1

f , while κ�� is essentially compatible with zero.
In order to illustrate the meaning of the error bars, we show in

Fig. 8 time series of κ t, κ� and κ�� for a run in Fig. 6 with k =
0, kf/k1 = 8, Co = 0.6, and Pe = 70. Time is given in turnover
times and covers nearly 200 in those units. This results in nearly 200
independent measurements, whose standard deviation yields the 1
σ probability range of finding measurements to lie in that interval.

In Fig. 9, we show the k dependence of the transport coeffi-
cients in the presence of a magnetic field and without rotation.
The k dependence of κ t is about that found in Fig. 6, but now κBB

shows a marked dependence with a sign change at k/kf ≈ 0.5 about
values of κBB of opposite sign with extrema of similar modulus,

Figure 7. Dependence of κ t, κ� and κ�� on the forcing wavenumber kf/k1

for k = 0 with Co = 0.6 and Pe ≈ 17. Note the scaling of κ t and κ� with
k−1

f , while κ�� is essentially compatible with zero.

κBB/κ t0 ≈ +0.3 at k/kf ≈ 0 and κBB/κ t0 ≈ −0.3 at k/kf ≈ 1.
Furthermore, for k → 0 and k → ∞ the values of κBB are small.

5 C O N C L U S I O N S

The test scalar formalism described above proves to be a useful
tool for calculating the components of the turbulent diffusion tensor
for the mean passive scalar concentration. Here, the mean passive
scalar concentration is defined as a two-dimensional field obtained
by averaging over one coordinate direction. Therefore, the diffusion
tensor has six relevant components. In the present investigation, we
have only looked at the case of homogeneous turbulence where
anisotropy is produced either by rotation or by a magnetic field.
Another interesting alternative would be to look at the effects of a

linear shear flows of the form U
S = (0, Sx, 0). Investigations of the

corresponding magnetic case with the test field method have already
been carried out (Brandenburg et al. 2008a), and they confirmed the
similarity between cases with shear and rotation. The application
of the test scalar method to cases with shear would therefore be
straightforward.

The test scalar method is analogous to the test field method for
obtaining turbulent transport coefficients for the evolution of the
mean magnetic field. Therefore, many of the questions raised in
that case carry over to the present case. An example is the depen-
dence of the transport coefficients on the length and time-scales of
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Figure 8. Time series of κ t, κ� and κ�� for a run in Fig. 6 with k = 0,
kf/k1 = 8, Co = 0.6 and Pe = 70. The average values are shown as straight
solid lines and the error margin is indicated by dashed lines.

the mean field. Usually, rapid spatial and temporal variations are
less efficiently diffused by turbulence whose correlation length and
time are no longer small compared with the corresponding scale of
variation of the mean field.

A surprising result of the present work is the fact that turbulent
transport along the rotation axis is not strongly reduced unless the
length-scale of the mean field becomes comparable with the corre-
lation length of the turbulence, i.e. when k ≈ kf . In that case, there
is significant suppression of the turbulence along the direction of
rotation. A similar result also applies if anisotropy is produced by
an applied magnetic field.

The present investigation is restricted to the case when the scalar
field is passive. This applies to the evolution of the entropy density in
situations where an isothermal equation of state applies and where
gravitational stratification is negligible. However, once gravitational
stratification or non-isothermal effects become important, the test
scalar formalism can only be used to describe small departures from
a given reference state. It would be worthwhile exploring this case
further.

Our work has shown that for non-helically forced isotropic
turbulence, i.e. without rotation or magnetic fields, the turbulent
diffusivity of a passive scalar is similar to the value of the turbu-
lent diffusivity of the magnetic field in the kinematic limit. While
this was expected based on results from the first-order smoothing
approximation, the situation is less clear for turbulent kinematic

Figure 9. Wavenumber dependence of κ t, κB and κBB for Co = 0,
|B|/Beq = 1.4 and Pe = 12. The dotted line represents a curve of the
form (19) with a = 0.50. For these runs, the anisotropy parameter ε is
around 0.13.

viscosity, which suggest that the turbulent magnetic Prandtl num-
ber should be 2/5. Simulations of Yousef, Brandenburg & Rüdiger
(2003), based on the decay rates of large-scale magnetic and ve-
locity structures, have shown that the turbulent magnetic Prandtl
number is indeed also unity. However, their method is not very
accurate and it would be good to reconsider this by developing a
method analogous to the test field and test scalar methods for test
flows.
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APPEN D IX A : THE POSITIVE SIGN O F κ�

In this appendix, we motivate the origin of the positive sign of
κ� using the pressureless τ approximation. In this approach, one
considers the evolution equation for F ,

∂F i

∂t
= u̇ic + ui ċ, (A1)

where dots denote time derivatives (Blackman & Field 2003;
Brandenburg, Käpylä & Mohammed 2004). We use equations (10)

and (12), assume that u =U , i.e. that U = 0, ignore the pressure
term and magnetic fields, assume f c = 0, and obtain

u̇ic = −2�jεijkukc + triple correlations, (A2)

ui ċ = −uiuj ∇jC + triple correlations. (A3)

The triple correlation terms result from the non-linearities in the
evolution equations (10) and (12). In the τ approximation, we sub-
stitute the sum of the triple correlations by quadratic correlations,
i.e. by −uic/τ in the present case (Vainshtein & Kitchatinov 1983;
Kleeorin, Rogachevskii & Ruzmaikin 1990). We write the resulting
equation in matrix form,

τ
∂F i

∂t
= −LikF k − τuiuj ∇jC, (A4)

where Lik = δik + 2�jτεijk . We solve this equation for F and
obtain

F i = −(L−1)ij

(
τujuk ∇kC + τ

∂F i

∂t

)
, (A5)

where

L−1 = 1

1 + Co2

⎛
⎜⎝

1 Co 0

−Co 1 0

0 0 1 + Co2

⎞
⎟⎠ (A6)

and

ujuk = diag
(
u2

⊥, u2
⊥, u2

‖
)

. (A7)

In the stationary state, we may ignore the time derivative and recover
equations (3) and (4) with

κt = τu2
⊥

1 + Co2 ,
κ�

κt
= Co,

κ��

κt
= Co2+ε

1 − ε
, (A8)

where ε = 1 − u2
⊥/u2

‖ was defined in equation (8). In the cases
reported here, the value of ε was never found to be negative. Note
also that 1 − ε = u2

⊥/u2
‖ in the denominator of equation (A8) is

always positive. Therefore, in addition to κ� being positive, also
κ�� should be positive.
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