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ABSTRACT

Aims. To study turbulence in the Orion Molecular Cloud (OMC1) by comparing observed and simulated characteristics of the gas
motions.
Methods. Using a dataset of vibrationally excited H2 emission in OMC1 containing radial velocity and brightness which covers
scales from 70 AU to 30 000 AU, we present the structure functions and the scaling of the structure functions with their order. These
are compared with the predictions of two-dimensional projections of simulations of supersonic hydrodynamic turbulence.
Results. The structure functions of OMC1 are not well represented by power laws, but show clear deviations below 2000 AU.
However, using the technique of extended self-similarity, power laws are recovered at scales down to 160 AU. The scaling of the
higher order structure functions with order deviates from the standard scaling for supersonic turbulence. This is explained as a selection
effect of preferentially observing the shocked part of the gas and the scaling can be reproduced using line-of-sight integrated velocity
data from subsets of supersonic turbulence simulations. These subsets select regions of strong flow convergence and high density
associated with shock structure. Deviations of the structure functions in OMC1 from power laws cannot however be reproduced in
simulations and remains an outstanding issue.

Key words. ISM: individual objects: OMC1 – ISM: kinematics and dynamics – ISM: molecules – shock waves – turbulence –
hydrodynamics

1. Introduction

Turbulence plays a central role in star-forming molecular clouds,
acting both to support the clouds globally and to create local
clumps and density enhancements that can undergo gravitational
collapse. Simulations have shown that this latter process, known
as turbulent fragmentation, may directly determine the initial
mass function (IMF). Insight into the effects of turbulence on
molecular clouds is thus essential for understanding the mech-
anisms of star formation. Such insight can only be gained by
a close interplay between observations and simulations.

The characterization of turbulence may be achieved by sta-
tistical methods. Several techniques, such as the size-line width
relation (Larson 1981; Goodman et al. 1998; Ossenkopf &
Mac Low 2002; Gustafsson et al. 2006), probability distribu-
tion functions (Falgarone & Phillips 1990; Falgarone et al.
1994; Miesch et al. 1999; Ossenkopf & Mac Low 2002; Pety
& Falgarone 2003; Gustafsson et al. 2006), structure functions
(Falgarone & Phillips 1990; Miesch & Bally 1994; Ossenkopf &
Mac Low 2002; Gustafsson et al. 2006) and ∆-variance (Bensch
et al. 2001; Ossenkopf & Mac Low 2002), have previously been
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used to characterize the structure of brightness or velocity in
molecular clouds. Comparisons between observations and mod-
els have earlier been made by Falgarone et al. (1994, 1995);
Lis et al. (1998); Joulain et al. (1998); Padoan et al. (1998,
1999); Pety & Falgarone (2000); Klessen (2000); Ossenkopf
& Mac Low (2002); Padoan et al. (2003); Gustafsson et al.
(2006); see also the review by Elmegreen & Scalo (2004). These
earlier comparisons (save those in Gustafsson et al. 2006) are
based on CO observations, tracing relatively cool and low den-
sity gas. Data are limited in spatial resolution and can only be
used to address the physics at scales larger than roughly 0.03 pc
(6000 AU).

In the present work we use IR K-band observations of vi-
brationally excited H2 in the Orion Molecular Cloud (OMC1) to
make a first comparison between observations and hydrodynam-
ical simulations at the scales where individual stars are forming.
In the region observed the H2 emission is optically thin in the
sense that it is not self-absorbed. There will be some obscuration
by dust (Rosenthal et al. 2000), whose spatial distribution is not
known and which is ignored here. The observations cover scales
from 70 AU to 3 × 104 AU. OMC1 is the archetypal massive star-
forming region and the best studied region in the sky. OMC1 is
highly active with widespread on-going star formation, exempli-
fied by the presence of protostars, outflows and larger scale flows
(see Nissen et al. 2006, and references therein). In a previous pa-
per (Gustafsson et al. 2006), using the same observational data
as in the present work, we quantified the nature of turbulence
in OMC1 by calculating size-line width relations, probability
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distribution functions and structure functions. It was shown that
the turbulence at the small scales covered in these data generally
follows the trends observed in CO data at larger scales. However,
analysis also showed clear deviations from the fractal scaling ob-
served at larger scales. These deviations could be ascribed to the
presence of star formation and associated structures such as cir-
cumstellar disks. Here we use the structure functions of the ra-
dial velocities and the scaling of the structure function exponents
from our observational data to compare with a numerical sim-
ulation of supersonic, compressible, hydrodynamic turbulence.
The scaling of structure functions has earlier been analysed in
Padoan et al. (2003) where the column densities of 13CO were
used.

The structure function of order p of the velocity vector u is
defined here as

S p(r) = 〈|[u(x) − u(x − r)] · e|p〉 ∝ rζp (1)

where e is a unit vector parallel (longitudinal structure function)
or perpendicular (transversal structure function) to the vector r
and r = |r|. The average is taken over all spatial positions x.
The modulus sign in our definition (1) is adopted to improve
the statistics for odd moments. In our case the data consist of
projected radial velocities. We measure differences in radial ve-
locity across the plane of the sky and we are therefore dealing
with transversal structure functions. The structure functions of
fully developed turbulent fields are known to follow power laws
in the inertial range, η � r � L, where η is the dissipation scale
and L is the integral scale. The set of scaling exponents, ζp in
Eq. (1), can therefore be determined (Frisch 1995). The scaling
exponents are expected to be characteristic of the turbulence in-
volved and universal for all scales and Reynolds numbers. The
transversal and longitudinal structure functions are anticipated
to have the same scaling in the infinite Reynolds number limit.
This may not however be the case at moderate Reynolds num-
bers, where it has been found that ζp,long > ζp,trans for p > 3
in incompressible hydrodynamical experiments and simulations
(Kerr et al. 2001, and references therein).

Kolmogorov (1941) found from energy conservation in in-
compressible, isotropic and homogeneous turbulence that ζ3 =
1. However, Dubrulle (1994) suggested that ratios of scaling ex-
ponents, say ζp/ζ3, are inherently universal, while the individ-
ual scaling exponents may not be universal themselves. In this
connection Frick et al. (1995) showed in the context of cascade
models that one may have ζ3 � 1 and yet recover scaling laws for
the structure functions in good agreement with the She-Leveque
model (see below) for the ratio ζp/ζ3.

She & Leveque (1994) described the scaling of velocity
structure functions in incompressible turbulence by:

ζp/ζ3 =
p
9
+ 2

⎡⎢⎢⎢⎢⎢⎣1 −
(
2
3

)p/3⎤⎥⎥⎥⎥⎥⎦ , (2)

which is confirmed by simulations of nearly incompressible tur-
bulence (Padoan et al. 2004; Haugen et al. 2004a) and by ex-
periments (Anselmet et al. 1984; Benzi et al. 1993). For super-
sonic turbulence Boldyrev (2002) obtained, as an extension to
the She-Leveque model, the scaling:

ζp/ζ3 =
p
9
+ 1 −

(
1
3

)p/3

, (3)

which is confirmed by observations in the Perseus and Taurus
molecular clouds (Padoan et al. 2003) and simulations (Boldyrev
et al. 2002a,b; Padoan et al. 2004). This type of scaling was

originally proposed by Politano & Pouquet (1995) for magne-
tohydrodynamic turbulence, where the dissipative structures are
thought to be two-dimensional current sheets.

In Sect. 2 we describe the observations and calculate the
structure functions from the observed velocities. We then use the
method of extended self-similarity (ESS) of Benzi et al. (1993)
to find the structure function exponents and show that the scal-
ing of these does not represent any known theoretical scaling as
represented by Eqs. (2) and (3). In Sect. 3 we describe the sim-
ulations. In Sect. 3.1 we calculate the longitudinal and transver-
sal structure functions of the 3D simulations and show that the
scaling of the structure function exponents is similar to that of
Boldyrev (2002) in contrast to the observations. In Sect. 3.2 we
choose subsets of the simulations which select the shocked gas
seen in the observations, project the data onto 2D maps and cal-
culate the structure functions. We show that if only strong shocks
are included in the subset, the scaling of the exponents is now
similar to the scaling found in the observations. In Sect. 4 we
discuss these results.

2. Observations

2.1. Data

We use the radial velocity map of the BN/KL region of the
Orion Molecular Cloud (OMC1) of Gustafsson et al. (2003,
2006); Nissen et al. (2006). The data contain both brightness
and velocity information and were obtained at the CFHT with
a Fabry-Perot interferometer in conjunction with adaptive op-
tics using the so-called GriF instrument (Clénet et al. 2002).
Observations were performed in the NIR K-band by scanning
the v = 1–0 S (1) H2 emission line at 2.121 µm. The field of
view is 36′′ × 36′′ and the pixel scale is 0.′′035 where 1′′ =
460 AU for a distance to Orion of 460 pc (Genzel et al. 1981;
Bally et al. 2000). The dataset consists of four spatial and ve-
locity resolved images, which are amalgamated into one field
of 89′′ × 67′′ or 0.2 × 0.15 pc. The field is centered approx-
imately on the Becklin-Neugebauer (BN) object (05h35m14.s1,
−05◦22′22.′′9 (J2000)), see Fig. 1. The spatial resolution is 0.′′15
(70 AU). The radial velocity at each spatial position was de-
termined by the peak position in a Lorentzian fit to the spec-
tral profile provided by the Fabry-Perot. Relative velocities are
determined with an accuracy of between 1 km s−1 (3σ) in the
brightest regions and 8–9 km s−1 in the weakest regions consid-
ered here. Systematic errors due to mechanical instabilities in the
Fabry-Perot may occur in establishing velocity differences be-
tween distant regions. As discussed in Gustafsson et al. (2006),
tests have been performed to show that such systematic errors
are not present in the data to any significant extent.

The emission of vibrationally excited H2 observed here
does not trace the bulk of the gas. Rather it traces hot, dense
gas, where excitation occurs largely through shock excitation.
Detailed models (Störzer & Hollenbach 1999) show that the
maximum brightness in the H2 v = 1–0 S (1) line from fluores-
cence in this region of OMC1 does not exceed 10–15% of the
total brightness observed (Kristensen et al. 2003). Thus photon
excitation is a minor contributor to the total brightness.

2.2. Results from observations

Since observational data provide only radial velocities in the
plane of the sky in a 2D projection of the gas motions, we ob-
tain only the transversal structure functions, as described ear-
lier. Furthermore the accuracy of the velocity data in any pixel



M. Gustafsson et al.: The nature of turbulence in OMC1 at the scale of star formation: observations and simulations 817

Fig. 1. The velocity field for the full observed region of OMC1. (0, 0) is the position of the Becklin-Neugebauer object (BN) 05h35m14.s12,
−05◦22′22.′′9 (J2000). Axes are labelled in arcseconds and colours represent radial velocities in km s−1. For the white regions no data are available.

depends on the brightness in that pixel. Gustafsson et al. (2006)
showed that more robust structure functions are obtained when
the velocity differences are weighted by the brightness. On this
basis we use a modified definition of the structure functions:

S p(r) = 〈B(x)B(x − r) |v(x) − v(x − r)|p〉. (4)

Here v is the line of sight velocity and the average is extended
over all spatial positions x and all lags r where r = |r|. B(x) is
the brightness at position x. We thus weight each velocity differ-
ence by the product of the brightness of the two spatial positions
involved, thereby giving more weight to the brightest regions
which exhibit the highest accuracy in the radial velocity.

The third order structure function of OMC1, S 3(r), is dis-
played in Fig. 2a. It is not well represented by a single power
law showing a clear deviation around 103 AU. This is also evi-
dent from the large variations in the local logarithmic derivatives
of S p(r), shown in Fig. 2b for p = 1–5, where the derivatives
are evaluated numerically using a three-point formula. However,
Benzi et al. (1993) discovered that the structure functions can be
represented as functions of, say, the third order structure func-
tion, namely

S p(r) ∝ S 3(r)(ζp/ζ3)ESS . (5)

This is now known as extended self-similarity (ESS). Even if the
structure functions of Eq. (1) are not power laws over any given
range, the functions represented by Eq. (5) nevertheless exhibit
good power law behaviour. The scaling in Eq. (5) is generally
found to extend over a much larger range than for the structure
functions of Eq. (1). As emphasized before, self-similarity, as
expressed by Eq. (5), is believed to be more fundamental than
the self-similar scaling with respect to r (Benzi et al. 1993). In
Fig. 2c we have plotted the ratios of the logarithmic slopes of S p

and S 3, d ln S p(r)/d ln S 3(r), for p = 1–5. If a range in which
good power law scaling is present is encountered in the various
structure functions, the ratios of logarithmic slopes should dis-
play plateaus in that range at values of (ζp/ζ3)ESS. From Fig. 2c
we find that the structure functions for p = 1–5 exhibit a rea-
sonably good scaling range from r = 160 AU to r = 7000 AU.
This range is marked by the dotted vertical lines in Fig. 2c. The
scaling exponents are found by fits to Eq. (5) in this range. As
an example we show in Fig. 2d the extended self-similarity plot
of S 5(r) vs. S 3(r) together with the best fit yielding the slope
(ζp/ζ3)ESS = 1.06. The dotted lines mark the range of the fit. It is
however clear from Fig. 2c that the scaling gets poorer when the
order p is increased. At p = 5 the plateau is rather poorly defined
(see also Fig. 2d) and therefore we cannot determine a scaling at
higher orders than p = 5. In Fig. 2e we show the scaling expo-
nents (ζp/ζ3)ESS vs. p (+ signs) compared to the values predicted
by the She-Leveque model of incompressible turbulence, Eq. (2)
(dotted line) and the Boldyrev model of supersonic turbulence,
Eq. (3) (dashed line). The scaling exponents derived from the
velocity in OMC1 clearly deviate from both the She-Leveque
and the Boldyrev scaling at p ≥ 4. The OMC1 scaling expo-
nents show signs of becoming constant at (ζp/ζ3)ESS ∼ 1 or even
slightly decreasing for p > 4, in contrast to the theoretical scal-
ings, which are monotonically increasing.

This result for velocities of hot, shocked gas in OMC1 at
scales 70 AU – 3 × 104 AU (3.4× 10−4 pc to 0.15 pc) differs from
the findings of Padoan et al. (2003). They found that the density
fields in the Perseus and Taurus molecular clouds as observed in
CO follow Boldyrev scaling at scales larger than 0.08 pc.

Below we will show that the unusual scaling found here
can be reproduced by numerical simulations of supersonic tur-
bulence when only subsets of the simulations representing the
shocked regions are considered.
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Fig. 2. a) Third order structure function of the velocities in OMC1.
b) Logarithmic derivatives of S p(r) for p = 1–5. c) Ratios of the differ-
ential slopes of S p(r) to the slope of the third order structure function
for p = 1–5. The vertical dotted lines mark the interval in which the
scaling exponents have been fitted. d) S 5(r) vs. S 3(r). The dotted lines
mark the range of the fit and the solid line is the best fit within that range
yielding the logarithmic slope, (ζp/ζ3)ESS = 1.06. e) The ESS scaling
exponents (+) OMC1, (dotted line) She-Leveque scaling, (dashed line)
Boldyrev scaling.

3. Simulations

In order to understand some of the peculiar scalings found in
the observations we now consider data from supersonic isother-
mal compressible turbulence simulations. Such simulations have

Table 1. Parameters of the numerical simulations: resolution, shock
viscosity, forcing amplitude, Mach number, run time ∆trun in terms of
turnover times τturn.

Run Resolution cshock f0 Marms ∆trun/τturn

1 2563 2 2 3 270
2 5123 3 10 7–9 320
3 5123 2 10 8–10 360

been performed by a number of different groups (Passot &
Pouquet 1987; Vazquez-Semadeni et al. 1995; Padoan et al.
1998; Klessen 2000; Vázquez-Semadeni et al. 2003; Cho &
Lazarian 2003; Kritsuk & Norman 2004). Here we consider sim-
ulations that are most closely related to those of Haugen et al.
(2004b), except that magnetic fields are neglected here. The gov-
erning equations are

∂u
∂t
+ u · ∇u = −c2

s∇ ln ρ + f +
1
ρ
∇ · τ, (6)

∂ ln ρ
∂t
+ u · ∇ ln ρ = −∇ · u, (7)

where τi j = 2ρνSi j + ρµδi j∇ · u is the stress tensor and Si j =
1
2 (ui, j + u j,i) − 1

3δi juk,k is the rate of strain matrix and commas
denote partial differentiation. Following Nordlund & Galsgaard
(1995), we assume µ to be proportional to the smoothed and
broadened positive part of the negative divergence of the veloc-
ity, i.e.

µ = cshock

〈
max

5
[(−∇u)+]

〉
, (8)

where cshock is the artificial viscosity parameter and the 5 under-
neath the max operator indicates that the maximum is taken over
5 by 5 by 5 mesh widths (or “pixels”). This is also the technique
used by Padoan & Nordlund (2002) and Haugen et al. (2004b).
The function f denotes a random forcing function that consists
of plane waves, normalized by a dimensionless amplitude fac-
tor f0 that will be varied in the different simulations discussed
below (see Appendix A).

The equations are solved on a periodic mesh of size L3,
where L = 2π/k1 is the length of the side of the box and k1
is the smallest wave number in the domain. We use the Pencil
Code, which is a high-order finite-difference code (sixth order
in space and third order in time) for solving the compressible
hydrodynamic equations1.

We consider runs with different forcing amplitudes, f0, lead-
ing to different root mean square Mach numbers, Marms =
urms/cs where cs is the speed of sound, see Table 1. The high
resolution runs, in rows 2 and 3 of Table 1, have been evolved
for about 40 sound travel times, τsound = (csk1)−1, while the low
resolution run has been conducted for about 90 τsound. The sound
travel time can be associated with the turnover time by noting
that τturn = (urmsk1)−1 = τsound/Marms.

3.1. Results from full 3D simulation

First, we show that the structure functions of the full 3D sim-
ulation follow the theoretical scaling of Boldyrev (2002).
For a snapshot of Run 1 at t = 70 τsound (corresponding to

1 http://www.nordita.dk/software/pencil-code
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Fig. 3. a) The third order transversal structure function of Run 1.
b) logarithmic derivatives of S p(r) for p = 1–5 (in ascending order).
c) Ratios of the differential slopes of the transversal structure func-
tions of order 1–5 to the slope of the third order structure function.
d) The ESS scaling exponents of the transversal structure function (+)
and the longitudinal structure function (diamonds) compared to the
She-Leveque scaling (dotted line) and the Boldyrev scaling (dashed
line).

t = 210 τturn) we have calculated the longitudinal and transver-
sal structure functions of the 3D simulation using

S p,long(l) = 〈|ux(x + l, y, z) − ux(x, y, z)|p〉, (9)

S p,trans(l) = 〈|uy(x + l, y, z) − uy(x, y, z)|p〉
+〈|uz(x + l, y, z) − uz(x, y, z)|p〉, (10)

as in Eq. (1).
In Fig. 3a the third order transversal structure function is

shown. The logarithmic derivatives of S p,trans(l) (Fig. 3b) show
no range of scales where plateaus (good power law scaling) are
present. Note, however, that in these simulations ζ2 is closer to
unity than ζ3. In Fig. 3c we have plotted the logarithmic slope of
S p,trans(l) vs. S 3,trans(l) for p = 1–5, i.e. again using the method
of extended self-similarity (ESS). A range of good scaling is

now seen to be present over most of the dynamical range from
10–80 mesh widths. The longitudinal structure functions are
nearly identical to the transversal and are not shown here. The
scaling exponents found from fits to the structure functions in the
interval of 10–80 are plotted in Fig. 3d for both the transversal
structure functions (+) and the longitudinal structure functions
(diamonds). Both the transversal and the longitudinal structure
functions follow the velocity scaling for supersonic turbulence
of Boldyrev (2002).

3.2. Scaling of subsets of the simulations

We now study structure functions of subsets of the simulations
and select subsets that resemble best the physical properties
of the observational data, that is, being composed of preferen-
tially shocked gas. Similar work has already been carried out by
Kritsuk & Norman (2004). First, in order to compare the sim-
ulations to the observations, we need to project the simulated
3D velocity components onto a 2D map of only radial velocity.
The radial velocity in each spatial position is found by averaging
the density weighed z-component (say) of the velocity over the
z-range. That is,

uz(x, y) =
∫

z
ρuz dz

/ ∫
z
ρ dz. (11)

We have checked that this expression yields the same values of
velocities as the method adopted in the reduction of the obser-
vational data obtained with GriF. In the observations, the true
H2 line profile is convolved with the very much broader instru-
mental Lorentzian profile of the Fabry-Perot interferometer and
the radial velocity is found from a Lorentzian fit. The same pro-
cedure has been used on simulated velocity profiles through con-
volution and fitting and it has been found in numerous tests that
the velocities derived are essentially the same as the centroid ve-
locities obtained via Eq. (11). In Fig. 4 (top left, marked “all”)
the resulting 2D map is shown for Run 1 at t = 50 τsound, corre-
sponding to t = 150 τturn.

If the turbulence is homogeneous and isotropic the projected
map should be independent of the projection angle. However,
since the simulations have limited spatial extent, they turn out to
show residual anisotropy, in the sense that independence of pro-
jection angle is not assured. Thus the projection map and sub-
sequently the structure functions could depend on the projection
angle. To minimize such effects we have calculated the structure
functions for a number of random projection angles. An aver-
age of 50 angles was taken for Run 1. The higher resolution of
Runs 2 and 3 should alleviate the problem of projection angle
and averages over only 3 angles were taken in these cases. In
the following all structure functions of projected maps refer to
an average of structure functions. There could also be projection
effects in the observations, but we have no choice but to ignore
these.

The average third order structure function (Eq. (4) with
p = 3), the logarithmic derivatives of S p(r) for p = 1–5, the
ratio of the logarithmic slopes of S p(r) and S 3(r), the extended
self-similarity plot of S 5(r) vs. S 3(r), and the velocity scaling
exponents are also shown in Fig. 4, passing down the left col-
umn, for the projected simulation of Run 1. In calculating the
structure functions of the simulations we use B = 1, that is, no
brightness weighting in Eq. (4) since the velocities in the sim-
ulations are free of “observational” errors. It is found that the
scaling of the structure functions of the projected radial velocity
follows that of Boldyrev, as did the transversal and longitudinal
structure functions of the full 3D simulation (Fig. 3).
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Fig. 4. Run 1, t = 50 τsound. Results for projected maps including all points (1st column) and for subsets with D0 = −0.7, −3.6, and −6.5 (as
marked), using w = 0.7. Top row: radial velocity maps projected in the z-direction. Second row: third order structure functions averaged over
50 projection angles (see text). Third row: logarithmic derivatives of S p(r) for p = 1–5 (in ascending order). Fourth row: ratios of differential
slopes to ζ3 for order p = 1–5. The grey shades indicate the ranges over which average values of (ζp/ζ3)ESS are determined. Fifth row: S 5(r) vs.
S 3(r). The ranges of grey shades correspond to those in the fourth row. Solid lines are best fits within the indicated ranges yielding the logarithmic
slope, (ζp/ζ3)ESS. Bottom row: the radial velocity scaling (�) compared to the She-Leveque scaling (dash-dotted line) and the Boldyrev scaling
(dashed line).

The problem is to identify the subset of structures in the sim-
ulations which corresponds to the structures represented in our
observations. As mentioned above we observe a subset of the
gas in OMC1 consisting very largely of shocked gas. In order

to make comparison between observations and simulations it is
therefore necessary to extract regions in the simulations where
shocks occur. Shocks are generated where fast material attempts
to overtake slower moving material and material shows rapid
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deceleration, that is, where a negative velocity gradient is
present. In simulations, shocked regions can thus be distin-
guished as regions with suitably strong negative divergence (∇ ·
u < 0), that is, convergence.

Thus, in order to compare with the observations, we choose
different subsets of the simulations consisting of regions with
shocks stronger than a certain degree. Kritsuk & Norman (2004)
accomplished this by selecting regions where the density ex-
ceeds a certain threshold value. Here, on the other hand, we con-
sider only regions that have stronger convergence than a given
cut-off value, D0 < 0. This is achieved by defining

D = ∇ · u/〈(∇ · u)2〉1/2 (12)

as the relative velocity divergence, and the selection function s:

s(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ξ ≤ −1
1
2 +

1
4 ξ(3 − ξ2) −1 < ξ < 1

1 ξ ≥ 1,
(13)

where ξ = (D0 − D)/w, and w is the width of the selection func-
tion. All points with D > D0+w, which we seek to exclude, have
s = 0. The selection function is chosen for its smooth variation
between 0 and 1. We have used other somewhat different forms
of the selection function and found that the results do not signif-
icantly depend on the specific form. Figure 5 shows an example
of a local velocity field where shocks are present. The figure
shows velocity vectors (ux, uy) in an xy-plane and contours of
shocked regions where s > 0 for D0 = −6.5 and w = 0.7 in
Run 1.

The shock structure in an xy-slice of Run 3 is shown in
Fig. 6, where regions with large negative values of ∇ · u (darker
regions) represent shocks. The profiles of ux, uy, and uz are
shown along a horizontal line on which the presence of a shock
for example at x = 290 is evident through large velocity changes
in ux, uy, and uz over a range of only ∼5 mesh widths. The
higher Mach number of these simulations leads to larger veloc-
ity differences and stronger shocks compared to the simulations
of Run 12.

The radial velocity in each spatial position (x, y) is now
found by a modified form of Eq. (11):

uz(x, y) =
∫

z
sρuz dz

/ ∫
z

sρ dz. (14)

Returning to Fig. 4, for a snapshot of Run 1 at t = 50 τsound,
this figure shows maps projected in the z-direction as examples
of subsets with w = 0.7 and D0 = −0.7, −3.6, and −6.5. The
value of D in a region depends on how the velocity changes
in the vicinity of that region. Large differences in velocity over
a limited region lead to high values of D. Thus the restrictions
on D can be associated with typical minimum values of the ve-
locity change that must occur in a shocked region for that re-
gion to be included in the structure function analysis. For ex-
ample the physical interpretation of the restriction D0 = −3.6
is that in order for a pixel to be included there must be a ve-
locity gradient in the immediate vicinity of that pixel, such
that |∆u| ∼ 3 km s−1 over ∆r = 10 pixels. An estimate of
the value of the gradient in physical units can be given by ob-
serving that the size of shocks in the simulations is typically
5 pixels. Assuming a physical shock width of C-shocks of 50 AU

2 Animations of the time evolution of ∇ · u and ln ρ
on the periphery of the simulation box can be found at:
http://www.nordita.dk/∼brandenb/movies/shockdiss/
and at http://www.edpsciences.org

Fig. 5. Vector plot of (ux, uy) in a section of an xy-plane in Run 1.
Contours outline shocked regions where s > 0 for the cut-off value
D0 = −6.5, w = 0.7, that is, regions where D < −5.8.

(Lacombe et al. 2004), the value of the velocity gradient above
corresponds to ∼0.03 km s−1 AU−1. When D0 = −6.5, typical
values are |∆u| ∼ 5 km s−1 over ∆r = 10 pixels. These values are
estimated for Run 1 and are found to be higher in the runs with
stronger forcing and higher Mach numbers for the same value
of D.

The map of D0 = −0.7, that is, including all shocked regions,
displays sharp filamentary structure, compared with the map of
all points in the simulation, which has smoother contours (see
top row of Fig. 4). Excluding the weakest shocks, that is, for
D0 = −3.6, leads to a more broken up appearance, and the fil-
aments are clearly visible. When only the strongest shocks are
considered, D0 = −6.5, the radial velocity map consists mostly
of sheets and filaments.

Figure 4 also displays the third order structure functions for
the three subsets as defined by values of D0, as well as the log-
arithmic derivatives of S p(r), the ratio of the logarithmic slopes
of S p(r) and S 3(r), the extended self-similarity plot of S 5(r)
and S 3(r), and the scaling exponents of the structure functions
of the radial velocity. The structure functions are averages of
50 projected maps as described above. The third order structure
function for the full simulation and the three subsets all display
good power laws. The leveling off of the power laws at lags
around 100 mesh widths is an artifact due to the finite size of
the simulation of 256 mesh widths. No bumps in the structure
functions are seen. This is in marked contrast to the structure
functions of the observations where clear bumps are present (see
Fig. 2a).

The ratios of logarithmic slopes show plateaus over about
an order of magnitude in scale, especially in the lower
order structure functions, p = 1, 2. The scaling expo-
nents ζp/ζ3 are found by fits to Eq. (5) in the interval of r
where d ln S p(r)/d ln S 3(r) shows the best plateau. The plateau
is found at r = 5 to 80 mesh widths for the full simulation,
at r = 10 to 80 mesh widths for D0 = −0.7, at r = 2 to 20
for D0 = −3.6 and at r = 2 to 60 for D0 = −6.5. The ranges
used for fitting are indicated in Fig. 4 with grey shading. The
best power law fits to S 5(r) vs. S 3(r) in the indicated ranges
are shown in the fifth row of Fig. 4. The value of the slope
is indicated. The velocity scaling is close to following that of
Boldyrev when all points in the simulation are included and
when only shocked regions with D < 0 (D0 = −0.7) are in-
cluded. There is, however, a dramatic change in the scaling when
the restrictions on the strength of the shocks are made tighter.
For both D0 = −3.6 and D0 = −6.5 the scaling deviates strongly
from both She-Leveque and Boldyrev scalings. This change in
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Fig. 6. Left panel: xy-slice of ∇ · u through the box of Run 3 at some arbitrarily chosen value of z. The horizontal line indicates the location along
which the profiles of ux , uy, and uz (in km s−1) are shown in the three panels on the right hand side. A strong shock is seen at x = 290.

behaviour is associated with a shift in the range for which
a plateau can be seen. Especially in the last column of Fig. 4
the scaling is seen to extend all the way from the resolution limit
(2 mesh widths) to 60 mesh widths. This cannot be regarded as
regular inertial range scaling because the usual dissipative sub-
range, always present in turbulence simulations, cannot be dis-
tinguished. We associate the apparent shift of the ranges with
the presence of shock structures which become more strongly
pronounced as the cutoff value, D0, is moved to more negative
values. Thus we are beginning to see effects due to the use of
artificial viscosity when D becomes sufficiently negative. These
artificially smoothed shocks may resemble C-type shocks that
occur in the magnetized interstellar medium and are known to
be a common feature in OMC1 (Gustafsson et al. 2003; Nissen
et al. 2006). We also note that the nominal dissipation scale
without artificial viscosity is just 1–2 mesh widths, which is
still below the artificial dissipation scale of the shocks of ∼5 or
more mesh widths. The scaling is seen to remain nearly con-
stant for p ≥ 3, resembling the scaling found in the observations
of OMC1. This is qualitatively similar to the results of Kritsuk
& Norman (2004), who found systematically smaller scaling ex-
ponents for p > 3 when only high density regions were con-
sidered. This shows that the unusual scaling observed in OMC1
can be the effect of observing only the hot, shocked gas, and that
hydrodynamical turbulence simulations without self-gravity or
magnetic fields are able to reproduce this.

Figure 7 shows similar results to Fig. 4 but for a snapshot of
Run 3 at t = 39 τsound. The subsets corresponding to D0 = −0.20,
−2.0, −7.5, and −9.0 show the same trends as seen in Fig. 4. The
tighter the restrictions on the strength of the shocks, the sharper
and more broken up the filamentary structures become. The ra-
dial velocity scaling flattens strongly when D0 = −7.5 and −9.0
(bottom row in Fig. 7).

The grey-shaded areas in the fourth row of Fig. 7 indicate
two different regions where scaling can tentatively be noted, in
contrast to the single regions identified in Fig. 4. As noted ear-
lier, the dissipation scale for low velocity gradients is essentially
given by 1–2 mesh widths. This is equivalent to the case in which
no artificial viscosity is introduced; see Eq. (8). The dissipation
scale rises to 5 or more mesh widths in locations where large ve-
locity gradients are encountered. The two different scales identi-
fied in Fig. 7 (rows 4 and 5) have dimensions of 2 to >10 mesh
widths and 30 to >100 mesh widths. The smaller of these ranges

covers that associated with artificial viscosity. The scaling at the
lower range will thus be affected by the presence of shocks. This
may take place through the locally enhanced viscosity embodied
in Eq. (8).

We now consider the scaling associated with the two differ-
ent regions separately. In Fig. 7, open triangles refer to the larger
regions and open squares to the smaller regions. For the data in
the left column for D0 = −0.20, where all regions with a posi-
tive value of the convergence are included, that is, all shocks, it is
seen that both scaling regions (small scales, 2–15 mesh widths,
and large scales, 20–170 mesh widths) show scaling behaviour
roughly compatible with Boldyrev scaling. When we introduce
more restrictive thresholds for D0 different behaviour is found.
The large scales then begin to follow more closely the standard
She-Leveque scaling. At the same time, the small scales, associ-
ated with shocks, show the levelling off discussed in connection
with Fig. 4 for strongly shocked regions, and as seen in the obser-
vations, Fig. 2e. We therefore are able to explain the unexpected
scaling found in the observations through an inherent selection
of shocked regions.

We note that with the greater energy dissipation associated
with Run 2, slopes for small and large scales differ as for Run 3
but less markedly.

3.3. Non-power law behaviour in structure functions

The structure functions of Run 3 (second row in Fig. 7) are
all well represented by power laws in contrast to the behaviour
found in the structure functions of OMC1 (Fig. 2). In one snap-
shot of Run 2, however, similar bumps to those in the observa-
tions are detected; see Fig. 8. The deviations from power laws
of the structure functions in Run 2 are found in subsets with
high values of the threshold, D0, in the snapshot at t = 37 τsound.
Examples are seen in Fig. 8 for D0 = −5.1 and D0 = −7.5 where
it is clear that the third order structure functions display bumps
around 20 and 60 mesh widths. Other snapshots of Run 2 how-
ever do not show this feature. The bumps in the structure func-
tions indicate the presence of preferred scale sizes in the simula-
tion. This means that even if the starting point is a fully isotropic
hydrodynamic solution of supersonic turbulence, then preferred
scales can be encountered by selecting shocked regions that have
a typical filamentary length of some hundred mesh widths (see
Fig. 6).
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Fig. 7. Run 3, t = 39 τsound. Results for projected maps for subsets with w = 0.20 and D0 = −0.20, −2.0, −7.5 and −9.0. Top row: radial velocity
maps projected in the z-direction. Second row: third order structure functions averaged over 3 projection angles (see text). Third row: logarithmic
derivatives of S p(r) for p = 1–5 (in ascending order). Fourth row: ratios of differential slopes to ζ3 for order p = 1–5. The grey shades indicate
the ranges over which average values of (ζp/ζ3)ESS are determined. Fifth row: S 5(r) vs. S 3(r). The ranges of grey shades correspond to those in the
fourth row. Solid lines are best fits within the indicated ranges yielding the logarithmic slope (ζp/ζ3)ESS. Bottom row: the radial velocity scaling
compared to the She-Leveque scaling (dash-dotted line) and the Boldyrev scaling (dashed line). �: small scales, �: large scales.

4. Conclusion

We have used observational data of shocked H2 emission in
OMC1 to show that structure functions at scales 70–3 × 104 AU
(3.4 × 10−4–0.15 pc) exhibit unusual scaling exponents for
p > 3. The scaling exponents are nearly constant for p > 3

and smaller than predicted by both She & Leveque (1994) and
Boldyrev (2002).

In three simulations we have selected shocked regions by
imposing requirements on the value of the velocity divergence,
∇ · u. In certain important respects the simulations presented
here are then remarkably successful in reproducing the statistical
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Fig. 8. Run 2, t = 37 τsound. Third order structure functions of projected
maps with w = 0.2 and D0 = −5.1 and D0 = −7.5.

behaviour observed in OMC1. In other equally important areas,
they fail. Let us first reiterate the success.

We have found that by only including shocks that are rel-
atively strong (D0 < −1.5), the unusual scaling exponents of
the observations are reproduced in the simulations. By contrast,
a scaling following that of She & Leveque (1994) or Boldyrev
(2002) is found when all points in the simulations are included
in the data. An explanation for this behaviour is as follows.
Enhanced energy content at small scales, relative to larger scales,
implies smaller slopes, that is, smaller values of ζp. Both the ob-
servational data of OMC1, and some of those subsets of the sim-
ulations selected only to include shocks, show that the values
of ζp are reduced for p ≥ 4. Since structure functions of high or-
der p are dominated by regions of strong velocity differences, it
follows that the observed excess of small scale energy is associ-
ated with regions of large velocity differences. These are likely
to be the regions of strong shocks, as is evidenced by the fact
that reduced values of ζp are most clearly seen in subsets of the
simulations that select the most strongly convergent high density
regions.

The present work does not however furnish any explanation
of why departure from the She-Leveque or Boldyrev scaling oc-
curs at the specific value of p ≥ 4. It is possible that the critical
value of p is in some way connected with the physical nature
of the shocks, for example the fact that they are smoothed in
the simulations, mimicking the structure of continuous (C-) type
shocks, rather than jump (J-) type shocks (Flower et al. 2003,
and references therein).

We now turn to the failure of the simulations. The structure
functions of the observations in OMC1 all deviate from power
laws and exhibit clear bumps around 103 AU, exemplified by the
third order structure function in Fig. 2. This cannot in general
be reproduced by the simulations. There appears to be two pos-
sible explanations for this observed behaviour. The first is that
the deviation from power laws is due to protostar formation and
associated outflows at a preferred scale. The second is that the
behaviour is in some way inherent in the nature of the turbulence
as opposed to the presence of protostars.

Turning to the first suggestion, the process of star forma-
tion pulls structure of a certain size out of the cascade and
creates outflows, injecting energy into a turbulent background.
Gravitational energy and angular momentum is spewed out of
the star via such outflows and turned into local turbulence, hence
increasing the overall turbulent content of the gas – and restart-
ing the whole cascade process. Such outflows are of course not
present in the simulations.

The second suggestion, that the deviation from power law is
somehow inherent in the nature of the turbulence, requires that
there is some non-statistical element in this medium which is
otherwise governed by statistical considerations. This may arise
through our selection of strong shocks as a subset of the whole.
We have seen in Fig. 8 that traces of bumps in the structure

functions are found in one snapshot of Run 2 when highly
shocked material is selected. The deviations of the structure
functions from power laws are not as pronounced in the simula-
tion as in the observations of OMC1. However this finding pro-
vides some evidence that part of the explanation for the devia-
tions from power laws of the structure functions in OMC1 arises
from the fact that we observe preferentially shocked gas. As de-
partures from power law behaviour are only evident in a single
snapshot and not throughout the simulation at other times, this
suggestion remains tentative.

In order to explore the reasons for the departure from
power law behaviour, more advanced simulations are necessary.
These should include self-gravity and energy feedback from pro-
tostellar zones through outflows and should ultimately incorpo-
rate ionization and magnetic fields.

Acknowledgements. We thank Åke Nordlund for simulating discussions and ad-
vice in defining this project. DF and MG would like to acknowledge the support
of the Aarhus Centre for Atomic Physics (ACAP), funded by the Danish Basic
Research Foundation and the Instrument Center for Danish Astrophysics (IDA),
funded by the Danish Natural Science Research Council. We would also like to
thank the Directors and Staff of the CFHT for making possible the observations
used in this paper. The Danish Center for Scientific Computing is acknowledged
for granting time on the Horseshoe cluster in Odense.

Appendix A: The forcing function

For completeness we specify here the forcing function used in
the present paper. It is defined as (Brandenburg 2001)

f (x, t) = Re{N f k(t) exp[ik(t) · x + iφ(t)]}, (A.1)

where x is the position vector. The wavevector k(t) and the ran-
dom phase −π < φ(t) ≤ π change at every time step, so f (x, t) is
δ-correlated in time. For the time-integrated forcing function to
be independent of the length of the time step δt, the normaliza-
tion factor N has to be proportional to δt−1/2. On dimensional
grounds it is chosen to be N = f0cs(|k|cs/δt)1/2, where f0 is
a nondimensional forcing amplitude. At each timestep we se-
lect randomly one of many possible wavevectors with length be-
tween 1 and 2 times the minimum wavenumber in the box, k1.
The average wavenumber is kf = 1.5k1. We force the system
with transverse non-helical waves,

f k = (k × e) /
√

k2 − (k · e)2, (A.2)

where e is an arbitrary unit vector not aligned with k; note that
| f k|2 = 1.
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