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Abstract: Conversion of electromagnetic energy into magnetohydrodynamic energy occurs
when the electric conductivity changes from negligible to finite values. This process is relevant
during the epoch of reheating in the early Universe at the end of inflation and before the emer-
gence of the radiation-dominated era. We find that the conversion into kinetic and thermal en-
ergies is primarily the result of electric energy dissipation, while magnetic energy only plays a
secondary role in this process. This means that, since electric energy dominates over magnetic
energy during inflation and reheating, significant amounts of electric energy can be converted
into magnetohydrodynamic energy when conductivity emerges early enough, before the rele-
vant length scales become stable.
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1. Introduction

In hydrodynamic turbulence, dissipation of energy is in principle straightforward:
it must be equal to the energy input accomplished through forcing; see Figure 1. But
when magnetic fields are involved, energy can be transferred from kinetic energy to
magnetic by performing work against the Lorentz force, WL. In that case, the situation
is more complicated, because there are now two exit channels, and it is a priori not clear,
which of the two takes the lion’s share in specific situations; see Figure 2. A related prob-
lem may also occur when the electric energy reservoir is involved, and especially when
this energy reservoir is later absent due to high conductivity. Before getting to that, let
us first recall the different situations in hydrodynamic and hydromagnetic turbulence.

Figure 1. Kinetic energy dissipation, ǫK, of forced turbulence with kinetic energy density 〈ρu2〉/2,
where ρ is the density and u is the velocity: in the steady state, everything that gets in does get
out.

Figure 2 presumes that kinetic energy can be tapped by dynamo action and con-
verted into magnetic energy [1]. This is a generic process that we now know works
in virtually all types of turbulent systems provided the electric conductivity is large
enough [2]. And here comes already the first problem. Large conductivity means small
magnetic diffusivity and therefore also less dissipation [3]. Looking at Figure 2 how-
ever, this seems puzzling: In the steady state, the dynamo term WL must be just as large
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as the resistive term, ǫM. Thus, if the dynamo is efficient, also the dissipation must be
large, which is not expected (and also not true).

Figure 2. Dissipation in dynamos: there are now two exit channels, ǫK and ǫM, and it is not
clear who takes the lion’s share. Dynamo action corresponds to WL < 0 (work done against the
Lorentz force, arrow to the right), although energy can also go the other way around when an
initial magnetic field decays.

The puzzle of efficient dynamo action, but inefficient dissipation was solved by re-
alizing that at large conductivity (and especially large magnetic Prandtl number, which
is the ratio PrM ≡ ν/η of kinematic viscosity ν to magnetic diffusivity η, is much larger
than unity), a second conversion occurs at smaller length scales where magnetic energy
can be converted back into kinetic energy. This process was termed a reversed dynamo
[4], and it happens at small scales when PrM ≫ 1. The concept of a reversed dynamo
was already introduced previously in the context of large-scale flows in two-fluid sys-
tems driven by microscopic fields and flows [5]. However, in the context of Ref. [4],
the focus was on small-scale dynamos that drive small-scale flows by the Lorentz force
when PrM ≫ 1.

While the conversion between magnetic and kinetic energies is reasonably well
understood, not much is known about the conversion from electromagnetic energy, i.e.,
the sum of electric and magnetic energies, into magnetic and hydrodynamic energies
when the electric conductivity gradually increases. Such a process is important at the
end of cosmological inflation [6]. A stochastic electromagnetic field may have been
produced during inflation and reheating [7]. At the end of reheating, the electric con-
ductivity of the Universe increased. As discussed in Ref. [8], significant magnetic field
losses can occur if the increase in conductivity is slow, and especially when the magnetic
diffusivity is at an intermediate level for a long time. In the two extreme cases of very
large diffusivity (corresponding to a vacuum with undamped electromagnetic waves),
and very small diffusivity (corresponding to nearly perfect conductivity), no significant
losses are expected. It is only during the period when the magnetic diffusivity is at an
intermediate level that significant resistive losses can occur.

Once the conductivity has reached large values, i.e., when the magnetic diffusivity
is small, strong turbulent flows will be driven. In that regime, the Faraday displacement
current can be neglected and the equations reduce to those of magnetohydrodynamics
[9]. The resulting turbulent flows cause the magnetic field to undergo turbulent decay
with inverse cascading, as has been studied intensively since the mid 1990s [10–16].
At some point around the time of recombination, the photon mean free path becomes
very large, and a process called Silk damping becomes important [17]. It results from
the interactions between photons and the gas and damps out all inhomogeneities in
the photon–baryon plasma [18]. In Ref. [19], this was modeled as a strongly increased
viscosity, thereby making the magnetic Prandtl number even larger. However, a more
physical approach is to add a friction term of the form −u/τ on the right hand side of
the momentum equation [12]. It is generally taken for granted that magnetic fields just
survive Silk damping without much additional loss, and that they are simply frozen
into the plasma. However, the details of this process have not yet been modeled. It is
clear, however, that the assumption of a well-conducting Universe is an excellent one,
even after the epoch of recombination some 380,000 years after the Big Bang, when there
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were very few charged particles. As we emphasize below, the electric conductivity was
then still large enough that the electric field was negligible—even in the voids between
galaxy clusters. In cosmology, it is only near the end of inflation that the electric field
can play a significant role. The electric energy density was then comparable to or in
excess of the magnetic energy density.

The goal here is to understand more quantitatively how much magnetic energy
survives during the conversions from electromagnetic fields to magnetohydrodynamic
fields as the conductivity increases. We also consider, in more detail, the conversion
from magnetic fields to electric fields at the end of the cosmological reheating phase,
which is when both fields are still growing and not yet equal to each other—unlike the
situation when electromagnetic waves are already established and there is no longer
any growth.

2. Energetics during the Emergence of Conductivity

The evolution of the electric and magnetic fields, E and B, respectively, is given by
the Maxwell equations, written here in SI units:

1
c2

∂E

∂t
= ∇× B − µ0 J, ∇ · E = ρe/ǫ0, (1)

∂B

∂t
= −∇× E, ∇ · B = 0, (2)

where c is the speed of light, µ0 is the vacuum permeability, ǫ0 ≡ 1/(µ0c2) is the vac-
uum permittivity, and ρe is the charge density. To close the equations, we use Ohm’s
law,

J = σ (E + u × B), (3)

where σ is the electric conductivity and u is the velocity.
In the very early Universe, inflation dilutes the plasma to the extent that there are

virtually no particles, and hence the electric conductivity vanishes. Eventually, a phase
of reheating must have occurred. One possibility is that the stretching associated with
the cosmological expansion leads to electromagnetic field amplification until the electric
field begins to exceed the critical field strength for the Schwinger effect [20] to lead to the
production of charged particles, and thereby to the emergence of electric conductivity.
This change in σ implies the existence of a phase when σ has an intermediate value for a
certain duration. This leads to a certain electromagnetic energy loss given by J · E. This
is a well-known result in magnetohydrodynamics, where the displacement current is
ignored, so we have ∇ × B = µ0 J. This is then used when deriving the magnetic
energy equation by taking the dot product of Equation (2) with B, so we have

∂

∂t

(

B2/2µ0

)

= −B ·∇× E/µ0 = J · E −∇ · (E × B/µ0), (4)

where we have introduced the Poynting vector E × B/µ0. In the following, we often
adopt volume averaging, which we denote by angle brackets. They depend just on time
t, but not on position x. We also adopt periodic boundary conditions in all three direc-
tions, so we call the domain triply periodic. Since a divergence under triply-periodic
volume averaging vanishes, we just have

d
dt

〈

B2/2µ0

〉

= −〈J · E〉 (ignoring the displacement current). (5)

The 〈J · E〉 term, in turn, has two contributions. Using Ohm’s law in the form

E = J/σ − u × B, (6)
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we find 〈J · E〉 = 〈J2〉/σ − 〈J · (u × B)〉, or, using −J · (u × B) = u · (J × B), we have

〈J · E〉 = 〈J2/σ〉+ 〈u · (J × B)〉, (7)

so part of the electromagnetic energy turns into Joule (or magnetic) heating, ǫM ≡
〈J2/σ〉, and another part is converted into kinetic energy through work done by the
Lorentz force, WL ≡ 〈u · (J × B)〉, which eventually also becomes converted into heat
through viscous (kinetic) heating, ǫK. In the case of dynamo action discussed in the in-
troduction, of course, WL is negative, so work is done against the Lorentz force. This is
why the direction of the arrow in Figure 2 is reversed. Force-free magnetic fields have
WL = 0 and can therefore not be sustained against dissipation, but they can be long
lived if the current density is small enough; see Ref. [21] for examples.

In the scenario where reheating is caused by the feedback from the Schwinger ef-
fect, there would be thermal energy supply both from ǫK and ǫM, leading therefore to
a direct coupling between the resulting heating and the emergence of σ. The flows of
energy between magnetic, electric, and kinetic energy reservoirs is illustrated in Figure
3. We denote those by

EM ≡ 〈B2/2µ0〉, EE ≡ 〈ǫ0E2/2〉, and EK ≡ 〈ρu2/2〉, (8)

respectively. Their evolution equations can be obtained from Equations (1) and (2),
along with the momentum and continuity equations,

ρ
Du

Dt
= −∇p + J × B +∇ · (2ρνS), (9)

D ln ρ

Dt
= −∇ · u, (10)

where D/Dt ≡ ∂/∂t + u ·∇ is the advective derivative, p = ρc2
s is the pressure for an

isothermal equation of state with sound speed cs, which is constant, ν is the viscosity,
and Sij = (∂iuj + ∂jui)/2 − δij∇ · u/3 are the components of the rate-of-strain tensor S.

Figure 3. Energy conversion from magnetic to kinetic energies via the electric energy reservoir.

Note that, unlike the cases depicted in Figures 1 and 2, there is no energy input
in the system shown in Figure 3. This would change if we were to add forcing in the
momentum equation in Equation (9). We allude to this interesting possibility at the end
of the conclusions in Section 5. Another possibility that we do discuss in some detail is
energy input during the reheating phase at the end of inflation. We turn to this aspect
in Section 4.5.

Taking the dot product of Equation (9) with u, using Equation (10), integration by
part, and the facts that ∂iuj can be written as the sum of a symmetric and an antisymmet-
ric tensor, but that the multiplication with S (a symmetric and trace-free tensor) gives
no contribution when δij∇ · u/3 is added, we find that Sij∂iuj = S2, and thus obtain the
evolution equation for the kinetic energy in the form

d
dt

〈

ρu2/2
〉

= −〈u ·∇p〉+ 〈u · (J × B)〉 −
〈

2ρνS2
〉

, (11)
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which we can also write more compactly as ĖK = WP + WL − ǫK, where WP = −〈u ·
∇p〉 has been defined as the work done by the pressure force, ǫK = 〈2ρνS2〉 is the
viscous heating, and the dot on the kinetic energy EK (not to be confused with ǫK)
denotes a time derivative. Here we have made use of the fact that the divergence
∇ · (pu) = u ·∇p + p∇ · u has a vanishing volume average for a triply-periodic do-
main, and therefore −〈u ·∇p〉 = 〈p∇ · u〉, making it clear that this term leads to com-
pressional heating and was found to be important in gravitational collapse simulations
[22]. We will see later that, when energy is supplied through WL, the energy is used to
let the kinetic energy grow (ĖK > 0) and to drive viscous heating, i.e., we have

WL = ĖK + ǫK − WP. (12)

We recall that the dot on EK denotes a time derivative. The term WP is usually small
and negative and thus also contributes (but only little) to increasing thermal energy. In
the present simulations, we used an isothermal equation of state and thus ignored the
evolution of thermal energy, ET = 〈ρe〉, where e = cvT is the internal energy, cv is the
specific heat at constant volume, and T is the temperature. If we had included it, we
would have had

ĖT = ǫM + ǫK − WP. (13)

This thermal evolution is important in simulations of thermal magneto-convection [23],
where it facilitates buoyancy variations, or in simulations of the magneto-rotational in-
stability, where potential energy is converted into kinetic and magnetic energies that
then dissipate as heat and radiation [24]. For our purposes, however, it suffices to in-
tegrate instead the kinetic and magnetic contributions in time, i.e., to compute

∫

ǫK dt
and

∫

ǫM dt, respectively.
Let us now discuss the interplay between electric and magnetic energies. This inter-

play is usually ignored in magnetohydrodynamics, where the evolution of the electric
field, i.e., the Faraday displacement current, is ignored [9]. Taking the dot product of
Equation (1) with E/µ0 and using 1/(µ0c2) = ǫ0, we obtain

∂

∂t

(

ǫ0E2/2
)

=
E

µ0c2 · ∂E

∂t
= E ·∇× B/µ0 − J · E, (14)

so, after averaging, we have

d
dt

〈

ǫ0E2/2
〉

= 〈E ·∇× B/µ0〉 − 〈J · E〉. (15)

Next, taking the dot product of Equation (2) with B/µ0, we obtain

∂

∂t

(

B2/2µ0

)

= −B ·∇× E/µ0. (16)

In view of the 〈E ·∇× B/µ0〉 term in Equation (15), it is convenient to rewrite Equa-
tion (16) in the form

∂

∂t

(

B2/2µ0

)

= −E ·∇× B/µ0 −∇ · (E × B/µ0). (17)

Again, given that the Poynting flux divergence vanishes under a triply-periodic volume
averaging, we have

d
dt

〈

B2/2µ0

〉

= −〈E ·∇× B〉/µ0. (18)

Note here the difference to Equation (5), which ignores the displacement current. An
equation similar to Equation (5) can only be recovered for the sum of electric and mag-
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netic energies, which yields

d
dt

(〈

B2/2µ0

〉

+
〈

ǫ0E2/2
〉)

= −〈J · E〉. (19)

An important property of well-conducting media that are considered in magnetohydro-
dynamics is that the electric energy is negligible compared to the magnetic energy. In
that limit, Equations (5) and (19) do indeed become equivalent.

More compactly, we can then write Equation (18) in the form ĖM = −QE, where
QE = 〈E ·∇ × B〉 acts as a source in ĖE = QE − ǫM − WL. Thus, we clearly see that
the electric energy reservoir is not a secondary one whose energy content is small be-
cause of inefficient coupling, but it is an unavoidable intermediate one through which
magnetic energy is channeled efficiently further to kinetic and thermal energies. This
raises the question how safe is the neglect of the displacement current when prior to the
emergence of conductivity the electric energy dominates over magnetic. This is a typ-
ical situation in inflationary magnetohydrodynamics scenarios that we consider later
in this paper. Before that, we first discuss the nonconducting case where electric and
magnetic energy densities are equally large.

3. Numerical Experiments with Different Temporal Conductivity Variations

To illustrate the conversion from electromagnetic energy to magnetohydrodynamic
and thermal energies during the emergence of electric conductivity, let us consider here
a simple one-dimensional experiment.

3.1. Electromagnetic Waves and Their Suppression by Conductivity

In one dimension with ∂/∂x 6= 0 and σ = 0, we can have electromagnetic waves,
for example B±

y (x, t) = B0 sin k(c ∓ ct) and E±
z (x, t) = ∓kB0 sin k(c ∓ ct), traveling in

the positive (negative) x direction. Note that the electric and magnetic energies are
here equal to each other. However, when σ becomes large, |E| becomes suppressed. To
understand this suppression, let us look at Equation (1). When σ becomes large, the
∇× B term no longer needs to be balanced by the displacement current, but by the ac-
tual current. Inserting J = σE (for the comoving current density), we find E = η∇× B,
so we expect |E|/|cB| = O(ηk/c). Thus, once σ becomes large, |E|/c becomes sup-
pressed relative to |B| by a factor, ηk/c = k/(cµ0σ). Additionally, as mentioned above,
both |E| and |B| become suppressed due to the intermediate phase when σ is neither
small nor large yet. This was discussed in the appendix of Ref. [8], who found that
for a linearly increasing conductivity profile σ(t) = σmax t/ttrans during a certain time
interval t0 ≤ t ≤ t0 + ttrans of duration ttrans and starting at t = t0, there was an ampli-
tude drop, whose value increases approximately inversely proportional to ηmink2ttrans,
where ηmin = 1/µ0σmax.

To specify the temporal variation of the conductivity profile, we define a piecewise
linear function that goes from 0 (for t ≤ t0) to 1 (for t ≥ t0 + τ0) through

Θ = max
[

min
(

t − t0

τ0
, 1

)

, 0
]

. (20)

The linear σ profile used in Ref. [8] is given by

σ(t) = σmin + (σ0 − σmin)Θ(t), (21)

where σ0 = 1/µ0η0 and σmin = 1/µ0ηmax. Here, we also study a profile whose loga-
rithm is linearly varying. We therefore refer to it as a logarithmic profile, which is of the
form

σ(t) = σ0 exp{ln(σmax/σ0) [1 − Θ(t)]}, (22)
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which allows us to specify the duration, during which σ transits by an order of mag-
nitude for any value of σ. For the linear σ profile, by contrast, the duration would be
different for different σ ranges, and it would be very short for large values of σ.

For the simulations, we use the PENCIL CODE [25], which employs the magnetic
vector potential A, so that B = ∇× A is always divergence-free. The evolution equa-
tion for A can then be written as

1
c2

∂2 A

∂t2 −∇2 A +∇∇ · A +
1

η(t)

(

∂A

∂t
+ u × B

)

= 0, (23)

where ∇ · A = 0 if the Coulomb gauge is used. In the PENCIL CODE, different gauges
are possible, but the Weyl gauge with ∂A/∂t = −E is the one used in that code. In that
case, the ∇∇ · A term must be retained. Equation (23) shows that in a vacuum, where
1/η → 0, one recovers a standard wave equation for waves with propagation speed c.
In the opposite limit, where η → 0, one can neglect the (η/c2) ∂2 A/∂t2 term and one
recovers the usual induction equation, where η∇2 A acts as a diffusion term.

3.2. Transition to the High-Conductivity Regime for Different Parameters

The transition to the high-conductivity regime involves the conversion of electro-
magnetic waves to magnetohydrodynamic waves [9]. One can imagine that this process
is more efficient when the frequencies of both waves are equal. In the high conductiv-
ity regime, the frequency of magnetohydrodynamic waves depends on the strength of
the imposed magnetic field, B0, which determines the nominal Alfvén speed, vA0 =
B0/

√
ρµ0. Since Alfvén waves propagate along the magnetic field, and since ∂/∂x 6= 0,

we impose the magnetic field also in the x direction, i.e., we write B = x̂B0 +∇× A,
where ∇ × A is the departure from the imposed magnetic field. In the following nu-
merical experiments, we choose t0 = 0.

The result is shown in Figure 4, where we compare By(x, t) as a colored contour
plot in the xt plane. We compute the solution in a domain of size L, so the lowest
wave number is k1 = 2π/L. The density is initially uniform and equal to ρ0. In the
following, we use units where c = k1 = ρ0 = 1. We see that for vA0 = 1, the wave
propagates almost unaffectedly by the switch to high conductivity. Here, the frequency
of the electromagnetic wave is ck1 = 1 and the nominal frequency of the Alfvén wave,
vA0k, is also unity but the actual frequency is slightly less than that. This is because
of special relativity effects forcing the wave speed to be always less than c. In fact, the
actual wave speed is vA = vA0/(1 + v2

A0/c2)1/2 [26].
For smaller values of vA0, we see that not only the wave speed is less, as seen from

the shallower inclination of the pattern in Figures 4(b) and (c), but there is also a certain
drop of the wave amplitude, and there is also an additional modulation resulting from
an effective initial condition at t = 0 that does not match the eigenfunction for an Alfvén
wave.

In Figure 5, we compare the logarithmic σ profile with the linear one using vA0 =
0.3. For the logarithmic profile, the drop in amplitude is clearly larger than that for the
linear σ profile. To obtain a similar drop with the linear σ profile, one would need to
increase ttrans to about 500; see Figure 5(c).

To be more quantitative, we compare in Figure 6(a) the evolution of By at one
specific point x = x∗ for the three runs of Figures 5(a) and (c). Note that the drop of the
wave amplitude after t = 0 is similar for runs a and c, but much less for run b.

In Figure 6(b), we also show how σ varies. We do this by plotting the nondimen-
sional resistivity

R(t) ≡ η(t)k/c, (24)

which decreases from 104 to 5× 10−4. We recall that it is also this ratio that we identified
in the beginning of this section as the one that characterizes the value of |E|/|cB|. We see
that most of the decay happens when it transits through unity. Owing to the logarithmic
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Figure 4. Evolution of By(x, t) for the logarithmic σ profile with (a) vA0 = 1, (b) vA0 = 0.3, and
(c) vA0 = 0.1, and ttrans = 10 in all cases.

nature of the profile, the quantity R(t) spends a time interval of about ckttrans = 5 while
R(t) changes from 10 to 0.1. By contrast, for the linear profile, the time interval is
virtually non-existing. For ttrans = 500, on the other hand, ckttrans is similar to what led
to the to a similar decay for the logarithmic profile. This is also confirmed by the inset of
panel b, which shows that R(t) traverses unity by a margin of one order of magnitude
for a and c, but not for b. The results discussed above confirm that the relevant time
interval is indeed that where R(t) is within an order of magnitude around unity.

Looking at Figure 7, we see that the electric energy was initially equal to the mag-
netic one, but as the conductivity increases, there is a rapid decline of electric energy
(ĖE < 0), and most of it dissipates thermally, while only a small fraction (< 10% for
ttrans = 10) is transferred to kinetic energy. It turns out that the mean magnetic and
electric energy densities decay like exp(−νk2t), i.e., without a factor of 2 in the expo-
nent, reflecting therefore not a change in the kinetic energy, but rather in the velocity,
which enters through the work term WL.). Furthermore, the ratio is here EE/EM ≈ 10
for PrM = 20. Note that the oscillations in EM + EK (orange lines) are compensated
mostly entirely by those in EE (blue lines).
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Figure 5. Evolution of By(x, t) for the logarithmic σ profile with vA = 0.3 and (a) the logarithmic
σ profile with ttrans = 10, (b) the linear σ profile with ttrans = 10, and (c) the linear σ profile with
ttrans = 500.

Figure 6. (a) Evolution of By at one specific point x = x∗ in the three runs of Figures 5(a) and (c).
Note that the drop of the wave amplitude after t = 0, and specifically at t = 50, is similar for runs
a and c, but much less for b. (b) Dependence of the nondimensional resistivity R(t) = η(t)k/c for
the logarithmic profile with ttrans = 10 in run a (black), and the linear profile with ttrans = 10 in
run b (red) and ttrans = 500 in run c (blue). The inset shows a blow-up of a narrow strip around
R = 1 using a logarithmic time axis. We see from the inset that the time spent in R(t) traversing
unity by a margin of one order of magnitude (marked by the thick part of the black line) is similar
for a and c, but virtually non-existing for b.
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Table 1. The two regimes of energy transfer for short and long transits.

rapid transits long transits

criterion ttrans < 10 ttrans > 10
Lorentz work WL/ǫM ≈ 0.1 WL/ǫM ≈ 5 t−1.6

trans
heating ǫM ≈ −ĖE and QE ≪ ǫM ǫM ≈ −0.5 ĖE ≈ 0.5 QE

Figure 7. Initially, all the energy is in electromagnetic energy, EE + EM for ν = 0.01 and ηfin =

5× 10−4. In the end, all the energy is converted into heat. The red lines give the integrated Ohmic
and viscous energy gains,

∫

ǫM dt and
∫

ǫK dt, respectively. At intermediate times, this energy
is distributed to equal amounts among kinetic energy EK (green lines) and magnetic energy EM

(gray lines). The orange lines shows their sum, EK + EM. The blue lines represent EE. The inset
shows a blow-up of the same graph around the origin. We see that EE varies in phase with EK,
but an anti-phase both with EM and the residual EM + EK.

In Figure 8, we show the evolution of various energy fluxes. We see that the mag-
netic energy decays and gives off energy to the electric energy reservoir through the
term QE = 〈E ·∇× B〉 > 0. The magnetic heating is thus composed of the following
terms:

ǫM = −ĖE + QE − WL. (25)

For rapid transits, ttrans <∼ 5, QE is small compared with −ĖE, so ǫM is mostly entirely
the result of exhausting electric energy, i.e., ĖE < 0. For longer transits, ttrans > 10,
QE ≈ −ĖE, so ǫM is supplied to about 50% through QE and to another 50% through
−ĖE. These differences are summarized in Table 1.

In connection with Figure 4, we noted that there is a certain drop of the wave
amplitude after the transit to large conductivity. This drop was larger for a larger ratio
of the electromagnetic to Alfvén wave speeds. When the nominal Alfvén speed was
equal to the speed of light, the drop was small. In Figure 9 we quantify this by plotting
EM at t = 100, i.e., after the conductivity has increased to a large value, vs ttrans for
different values of vA0/c. We confirm the results of Ref. [8] where the logarithmic drop
was found to depend linearly on the value of ttrans. However, we now also see that the
slope of this curve decreases with increasing Alfvén wave speed.
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Figure 8. Evolution of energy fluxes for the model with the logarithmic conductivity profile with
η = 5× 10−4 = ν at late times. In all cases, the initial diffusivity is ηini = 104. The main difference
to the run with a larger viscosity is that ǫK is larger.

Figure 9. EM at t = 100, i.e., after the conductivity has increased to large value, vs ttrans for
vA0/c = 1 (orange), vA0/c = 0.3 (red), and vA0/c = 0.1 (blue).

4. Cosmological Application Prior to Radiation Domination

As alluded to above, the end of inflation might provide an opportunity to illustrate
electromagnetic energy conversion, because in that case, the electric energy can greatly
exceed the magnetic one.

4.1. Magnetic Fields in Cosmology

In the present Universe, magnetic fields are constantly being regenerated by dy-
namo action on all scales up to those of galaxy clusters. The energy source is here
gravitational, which is released through accretion or direct collapse. Magnetic fields
may also be present on even larger scales. However, in the locations between galaxy
clusters, i.e., in what is often referred to as voids, it is generally thought impossible
to produce magnetic fields through contemporary dynamo action; see Refs. [27,28] for
reviews on the subject. Nevertheless, indirect evidence for the existence of magnetic
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fields in voids, and more specifically for lower limits of the magnetic field strength,
comes from the non-observation of secondary photons in the halos to blazars, which
are active galactic nuclei producing TeV photons. These photons interact with those
of the extragalactic background light through inverse Compton scattering to produce
GeV photons. Those secondary GeV photons are not observed. Their non-observation
could be explained by an intervening magnetic field of about 10−16 G on a megaparsec
scale [29,30]. This field would deflect electrons and positrons in opposite directions,
preventing them from recombining and thereby disrupting the energy cascade toward
the lower GeV photons.

The non-observation of GeV photons might have other reasons, for example plasma
instabilities that disrupt the electron–positron beam [31,32]. Nevertheless, even then, a
certain fraction of the plasma beam disruption might still be caused by magnetic fields
[33], which could explain the GeV halos of at least some blazars [34]. If magnetic fields
really do exist on very large cosmological scales, they may be primordial in origin. This
may mean that they have been created during or before the radiation-dominated era
of the Universe, for example during one of the cosmological phase transitions or dur-
ing inflation. Inflation was a phase where the conversion from electromagnetic fields to
magnetohydrodynamic fields played an important role, which is what we are interested
in here.

4.2. Use of Comoving Variables and Conformal Time

The Universe is expanding with time, as described by the scale factor a(t). The
equations of magnetohydrodynamics therefore contain additional terms with factors of
a(t) and its time derivatives. However, by using scaled variables, Ã = aA, B̃ = a2B,
Ẽ = a2E, J̃ = a3 J, x̃ = x/a, along with conformal time, t̃ =

∫

dt/a(t), all a(t) factors
and other terms involving a(t) disappear from the magnetohydrodynamic equations
[10]. The velocity is the same in both frames, i.e., ũ = u.

Given that the equations with tilded variables are equal to the ordinary ones in
a non-expanded Universe, it is convenient to skip all tildes from now on. However,
when discussing the evolution of the scale factor, for example, we again need physical
time, which will then be denoted by tphys, while t then still denotes conformal time.
Here is where we have a notational dilemma, because in cosmology, derivatives with
respect to physical (or cosmic) time are often denoted by dots, while those with respect
to conformal time are denoted by primes. We therefore decided here to follow the
same convention, so a′ = da/dt and a′′ = d2a/dt2 denote derivatives with respect to
conformal time.

4.3. Inflationary Magnetogenesis

Inflationary magnetogenesis models assume the breaking of conformal invariance
through a coupling to a scalar field such as the inflaton. Another possible coupling
is through an axion field, which would result in helical magnetogenesis, but this will
not be considered here. The dynamics of the scalar field is interesting in its own right;
see Refs. [35–37] for numerical investigations. To simplify the model, one commonly
replaces this coupling by a prefactor f 2, where f depends on the scale factor of the
Universe. This factor f 2 enters in the electromagnetic energy contribution to the La-
grangian density f 2FµνFµν, where Fµν is the Faraday tensor [38]. Early approaches to
inflationary magnetogenesis exposed specific problems: the strong coupling and the
backreaction problems [39], as well as the Schwinger effect constraint, which can lead
to a premature increase in the electric conductivity. This shorts the electric field and pre-
vents further magnetic field growth [20]. This is particularly important for models that
solve the backreaction problem by choosing a low energy scale inflation [40], but could
be avoided if charged particles attain sufficiently large masses by some mechanism in
the early Universe [41]. The three problems are avoided by requiring the function f to
obey certain constraints [7,42].
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Successful models of inflationary magnetogenesis are thus possible, but this does
not mean that the underlying cosmological models are also physically preferred op-
tions. Nevertheless, for the purpose of discussing the electromagnetic energy conver-
sion, which is the goal of this paper, those models are a useful choice.

Three-dimensional simulations of inflationary magnetogenesis have been performed
by assuming an abrupt switch from electromagnetism without currents and magne-
tohydrodynamics where the displacement current is already neglected [8,43]. They
solved the evolution equations for the scaled magnetic vector potential, A ≡ f A, in
the Coulomb gauge:

[

1
c2

∂2

∂t2 −∇2 − k2
∗(t)

]

A = 0. (26)

where k2
∗(t) = f ′′/ f is a generation term, because it destabilizes the field at large length

scales for wavenumbers k < k∗(t). Analogous to the primes on a(t), primes on f (t)
also denote conformal time derivatives. Toward the end of the reheating phase, where
f → 1, we expect k∗(t) → 0.

Our aim here is to present calculations where the transit from vacuum to high
conductivity is continuous. In particular, to calculate the generation term k2

∗(t), one
commonly uses a power law representation in terms of a(t) of the form f ∝ aα with
α > 0 during inflation and f ∝ a−β with β > 0 during reheating [44]. We are here only
interested in the reheating phase where a(t) ∝ t2 [7,42] such that it is unity when the
radiation-dominated era begins, and therefore f = 1 and k2

∗(t) = 0 for a > 1. For a < 1,
by contrast, we have

k2
∗(t) = β

[

(β + 1)(a′/a)2 − a′′/a
]

. (27)

Note that for a = t2, we have a′ = 2t and a′′ = 2, so (a′/a)2 = 4/t2 and a′′/a = 2/t2,
and therefore f ′′/ f = 2β(2β + 1)/t2.

Contrary to the earlier numerical work [8,43], the displacement current is now
included at all times. However, there is still a problem in that k2

∗(t) has a discontinuity
from k2

∗(1) = β(β+ 1) 6= 0 to zero at the moment when the conductivity is turned on. In
the simulations, this did not seem to have any serious effect on the results, because the
magnetic field at the end of the electromagnetic phase only acted as an initial condition
for the magnetohydrodynamic calculation after the switch. In a continuous calculation
without switch, however, this problem must be avoided. This will be addressed next.

4.4. Continuous Version of the Generation Term

An instructive way of obtaining a smooth transition from a quadratic to a linear
growth profile of a(t) is obtained by solving the Friedmann equations for a piecewise
constant equation of state, w(a), which relates the pressure with the density through
p = wρ. Under the assumption of zero curvature, i.e., the Universe is conformally flat,
but expanding, the Friedmann equations can be written as a single equation which, in
physical time, takes the form

a−1 d2a/dt2
phys = − 1

2 H2[1 + 3w(a)], (28)

where H = a−1da/dtphys is the standard Hubble parameter. Here, w(a) = 1/3 during
the radiation-dominated era and w(a) = 0 during reheating when there were no pho-
tons, which is therefore equivalent to the matter-dominated era that also occurs later
after recombination and before the Universe began to accelerate again. The accelerated
exponential expansion of the Universe during inflation, and also the late acceleration
of the present Universe, correspond to w = −1, but this will not be considered in the
present paper.

It is convenient to solve the Friedmann equation with zero curvature in conformal
time. It then takes the form a′′/a = 1

2H2 (1 − 3w), where H = a′/a is the conformal
Hubble parameter. It is related to the usual one, H, through H = da/∂tphys = aH.
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Figure 10. t dependence of (a) the scale factor a(t), (b) the compensated Hubble coefficient Ht =

t a′/a, and (c) the compensated left-hand side of the Friedmann equation, t2 a′′/a. In (a), the
asymptotic dependences a = t2 and 2t for t ≪ 1 and ≫ 1 are overplotted as dashed-dotted
orange lines. In (c), the function 3w(a(t)) is overplotted as a dotted red line.

Figure 11. t dependence of EM (red), EE (blue), and EK (green) for runs with β = 1 (dotted lines),
2 (dashed lines), and 4 (solid lines) for Set (i) with k = 10, t0 = 1, and ttrans = 10. The initial
amplitudes have been arranged such that Brms = 0.01 at t = 1. From the double-logarithmic
representation, we see that the growth of EM and EE is algebraic, and much faster for the models
with a larger value of β. Before t = 1, EE dominates over EM, but drops immediately after t = 1,
when resistivity emerges and kinetic energy is being generated. Both EM and EK are larger for
larger values of β.

Note the opposite sign of the terms on the right-hand side and the opposite sign in
front of 3w(a) compared to the formulation in terms of physical time. The equation for
a′′ is easily solved by splitting it into two first-order equations and introducing a new
variable b(t) and solving for

a′ = b, b′ = (b2/2a)(1 − 3w); (29)

see also Ref. [45] for similar work in another context.
Figure 10 shows the solution for a(t) and the ratios a′/a and a′′/a compensated

by t and t2, respectively, which allows us to see more clearly how a′/a changes from
2/t to 1/t and a′′/a changes from 2/t2 to zero as we go from the reheating era to the
radiation-dominated Universe after reheating.

The generation term k2
∗(t) ≡ f ′′/ f determines the wavenumber below which the

solution is still unstable. However, since k2
∗(t) = 2β(2β + 1)/t2, we have ctk = const ≈

2β + 1/2; see Table 2. In Figure 11, we plot the evolution of EE, EM, and EK for k = 10
for all three values of β: 1, 2, and 4. Here and below, the initial amplitudes have been
arranged such that EM = 10−4 at t = t0. In all cases, the solution has become stable
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Figure 12. Similarly to Figure 11, but for Set (ii) with k = 10, t0 = 0.1, and ttrans = 1.

by the time t = t0 = 1, and we see electromagnetic oscillations toward the end of the
reheating phase before conductivity turns on at t0 = 1. This is here referred to as Set (i).

Table 2. Parameters relevant for the models with different values of β.

β 2β + 1 2β + 1/2 k∗(1)

1 3 2.5 2.45
2 5 4.5 4.47
4 9 8.5 8.49

It is easy to see that on large length scales, when the ∇2 operator in Equation (26)
is negligible compared with k2

∗(t), we have

Az(x, t) = A0t2β+1k−1 cos kx, Az(x, t) = Az/ f = A0tβ+1k−1 cos kx, (30)

By(x, t) = A0tβ+1 sin kx, Ez(x, t) = −∂Az/∂t = −(β + 1)A0tβk−1 cos kx. (31)

Thus, for ckt ≪ 1, corresponding to super-horizon scales, where and when the modes
are still unstable, we have tErms/Brms ≈ β + 1. On smaller length scales, i.e., for larger
k values, the modes become stable and we have the usual electromagnetic waves.

When modeling the transition from a vacuum to that of high conductivity and the
corresponding Joule heating, we still need to make a choice as to when σ would begin
to increase, i.e., we need to choose values of t0 and ttrans. If we choose the value of t0
to be too large, we obtain solutions where electromagnetic waves have already been
established; see Figure 11. The smallest wavenumber in our one-dimensional domain
is k = 10, so by the time t = 1, even the largest modes in the domain are stable. We
also see that at early times, EE and EM grow in an algebraic fashion and then become
oscillatory when k∗(t) has dropped below k. At t = t0 = 1, when conductivity turns on,
the electric energy decreases rapidly, while the magnetic energy diminishes only very
slowly. The generated hydrodynamic energy is however small. This is similar to what
we studied in Section 3.2.

Our objective here is to study cases that are different from what was studied in
Section 3.2. Therefore we now choose Set (ii) with t0 = 0.1 and ttrans = 1 (Figure 12)
and another Set (iii) with k1 = 1 and t0 = 1 (Figure 13). Again, the electric energy drops
significantly when conductivity turns on, but now there is a much larger spread in the
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resulting maximum magnetic energies for the three cases with β = 1, 2, and 4. For
β = 4, EK reaches about one percent of EM at t = 0.2, for example.

When increasing the wavenumber to k = 1, the largest modes are still unstable for
the three cases with β = 1, 2, and 4; see Figure 13. Here, k = 1 and t0 = 1 and ttrans = 10.
The spread in the magnetic energy is similar, but the maximum kinetic energy is now
much larger; see Table 3.

4.5. Energy Conversions during Reheating

During reheating, there is an additional source of energy resulting from the gen-
eration term k2

∗(t). The term k2
∗(t) appeared in Equation (26) for A = f A. However,

to write down the relevant equation for E = −∂A/∂t, we have to revert to the original
equation for A, which reads [44]

[

1
c2

(

∂2

∂t2 + 2
f ′

f

∂

∂t

)

−∇2
]

A = 0. (32)

Thus, Equation (1) with the current density term restored, now becomes

1
c2

(

∂E

∂t
+ 2

f ′

f
E

)

= ∇× B − µ0 J, (33)

and therefore, Equation (15) for the electric energy now has an extra term and reads

d
dt

〈

ǫ0E2/2
〉

= −2( f ′/ f )
〈

ǫ0E2
〉

+ 〈E ·∇× B/µ0〉 − 〈J · E〉. (34)

During reheating with f ∝ a−β ∝ t−2β, we have f ′/ f = −2β/t, so the first term on the
right-hand side of Equation (34) is positive for β > 0, so there is growth of the electric
energy. Similarly to what was performed in Section 3.2, we can write the electric energy
equation more compactly as ĖE = QG + QE − ǫM − WL, where QG = −4( f ′/ f )EE is
now the dominant source, but here QE plays the role of a sink during the first part of
the evolution. This equation generalizes Equation (25) to the case with electromagnetic
field generation during reheating; see also Figure 14. Unlike the earlier case of Figure 3,
where there was no energy input, we here have a system that it driven by energy input
through the QG term.

The evolution of QG, QE, ĖE, and ǫM is shown in Figure 15 during magnetic field

Figure 13. Similarly to Figure 11, but for Set (iii) with k = 1, t0 = 1, and ttrans = 10.
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Figure 14. Similar to Figure 3, but now with inflationary magnetogenesis energy generation and
energy exchange between electric and magnetic energies in both directions.

generation in case (ii) for all three values of β. It is instructive to write the electric energy
equation as

QG = ǫM + ĖE + WL − QE. (35)

Comparing the three panels of Figure 15, we thus see that for β = 1, there is a slow
generation phase starting much before t0. It should be noted, however, that the ranges
on the vertical axes are different for the different panels.

At t = t0 = 0.1, there is a rise of conductivity, and therefore a sharp rise in Ohmic
heating, ǫM. This is also the time when ĖE reaches a maximum and becomes negative
shortly thereafter. For large values of β, this moment happens a bit later, at t = 0.11
compared to t = 0.10 for β = 1. Note that, while for β = 4 the maxima of QG and ǫM
are similar, for smaller values of β, the maxima of ǫM are much larger than those of QG.

Table 3. Summary of various extrema for each of the three sets of models and values of β.

Set k t0 variable β = 1 β = 2 β = 4

(i) 10 1 max EE 1.3 × 10−4 4.1 × 10−5 8.3 × 10−5

(ii) 10 0.1 1.8 × 10−4 6.4 × 10−4 5.8 × 10−3

(iii) 1 1 2.7 × 10−3 1.4 × 10−2 2.1 × 10−1

(i) 10 1 max EM 1.6 × 10−4 1.1 × 10−4 1.8 × 10−4

(ii) 10 0.1 1.5 × 10−4 4.3 × 10−4 4.2 × 10−3

(iii) 1 1 3.2 × 10−4 9.6 × 10−4 1.2 × 10−2

(i) 10 1 max EK 2.5 × 10−9 9.0 × 10−10 3.9 × 10−9

(ii) 10 0.1 6.9 × 10−8 4.2 × 10−7 6.6 × 10−5

(iii) 1 1 9.8 × 10−7 2.3 × 10−5 7.7 × 10−3

(i) 10 1 max QG 1.4 × 10−4 2.0 × 10−4 1.4 × 10−3

(ii) 10 0.1 4.4 × 10−3 3.8 × 10−2 8.6 × 10−1

(iii) 1 1 8.4 × 10−3 7.8 × 10−2 2.7 × 100

(i) 10 1 max(−QE) 2.0 × 10−3 9.3 × 10−4 2.0 × 10−3

(ii) 10 0.1 5.3 × 10−3 2.2 × 10−2 2.7 × 10−1

(iii) 1 1 1.3 × 10−3 4.7 × 10−3 5.9 × 10−2

(i) 10 1 max ǫM 2.0 × 10−3 4.1 × 10−4 2.5 × 10−3

(ii) 10 0.1 2.1 × 10−2 1.1 × 10−1 1.5 × 100

(iii) 1 1 3.5 × 10−2 2.5 × 10−1 5.8 × 100

(i) 10 1 max(−ĖE) 3.3 × 10−3 6.3 × 10−4 2.7 × 10−3

(ii) 10 0.1 1.6 × 10−2 5.9 × 10−2 5.6 × 10−1

(iii) 1 1 2.4 × 10−2 1.3 × 10−1 1.9 × 100

(i) 10 1 max ĖE 1.2 × 10−3 3.4 × 10−4 8.0 × 10−4

(ii) 10 0.1 8.6 × 10−3 5.4 × 10−2 5.4 × 10−1

(iii) 1 1 1.8 × 10−2 1.3 × 10−1 2.0 × 100
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Figure 15. t dependence of QG (red), QE (green), ǫM (black), ĖE (blue), and WL (orange) for the
runs of Set (ii) in Figure 12 with (a) β = 1, (b) β = 2, and (c) β = 4 for t0 = 0.1 and ttrans = 1.

Instead, for β = 1, for example, we have ǫM ≈ −ĖE, i.e., almost the entire heating is
here caused by dissipation of electric energy.

In Figure 16, we show a plot similar to Figure 15, but for the case (i), where all
modes were already oscillatory at t = t0 = 1, when conductivity turned on. The Ohmic
heating now plays a minor role in the sense that its maximum value is much less than
the extrema of QG, QE, and ĖE. For β = 1 and 2, we see that ĖE and QE are nearly in
phase shortly before conductivity turns on. This means that the electric and magnetic
energies are strongly coupled and a flow of energy from magnetic to electric energy
(QE > 0) leads to an increase in electric energy (ĖE > 0). This is expected, because there
is only an oscillatory exchange between electric and magnetic energies. For β = 4, on
the other hand, the oscillatory phase just started to develop shortly before t = 1, but the
curves are similar to those for β = 1 and 2, although shifted toward earlier times. The
time of the first maximum of QG is at t = 0.9 for β = 4, while for β = 2, it is at t = 0.46
and for β = 1 it is at t = 0.25, and we see that the profiles of all curves are indeed very
similar around those times.
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Figure 16. Similarly to Figure 15, but for the runs of Set (i) in Figure 11 with t0 = 1 and ttrans = 10.
Note that QG and QE vary in anti-phase.

5. Conclusions

In this paper, we have studied the conversion of electromagnetic energy into ki-
netic and thermal energies as the electric conductivity transits from zero (vacuum) to
large values. This problem has relevance to the reheating phase at the end of cosmo-
logical inflation and before the emergence of a relatively long radiation-dominated era
before the time of recombination, which is much later (on a logarithmic time scale).
While not much is known about the physical processes leading to reheating and the
emergence of conductivity, a lot can now be said about the general process of such an
energy conversion.

Already in the absence of cosmological expansion, we have seen that the transi-
tion to conductivity involves an oscillatory exchange between electric and magnetic
energies. It is mainly the electric energy reservoir that delivers energy to the kinetic
and thermal energy reservoirs, and not the magnetic energy directly, as in magneto-
hydrodynamics. We knew already from earlier work that the duration of the transit
plays a significant role in causing a drop in magnetic energy. We now also see that this
drop depends on the magnetic field strength and thus the typical Alfvén speed. The
drop can become small if the Alfvén speed becomes comparable to the speed of light.
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Furthermore, for short transits, we have seen that energy transfer between electric and
magnetic energies is small and that the initial electric energy goes directly into ther-
mal energy. For longer transits, however, the mutual exchange with magnetic energy
becomes approximately equal to the thermal energy loss, so thermalization now also
involves the magnetic energy reservoir.

When applying electromagnetic energy conservation to the problem of reheating,
we have a new quality in the model in that there is now also energy transfer through
conformal invariance breaking, which may occur during inflation and reheating. This is
obviously speculative [27,28,38,46–50], but a very promising scenario for the generation
of large-scale magnetic fields in the early Universe and for explaining the observed
lower limits of the intergalactic magnetic field on megaparsec length scales [29,30].

The present study has shown that significant work can be done by the Lorentz
force when the electromagnetic energy conversion happens early and on scales large
enough so that the modes are still growing in time. This is because there is then sig-
nificant excess of electric energy over magnetic. This is an effect that was ignored in
previous simulations of inflationary magnetogenesis and, in particular, in studies of the
additional contributions to the resulting relic gravitational wave production [8,43].

It will be useful to extend our studies to turbulent flows and magnetic fields. This
requires that one solves for the evolution of ρe and that ∇ · E = ρe/ǫ0 is obeyed at all
times. This constraint was automatically obeyed in our one-dimensional models. In
future, it would also be interesting to study dynamo action in situations of moderate
magnetic conductivity where coupling with the electric energy reservoir could reveal
new aspects.
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