21

22

23

24

25

26

27

28

29

30

31

3.

o

3.

@

34

35

36

3

Q

38

39

40

4

=

42

DRAFT VERSION MAY 5, 2025
Typeset using IATEX twocolumn style in AASTeX631

Magnetic field amplification during a turbulent collapse

1,2,3,4 5

AXEL BRANDENBURG AND EVANGELIA NTORMOUSI

I Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns vig 12, SE-10691 Stockholm, Sweden

2The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden
3 McWilliams Center for Cosmology & Department of Physics, Carnegie Mellon University, Pittsburgh, PA 152183, USA
4School of Natural Sciences and Medicine, Ilia State University, 3-5 Cholokashvili Avenue, 0194 Tbilisi, Georgia
5Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

ABSTRACT

The question of whether a dynamo can be triggered by gravitational collapse is of great interest, es-
pecially for the early Universe. Here, we employ supercomoving coordinates to study the magnetic field
amplification from decaying turbulence during gravitational collapse. We perform three-dimensional
simulations and show that for large magnetic Reynolds numbers, there can be exponential growth
of the comoving magnetic field with conformal time before the decay of turbulence impedes further
amplification. The collapse dynamics only affects the nonlinear feedback from the Lorentz force, which
diminishes more rapidly for shorter collapse times, allowing nearly kinematic continued growth. We
confirm that helical turbulence is more efficient in driving dynamo action than nonhelical turbulence,
but this difference decreases for larger collapse times. We also show that for nearly irrotational flows,
dynamo amplification is still possible, but it is always associated with a growth of vorticity—even if it
still remains very small. In nonmagnetic runs, the growth of vorticity is associated with viscosity and
grows with the Mach number. In the presence of magnetic fields, vorticity emerges from the curl of
the Lorentz force.

Keywords: Magnetic fields (994); Hydrodynamics (1963)

1. INTRODUCTION

The ubiquitousness of dynamo action in various astro-
physical plasmas has been hypothesized since the 1950s,
but faced skepticism due to various anti-dynamo theo-
rems (Cowling 1933; Hide & Palmer 1982). For a long
time, the community focused on large-scale dynamos
in the Sun (Parker 1955; Steenbeck et al. 1966) and
galaxies (Parker 1971; Vainshtein & Ruzmaikin 1971).
With the advance of powerful computers, small-scale
dynamos at the scale of turbulence have received sig-
nificant attention, starting with the early simulations
of Meneguzzi et al. (1981). Kazantsev (1968) provided
the current theoretical understanding of small-scale dy-
namos; see also Kulsrud & Anderson (1992) for an in-
dependent and more detailed derivation. By now, it
is clear that three-dimensional turbulence always leads
to dynamo action when the plasma is sufficiently well
conducting; see Brandenburg & Ntormousi (2023) for a
recent review. This behavior implies that part of the
kinetic energy in turbulence is almost always converted
into magnetic energy.
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Characterizing turbulent dynamos is difficult because
of the unsteady nature of the flow. For steady flows, we
can always formulate an eigenvalue problem, provided
the magnetic field is still weak and unaffected by the
feedback from the Lorentz force, which affects the flow
amplitude. It is even possible to prove that there is no
eigenfunction with a non-vanishing eigenvalue when the
magnetic diffusivity is strictly zero (Moffatt & Proctor
1985). Unsteady flows present a significant complication
because, in that situation, the kinematic growth or de-
cay of the magnetic field is no longer exponential. The
problem becomes approachable if the flow is statistically
steady, i.e., the level of turbulence can remain constant
in time. In such cases, it has been shown that the en-
ergy spectrum grows at all wavenumbers at the same
rate (Subramanian & Brandenburg 2014). This behav-
ior is suggestive of the existence of an eigenfunction of
the type discussed by Kazantsev (1968).

Many flows in astrophysics and plasma physics are not
even statistically steady. Dynamo research in these cases
is still in its infancy. One such situation is gravitational
collapse, where the dynamo problem has been studied
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using various numerical and analytical approaches (e.g.
Sur et al. 2010, 2012; Federrath et al. 2011b; Xu &
Lazarian 2020). The common problem these works face
is identifying dynamo action when other amplification
mechanisms like tangling or compression are also active.
In this context, Brandenburg & Ntormousi (2022) em-
phasized that the Jeans instability drives predominantly
irrotational motions that are unlikely to account for any
dynamo action seen in the simulation.

Kinetic helicity (a measure of the alignment between
velocity and vorticity) is not necessary for dynamo ac-
tion, but if present, it lowers the critical conductiv-
ity needed to overcome the effects of Joule dissipation
(Gilbert et al. 1988). Otherwise, resistive losses prema-
turely convert magnetic energy into heat before it can
reach sufficient strength.

A collapsing flow can produce vorticity through vis-
cosity (especially in shocks), the baroclinic term, and
magnetic fields. However, which of these processes is
active during collapse is currently unknown. To iso-
late effects related to the collapse dynamics, Irshad P
et al. (2025) employed the supercomoving coordinates
of Shandarin (1980), where the conformal time ¢ is re-
lated to the physical time ¢p, through dt = dtyn/a?,
and a(tpn) is the scale factor; see also Martel & Shapiro
(1998) for a detailed presentation of the supercomoving
coordinates in magnetohydrodynamics.

Irshad P et al. (2025) found super-exponential growth
of the magnetic field as a result of the increasing
turnover rate and saturation field strengths in excess
of the expectations from flux freezing. They applied a
solenoidal forcing function with and without kinetic he-
licity. The present work aims to study decaying turbu-
lence, allowing not only for cases without initial kinetic
helicity but also cases with or without initial vorticity
(also called acoustic turbulence).

2. OUR MODEL
2.1. Supercomoving coordinates

We employ supercomoving coordinates using the same
definition of the scale factor as Irshad P et al. (2025),
ie.,

a(t) = (1+s°t2/4)7, (1)

where t is the conformal time, s is a free-fall parameter,
which is related to the free-fall time tg = 7/2s. The
physical time ¢,y is then given by

tlt) = [ a*e)ar. 2)

which is defined in the range 0 <ty < tg.
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The supercomoving coordinates stretch the finite time
singularity at tg to infinity while also limiting the co-
moving magnetic field strength according to

B = a®Byp, (3)

where By, is the physical magnetic field.

2.2. Governing equations

We solve the MHD equations with an isothermal equa-
tion of state, where the pressure p and density p are
related to each other through p = pc? with ¢ = const
being the isothermal sound speed. We apply an initial
velocity field w, which leads to a turbulent evolution. We
also apply an initial seed magnetic field B. To ensure
that B remains solenoidal, we solve for the magnetic
vector potential A so that B = V x A. The evolution
equations for A, u, and p are given by

0A

E:'UJXB‘FT]VQA’ (4)
Du 2 -1
ﬁz—CSVIHp—I—p [a(t) T x B+ V - (2vpS)], (5)
Dlnp
oV ©)

where J = V x B/pg is the current density with pug
being the vacuum permeability, J x B is the Lorentz
force, S the rate-of-strain tensor with the components
Sij = %((')iuj + 8Ju1) — %(LJV -u and v is the kinematic
viscosity.

2.3. Initial conditions and parameters

We consider a cubic domain of size L3 with periodic
boundary conditions. The lowest wavenumber in the
domain is then k; = 27/L. Owing to the use of pe-
riodic boundary conditions, the mass in the domain is
conserved, so the mean density is conserved, which de-
fines our reference density pg = p. In the numerical
simulations, we set ¢ = k1 = pg = 1.

We construct our initial velocity in Fourier space (in-
dicated by a tilde) as u(k) = M(k)S(k). Here,

ko > (k/ ko)

Si(k) =r(k,j) Tt (ko) 7/6°

(7)
where r(k, j) is a Gaussian-distributed random number
with zero mean and a variance of unity for each value
of k and each direction j, kg is the peak wavenumber of
the initial condition, and M is a matrix that consists of
a superposition of a vortical and an irrotational contri-
butions (Brandenburg & Scannapieco 2025):

— C)((SU — ]%Z]%j + O‘i];‘kGijk) + (icil;:j,

M;;(k) = (1 (8)
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where 0 < ¢ < 1 quantifies the irrotational fraction and
0 < o < 1 the helicity fraction. The extreme cases
¢ = 0 and ¢ = 1 correspond to vortical and irrota-
tional flows, respectively, while ¢ = 0 and ¢ = 1 corre-
spond to nonhelical and helical fields, respectively. The
shell-integrated kinetic energy spectrum, Ek(k), which
is normalized such that [ Ex(k)dk = po(u?/2), is ini-
tially oc k* for k < ko and o k=5/3 for k > ky. The
magnetic energy spectrum Fy(k) is normalized such
that [ En(k)dk = (B?/2p0) and initially of the same
shape as Fx(k). We also compute the vortical en-
ergy spectrum FEvy(k), which is normalized such that
[K2Ey(k)dk = po{w?/2), where w = V x u is the
vorticity.

It is often convenient to express our results not in code
units, where ¢ = k1 = pg = 1, but in units of ug and
ko. Here, ug = (u?)'/? is the initial rms velocity. We
also define a nondimensional magnetic field as

Bi = Bi/(popoug)'’?, (9)
where i = z,y, z refers to the three components, and
i = rms or ¢ = ini refer to the rms values of the magnetic
field at the actual or the initial time, respectively. We
also define the Mach and magnetic Reynolds numbers
based on the initial velocity, Mag = ug/cs and Rey =
ug/nko, respectively. The Mach number at the actual
time is denoted by Ma. As a nondimensional measure
of s, we define S = s/ugkp. When § < 1 (S > 1), the
collapse is slower (faster) than the turnover rate of the
turbulence.

In the following, we vary the input parameters S, (,
ko/k1, Ma, Rey, and Biy;. In all cases presented below,
the magnetic Prandtl number is unity, i.e., v/n = 1.

In the following, we display the conformal time in
units of the initial turnover time, (ugko)~!, where ug
is the initial rms velocity. As in Brandenburg & Ntor-
mousi (2022), we monitor the vortical and irrotational
contributions to the turbulence, wyms = (w?)*/? and
(V- u)ms = (V- u)2>1/2, in terms of the quantities
that have the dimension of a wavenumber,

kV-u = (V . u)rms/urmS7 (10)

(1)

These two values are expected to scale with kg, which is
why we usually present the ratios kwv..,/ko and ke, /ko.
We use for all simulations the PENCIL CODE (Pencil
Code Collaboration et al. 2021). The resolution is either
5123 or 10243, as indicated in Table 1, where we summa-
rize all runs discussed in this paper. While higher resolu-
tion leads to more accurate results, the lower resolution

kw = wrms/urms-
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Figure 1. S = 0.1 (black lines), 0.6 (blue lines), 2.8

(green lines), 11 (orange lines), and 56 (red lines). Solid
(dashed) lines refer to cases with (without) initial kinetic
helicity. For the nonhelical runs (dashed lines), the values
of ug are slightly smaller, so S is correspondingly larger; see
Table 1. Runs 3-7 and Runs 10-14.

computations produce qualitatively similar results; com-
pare, for example, Runs 19 and 32, which have the same
parameters. Both runs have almost the same vorticity
and magnetic field evolution, but the lower resolution
run has a slightly deeper minimum of k,,/kq, which re-
sults in a larger value of Aln(k, /ko).

3. RESULTS
3.1. Growth vs physical and conformal time

We have performed runs with different values of S us-
ing either helical (¢ = 1) or nonhelical (¢ = 0) tur-
bulence, sometimes without irrotational contributions
(¢ =0). Figure 1 shows that the larger the value of S,
the larger the final magnetic field strength. This is be-
cause the effective Lorentz force in Equation (5), aJ x B,
diminishes more rapidly with time when S is larger, al-
lowing the magnetic field to continue growing further.
In supercomoving coordinates, the initial growth rate of
the magnetic field is not affected by the value of S. How-
ever, the growth rate is larger with than without kinetic
helicity. On the other hand, at later times, when the
magnetic field decays, the values are similar regardless
of the presence of kinetic helicity.

In physical time, the magnetic field shows a steep in-
crease just toward the end of the collapse; see Figure 2.
Interestingly, the runs with large values of S, which pro-
duce the strongest comoving magnetic fields, now yield
the weakest physical fields when comparing the runs at
the same fractional collapse time. This is because for the
runs with large values of S, the free-fall time is short, so
the fractional times are larger, which effectively inter-
changes the order of the curves. This is demonstrated



Table 1. Summary of the runs discussed in this paper. Here we list the nondimensional parameter S; the physical values in
code units are s/csk1 = 0.2, 1, 5, 20, and 100. Column 7 gives Rem (Re) for magnetic (nonmagnetic) runs. Dashes in columns 8-
10 indicate the 8 nonmagnetic runs. For magnetic runs, dashes in columns 9 and 10 indicate decay. Run 39 corresponds to
Run B of Brandenburg & Ntormousi (2022) and is discussed in Section 4.

Run § o (¢ ko/ki Mag Rewm (Re) Bini AlnB X uoko Aln(k,/ko) (kw/ko)max resol.
1 01 1 0 10 0.18 1840 23%x107%  8.33 0.52 0.39 7.09 5123
2 01 1 o0 10 0.18 1840 23%x107°  6.62 0.52 0.39 7.09 5123
3 01 1 0 10  0.18 1840 2.3x107%  1.88 1.00 0.31 6.46 5123
4 06 1 0 10  0.18 1840 23x107%2 221 1.03 0.22 5.93 5123
5 28 1 0 10 0.18 1840 23%x1072  3.56 1.03 0.30 6.43 5123
6 11 1 0 10 0.18 1840 23x107% 477 1.03 0.36 6.82 5123
7 5 1 0 10 0.18 1840 23 %1072  5.96 1.03 0.39 7.04 5123
8 02 0 0 10 0.13 1300 3.3x107%  4.27 0.37 0.33 6.97 5123
9 02 0 0 10 0.13 1300 3.3x107°  4.22 0.37 0.33 6.97 5123
10 02 0 O 10 0.13 1300 3.3x 1072 1.49 0.97 0.14 5.70 5123
11 08 0 O 10 0.13 1300 3.3x1072  1.92 0.97 0.17 5.91 5123
12 38 0 0 10 0.13 1300 3.3x1072  3.03 0.98 0.29 6.66 5123
13 15 0 0 10 0.13 1300 3.3x1072  3.75 0.98 0.33 6.92 5123
4 77 0 0 10 0.13 1300 3.3x1072  4.12 0.98 0.33 6.97 5123
15 0.2 0 010 10 0.12 1170 3.6x1072 141 0.34 0.11 5.50 5123
16 0.2 0 050 10 0.08 800 54x1072  1.04 0.25 0.00 4.00 5123
17 0.2 0 090 10 0.08 840 51x1072  0.31 0.04 0.25 0.94 5123
18 0.2 0 095 10  0.09 880 49%x1072  0.05  0.003 0.28 0.47 5123
19 0.2 0 096 10  0.09 880 4.8 %1072  0.02  0.001 0.26 0.38 5123
20 0.2 0 0.97 10 0.09 890 4.8 x 1072 — — 0.21 0.29 5123
21 02 0 098 10 0.09 900 4.7 x 1072 — — 0.13 0.20 5123
22 02 0 099 10 0.09 910 4.7 x 1072 — — 0.20 0.16 5123
23 02 0 1 10  0.09 920 4.6 x 1072 — — 0.30 0.14 5123
24 01 0 1 20  0.09 920 — — — 0.01 0.07 10243
25 02 0 1 10 0.09 930 — — — 0.03 0.05 10243
26 04 0 1 5 0.09 940 — — — 0.38 0.04 10243
27 10 0 1 2 0.10 950 — — — 1.27 0.03 10243
28 05 0 0.95 10 0.04 220 — — — 0.09 0.23 5123
29 01 0 095 10 0.18 890 — — — 0.31 0.71 10243
30 01 0 095 10 027 1330 — — — 0.43 1.00 10243
31 01 0 095 10 0.36 1780 — — — 0.51 1.31 10243
32 02 0 096 10 0.09 900 49 %1072  0.02  0.001 0.17 0.38 10243
33 02 0 096 10 0.09 1800 49x107% 012  0.004 0.28 0.53 10243
34 02 0 096 10 0.09 4500 49%x1072 051  0.008 0.53 0.79 10243
35 02 0 1 10  0.09 1870 9.4 x 1073 — — 0.03 0.07 10243
36 02 0 1 10  0.09 1870 2.4 x 1072 — — 0.17 0.09 10243
37 02 0 1 10  0.09 1870 4.7 x 1072 — — 0.34 0.21 10243
383 02 0 1 10 0.09 1870 9.4 x 1072 — — 0.25 0.48 10243
39 04 1 0 10 0.19 190 2.3x 1077 8.32 0.42 0.01 4.29 20483
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Figure 2. Same as Figure 1, but in physical units. Time

is here normalized by the free-fall time. The black and blue
dots on the black and blue curves denote the time until which
the growth in Figure 1 was still approximately exponential.
The inset shows the same, but now time is normalized by
the initial turnover time. Runs 3—7 and Runs 10-14.

235 in the inset of Figure 2, where we show the same data,
236 but now with time in units of the initial turnover time.
2 In Figure 2, we have also indicated the times where
238 the initial exponential growth of the comoving magnetic
239 field with conformal time terminates. For & = 0.1 and
20 0.6, Brms/a? has hardly increased by an order of magni-
o tude. In particular, the growth of Byys/a? versus phys-
a2 ical time is not super-exponential, as claimed by Irshad
23 P et al. (2025). Only for larger values of S is the growth
a4 SUper-exponential in physical coordinates, and exponen-
s tial in comoving coordinates. For & > 2.8, the times
26 when exponential growth in comoving coordinates ter-
27 minates are outside the plot range of Figure 2.

28 Given that the only effect of the collapse is on the
x9 Lorentz force, it is clear that the kinematic phase is com-
a0 pletely independent of the collapse. This is shown quan-
a1 titatively in Figure 3, where we see the magnetic field
22 growth for different initial field strengths. For weak ini-
253 tial fields, the comoving magnetic field grows by more
4 than three orders of magnitude. It could grow more
25 strongly if the magnetic Reynolds number were larger.
6 The growth is only limited by the competition between
7 magnetic field amplification by the flow and the simul-
28 taneous decay of the flow. Similar results were already
250 reported in Brandenburg et al. (2019), but without col-
260 lapse dynamics (a = 1).

261 3.2. Effect of the Lorentz force

%2 As we have seen from Figure 3, when the initial mag-
263 netic field strength is large, the early exponential growth
4 diminishes more rapidly. This is the result of the effec-
265 tive Lorentz force in Equation (5) becoming comparable

Figure 3. Same as Figure 1, but for 3 different initial field
strengths. Runs 1-3 and Runs 8-10.

»6 with the inertial term, which implies (Irshad P et al.
267 2025)

268 a'?Bins S Urmsr/ 1000 - (12)

This is demonstrated in Figure 4(a), where we compare
0 the evolution of a'/2B, s with that of tpms Jug for the
on same runs as those of Figures 1 and 2.

a» We see that Equation (12) is well obeyed for all runs.
21 The largest values of /2B,y are obtained for the runs
with small values of S. The effect of kinetic helicity is
here surprisingly weak and the values of a'/2B,, are
only slightly smaller for the nonhelical runs than for
the helical ones. For larger values of S, on the other
hand, the differences between helical and nonhelical runs
2o are much larger and we see that the decay of al/? is
280 well overcompensated by the growth of B¢ so that the
product al/ 2Byms still shows a strong increase later in
22 the evolution; see Figure 4(b), where we plot separately
23 the evolutions of a'/2 and Byps.

20 We also see that for large values of S (short free-fall
times), a'/?B,ys decays at early times and only shows
26 growth after that. This is opposite to the case of small
values of S and simply because at early times, a'/? de-
cays faster than the exponential growth of B,.s. Only
somewhat later, for 2 < tugky < 10, exponential growth
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200 prevails.

201 3.3. Critical vorticity

22 Numerical simulations have demonstrated in the past
203 that vorticity is an important ingredient of dynamos
200 (Haugen et al. 2004; Federrath et al. 2011a). Achikanath
25 Chirakkara et al. (2021) did report dynamo action for
206 purely irrotational driving, but this could perhaps still
207 be explained by some residual vorticity in their simula-
208 tioms.
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Figure 4. (a) Similar to Figure 1, but now a'/?Bems

(thicker lines) and the instantaneous rms velocity (thinner
lines) are plotted. The order of the colors is the same as
before, with black being for & = 0.2 and red for S = 56, and
solid (dashed) lines refer to helical (nonhelical) initial flows.
(b) Evolution separately for a'/? (dashed-dotted lines) and
Brms (solid lines), again with the same colors as before with
black being for S = 0.2 and red for S = 56. Runs 3-7 and
Runs 10-14.

20 The apparent necessity of vorticity may be a limita-
s00 tion of current simulations, whose maximum magnetic
sn Reynolds number may still not be large enough, because
sz theoretically, small-scale dynamo action should also be
303 possible for irrotational turbulence (Kazantsev et al.
¢ 1985; Martins Afonso et al. 2019). We can study this
s here in more detail by varying the value of ¢. In Fig-
06 ure 5 we plot the evolution of k.., /ko and B,y for runs
sor with Rey = 900 and several values of €. It is only when
w8 ( is very close to unity that dynamo action ceases. This
00 suggests that very small amounts of vorticity can suffice
a0 for successful dynamo action. The steady increase of
s kv.u/ko, which was also seen in the work of Branden-
sz burg & Ntormousi (2022), is just a consequence of the
a3 more rapid decay of (V - u)ms compare t0 tpms.

su In Figure 6 we focus on several more values close to
a1s unity and find that for Rey = 880, the critical value
aie of ¢ is around 0.96. For larger values of (, there is no
sir growth; see Runs 20-23 and Runs 35-38. However, the
ais critical value of 1 —( decreases with increasing magnetic
si9 Reynolds number. For larger values of Reyr, smaller
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Figure 5. kv.u/ko (upper panel) and Bims (lower panel)

for ¢ = 0.1 (red), 0.5 (orange), 0.9 (green), 0.95 (blue), and
1 (black). Runs 15-18 and Run 23.

30 amounts of vorticity suffice for dynamo action. This is
shown in Figure 7, where we compare runs for ¢ = 0.96
with different values of Reyy = 900, 1800, and 4500,
using 10243 meshpoints. This value of ¢ led to a vor-
ticity that was the marginal value for obtaining growing
magnetic fields for Reyy = 900. We see that, as we in-
226 crease Reyr, the episode of growth becomes longer and
327 the maximum magnetic field larger.

28 It is of interest to define a Reynolds number based on
the vorticity as (Haugen et al. 2004; Elias-Lépez et al.
0 2023, 2024)

331 Rew = wrms/ukg, (13)
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s2 and to compute the critical value above which dynamo
action occurs. Looking at Table 1, we see that the
s threshold of ¢ between 0.96 and 0.97 corresponds to
s Ky, /ko = 0.38 and 0.29, respectively, and with Rey =
s 900, the critical value is Pry Re,, = (K, /ko) Rem =~ 300.
37 This value is rather large, but it is unclear whether the
33 dynamo onset is indeed determined predominantly by
s Re,. If dynamos do indeed work for purely acoustic
turbulence ({ = 1), as found by Achikanath Chirakkara
sa et al. (2021), the dynamo onset could not depend on
32 Re,, alone.
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3 3.4. Effect of scale separation

s We have seen from Figure 6 that for very small val-
us ues of 1 — (, the expected approach of k,, to zero slows
us down in the sense that the values are almost the same
s for ( = 1 and ¢ = 0.99, and that for ( = 0.98 is fur-
us ther away. To check whether this is a consequence of
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0.03 compare with the magnetic run with Rem = 900. Runs 24—
0.030 27.
0 <0 4% B 60 80 355 times. When we decrease the scale separation ratio to
UplCoy

36 ko/k1 = 2, the run shows vigorous fluctuations. They
37 may indicate that the numerical resolution becomes in-

Figure 6. k,/ko (upper panel) and Bims (lower panel) for . sufficient.
1 (dotted black), 0.99 (solid black), 0.98 (blue), 0.97 (green),
0.96 (orange), and ¢ = 0.95 (red). Runs 18-23. 350 3.5. Growth of vorticity

w0 In Figure 6, we have seen that for { = 0.95, there
1 can be growth of &k, by a certain amount. It is possible
s2 that this is caused either by magnetic driving (Kahni-
ashvili et al. 2012) or by what is known as magnetically
ss¢ assisted vorticity production (Brandenburg & Scanna-
pieco 2025). It is therefore also useful to compare with
the purely hydrodynamic case; see Table 1.
7 For an isothermal gas, there is no baroclinic term,
which would be the main agent for producing vorticity
in nonisothermal flows. There is also no rotation nor
shear, both of which could lead to vorticity generation
sn (Del Sordo & Brandenburg 2011; Elias-Lopez et al. 2023,
2024). There remain only three possibilities for driving
or amplifying vorticity: (i) through viscosity via gra-
dients of the velocity divergence being inclined against
density gradients, (ii) through magnetic driving or mag-
3 ) ) ) ) ) ) — s netically assisted vorticity production (Brandenburg &
0 20 40 60 80 100 120 140 w7 Scannapieco 2025), and (iii) through nonlinearity.
t upky s The growth of vorticity through nonlinearity may be

motivated by the formal analogy with the induction

Figure 7. ko /ko (upper panel) and Bims (lower panel) equation when the magnetic field is replaced by the vor-

for Rem = 900 (black), 1800 (blue), and 4400 (green). The s ticity w, le.,

frequency of the oscillations is w = 15. The resolution is in e

all cases 1024® mesh points. Runs 32-34. . 5 =V X (u X w) + Wyise + Wmag> (14)
o finite scale separation, i.e., the ratio between the lowest 15 where wyise = (V2w + V x G) is the curl of the vis-
30 wavenumber of the domain and the value of kg not being s cous acceleration with G; = 25;;V;In p being a vector
s large enough, we present in Figure 8 runs with different s characterizing the driving of vorticity even if it was van-
32 values of kg. As expected, we see that k, scales with s ishing initially (Mee & Brandenburg 2006; Brandenburg
3 ko, so the ratio k/ko varies only little and lies in the s & Scannapieco 2025), and Wmag = V x (J x B/p) is the
s range 0.01 <k, /ko < 0.02 after about 10-30 turnover 38 vorticity driving from the curl of the Lorentz force.
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Figure 9. Evolution of k. /ko for different Mach numbers.
Runs 28-31.

1.0 E
i E Ma'® Mag'84
< ]
0.1 . . .
0.01 0.10 1.00
Ma and Ma,
Figure 10. Scaling of k., /ko with the actual and initial

Mach numbers, Ma and Mag, respectively. The slopes are
1.6 and 0.84, respectively. Runs 28-31.

0 The analogy between induction and vorticity equa-
s00 tions is obviously imperfect, because the velocity is
so1 here directly related to the vorticity. This analogy has
32 been invoked by Batchelor (1950) to explain dynamo ac-
s03 tion, but here we rather use it to motivate the question
s whether vorticity can be amplified.

s To distinguish between the various possibilities, we
s must vary the viscosity, the Mach number, and the
s7 initial magnetic field strength. One important clue is
s given by the fact that the occurrence of vorticity de-
30 pends on the Mach number of the turbulence. This is
w00 demonstrated in Figure 9, where we plot the evolution
s of ky/ko for different Mach numbers. Figure 10 shows
w02 that k,, scales with the actual and initial Mach numbers,
w03 Ma and May, respectively. The slopes for both scalings
s are different, and somewhat shallower than the nearly
ws quadratic scaling found by Federrath et al. (2011a).

ws In all our runs, k,/ko reaches a maximum at some
a7 point. For runs 15-18, we see that (ky /ko)max increases
w8 with increasing values of By,;; see Figure 11. Figure 12
a0 shows that this increase is linear and not quadratic,
a0 which means that the vorticity is magnetically driven
aun rather than due to magnetically assisted growth; see

hxnmghnmmhnnm T

T T [T

TEVETItn

L L L L L

0 5 10 15 20 25 30
t ugk,
Figure 11. ko /ko for hydromagnetic runs with ¢ =

1, Rem = 1900, and different magnetic field strengths.
Runs 35-38.

1.00 j j

T T T T
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~3B.
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T
Lol

0.01 . .
0.01

Figure 12. Dependence of the maximum of k. /ko on Bini
for hydromagnetic runs with ¢ = 1, Rem = 900, and different
magnetic field strengths. The straight line indicates a linear
relationship. Runs 35-38.

a2 Brandenburg & Scannapieco (2025) for details on this
a3 distinction. As seen from Table 1, the magnetic field
s decays for these runs, so there is no dynamo action.

a15 3.6. Spectral evolution

ns In Figure 13, we show the evolution of Ex(k,t),
ar By (k,t), and Eyp(k,t) for Run 34. This is our run with
s the largest magnetic Reynolds number (Rey = 4500)
a0 and has only 4% vorticity (¢ = 0.96), but shows clear
20 dynamo action. Its time trace is shown in Figure 7.

= We see that both Ex(k,t) and Ev(k,t) decay, while
2 By (k, t) increases both at large and small wavenumbers.
23 Overall, Ev (k) is almost a hundred times smaller than
o Ex(k,t), but, similarly to Ey(k,t), Ev(k) also shows a
w25 small temporal increase at small values of k. This is sug-
w6 gestive of magnetic vorticity production via an inverse
w2 cascade. Also, although Py (k,t) decays in the inertial
w8 range, it bulges at k/ky = 4, which appears to be a
a9 direct consequence of magnetic driving.

430 3.7. Instantaneous growth rate
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the next one, for which Em (k) is still very similar.

a1 For the magnetic energy to grow, the induction term
2 u X B in Equation (4) has to overcome the dissipation
.3 term. In the evolution equation for the mean magnetic
a energy density, En(t) = (B?/2u), the term

435 <J . (u X B)> = —WL (15)

w3 has to exceed the Joule dissipation, Qn = (ponJ?). The
.7 instantaneous growth rate of magnetic energy can then
s be written as v = (=Wr, — Qm)/Em. The first term,
a3 which can also be written as Wy, = (u - (J x B)), is
w0 the work done by the Lorentz force. When it is nega-
a1 tive, kinetic energy is used to drive magnetic energy; see
w2 Equation (15).

w3 Brandenburg & Ntormousi (2022) made use of the fact
s that in two dimensions (2D), when no action is possible,
us Equation (4) can be written as an advection—diffusion
ws equation, i.e., DA/Dt = nV2A, where A is the compo-
w7 nent of A that is normal to the 2D plane. This moti-
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Figure 14. Evolution of the pseudo growth rate v (black
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ual v — y2p (red lines), for Runs 23 (a), 32 (b), and 34 (c).

vated them to decompose W1, by expanding B =V x A
to get

—(J-(uxB)) = (Jiu;(Ai;— A;;) = WP+ WP (16)

Here, the first term is related to the advection term. The
second term, WP = —(J;u;A; ;), vanishes in 2D. Thus,
they identified WP with a contribution that character-
izes the 3D nature of the system and used it as a proxy
for dynamo action when it is large enough. They thus
defined

Yoo = —(WEP + Qm)/Em, 3o = —WEP/Em, (17)
so that vep + vsp = 7.

In Figure 14, we plot the time dependences of v, vqop,
and y3p = v — y2p for Runs 23 (no dynamo, because
k,, is too small), 32 (weak dynamo), and 34 (strong dy-
namo, Rey is the largest). We see that ~op is always
negative, except during an early phase for Run 34, which
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but the images have been stretched in the horizontal direction to take advantage of the full page size.

can be associated with strong 2D tangling of the initial
magnetic field. When v3p is added to ~sp, the resulting
instantaneous growth rate is positive during the early
part of the evolution of Run 32 and during the entire

evolution of Run 34.

469 3.8. Visualizations

wo  In Figure 15, we present visualizations of B, w, /ugko,
m and V-u/ugko for Run 37 at early and late times. There
a2 is no significance in us having chosen the z component
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Physical magnetic field By, (dashed red lines) and its comoving counterpart a?Bpn (black lines) versus physical

time (a) and conformal time (b) for Run B from Brandenburg & Ntormousi (2022) and Run 39 of the present paper.

of B and w; all three components are statistically equiv-
alent.

The magnetic field appears to preserve its initial
length scale corresponding to k = kg, and only the field
strength becomes weaker with time. By contrast, the
vorticity quickly develops small-scale patches that then
grow to larger-scale patches at later times. Note also
that the magnitude of w,/upko (about 0.01) is compa-
rable to that of B,. This is reminiscent of the findings of
Kahniashvili et al. (2012), who reported a quantitative
agreement between the spectra of vorticity and magnetic
field.

For the velocity divergence, there is a much larger
decrease from the time tugkq = 3 to tugky = 30. As
stated above, the compressive part of the velocity field,
which is reflected in the values and the appearance of V-
u, decreases more strongly with time than the vortical
part, as reflected through the vorticity. We also see that,
although the initial scales are rather small, they still
seem to be sufficiently well resolved.

4. COMPARISON WITH PREVIOUS WORK

In our earlier paper (Brandenburg & Ntormousi 2022),
we simulated gravitational collapse using numerical sim-
ulations of decaying turbulence in a Jeans-unstable do-
main at a resolution of 20482 mesh points. We only
found a weak increase of the magnetic field with time.
Given the knowledge of the collapse time from the sim-
ulations, we can replace the pressure-less free-fall time
by the actual collapse time and express the evolution of
the rms magnetic field in comoving coordinates. This al-
lows us to see whether the growth is close to exponential
during any time interval.

The result is shown in Figure 16, where we computed
the conformal time and scale factor numerically based
on Equation (1). Here we used the empirical value of
tg ~ 2.016/csk1, which yields s &~ 0.78 ¢skg, and thus,
since ug/cs = 0.19 and ko/k; = 10, we have S ~ 0.4;
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see Table 1, where it is called Run 39. The physical
values of the magnetic field are denoted by B,,. We
also plot the comoving values a?Bpy, both versus physical
and conformal time. Although there is a steady increase
of Byms, Figure 16(b) shows that the comoving magnetic
field does not follow an exponential growth in conformal
time, except for a very early time in the during 0 <
t’u,okio S 0.4.

To understand why the exponential phase is so short
in this run, we compare its parameters with those of the
other runs presented in this paper; see Table 1. The
closest match is with Run 1. We see immediately that
the main problem with Run 39 is the small value of the
magnetic Reynolds number, which is 10 times smaller
than that of Run 1. In spite of the high resolution of
Run 39, the value of Rey could not have been chosen
larger because of the strong compression and large gradi-
ents suffered by the collapsing regions toward the end of
the run. This highlights the main advantage of choosing
supercomoving coordinates for collapse simulations.

5. CONCLUSIONS

When describing gravitational collapse in superco-
moving coordinates, the governing equations of magne-
tohydrodynamics are similar to the original ones, except
that now the scale factor appears in front of the Lorentz
force. This reduces the effective Lorentz force, because
a(t) becomes progressively smaller with time. Therefore,
in the limit of very short collapse times or large values
of s, the evolution approaches essentially the kinematic
evolution. This, however, does not mean unlimited con-
tinual growth, because the rms value of the turbulent
intensity is declining.

As shown previously (Brandenburg et al. 2019), de-
caying turbulence leads to an episode of exponential
growth if the magnetic Reynolds number is large enough.
The larger it is, the longer is the episode of exponential
growth. This is essentially the result of a competition
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12

against the decay of turbulence, which lowers the instan-
taneous value of the magnetic Reynolds number as time
goes on. The gravitational collapse changes this picture
only little if we view the decay in supercomoving coor-
dinates, because the collapse only affects the nonlinear
dynamics, and this nonlinearity gets weaker with time.

In the work of Irshad P et al. (2025), forced turbulence
was considered. Therefore, the magnetic field could al-
ways be sustained, but the source of such driving re-
mains unclear. The superexponential growth that they
reported, however, it still recovered in our decay simula-
tions, unless the free-fall time is longer than the turnover
time of the turbulence. In that case, the growth is ac-
tually subexponential.

Our present work has also shown that even very small
amounts of vorticity can be sufficient to facilitate dy-
namo action. In particular, we find that the vorticity
can grow in concert with the magnetic field.

Earlier work on turbulent collapse and dynamo action
has suggested that gravitational collapse drives turbu-
lence and enhanced it (Sur et al. 2012; Xu & Lazar-
ian 2020; Hennebelle 2021). Our work casts doubt on
this interpretation, because of two aspects. First, the
collapse dynamics reduces the effective nonlinearity, re-
sulting in stronger apparent field amplification by the
turbulence, and second, there can be generation of vor-
ticity both from viscosity and from the magnetic field
itself. It should therefore be checked, whether these
factors could have contributed to the earlier findings of
collapse-driven turbulence.

As explained in Section 4, the transformation to su-
percomoving coordinates may also help analyzing exist-
ing simulations in physical coordinates. We argue that
for homogeneous collapse simulations that do not utilize
supercomoving coordinates, it is still useful to express
such results in terms of comoving quantities and confor-
mal time, because they might display exponential mag-
netic field growth that would be the perhaps strongest
indication of dynamo action so far.
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Our work has applications not just to interstellar
clouds and primordial star formation (e.g., Schleicher
et al. 2009; Hirano & Machida 2022; Sharda et al. 2020),
but also to larger cosmological scales. Our results show
that small amounts of vorticity might suffice to produce
dynamo action even in decaying turbulence. This con-
sideration is important for understanding magnetism in
protohalos before the first stars form and their feed-
back drives sufficient turbulence for dynamo action (e.g.,
Schleicher et al. 2010).

Finally, our findings indicate that earlier simulations,
including our own high-resolution simulations at 20483
meshpoints, may still have had insufficient resolution to
follow the collapse and should be revisited using more
idealized settings that allow the usage of a comoving
frame.
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Software and Data Availability. The source code used
for the simulations of this study, the PENCIL CODE
(Pencil Code Collaboration et al. 2021), is freely avail-
able on https://github.com/pencil-code. The simula-
tion setups and corresponding input and reduced output
data are freely available on http://norlx65.nordita.org/
~brandenb /projects/ascale-collapse.
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