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ABSTRACT7

The question of whether a dynamo can be triggered by gravitational collapse is of great interest, es-8

pecially for the early Universe. Here, we employ supercomoving coordinates to study the magnetic field9

amplification from decaying turbulence during gravitational collapse. We perform three-dimensional10

simulations and show that for large magnetic Reynolds numbers, there can be exponential growth11

of the comoving magnetic field with conformal time before the decay of turbulence impedes further12

amplification. The collapse dynamics only affects the nonlinear feedback from the Lorentz force, which13

diminishes more rapidly for shorter collapse times, allowing nearly kinematic continued growth. We14

confirm that helical turbulence is more efficient in driving dynamo action than nonhelical turbulence,15

but this difference decreases for larger collapse times. We also show that for nearly irrotational flows,16

dynamo amplification is still possible, but it is always associated with a growth of vorticity—even if it17

still remains very small. In nonmagnetic runs, the growth of vorticity is associated with viscosity and18

grows with the Mach number. In the presence of magnetic fields, vorticity emerges from the curl of19

the Lorentz force.20

Keywords: Magnetic fields (994); Hydrodynamics (1963)21

1. INTRODUCTION22

The ubiquitousness of dynamo action in various astro-23

physical plasmas has been hypothesized since the 1950s,24

but faced skepticism due to various anti-dynamo theo-25

rems (Cowling 1933; Hide & Palmer 1982). For a long26

time, the community focused on large-scale dynamos27

in the Sun (Parker 1955; Steenbeck et al. 1966) and28

galaxies (Parker 1971; Vainshtein & Ruzmaikin 1971).29

With the advance of powerful computers, small-scale30

dynamos at the scale of turbulence have received sig-31

nificant attention, starting with the early simulations32

of Meneguzzi et al. (1981). Kazantsev (1968) provided33

the current theoretical understanding of small-scale dy-34

namos; see also Kulsrud & Anderson (1992) for an in-35

dependent and more detailed derivation. By now, it36

is clear that three-dimensional turbulence always leads37

to dynamo action when the plasma is sufficiently well38

conducting; see Brandenburg & Ntormousi (2023) for a39

recent review. This behavior implies that part of the40

kinetic energy in turbulence is almost always converted41

into magnetic energy.42

Characterizing turbulent dynamos is difficult because43

of the unsteady nature of the flow. For steady flows, we44

can always formulate an eigenvalue problem, provided45

the magnetic field is still weak and unaffected by the46

feedback from the Lorentz force, which affects the flow47

amplitude. It is even possible to prove that there is no48

eigenfunction with a non-vanishing eigenvalue when the49

magnetic diffusivity is strictly zero (Moffatt & Proctor50

1985). Unsteady flows present a significant complication51

because, in that situation, the kinematic growth or de-52

cay of the magnetic field is no longer exponential. The53

problem becomes approachable if the flow is statistically54

steady, i.e., the level of turbulence can remain constant55

in time. In such cases, it has been shown that the en-56

ergy spectrum grows at all wavenumbers at the same57

rate (Subramanian & Brandenburg 2014). This behav-58

ior is suggestive of the existence of an eigenfunction of59

the type discussed by Kazantsev (1968).60

Many flows in astrophysics and plasma physics are not61

even statistically steady. Dynamo research in these cases62

is still in its infancy. One such situation is gravitational63

collapse, where the dynamo problem has been studied64
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using various numerical and analytical approaches (e.g.65

Sur et al. 2010, 2012; Federrath et al. 2011b; Xu &66

Lazarian 2020). The common problem these works face67

is identifying dynamo action when other amplification68

mechanisms like tangling or compression are also active.69

In this context, Brandenburg & Ntormousi (2022) em-70

phasized that the Jeans instability drives predominantly71

irrotational motions that are unlikely to account for any72

dynamo action seen in the simulation.73

Kinetic helicity (a measure of the alignment between74

velocity and vorticity) is not necessary for dynamo ac-75

tion, but if present, it lowers the critical conductiv-76

ity needed to overcome the effects of Joule dissipation77

(Gilbert et al. 1988). Otherwise, resistive losses prema-78

turely convert magnetic energy into heat before it can79

reach sufficient strength.80

A collapsing flow can produce vorticity through vis-81

cosity (especially in shocks), the baroclinic term, and82

magnetic fields. However, which of these processes is83

active during collapse is currently unknown. To iso-84

late effects related to the collapse dynamics, Irshad P85

et al. (2025) employed the supercomoving coordinates86

of Shandarin (1980), where the conformal time t is re-87

lated to the physical time tph through dt = dtph/a
2,88

and a(tph) is the scale factor; see also Martel & Shapiro89

(1998) for a detailed presentation of the supercomoving90

coordinates in magnetohydrodynamics.91

Irshad P et al. (2025) found super-exponential growth92

of the magnetic field as a result of the increasing93

turnover rate and saturation field strengths in excess94

of the expectations from flux freezing. They applied a95

solenoidal forcing function with and without kinetic he-96

licity. The present work aims to study decaying turbu-97

lence, allowing not only for cases without initial kinetic98

helicity but also cases with or without initial vorticity99

(also called acoustic turbulence).100

2. OUR MODEL101

2.1. Supercomoving coordinates102

We employ supercomoving coordinates using the same103

definition of the scale factor as Irshad P et al. (2025),104

i.e.,105

a(t) = (1 + s2t2/4)−1, (1)106

where t is the conformal time, s is a free-fall parameter,107

which is related to the free-fall time tff = π/2s. The108

physical time tph is then given by109

tph(t) =

∫ t

0

a2(t′) dt′, (2)110

which is defined in the range 0 ≤ tph ≤ tff .111

The supercomoving coordinates stretch the finite time112

singularity at tff to infinity while also limiting the co-113

moving magnetic field strength according to114

B = a2Bph, (3)115

where Bph is the physical magnetic field.116

2.2. Governing equations117

We solve the MHD equations with an isothermal equa-118

tion of state, where the pressure p and density ρ are119

related to each other through p = ρc2s with cs = const120

being the isothermal sound speed. We apply an initial121

velocity field u, which leads to a turbulent evolution. We122

also apply an initial seed magnetic field B. To ensure123

that B remains solenoidal, we solve for the magnetic124

vector potential A so that B = ∇ ×A. The evolution125

equations for A, u, and ρ are given by126

∂A

∂t
= u×B + η∇2A, (4)127

128

Du

Dt
= −c2s∇ ln ρ+ ρ−1 [a(t)J ×B +∇ · (2νρS)] , (5)129

130

D ln ρ

Dt
= −∇ · u, (6)131

where J = ∇ × B/µ0 is the current density with µ0132

being the vacuum permeability, J × B is the Lorentz133

force, S the rate-of-strain tensor with the components134

Sij =
1
2 (∂iuj + ∂jui)− 1

3δij∇ ·u and ν is the kinematic135

viscosity.136

2.3. Initial conditions and parameters137

We consider a cubic domain of size L3 with periodic138

boundary conditions. The lowest wavenumber in the139

domain is then k1 ≡ 2π/L. Owing to the use of pe-140

riodic boundary conditions, the mass in the domain is141

conserved, so the mean density is conserved, which de-142

fines our reference density ρ0 ≡ ρ. In the numerical143

simulations, we set cs = k1 = ρ0 = 1.144

We construct our initial velocity in Fourier space (in-145

dicated by a tilde) as ũ(k) = M(k)S(k). Here,146

Sj(k) = r(k, j)
k
−3/2
0 (k/k0)

1 + (k/k0)17/6
, (7)147

where r(k, j) is a Gaussian-distributed random number148

with zero mean and a variance of unity for each value149

of k and each direction j, k0 is the peak wavenumber of150

the initial condition, and M is a matrix that consists of151

a superposition of a vortical and an irrotational contri-152

butions (Brandenburg & Scannapieco 2025):153

Mij(k) = (1− ζ)(δij − k̂ik̂j + σik̂kϵijk) + ζk̂ik̂j , (8)154
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where 0 ≤ ζ ≤ 1 quantifies the irrotational fraction and155

0 ≤ σ ≤ 1 the helicity fraction. The extreme cases156

ζ = 0 and ζ = 1 correspond to vortical and irrota-157

tional flows, respectively, while σ = 0 and σ = 1 corre-158

spond to nonhelical and helical fields, respectively. The159

shell-integrated kinetic energy spectrum, EK(k), which160

is normalized such that
∫
EK(k) dk = ρ0⟨u2/2⟩, is ini-161

tially ∝ k4 for k < k0 and ∝ k−5/3 for k > k0. The162

magnetic energy spectrum EM(k) is normalized such163

that
∫
EM(k) dk = ⟨B2/2µ0⟩ and initially of the same164

shape as EK(k). We also compute the vortical en-165

ergy spectrum EV(k), which is normalized such that166 ∫
k2EV(k) dk = ρ0⟨ω2/2⟩, where ω = ∇ × u is the167

vorticity.168

It is often convenient to express our results not in code169

units, where cs = k1 = ρ0 = 1, but in units of u0 and170

k0. Here, u0 ≡ ⟨u2⟩1/2 is the initial rms velocity. We171

also define a nondimensional magnetic field as172

Bi ≡ Bi/(µ0ρ0u
2
0)

1/2, (9)173

where i = x, y, z refers to the three components, and174

i = rms or i = ini refer to the rms values of the magnetic175

field at the actual or the initial time, respectively. We176

also define the Mach and magnetic Reynolds numbers177

based on the initial velocity, Ma0 = u0/cs and ReM =178

u0/ηk0, respectively. The Mach number at the actual179

time is denoted by Ma. As a nondimensional measure180

of s, we define S = s/u0k0. When S < 1 (S > 1), the181

collapse is slower (faster) than the turnover rate of the182

turbulence.183

In the following, we vary the input parameters S, ζ,184

k0/k1, Ma, ReM, and Bini. In all cases presented below,185

the magnetic Prandtl number is unity, i.e., ν/η = 1.186

In the following, we display the conformal time in187

units of the initial turnover time, (u0k0)
−1, where u0188

is the initial rms velocity. As in Brandenburg & Ntor-189

mousi (2022), we monitor the vortical and irrotational190

contributions to the turbulence, ωrms = ⟨ω2⟩1/2 and191

(∇ · u)rms =
〈
(∇ · u)2

〉1/2
, in terms of the quantities192

that have the dimension of a wavenumber,193

k∇·u = (∇ · u)rms/urms, (10)194

195

kω = ωrms/urms. (11)196

These two values are expected to scale with k0, which is197

why we usually present the ratios k∇·u/k0 and kω/k0.198

We use for all simulations the Pencil Code (Pencil199

Code Collaboration et al. 2021). The resolution is either200

5123 or 10243, as indicated in Table 1, where we summa-201

rize all runs discussed in this paper. While higher resolu-202

tion leads to more accurate results, the lower resolution203

Figure 1. S = 0.1 (black lines), 0.6 (blue lines), 2.8
(green lines), 11 (orange lines), and 56 (red lines). Solid
(dashed) lines refer to cases with (without) initial kinetic
helicity. For the nonhelical runs (dashed lines), the values
of u0 are slightly smaller, so S is correspondingly larger; see
Table 1. Runs 3–7 and Runs 10–14.

computations produce qualitatively similar results; com-204

pare, for example, Runs 19 and 32, which have the same205

parameters. Both runs have almost the same vorticity206

and magnetic field evolution, but the lower resolution207

run has a slightly deeper minimum of kω/k0, which re-208

sults in a larger value of ∆ ln(kω/k0).209

3. RESULTS210

3.1. Growth vs physical and conformal time211

We have performed runs with different values of S us-212

ing either helical (σ = 1) or nonhelical (σ = 0) tur-213

bulence, sometimes without irrotational contributions214

(ζ = 0). Figure 1 shows that the larger the value of S,215

the larger the final magnetic field strength. This is be-216

cause the effective Lorentz force in Equation (5), aJ×B,217

diminishes more rapidly with time when S is larger, al-218

lowing the magnetic field to continue growing further.219

In supercomoving coordinates, the initial growth rate of220

the magnetic field is not affected by the value of S. How-221

ever, the growth rate is larger with than without kinetic222

helicity. On the other hand, at later times, when the223

magnetic field decays, the values are similar regardless224

of the presence of kinetic helicity.225

In physical time, the magnetic field shows a steep in-226

crease just toward the end of the collapse; see Figure 2.227

Interestingly, the runs with large values of S, which pro-228

duce the strongest comoving magnetic fields, now yield229

the weakest physical fields when comparing the runs at230

the same fractional collapse time. This is because for the231

runs with large values of S, the free-fall time is short, so232

the fractional times are larger, which effectively inter-233

changes the order of the curves. This is demonstrated234
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Table 1. Summary of the runs discussed in this paper. Here we list the nondimensional parameter S; the physical values in
code units are s/csk1 = 0.2, 1, 5, 20, and 100. Column 7 gives ReM (Re) for magnetic (nonmagnetic) runs. Dashes in columns 8–
10 indicate the 8 nonmagnetic runs. For magnetic runs, dashes in columns 9 and 10 indicate decay. Run 39 corresponds to
Run B of Brandenburg & Ntormousi (2022) and is discussed in Section 4.

Run S σ ζ k0/k1 Ma0 ReM (Re) Bini ∆lnB λ/u0k0 ∆ln(kω/k0) (kω/k0)max resol.

1 0.1 1 0 10 0.18 1840 2.3× 10−8 8.33 0.52 0.39 7.09 5123

2 0.1 1 0 10 0.18 1840 2.3× 10−5 6.62 0.52 0.39 7.09 5123

3 0.1 1 0 10 0.18 1840 2.3× 10−2 1.88 1.00 0.31 6.46 5123

4 0.6 1 0 10 0.18 1840 2.3× 10−2 2.21 1.03 0.22 5.93 5123

5 2.8 1 0 10 0.18 1840 2.3× 10−2 3.56 1.03 0.30 6.43 5123

6 11 1 0 10 0.18 1840 2.3× 10−2 4.77 1.03 0.36 6.82 5123

7 56 1 0 10 0.18 1840 2.3× 10−2 5.96 1.03 0.39 7.04 5123

8 0.2 0 0 10 0.13 1300 3.3× 10−8 4.27 0.37 0.33 6.97 5123

9 0.2 0 0 10 0.13 1300 3.3× 10−5 4.22 0.37 0.33 6.97 5123

10 0.2 0 0 10 0.13 1300 3.3× 10−2 1.49 0.97 0.14 5.70 5123

11 0.8 0 0 10 0.13 1300 3.3× 10−2 1.92 0.97 0.17 5.91 5123

12 3.8 0 0 10 0.13 1300 3.3× 10−2 3.03 0.98 0.29 6.66 5123

13 15 0 0 10 0.13 1300 3.3× 10−2 3.75 0.98 0.33 6.92 5123

14 77 0 0 10 0.13 1300 3.3× 10−2 4.12 0.98 0.33 6.97 5123

15 0.2 0 0.10 10 0.12 1170 3.6× 10−2 1.41 0.34 0.11 5.50 5123

16 0.2 0 0.50 10 0.08 800 5.4× 10−2 1.04 0.25 0.00 4.00 5123

17 0.2 0 0.90 10 0.08 840 5.1× 10−2 0.31 0.04 0.25 0.94 5123

18 0.2 0 0.95 10 0.09 880 4.9× 10−2 0.05 0.003 0.28 0.47 5123

19 0.2 0 0.96 10 0.09 880 4.8× 10−2 0.02 0.001 0.26 0.38 5123

20 0.2 0 0.97 10 0.09 890 4.8× 10−2 — — 0.21 0.29 5123

21 0.2 0 0.98 10 0.09 900 4.7× 10−2 — — 0.13 0.20 5123

22 0.2 0 0.99 10 0.09 910 4.7× 10−2 — — 0.20 0.16 5123

23 0.2 0 1 10 0.09 920 4.6× 10−2 — — 0.30 0.14 5123

24 0.1 0 1 20 0.09 920 — — — 0.01 0.07 10243

25 0.2 0 1 10 0.09 930 — — — 0.03 0.05 10243

26 0.4 0 1 5 0.09 940 — — — 0.38 0.04 10243

27 1.0 0 1 2 0.10 950 — — — 1.27 0.03 10243

28 0.5 0 0.95 10 0.04 220 — — — 0.09 0.23 5123

29 0.1 0 0.95 10 0.18 890 — — — 0.31 0.71 10243

30 0.1 0 0.95 10 0.27 1330 — — — 0.43 1.00 10243

31 0.1 0 0.95 10 0.36 1780 — — — 0.51 1.31 10243

32 0.2 0 0.96 10 0.09 900 4.9× 10−2 0.02 0.001 0.17 0.38 10243

33 0.2 0 0.96 10 0.09 1800 4.9× 10−2 0.12 0.004 0.28 0.53 10243

34 0.2 0 0.96 10 0.09 4500 4.9× 10−2 0.51 0.008 0.53 0.79 10243

35 0.2 0 1 10 0.09 1870 9.4× 10−3 — — 0.03 0.07 10243

36 0.2 0 1 10 0.09 1870 2.4× 10−2 — — 0.17 0.09 10243

37 0.2 0 1 10 0.09 1870 4.7× 10−2 — — 0.34 0.21 10243

38 0.2 0 1 10 0.09 1870 9.4× 10−2 — — 0.25 0.48 10243

39 0.4 1 0 10 0.19 190 2.3× 10−17 8.32 0.42 0.01 4.29 20483



5

Figure 2. Same as Figure 1, but in physical units. Time
is here normalized by the free-fall time. The black and blue
dots on the black and blue curves denote the time until which
the growth in Figure 1 was still approximately exponential.
The inset shows the same, but now time is normalized by
the initial turnover time. Runs 3–7 and Runs 10–14.

in the inset of Figure 2, where we show the same data,235

but now with time in units of the initial turnover time.236

In Figure 2, we have also indicated the times where237

the initial exponential growth of the comoving magnetic238

field with conformal time terminates. For S = 0.1 and239

0.6, Brms/a
2 has hardly increased by an order of magni-240

tude. In particular, the growth of Brms/a
2 versus phys-241

ical time is not super-exponential, as claimed by Irshad242

P et al. (2025). Only for larger values of S is the growth243

super-exponential in physical coordinates, and exponen-244

tial in comoving coordinates. For S ≥ 2.8, the times245

when exponential growth in comoving coordinates ter-246

minates are outside the plot range of Figure 2.247

Given that the only effect of the collapse is on the248

Lorentz force, it is clear that the kinematic phase is com-249

pletely independent of the collapse. This is shown quan-250

titatively in Figure 3, where we see the magnetic field251

growth for different initial field strengths. For weak ini-252

tial fields, the comoving magnetic field grows by more253

than three orders of magnitude. It could grow more254

strongly if the magnetic Reynolds number were larger.255

The growth is only limited by the competition between256

magnetic field amplification by the flow and the simul-257

taneous decay of the flow. Similar results were already258

reported in Brandenburg et al. (2019), but without col-259

lapse dynamics (a = 1).260

3.2. Effect of the Lorentz force261

As we have seen from Figure 3, when the initial mag-262

netic field strength is large, the early exponential growth263

diminishes more rapidly. This is the result of the effec-264

tive Lorentz force in Equation (5) becoming comparable265

Figure 3. Same as Figure 1, but for 3 different initial field
strengths. Runs 1–3 and Runs 8–10.

with the inertial term, which implies (Irshad P et al.266

2025)267

a1/2Brms <∼ urms
√
µ0ρ0. (12)268

This is demonstrated in Figure 4(a), where we compare269

the evolution of a1/2Brms with that of urms/u0 for the270

same runs as those of Figures 1 and 2.271

We see that Equation (12) is well obeyed for all runs.272

The largest values of a1/2Brms are obtained for the runs273

with small values of S. The effect of kinetic helicity is274

here surprisingly weak and the values of a1/2Brms are275

only slightly smaller for the nonhelical runs than for276

the helical ones. For larger values of S, on the other277

hand, the differences between helical and nonhelical runs278

are much larger and we see that the decay of a1/2 is279

well overcompensated by the growth of Brms so that the280

product a1/2Brms still shows a strong increase later in281

the evolution; see Figure 4(b), where we plot separately282

the evolutions of a1/2 and Brms.283

We also see that for large values of S (short free-fall284

times), a1/2Brms decays at early times and only shows285

growth after that. This is opposite to the case of small286

values of S and simply because at early times, a1/2 de-287

cays faster than the exponential growth of Brms. Only288

somewhat later, for 2 <∼ tu0k0 <∼ 10, exponential growth289

prevails.290

3.3. Critical vorticity291

Numerical simulations have demonstrated in the past292

that vorticity is an important ingredient of dynamos293

(Haugen et al. 2004; Federrath et al. 2011a). Achikanath294

Chirakkara et al. (2021) did report dynamo action for295

purely irrotational driving, but this could perhaps still296

be explained by some residual vorticity in their simula-297

tions.298
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Figure 4. (a) Similar to Figure 1, but now a1/2Brms

(thicker lines) and the instantaneous rms velocity (thinner
lines) are plotted. The order of the colors is the same as
before, with black being for S = 0.2 and red for S = 56, and
solid (dashed) lines refer to helical (nonhelical) initial flows.
(b) Evolution separately for a1/2 (dashed-dotted lines) and
Brms (solid lines), again with the same colors as before with
black being for S = 0.2 and red for S = 56. Runs 3–7 and
Runs 10–14.

The apparent necessity of vorticity may be a limita-299

tion of current simulations, whose maximum magnetic300

Reynolds number may still not be large enough, because301

theoretically, small-scale dynamo action should also be302

possible for irrotational turbulence (Kazantsev et al.303

1985; Martins Afonso et al. 2019). We can study this304

here in more detail by varying the value of ζ. In Fig-305

ure 5 we plot the evolution of k∇·u/k0 and Brms for runs306

with ReM = 900 and several values of ζ. It is only when307

ζ is very close to unity that dynamo action ceases. This308

suggests that very small amounts of vorticity can suffice309

for successful dynamo action. The steady increase of310

k∇·u/k0, which was also seen in the work of Branden-311

burg & Ntormousi (2022), is just a consequence of the312

more rapid decay of (∇ · u)rms compare to urms.313

In Figure 6 we focus on several more values close to314

unity and find that for ReM = 880, the critical value315

of ζ is around 0.96. For larger values of ζ, there is no316

growth; see Runs 20–23 and Runs 35–38. However, the317

critical value of 1−ζ decreases with increasing magnetic318

Reynolds number. For larger values of ReM, smaller319

Figure 5. k∇·u/k0 (upper panel) and Brms (lower panel)
for ζ = 0.1 (red), 0.5 (orange), 0.9 (green), 0.95 (blue), and
1 (black). Runs 15–18 and Run 23.

amounts of vorticity suffice for dynamo action. This is320

shown in Figure 7, where we compare runs for ζ = 0.96321

with different values of ReM = 900, 1800, and 4500,322

using 10243 meshpoints. This value of ζ led to a vor-323

ticity that was the marginal value for obtaining growing324

magnetic fields for ReM = 900. We see that, as we in-325

crease ReM, the episode of growth becomes longer and326

the maximum magnetic field larger.327

It is of interest to define a Reynolds number based on328

the vorticity as (Haugen et al. 2004; Elias-López et al.329

2023, 2024)330

Reω = ωrms/νk
2
0, (13)331

and to compute the critical value above which dynamo332

action occurs. Looking at Table 1, we see that the333

threshold of ζ between 0.96 and 0.97 corresponds to334

kω/k0 = 0.38 and 0.29, respectively, and with ReM ≈335

900, the critical value is PrM Reω = (kω/k0)ReM ≈ 300.336

This value is rather large, but it is unclear whether the337

dynamo onset is indeed determined predominantly by338

Reω. If dynamos do indeed work for purely acoustic339

turbulence (ζ = 1), as found by Achikanath Chirakkara340

et al. (2021), the dynamo onset could not depend on341

Reω alone.342

3.4. Effect of scale separation343

We have seen from Figure 6 that for very small val-344

ues of 1− ζ, the expected approach of kω to zero slows345

down in the sense that the values are almost the same346

for ζ = 1 and ζ = 0.99, and that for ζ = 0.98 is fur-347

ther away. To check whether this is a consequence of348
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Figure 6. kω/k0 (upper panel) and Brms (lower panel) for
1 (dotted black), 0.99 (solid black), 0.98 (blue), 0.97 (green),
0.96 (orange), and ζ = 0.95 (red). Runs 18–23.

Figure 7. kω/k0 (upper panel) and Brms (lower panel)
for ReM = 900 (black), 1800 (blue), and 4400 (green). The
frequency of the oscillations is ω ≈ 15. The resolution is in
all cases 10243 mesh points. Runs 32–34.

finite scale separation, i.e., the ratio between the lowest349

wavenumber of the domain and the value of k0 not being350

large enough, we present in Figure 8 runs with different351

values of k0. As expected, we see that kω scales with352

k0, so the ratio kω/k0 varies only little and lies in the353

range 0.01 ≤ kω/k0 ≤ 0.02 after about 10–30 turnover354

Figure 8. kω/k0 for hydrodynamic runs with ζ = 1, ReM =
900, and different values of k0. For k0/k1 = 10, we also
compare with the magnetic run with ReM = 900. Runs 24–
27.

times. When we decrease the scale separation ratio to355

k0/k1 = 2, the run shows vigorous fluctuations. They356

may indicate that the numerical resolution becomes in-357

sufficient.358

3.5. Growth of vorticity359

In Figure 6, we have seen that for ζ = 0.95, there360

can be growth of kω by a certain amount. It is possible361

that this is caused either by magnetic driving (Kahni-362

ashvili et al. 2012) or by what is known as magnetically363

assisted vorticity production (Brandenburg & Scanna-364

pieco 2025). It is therefore also useful to compare with365

the purely hydrodynamic case; see Table 1.366

For an isothermal gas, there is no baroclinic term,367

which would be the main agent for producing vorticity368

in nonisothermal flows. There is also no rotation nor369

shear, both of which could lead to vorticity generation370

(Del Sordo & Brandenburg 2011; Elias-López et al. 2023,371

2024). There remain only three possibilities for driving372

or amplifying vorticity: (i) through viscosity via gra-373

dients of the velocity divergence being inclined against374

density gradients, (ii) through magnetic driving or mag-375

netically assisted vorticity production (Brandenburg &376

Scannapieco 2025), and (iii) through nonlinearity.377

The growth of vorticity through nonlinearity may be378

motivated by the formal analogy with the induction379

equation when the magnetic field is replaced by the vor-380

ticity ω, i.e.,381

∂ω

∂t
= ∇× (u× ω) + ω̇visc + ω̇mag, (14)382

where ω̇visc = ν(∇2ω + ∇ × G) is the curl of the vis-383

cous acceleration with Gi = 2Sij∇j ln ρ being a vector384

characterizing the driving of vorticity even if it was van-385

ishing initially (Mee & Brandenburg 2006; Brandenburg386

& Scannapieco 2025), and ω̇mag = ∇× (J×B/ρ) is the387

vorticity driving from the curl of the Lorentz force.388



8

Figure 9. Evolution of kω/k0 for different Mach numbers.
Runs 28–31.

Figure 10. Scaling of kω/k0 with the actual and initial
Mach numbers, Ma and Ma0, respectively. The slopes are
1.6 and 0.84, respectively. Runs 28–31.

The analogy between induction and vorticity equa-389

tions is obviously imperfect, because the velocity is390

here directly related to the vorticity. This analogy has391

been invoked by Batchelor (1950) to explain dynamo ac-392

tion, but here we rather use it to motivate the question393

whether vorticity can be amplified.394

To distinguish between the various possibilities, we395

must vary the viscosity, the Mach number, and the396

initial magnetic field strength. One important clue is397

given by the fact that the occurrence of vorticity de-398

pends on the Mach number of the turbulence. This is399

demonstrated in Figure 9, where we plot the evolution400

of kω/k0 for different Mach numbers. Figure 10 shows401

that kω scales with the actual and initial Mach numbers,402

Ma and Ma0, respectively. The slopes for both scalings403

are different, and somewhat shallower than the nearly404

quadratic scaling found by Federrath et al. (2011a).405

In all our runs, kω/k0 reaches a maximum at some406

point. For runs 15–18, we see that (kω/k0)max increases407

with increasing values of Bini; see Figure 11. Figure 12408

shows that this increase is linear and not quadratic,409

which means that the vorticity is magnetically driven410

rather than due to magnetically assisted growth; see411

Figure 11. kω/k0 for hydromagnetic runs with ζ =
1, ReM = 1900, and different magnetic field strengths.
Runs 35–38.

Figure 12. Dependence of the maximum of kω/k0 on Bini

for hydromagnetic runs with ζ = 1, ReM = 900, and different
magnetic field strengths. The straight line indicates a linear
relationship. Runs 35–38.

Brandenburg & Scannapieco (2025) for details on this412

distinction. As seen from Table 1, the magnetic field413

decays for these runs, so there is no dynamo action.414

3.6. Spectral evolution415

In Figure 13, we show the evolution of EK(k, t),416

EV(k, t), and EM(k, t) for Run 34. This is our run with417

the largest magnetic Reynolds number (ReM = 4500)418

and has only 4% vorticity (ζ = 0.96), but shows clear419

dynamo action. Its time trace is shown in Figure 7.420

We see that both EK(k, t) and EV(k, t) decay, while421

EM(k, t) increases both at large and small wavenumbers.422

Overall, EV(k) is almost a hundred times smaller than423

EK(k, t), but, similarly to EM(k, t), EV(k) also shows a424

small temporal increase at small values of k. This is sug-425

gestive of magnetic vorticity production via an inverse426

cascade. Also, although EV(k, t) decays in the inertial427

range, it bulges at k/k0 ≈ 4, which appears to be a428

direct consequence of magnetic driving.429

3.7. Instantaneous growth rate430
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Figure 13. Evolution of EK(k, t), EV(k, t), and EM(k, t)
for Run 34. The arrows indicate the sense of time. The first
time is shown as dotted lines to distinguish it better from
the next one, for which EM(k) is still very similar.

For the magnetic energy to grow, the induction term431

u ×B in Equation (4) has to overcome the dissipation432

term. In the evolution equation for the mean magnetic433

energy density, EM(t) ≡ ⟨B2/2µ0⟩, the term434

⟨J · (u×B)⟩ ≡ −WL (15)435

has to exceed the Joule dissipation, QM = ⟨µ0ηJ
2⟩. The436

instantaneous growth rate of magnetic energy can then437

be written as γ = (−WL − QM)/EM. The first term,438

which can also be written as WL = ⟨u · (J × B)⟩, is439

the work done by the Lorentz force. When it is nega-440

tive, kinetic energy is used to drive magnetic energy; see441

Equation (15).442

Brandenburg & Ntormousi (2022) made use of the fact443

that in two dimensions (2D), when no action is possible,444

Equation (4) can be written as an advection–diffusion445

equation, i.e., DA/Dt = η∇2A, where A is the compo-446

nent of A that is normal to the 2D plane. This moti-447

Figure 14. Evolution of the pseudo growth rate γ (black
lines), with contributions from γ2D (blue lines) and the resid-
ual γ − γ2D (red lines), for Runs 23 (a), 32 (b), and 34 (c).

vated them to decompose WL by expanding B = ∇×A448

to get449

−⟨J ·(u×B)⟩ = ⟨Jiuj(Ai,j−Aj,i⟩ ≡ W 2D
L +W 3D

L . (16)450

Here, the first term is related to the advection term. The451

second term, W 3D
L = −⟨JiujAj,i⟩, vanishes in 2D. Thus,452

they identified W 3D
L with a contribution that character-453

izes the 3D nature of the system and used it as a proxy454

for dynamo action when it is large enough. They thus455

defined456

γ2D = −(W 2D
L +QM)/EM, γ3D = −W 3D

L /EM, (17)457

so that γ2D + γ3D = γ.458

In Figure 14, we plot the time dependences of γ, γ2D,459

and γ3D = γ − γ2D for Runs 23 (no dynamo, because460

kω is too small), 32 (weak dynamo), and 34 (strong dy-461

namo, ReM is the largest). We see that γ2D is always462

negative, except during an early phase for Run 34, which463
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Figure 15. Visualizations of Bz, ωz/u0k0, and ∇ ·u/u0k0 for Run 37 at early and late times. Note that the domain is cubic,
but the images have been stretched in the horizontal direction to take advantage of the full page size.

can be associated with strong 2D tangling of the initial464

magnetic field. When γ3D is added to γ2D, the resulting465

instantaneous growth rate is positive during the early466

part of the evolution of Run 32 and during the entire467

evolution of Run 34.468

3.8. Visualizations469

In Figure 15, we present visualizations of Bz, ωz/u0k0,470

and∇·u/u0k0 for Run 37 at early and late times. There471

is no significance in us having chosen the z component472
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Figure 16. Physical magnetic field Bph (dashed red lines) and its comoving counterpart a2Bph (black lines) versus physical
time (a) and conformal time (b) for Run B from Brandenburg & Ntormousi (2022) and Run 39 of the present paper.

of B and ω; all three components are statistically equiv-473

alent.474

The magnetic field appears to preserve its initial475

length scale corresponding to k = k0, and only the field476

strength becomes weaker with time. By contrast, the477

vorticity quickly develops small-scale patches that then478

grow to larger-scale patches at later times. Note also479

that the magnitude of ωz/u0k0 (about 0.01) is compa-480

rable to that of Bz. This is reminiscent of the findings of481

Kahniashvili et al. (2012), who reported a quantitative482

agreement between the spectra of vorticity and magnetic483

field.484

For the velocity divergence, there is a much larger485

decrease from the time tu0k0 = 3 to tu0k0 = 30. As486

stated above, the compressive part of the velocity field,487

which is reflected in the values and the appearance of∇·488

u, decreases more strongly with time than the vortical489

part, as reflected through the vorticity. We also see that,490

although the initial scales are rather small, they still491

seem to be sufficiently well resolved.492

4. COMPARISON WITH PREVIOUS WORK493

In our earlier paper (Brandenburg & Ntormousi 2022),494

we simulated gravitational collapse using numerical sim-495

ulations of decaying turbulence in a Jeans-unstable do-496

main at a resolution of 20482 mesh points. We only497

found a weak increase of the magnetic field with time.498

Given the knowledge of the collapse time from the sim-499

ulations, we can replace the pressure-less free-fall time500

by the actual collapse time and express the evolution of501

the rms magnetic field in comoving coordinates. This al-502

lows us to see whether the growth is close to exponential503

during any time interval.504

The result is shown in Figure 16, where we computed505

the conformal time and scale factor numerically based506

on Equation (1). Here we used the empirical value of507

tff ≈ 2.016/csk1, which yields s ≈ 0.78 csk0, and thus,508

since u0/cs = 0.19 and k0/k1 = 10, we have S ≈ 0.4;509

see Table 1, where it is called Run 39. The physical510

values of the magnetic field are denoted by Bph. We511

also plot the comoving values a2Bph both versus physical512

and conformal time. Although there is a steady increase513

of Brms, Figure 16(b) shows that the comoving magnetic514

field does not follow an exponential growth in conformal515

time, except for a very early time in the during 0 <516

tu0k0 <∼ 0.4.517

To understand why the exponential phase is so short518

in this run, we compare its parameters with those of the519

other runs presented in this paper; see Table 1. The520

closest match is with Run 1. We see immediately that521

the main problem with Run 39 is the small value of the522

magnetic Reynolds number, which is 10 times smaller523

than that of Run 1. In spite of the high resolution of524

Run 39, the value of ReM could not have been chosen525

larger because of the strong compression and large gradi-526

ents suffered by the collapsing regions toward the end of527

the run. This highlights the main advantage of choosing528

supercomoving coordinates for collapse simulations.529

5. CONCLUSIONS530

When describing gravitational collapse in superco-531

moving coordinates, the governing equations of magne-532

tohydrodynamics are similar to the original ones, except533

that now the scale factor appears in front of the Lorentz534

force. This reduces the effective Lorentz force, because535

a(t) becomes progressively smaller with time. Therefore,536

in the limit of very short collapse times or large values537

of s, the evolution approaches essentially the kinematic538

evolution. This, however, does not mean unlimited con-539

tinual growth, because the rms value of the turbulent540

intensity is declining.541

As shown previously (Brandenburg et al. 2019), de-542

caying turbulence leads to an episode of exponential543

growth if the magnetic Reynolds number is large enough.544

The larger it is, the longer is the episode of exponential545

growth. This is essentially the result of a competition546
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against the decay of turbulence, which lowers the instan-547

taneous value of the magnetic Reynolds number as time548

goes on. The gravitational collapse changes this picture549

only little if we view the decay in supercomoving coor-550

dinates, because the collapse only affects the nonlinear551

dynamics, and this nonlinearity gets weaker with time.552

In the work of Irshad P et al. (2025), forced turbulence553

was considered. Therefore, the magnetic field could al-554

ways be sustained, but the source of such driving re-555

mains unclear. The superexponential growth that they556

reported, however, it still recovered in our decay simula-557

tions, unless the free-fall time is longer than the turnover558

time of the turbulence. In that case, the growth is ac-559

tually subexponential.560

Our present work has also shown that even very small561

amounts of vorticity can be sufficient to facilitate dy-562

namo action. In particular, we find that the vorticity563

can grow in concert with the magnetic field.564

Earlier work on turbulent collapse and dynamo action565

has suggested that gravitational collapse drives turbu-566

lence and enhanced it (Sur et al. 2012; Xu & Lazar-567

ian 2020; Hennebelle 2021). Our work casts doubt on568

this interpretation, because of two aspects. First, the569

collapse dynamics reduces the effective nonlinearity, re-570

sulting in stronger apparent field amplification by the571

turbulence, and second, there can be generation of vor-572

ticity both from viscosity and from the magnetic field573

itself. It should therefore be checked, whether these574

factors could have contributed to the earlier findings of575

collapse-driven turbulence.576

As explained in Section 4, the transformation to su-577

percomoving coordinates may also help analyzing exist-578

ing simulations in physical coordinates. We argue that579

for homogeneous collapse simulations that do not utilize580

supercomoving coordinates, it is still useful to express581

such results in terms of comoving quantities and confor-582

mal time, because they might display exponential mag-583

netic field growth that would be the perhaps strongest584

indication of dynamo action so far.585

Our work has applications not just to interstellar586

clouds and primordial star formation (e.g., Schleicher587

et al. 2009; Hirano & Machida 2022; Sharda et al. 2020),588

but also to larger cosmological scales. Our results show589

that small amounts of vorticity might suffice to produce590

dynamo action even in decaying turbulence. This con-591

sideration is important for understanding magnetism in592

protohalos before the first stars form and their feed-593

back drives sufficient turbulence for dynamo action (e.g.,594

Schleicher et al. 2010).595

Finally, our findings indicate that earlier simulations,596

including our own high-resolution simulations at 20483597

meshpoints, may still have had insufficient resolution to598

follow the collapse and should be revisited using more599

idealized settings that allow the usage of a comoving600

frame.601
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(Pencil Code Collaboration et al. 2021), is freely avail-

able on https://github.com/pencil-code. The simula-

tion setups and corresponding input and reduced output

data are freely available on http://norlx65.nordita.org/
∼brandenb/projects/ascale-collapse.
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