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Abstract
In the Sun and solar-type stars, there is a critical dynamo number for the operation of a
large-scale dynamo, below which the dynamo ceases to operate. This region is known as the
subcritical region. Previous studies showed the possibility of operating the solar-like large-
scale (global) dynamo in the subcritical region without a small-scale dynamo. As in the solar
convection zone, both large- and small-scale dynamos are expected to operate at the same
time and location, we check the robustness of the previously identified subcritical dynamo
branch in a numerical model in which both large- and small-scale dynamos are excited. For
this, we use the PENCIL CODE and set up an α� dynamo model with uniform shear and
helically forced turbulence. We have performed a few sets of simulations at different rel-
ative helicity to explore the generation of large-scale oscillatory fields in the presence of
small-scale dynamo. We find that in some parameter regimes, the dynamo shows hysteresis
behavior, i.e., two dynamo solutions are possible depending on the initial parameters used.
A decaying solution when the dynamo was started with a weak field and a strong oscilla-
tory solution if the dynamo was initialized with a strong field. Thus, the existence of the
sub-critical branch of the large-scale dynamo in the presence of small-scale dynamo is es-
tablished. However, the regime of hysteresis is quite narrow with respect to the case without
the small-scale dynamo. Our work supports the possible existence of large-scale dynamo in
the sub-critical regime of slowly rotating stars.
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1. Introduction

The Sun exhibits magnetic fields and cycles of remarkable complexity. Unlike clockwork,
its magnetic behavior is not strictly periodic; instead, it demonstrates a dynamic interplay of
various characteristics, including cycle duration and amplitude, which vary from one cycle
to the next (Hathaway 2015; Karak, Mandal, and Banerjee 2018). At times, the Sun enters
phases of grand minima, characterized by extended periods of low magnetic activity. Ana-
lyzes of radiocarbon data of the last several thousand years unveiled several such instances
(Usoskin, Solanki, and Kovaltsov 2007; Usoskin 2013; Biswas et al. 2023).
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This intricate dance of magnetic fields and cycles finds its origins in the mechanism of
the large-scale dynamo (Moffatt 1978). This process lays the foundation for the creation
and sustenance of the magnetic fields that envelop the Sun. The large-scale dynamo is the
foundational mechanism behind generating the magnetic field. It operates globally in the
solar convection zone and establishes substantial magnetic fields extending over the surface.
This dynamo action is powered by helical convection and differential rotation in the solar
convection zone. This is because the toroidal field is generated through the stretching of
the poloidal field by the differential rotation, known as the � effect. This toroidal field
gets converted into the poloidal one via helical flow, formally known as α effect (Parker
1955; Steenbeck, Krause, and Rädler 1966). There is another additional mechanism for the
generation of the poloidal field in the Sun, known as the Babcock–Leighton process (see,
Charbonneau 2020; Karak 2023, for recent reviews on dynamo modeling using this process).

Observations have revealed an intriguing type of magnetic field that persists even in the
quiet phase of the Sun, which is commonly referred to as a small-scale, fluctuating, turbulent,
or internetwork field—as it exists in the internetwork regions. This field exists in mixed
polarity even at the resolution limits of present-day instruments. Despite the longstanding
awareness of the existence of this magnetic field (e.g., Frazier and Stenflo 1972; Stenflo
2012), a detailed understanding of its nature and origin has remained an ongoing challenge
(Rempel et al. 2023). The presence of this magnetic field rises from the mechanism referred
to as the small-scale (local) dynamo. This process involves amplifying a seed magnetic
field through repeated random stretching, bending, and folding within a sufficiently random
three-dimensional velocity field, all without net helicity.

There is a possibility that the quiet-Sun magnetic field could be attributed to a large-
scale global dynamo. This concept suggests that the disintegration of a large-scale magnetic
field could generate a small-scale magnetic field by transferring magnetic energy to smaller
scales. Additionally, it can be argued that the decay of active regions might contribute to
forming small-scale magnetic fields (Spruit, Title, and van Ballegooijen 1987; de Wijn et al.
2005; Stenflo 2012; Karak and Brandenburg 2016). Nonetheless, it is worth noting that none
of these arguments can be conclusively affirmed. The small-scale magnetic field exhibits
characteristics that do not align with the solar cycle, as it lacks a significant correlation
with the larger-scale global magnetic cycle. Moreover, it displays no latitudinal variation, as
demonstrated by various studies (e.g., Hagenaar, Schrijver, and Title 2003; Sánchez Almeida
2003; Lites et al. 2008; Lites 2011; Buehler, Lagg, and Solanki 2013; Jin and Wang 2015).
The purpose of the present study is to explore the bistability of the large-scale dynamo in
the presence of a small-scale dynamo with an α� dynamo.

In the α� dynamo model, there exists a critical parameter, known as the critical dy-
namo number, below which the magnetic field ceases to operate, resulting in a decaying
field (Parker 1955; Choudhuri 1998; Brandenburg and Subramanian 2005). This regime
is referred to as the subcritical dynamo phase. Conversely, when the dynamo number ex-
ceeds this critical value, the system enters the supercritical dynamo phase, characterized
by sustained magnetic-field generation. This dynamo transition has been extensively doc-
umented in studies focusing on large-scale dynamo (Choudhuri 1998). It is interesting to
know in what regime the solar dynamo operates. Observations (Rengarajan 1984; Metcalfe,
Egeland, and van Saders 2016) and dynamo modeling (Kitchatinov and Nepomnyashchikh
2017; Cameron and Schüssler 2017; Kumar, Karak, and Vashishth 2021; Vashishth, Karak,
and Kitchatinov 2021, 2023; Ghosh et al. 2024) hint that the solar dynamo is possibly op-
erating near the critical dynamo transition or at least not in highly supercritical regime. Re-
cent investigations using mean-field modelling (Kitchatinov and Olemskoy 2010; Vashishth,
Karak, and Kitchatinov 2021) and turbulent numerical simulations (Karak, Kitchatinov, and



Large-Scale Dynamo in the Presence of the Small-Scale Dynamo Page 3 of 10 115

Brandenburg 2015; Oliveira et al. 2021) have unveiled intriguing phenomena suggesting
that the dynamo process can persist even in subcritical regions. This behavior is manifested
through hysteresis, a phenomenon observed in the context of large-scale dynamo dynam-
ics. Complementing these findings, Mannix, Ponty, and Marcotte (2022), underscores the
effectiveness of nonlinear optimization—previously utilized for identifying minimal distur-
bances in shear flows—as a potent numerical approach for methodically probing subcritical
dynamo actions in electrically conducting flows.

The aforementioned studies did not capture the operation of the small-scale dynamo,
which is ubiquitous in solar/stellar convection zones. It is obvious that the operation of the
large-scale dynamo is affected by the small-scale dynamo-generated field. While some stud-
ies have explored the interaction of small-scale dynamo on large-scale one (e.g., Karak and
Brandenburg 2016; Bhat, Subramanian, and Brandenburg 2016), here we are interested in
the possibility of dynamo hysteresis behavior of the large-scale magnetic field in the pres-
ence of small-scale dynamo to demonstrate the robustness of the operation of the subcritical
dynamo.

2. Model

Following the works of Karak et al. (2015), Karak and Brandenburg (2016), we build our
theoretical α� dynamo model assuming an isothermal and compressible environment. The
pressure in this medium is characterized by the equation of state p = c2

s ρ, where cs repre-
sents the constant speed of sound, and ρ signifies the density. The fundamental equations
governing this model are:

DU

Dt
= −SUxŷ − c2

s ∇ lnρ + ρ−1 [J × B + ∇ · (2ρνS)] + f , (1)

D lnρ

Dt
= −∇ · U , (2)

∂A

∂t
+ U

(S) · ∇A = −SAyx̂ + U × B + η∇2A. (3)

In these equations, D/Dt denotes the advective time derivative, expressed as D/Dt =
∂/∂t + (U + U

(S)
) · ∇. The term U

(S) = (0, Sx,0) with S = const represents the large-
scale externally applied uniform shear flow. Other parameters include the magnetic vector
potential A, the magnetic field B = ∇ × A, the microscopic diffusivity η, the kinematic
viscosity ν, the current density J = μ−1

0 ∇ × B , and a specific forcing function f .
The traceless rate of the strain tensor S is represented by Sij = 1

2 (Ui,j + Uj,i) − 1
3 δij∇ ·

U , ignoring the minimal contribution of U
(S)

. In this equation, the commas denote partial
differentiation with respect to the coordinate (i or j ).

Turbulence in this environment is sustained by supplying energy to the system through
a helical and temporally random in time (δ-correlated) forcing function f = f (x, t). This
forcing function is defined as

f (x, t) = Re{Nf k(t) exp[ik(t) · x + iφ(t)]}. (4)
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Here, x denotes the position vector, k(t) is a random wavevector chosen at each timestep
from a certain range of many possible wavevectors, and the phase −π < φ(t) ≤ π also
varies randomly at each timestep. On dimensional grounds, we choose N =
f0cs(|k|cs/δt)

1/2, where f0 is a dimensionless forcing amplitude.
The generation of transverse helical waves is facilitated through the utilization of Fourier

amplitudes (Haugen, Brandenburg, and Dobler 2004),

f k = R · f (nohel)
k with Rij = δij − iσεijkk̂k√

1 + σ 2
, (5)

where σ represents the degree of helicity in the forcing, with σ = 1 indicating the highest
positive helicity. The formulation of the non-helical forcing function is represented with,
f

(nohel)
k = (

k × ê
)
/
√

k2 − (k · ê)2, where ê is an arbitrary unit vector that is not in alignment
with k. Note that |f k|2 = 1 and f k · (ik × f k)

∗ = 2σk/(1 + σ 2).
The fluid and magnetic Reynolds numbers and the magnetic Prandtl number are defined

as

Re = urms

νkf
, Rm = urms

ηkf
, Pm = ν

η
, (6)

where urms = 〈u2〉1/2 is the root-mean-square (rms) value of the velocity in the statistically
stationary state. Here, 〈·〉 indicates the averaging across the entire domain, and kf is the
average forcing wavenumber. To investigate the small-scale dynamo effects alongside the
large-scale dynamo, we maintain a large value of Rm and dynamo number, D, which is
defined as

D = CαC� where, Cα = α0

ηT 0k1
and C� = |S|

ηT 0k
2
1

, (7)

as elaborated in Table 1. Here, α0 = −τ 〈ω · u〉/3, ηT 0 is the total magnetic diffusivity and
is given by ηT 0 = η + ηt0, with ηt0 = τ(〈u〉2)/3, and τ = (urmskf )−1. In this work, we have
followed Run IV of Karak and Brandenburg (2016), which excites both the large-scale and
small-scale dynamos.

To establish a connection with solar/stellar convection zones, we imagine a 3D box po-
sitioned at the northern hemisphere of the Sun, with dimensions of Lx = Ly = Lz = 2π .
In this configuration, x, y, z coordinates correspond to the radially outward, azimuthal
(toroidal), and latitudinal directions, respectively. The boundary conditions implemented
in our model are shearing–periodic along the x-axis and simple periodic along the y- and
z-axes. For all our simulations, we consistently use S = −0.05, f0 = 0.01, and kf = 3k1,
where k1 = 2π/Lx = 1 represents the smallest wavenumber achievable in the given spatial
domain. In terms of units, we adopt a non-dimensional approach by assigning the values
cs = ρ0 = μ0 = 1, where ρ0 = 〈ρ〉 is the time-invariant volume-averaged density and μ0 is
the magnetic permeability. For the initial conditions, we set both u and lnρ to zero and in-
troduce a small-scale Gaussian noise with a low amplitude of 10−4 into the magnetic vector
potential. All numerical simulations in this study were conducted using the PENCIL CODE1

(Pencil Code Collaboration et al. 2021). The grid resolution of all runs presented in this
paper is 144 × 144 × 144.

1github.com/pencil-code.

http://github.com/pencil-code
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3. Results and Discussion

In our study, we conducted a series of simulations by systematically altering the helicity
parameter σ , which is the characteristic parameter of the turbulent forcing. We examined the
large-scale magnetic field by evaluating the quantity, B rms, which is the temporal mean in the

stationary state of the large-scale field over the whole domain and is formulated as, B̃rms =
〈〈Bx〉y2 + 〈By〉y2 + 〈Bz〉y2〉1/2

xzt . The small-scale field is defined as the residual of the total

and the large-scale quantities and thus defined as b2 = B2 − B
2
. Our findings, as illustrated

in Figure 1, demonstrate the temporal mean of the large-scale magnetic field, denoted as

B̃ rms, which we normalized with Beq(= urms), which is the volume-averaged equipartition
magnetic field. This normalization provides a context for the background magnetic field.
The set of parameters used in these simulations is summarized in Table 1. Our analysis
indicates that for values of the helicity parameter σ lower than approximately 0.16, dynamo
activity is notably absent, as indicated by the absence of a large-scale magnetic field (see
Table 1).

For Run E, σ = 0.15, as illustrated in Figure 2a, we demonstrate the spatial-temporal
behavior of the mean magnetic field’s y-component, By (corresponding to the toroidal field
in spherical coordinates) and the corresponding time series of B2

y at a chosen mesh point,
normalized by B2

eq (corresponding to the measurements compared with the solar magnetic
cycle). Notably, there are no distinct magnetic oscillations observed in this scenario. Al-
though a few cycles emerge in the initial time stage, they are short-lived, and the overall
magnetic field remains weak. This weak large-scale field disappears after some time, as con-
firmed by running it for a longer time. A slight increase in σ leads to a dynamo transition
at σ ≈ 0.16, with the magnetic field becoming significantly stronger than the background

(B̃rms > Beq), suggesting a critical σ value near 0.16 for dynamo activity. Figure 2b depicts
the spatial-temporal variation in this case, revealing clear magnetic cycles and dynamo wave
propagation in the positive z-direction. Figure 3(a) and (b), present the spatial-temporal be-
havior of the small-scale field (b2) normalized with B2

eq at σ = 0.15 (Run E) and σ = 0.16
(Run F), respectively.

Disentangling the origin of these variations is challenging, as the small-scale magnetic
field in our simulation arose from the activity of both the small-scale dynamo, represented
as b2

SSD and the entanglement with the large-scale field, denoted as b2
tang. These quantities

are closely interconnected and evolve in tandem with the development of the large-scale

Figure 1 (a) Normalized temporal mean of rms value of the large-scale magnetic field and (b) temporal mean
of urms as a function of σ .
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Table 1 Summary of all of the runs starting with weak seed field are listed along with the control parameters
Re, Rm, urms, σ . The table also contains the run time (Tr (in diffusion time scale), normalized temporal

mean of the large-scale field B̃rms and small-scale field, b̃, and their ratio. For Runs A–I, kf = 3.1 and

ν = 5 × 10−3, while in Run F′ , kf = 5.1 and ν = 10−2. For all the runs, Pm = 5. S/D denotes a stable or
decaying solution.

Run σ Tr urms Re Rm D B̃rms b̃
B̃rms

b̃
S/D

A 0.10 10 0.202 13.05 65.27 116.17 0.062 0.032 1.93 D

B 0.12 10 0.201 13.02 65.14 127.25 0.063 0.034 1.85 D

C 0.13 10 0.201 12.98 64.92 138.76 0.064 0.044 1.45 D

D 0.14 10 0.200 12.91 64.59 150.99 0.068 0.057 1.19 D

E 0.15 20 0.197 12.76 63.81 165.77 0.072 0.059 1.22 D

F 0.16 200 0.155 10.04 50.20 285.71 0.432 0.280 1.54 S

G 0.17 10 0.156 10.06 50.34 301.79 0.507 0.284 1.78 S

H 0.18 10 0.154 9.96 49.83 326.21 0.615 0.294 2.09 S

I 0.19 10 0.156 10.07 50.35 337.15 0.630 0.294 2.14 S

F′ 0.16 20 0.1015 1.983 9.915 120.61 2.773 0.376 4.65 S

Figure 2 Top: Butterfly diagrams of the large-scale magnetic field, By(π, z, t). Bottom: Time series plots
of By(x, z, t) taken from an arbitrarily chosen mesh point as a function of time, normalized by the diffusive
time (k2

1η)−1. These results are from a simulation initiated with a weak seed field at (a) σ = 0.15 (Run E,
Subcritical) and (b) σ = 0.16 (Run F, Critical).

Figure 3 Top: butterfly diagrams of the small-scale magnetic field, b2(π, z, t). Bottom: time series plots of
b2(x, z, t) taken from an arbitrarily chosen mesh point as a function of time, normalized by the diffusive time
scales. These results are from a simulation initiated with a weak seed field at (a) σ = 0.15 (Run E, Subcritical)
and (b) σ = 0.16 (Run F, Critical).
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Figure 4 Time series of the large-scale (black/solid line) and small-scale (red/dash line) fields, when (a)
large-scale dynamo is excited, and (b) both large- and small-scale dynamos are excited at the same time.
Results of (b) are taken from Run F at σ = 0.16 (i.e., the critical value in this setup), while in (a), the
parameters are the same except the value of kf and ν has been changed to 5.1 and 10−2 (Run F′).

field. In the early stages, when the large-scale field is still emerging, the small-scale field
is predominantly driven by the small-scale dynamo, resulting in b2 being approximately
equivalent to b2

SSD. Subsequently, as the large-scale field becomes more pronounced, an
observable increase in b2 is largely attributed to the tangling effects of the large-scale field.
However, upon reaching a specific threshold of B2, b2

tang tends to saturate.
To enhance understanding of this phenomenon, we have added a new run involving only

the large-scale dynamo (similar to Run 2 of Karak and Brandenburg 2016). In this run, we
increased the viscosity (ν) from 5×10−3 to 10−2, to ensure that the small-scale dynamo does
not operate (see Table 1). Figure 4 provides a comparison between the scenarios where only
the large-scale dynamo is evolved and where both the large-scale and small-scale dynamos
are evolved together. From Figure 4a, it can be observed that the small-scale field is five
times weaker than the large-scale field and becomes significant only when the large-scale
field begins to grow. Additionally, Figure 4b clearly shows that the small-scale field develops
significantly faster than the large-scale field.

So far, in the previous simulations, we used a random weak seed field as an initial con-
dition. Now, we expand our study by initiating a new simulation, where we use a snapshot
from the run at σ = 0.17 (Run G) as the initial condition and introduce it into the run at
σ = 0.16 (Run F). Next, we perform a sequence of simulations by systematically decreas-
ing the value of σ , with each simulation using the output of the preceding one as the initial
condition. Our observations unveiled the oscillatory solutions spanning a broad range of
σ values, particularly within the interval 0.13 ≤ σ < 0.16. Remarkably, these oscillations
persisted even in scenarios where a decaying magnetic field had been present earlier. This
behavior is illustrated in Figure 5, which showcases a snapshot of the oscillating field within
the sub-critical region.

As presented in Figure 6, a hysteresis curve is demonstrated. Within a specific range
of the dynamo parameter, we identified a regime where two possible solutions coexist: a
weak, decaying magnetic field and a robust, oscillatory magnetic field. The ultimate output
depends heavily on the initial conditions. Notably, simulations initiated with weak magnetic
fields consistently resulted in decaying solutions within this parameter range, emphasizing
the system’s sensitivity to its starting state. Consequently, this region exhibits bistability. It is
important to emphasize that all simulations were conducted for several hundreds of diffusion
times to ensure the stability of their respective states. Therefore, our work gives additional
support to the dynamo hysteresis behavior in the α� type dynamo model, suggesting that
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Figure 5 Butterfly diagram the large-scale magnetic field, By(π, z, t), when the simulation started with a
strong magnetic field for the subcritical dynamo Run E (σ = 0.15).

Figure 6 Dynamo hysteresis:
Variation of the temporal mean of
rms value of the large-scale
magnetic field, normalized to
Beq, as a function of helicity
parameter σ from simulations
started with a weak seed field
(red filled circles) and from
simulations started with a strong
field of previous simulation (blue
stars).

such hysteresis is probably a characteristic feature of the α� type solar dynamo, even in the
presence of a small-scale magnetic field.

4. Conclusions

Previous study (Karak, Kitchatinov, and Brandenburg 2015) demonstrated the existence of
two distinct dynamo modes within the subcritical region of the large-scale dynamo, i.e.,
there is a presence of a hysteresis behavior in the system where, depending on the initial
conditions, the system exhibits bistability by accommodating both non-decaying oscillatory
and decaying dynamo solutions.

Building upon this foundation, our current work takes a significant step forward by incor-
porating the small-scale dynamo. In real sun scenarios, both the large-scale and small-scale
dynamos operate concurrently at the same location. Consequently, we have identified that
the features we previously observed in the presence of only large-scale dynamo also man-
ifest in the presence of the small-scale dynamo—thus affirming the continued existence of
dynamo hysteresis.

To demonstrate this, we utilized the PENCIL CODE to establish an α� dynamo model
featuring uniform shear and helically induced turbulence. Through a series of simulations
conducted at varying relative helicity levels, we explored the generation of large-scale os-
cillatory magnetic fields in conjunction with small-scale dynamo processes.
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In summary, our findings not only validate but also strengthen the conclusions drawn
in our earlier work, providing a more comprehensive understanding of dynamo behavior at
both large and small scales.
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