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Abstract

The PADÉ code has been developed to treat hydrodynamic turbulence in protoplanetary disks. It solves the
compressible equations of motion in cylindrical coordinates. Derivatives are computed using nondiffusive and
conservative fourth-order Padé differencing, which has higher resolving power compared to both dissipative
shock-capturing schemes used in most astrophysics codes, as well as nondiffusive central finite-difference schemes
of the same order. The fourth-order Runge–Kutta method is used for time stepping. A previously reported error-
corrected Fargo approach is used to reduce the time step constraint imposed by rapid Keplerian advection.
Artificial bulk viscosity is used when shock capturing is required. Tests for correctness and scaling with respect to
the number of processors are presented. Finally, efforts to improve efficiency and accuracy are suggested.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Computational methods (1965)

1. Introduction

This paper presents a code called PADÉ, developed to
simulate hydrodynamic turbulence in protoplanetary disks. The
code uses a Padé/compact finite-difference scheme (Lele 1992).
Such schemes have spectral-like resolving power. This means
that they approach the ability of a spectral method to compute
derivatives exactly for all wavenumbers that the mesh can
support. In particular, for advection problems they have zero
diffusive errors (as do all central finite-difference schemes) and
they have small dispersion errors across the wavenumber range.
Thus they have the ability to more accurately treat the
dynamics of the small scales supported by the mesh and
produce energy spectra that have a wider inertial (power-law)
range for turbulent flows.

On the other hand, most astrophysical codes employ
Godunov-type schemes that were an elegant and mathemati-
cally supported breakthrough for capturing shock waves. Such
schemes employ noncentral upwinded finite-difference or flux
reconstruction schemes with a smart nonlinear dissipation that
is necessary for capturing shocks, but which leads to excessive
dissipation of vortical and other smooth features such as
density waves. To fix this issue there have been attempts along
many directions, which include hybrid methods (Adams &
Shariff 1996; Pirozzoli 2002), nonlinear filtering (Yee &
Sjögreen 2018), and vorticity-preserving schemes (Lerat et al.
2007; Seligman & Laughlin 2017; Seligman & Shariff 2019).
Since shocks have not been observed in protoplanetary disk
turbulence to date, we can sidestep the issue. For treating shock
waves that are not too strong, the PADÉ code provides an
optional artificial bulk viscosity treatment (Cook & Cabot 2005;
Mani et al. 2009). This is not as elegant or oscillation free as
Godunov methods, but is designed to apply a diffusivity only
where the divergence ∇ · u is strong.

The development of the PADÉ code was motivated by the
discovery in the last two decades of a number of mechanisms for
the generation of hydrodynamic turbulence in protoplanetary

disks (see Lesur et al. 2022 for a comprehensive review). These
include the vertical shear instability (VSI), convective over-
stability (COS), and the zombie vortex instability (ZVI). Each is
most strongly amplified for a different range of Ωtthermal, the
timescale for radiative relaxation of temperature fluctuations
back to the background (normalized by the orbital frequency,Ω).
VSI is most strongly amplified when Ωtthermal= 1, COS when
Ωtthermal∼ 1, and ZVI when Ωtthermal? 1. Turbulence can also
be driven by the magneto-rotational instability in the radially
inner and outer regions of protoplanetary disks where ionization
is sufficient.
As mentioned earlier, most astrophysical codes that are

applied to protoplanetary disks use dissipative shock-capturing
methods. These codes include ATHENA (Stone et al. 2008),
ATHENA++ (Stone et al. 2020), PLUTO (Mignone et al. 2007),
and FARGO3D (Benítez-Llambay & Masset 2016). The highest-
order scheme provided in ATHENA and ATHENA++ is the
third-order piecewise parabolic method. The highest-order
scheme in PLUTO is a fifth-order weighted essentially
nonoscillatory (WENO) finite-difference shock-capturing
scheme denoted WENOZ_FD in the PLUTO manual (page
93).1 FARGO3D employs a staggered mesh such that the scalar
variables, density and internal energy per unit volume, are cell
centered while vector quantities, velocity and magnetic field,
are located at the centers of cell faces. The computation of
fluxes at the cell faces employs upwinded interpolation, which
is necessarily dissipative. Time advancement uses operator
splitting whereby different sets of terms contributing to the
time rate of change of flow quantities are time advanced
separately, one after the other.
The one exception to the use of dissipative shock-capturing

schemes is the PENCIL code (Brandenburg et al. 2021), which
uses sixth-order central differencing. Central schemes, includ-
ing the Padé scheme, produce oscillations at the Nyquist
wavenumber of the mesh. To overcome this, PENCIL uses a
dissipative fifth-order upwind biased scheme, while PADÉ uses
a filter with a sharp cutoff (Section 3.3).
The rest of the paper presents the equations solved

(Section 2), computational schemes (Section 3), various tests
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(Section 4), and closing remarks (Section 5). Code availability
is described after the Acknowledgments.

2. Discretized Equations

2.1. Transport Equations

The code solves the equations for mass and momentum
(radial, angular, and vertical) transport written in as close to
flux-divergence form as possible in cylindrical coordinates
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Here Fv represents an optional viscous force, given in
Appendix A. Implementation of characteristic boundary
conditions requires calculation of the flux Jacobian, and to
make the flux look similar to that in Cartesian coordinates, the
term −∂p/∂r that normally appears on the right-hand side of
the radial momentum equation (Equation (2)) was moved into
the radial advective flux on the left-hand side. This is
accomplished by adding the quantity
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to both sides of Equation (2), which results in the source term
p/r on the right-hand side.

For the locally isothermal option, the pressure is computed
as p c ri

2 ( )r= , where ci(r, z) is the local isothermal sound
speed. For the nonisothermal option we have

p e1 , 6int( ) ( )g= -

where eint is the internal energy (per unit volume). The
rationale for using the internal energy instead of its sum with
the kinetic energy is given in our work on the Fargo method
(Shariff & Wray 2018). The transport equation for eint is
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The first term on the right-hand side of Equation (7) is the
pressure-dilatation term, which causes heating under compression.

The dilatation is given by
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The last two terms Q qv
cond· -  on the right-hand side of

Equation (7) represent viscous heating and conductive heat
transfer, respectively. They are activated only if viscous terms
are activated; their form is given in Appendix A.
The variables evolved at each grid point are q


=
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mated by Padé finite differences (discussed below), one obtains a
system of ordinary differential equations for the time rate of
change, qt
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at each grid point. This system is evolved using

the fourth-order Runge–Kutta method. Note that we do not
employ operator splitting, whereby different sets of terms in qt


¶

are time evolved separately one after another; this would
produce a splitting error, which we do not incur.
Currently, the main source of gravity in the code is from a
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which are precomputed. The code also allows other simple
choices such as uniform gz and the thin disk version of
Equation (9).

2.2. Fargo

The Fargo method was introduced by Masset (2000) to
alleviate the time step restriction resulting from fast Keplerian
advection. Shariff & Wray (2018) improved its accuracy by
first noting that underlying the method is a transformation of
the azimuthal coordinate f

r t t , 100( )( ) ( )f f¢ = - W -
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for the duration of a time step, t0< t� t0+Δt. Here r( )W is a
prescribed rotation rate that one wishes to subtract from
determining the time step. At the end of the time step, one
brings the flow field back to original coordinates by performing
a shift using a fast Fourier transform (FFT). The chain rule for
differentiation then implies that every t and r derivative in the
transport equations carries an additional term

t t t t
r , 13( ) ( )f

f f
¶
¶

=
¶
¶ ¢

-
¶ ¢
¶

¶
¶ ¢

=
¶
¶ ¢

- W
¶
¶ ¢

r r r r
t t

r
, 140( ) ( )f

f f
¶
¶

=
¶
¶ ¢

-
¶ ¢
¶

¶
¶ ¢

=
¶
¶ ¢

- -
¶W
¶

¶
¶ ¢

. 15( )
f f
¶
¶

=
¶
¶ ¢

The second term in ∂/∂t serves to remove r( )W from the
azimuthal advection velocity, therefore, it no longer influences
the time step. To see how this works, consider the transformed
mass transport Equation (1)
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where

u u r r, 17¯ ( ) ( )¢ = - Wf f

is a shifted velocity that results in a less restrictive time step. In
Equation (16), the symbol χ denotes the operator
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It arises from the second term on the right-hand side of the
last member of Equation (14), and must be added to every r
derivative in the transport equations; the code refers to it as the
“extra operator.” The extra operator χ is missing in the original
implementation (Masset 2000); its neglect results in an error of

t( )D . The original implementation also “integerizes” the
prescribed r( )W to allow a shift of the flow field by an integer
number of grid intervals in f at the end of a time step. The
integer shift jumps at certain radial locations and this results in
additional error at those locations.

This code provides options to completely or partially revert to
Masset’s original algorithm if desired. In particular, integer shifting
can be selected as opposed to the more accurate real-valued
shifting. Also, inclusion of the extra operator χ can be suppressed.
At the end of each time step, the flow field is shifted back to
original coordinates. Real-valued shifting is performed using an
FFT from the FFTW library (Frigo & Johnson 2005).

Following publication of Shariff & Wray (2018), we were
contacted by Prof. Pablo Benítez-Llambay (Universidad
Adolfo Ibáñez, Chile) who is a main developer of FARGO3D.
He pointed out that FARGO3D performs advection by operator
splitting, and therefore there is no coordinate transformation
requiring chain-rule terms. For instance, consider the continuity
equation with only f advection for simplicity
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with the decomposition
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In the operator splitting approach, ρ is first partially evolved
according to advection by the residual velocity u ¢f
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whose time step restriction is not severe. Next, the term
r( ) rW ¶f , representing advection by Keplerian flow, is treated

in FARGO3D by real-valued shifting (C. McNally, Queen Mary
University of London, private communication). Thus, it is true
that no coordinate transformation is implied. However,
operator splitting has an t2( )D error which is of the same
order as the error made by dropping the extra chain-rule terms.
Thus, it would appear that for higher-order time integration
schemes, chain-rule terms are necessary for consistency.

2.3. Artificial Pressure for Shock Capturing

Padé schemes, like spectral schemes, are not designed to
capture shocks. However, one may encounter shocks in
protoplanetary disks. Examples include the infall accretion shock
(Neufeld & Hollenbach 1994), and bow shocks due to solid
bodies moving supersonically relative to the gas. For these
reasons, the code allows for an optional treatment of shocks using

artificial bulk viscosity (Cook & Cabot 2005; Mani et al. 2009).
This method results in an artificial pressure, part, which is then
added to the physical pressure. The actual calculation of part is

p u , 22art · ( )b= - D

where βΔ is the artificial bulk viscosity. Note that the artificial
pressure is positive in regions of compression (dilatation

u 0·  < ) and negative in regions of expansion. The artificial
bulk viscosity is made sensitive to the dilatation as follows
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Since the absolute value function is not smooth, the Padé
filter (Section 3.3) with òfilter= 0.2 is applied to βΔ.
The artificial pressure term imposes a time step constraint

appropriate for a viscous (second-derivative) term. The time
step must satisfy

t CFL, 25ap max( ) ( )l D <

where ap max( )l is the maximum eigenvalue of the bulk viscosity
operator and CFL is the Courant–Friedrichs–Lewy limit specified
by the user. For the fourth-order Runge–Kutta method,
CFL 8< for stability. The maximum eigenvalue is estimated as
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where a factor of π comes from assuming that each numerical
derivative has spectral accuracy. Recall that ℓgrid

2b µD so the
grid size actually drops out in Equation (26). For the shock tube
and density wave test cases we report below, this eigenvalue
was a factor of 1.08 and 1.61 larger, respectively, than the
eigenvalue for the Euler terms.

3. Numerics

3.1. Padé Differentiation

The motivation for Padé differencing (also referred to as
compact differencing) is its high resolving power (Section 3.2);
see Lele (1992) for a comprehensive presentation and various
extensions. The idea and initial development of such schemes
is due to the Czech-born astronomer and numerical analyst
Zdeněk Kopal around 1959; see the bibliographical notes (item
IX-C) in his book (Kopal 1955). The basic idea, developed in
Chapter 9 of the book, is to write the exact first-derivative
operator as an exact function of the central difference operator.
This operator function is first expanded in a truncated Taylor
polynomial, which results in a conventional difference scheme.
The key idea, however, is to next obtain a rational polynomial
approximation (known as a Padé approximant) to the Taylor
series. It is known that Padé2 approximants to ordinary
functions have a greater range of accuracy and radius of

2 Henri Padé was a French mathematician who, for his doctoral thesis, studied
(c. 1890) the approximation of functions by rational polynomials, now known
as Padé approximants.
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convergence than a Taylor series. In the present case, one
obtains difference schemes with better resolving power. The
simplest scheme, and the one we use both in the interior of
nonperiodic domains and for periodic domains, is

f f f
a

h
f f

2
, 27j j j j j1 1 1 1( ) ( )a a¢ + ¢ + ¢ = -- + + -

where h is the uniform grid spacing, α= 1/4, and a= 3/2.
Equation (27) constitutes a tridiagonal system of equations along
each line of data in the mesh. The system is solved efficiently
using the Thomas algorithm, which is simply Gaussian elimina-
tion applied to a tridiagonal matrix. Since Gaussian elimination is
recursive, namely, operating on row j depends on the result of row
j− 1, the memory cache cannot be preloaded with the required
data. Similarly, any available vectorization hardware cannot be
engaged by the compiler. To overcome this, we follow the
standard practice of having each step of the Thomas algorithm
inner loop over a bundle of independent inversions for different
grid lines of the mesh. Equation (27) is fourth-order accurate, i.e.,
its truncation error is h4( ) . To allow for nonuniform meshes,
numerical differentiation is performed with respect to the
continuous grid index variable ξ (such that ξj= j and h= 1),
and the chain rule is used, e.g.,
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Kopal’s operator calculus is abstruse and unwieldy, but once
the basic form of Padé schemes is recognized, an easier
approach to develop them is to simply write down a specific
form with a desired grid-point stencil, and obtain the unknown
coefficients by setting the Taylor series error to 0 at various
orders. This is the approach followed in Lele (1992), who
developed a number of extensions, including resolving power
optimization, boundary schemes, higher derivatives, conserva-
tion, and filtering.

For robustness, it is desirable that a code maintain positivity
of density and internal energy. Negative values can arise in
strongly evacuated regions for low-order schemes, and near
very strong discontinuities for higher-order schemes; see, for
example, Hu et al. (2013), who present a simple method for

ensuring positivity for finite-difference schemes that can be
written as a difference of numerical fluxes. The present method
does not guarantee positivity; however, the code has not
encountered difficulties for problems of subsonic turbulence for
which it is intended. In the future, it may be possible to
implement the method of Hu et al. (2013) using the
“reconstruction by primitive function” trick (Harten et al.
1987; Shu & Osher 1989), which is also discussed in Merriman
(2003). In this method, one obtains numerical fluxes by
differentiating the primitive function; this differentiation would
be performed using the Padé scheme.

3.2. Resolving Power of Padé Differencing

The advantage of Padé schemes is, first of all, their
compactness: for Equation (27), for instance, fourth-order
accuracy is obtained with a stencil width of 3 rather than 4 in
the case of standard central differencing. More importantly,
they have better resolving power than standard central
differencing. This means that for the same formal order of
accuracy, they provide an accurate derivative up to higher
wavenumbers. This is quantified by the so-called effective
wavenumber analysis, where one substitutes

f kx f k k kx k hexp i and i exp i , 0 ,

29
j j j jeff( ) ( ) ( )

( )
p= ¢ =  

into Equation (27) to obtain the effective wavenumber keff(k).
Figure 1(a) displays the effective wavenumber for various
schemes and shows that the fourth-order Padé scheme has
better resolving power than a conventional sixth-order scheme.
In general, keff(k) is complex and its imaginary part represents
numerical dissipation of the scheme. The fact that keff(k) is real
for central schemes means that they have a dispersion error but
no dissipation error (for periodic boundary conditions). As as
example of how to use the effective wavenumber diagram, we
estimate by eye that the highest wavenumber for which we can
trust the fourth-order Padé scheme is kh= 1.5, which implies
that the smallest number of grid points per wavelength for
which the scheme is accurate is about 4.

Figure 1. (a) Effective wavenumber for various difference schemes. (b) Transfer function, T(k), for the Padé filter. The grid spacing is h. The limit kh = π corresponds
to the Nyquist mode, which has wavelength 2h.
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3.3. Padé Filtering

It is known that in the presence of nonlinearity or
nonuniform grids, Padé schemes produce small 2Δ waves at
every time step, which can grow if not controlled; this is
true for conventional central schemes as well. Our remedy is
to apply a minimum amount of Padé filtering (Lele 1992,
Section C.2), which has a sharp cutoff and targets the very
highest wavenumbers. We also use Padé filtering as an
implicit subgrid treatment; this is discussed in Section 4 where
we use it for this purpose in an axisymmetric simulation
of VSI.

We use the fourth-order filter of Lele (1992), which for
periodic boundary conditions, or in the interior of nonperiodic
domains, has the form

aU U aU P u u

Q u u Ru , 30
j j j j j

j j j

1 1 2 2

1 1

( )
( ) ( )
+ + = +

+ + +
- + - +
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where Uj are the filtered uj. The conditions for fourth-order
accuracy are
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The reader can verify that there is no filtering when Q= 1/2.
To specify the strength of the filter, the code uses the parameter
òfilter such that

Q
1

2

1

4
. 32filter ( )= - 

The transfer function T(k) of the filter versus wavenumber
can be obtained by substituting u ej

kxi j= and U T k ej
kxi j( )=

(with xj= jh) into Equation (30). Figure 1(b) shows T(k) for
various values of òfilter. Axisymmetric simulations for òfilter
values ranging from 0.01 to 0.125 will be presented in
Section 4.5.

For nonperiodic boundaries, we use the boundary treatment
developed by A. Wray (private communication) that is
conservative, i.e., it preserves

u h . 33
j

N

j j
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The formulae applied at j= 2 and N− 1 are
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The boundary values u1 and uN are unchanged.
The first item of Table 9 in Lele (1992) lists the the leading-

order truncation error for the filter (Equation (30))
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Comparing Equations (37) and (38) gives
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Hence, to leading order, Padé filtering corresponds to fourth-

order hyperviscosity. Substituting the first member of
Equations (31) and (32) into Equation (40) gives

t
h

1

16
. 414

filter 4 ( )n =
D


Equation (40) implies that as the time step is reduced òfilter
should be reduced. It should be noted that the matrix associated
with the Padé filter becomes ill-conditioned for very small
values of òfilter and a sufficiently large number of grid points. To
alleviate this, the filter is applied every Nfilter time steps (rather
than after every step) and with òfilter increased by Nfilter. In that
case one should replace Δt with ΔtNfilter in Equation (41).

3.4. Boundary Schemes and Global Conservation

At the end points of a nonperiodic direction ( j= 1 and N),
the scheme in Equation (27) involves values and derivatives
outside the domain. Therefore, at j= 1 and N we use the third-
order one-sided scheme from Equation (4.1.1) in Lele (1992)

f f h a f b f c f , 421 1 2
1

1 1 1 2 1 3( ) ( )a¢ + ¢ = + +-

f f h a f b f c f , 43N N N N N1 1
1

1 1 1 1 2( ) ( )a¢ + ¢ = - + +-
-

- -

with

a b c2, 15 16, 2, and 1 2. 441 1 1 1 ( )a = = - = =

According to a theorem for hyperbolic initial boundary value
problems, one can reduce the order of accuracy at the boundary
by 1 without affecting the global order of accuracy (Gustafs-
son 1981). The scheme used at the interior points j ä [2, N− 1]
is Equation (27).
We wish the finite-difference scheme to possess a discrete

conservation property. Specifically, we require that a discrete
version of the Leibniz integral rule be satisfied: a numerical

36B a C a D a E a Q F a Q G a Q H a Q2 , 1 , ,
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4
7 ,
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4
4 7 3 ,
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3 ,

1

4
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integral of the numerical derivative should reduce to a
difference of boundary values. This achieved for the Padé
scheme as described in Lele (1992, Section 4.2) and Brady &
Livescu (2019). Its application to the present scheme is
described in Appendix B. Briefly, the condition to be satisfied
is that the row entries in columns 2 to N− 1 of matrix B must
have a weighted sum of 0. Here B is the matrix representation
of the right-hand side of Equation (27)

f fA
h

B
1

. 45( )¢ =

Appendix B shows that this condition is satisfied for the
present boundary scheme. An alternate way to obtain
conservation is the “reconstruction by primitive function” trick
referred to above.

3.5. Data Partitioning for Parallelization

Since an entire line of data along x is needed to compute a
Padé derivative along x, for any direction x, we employ the
pencil data structure. Each processor is assigned a pencil of
data that can be thought of as a long brick with the long side
along the direction of differentiation. Most of the work is done
with z pencils (i.e., with z as the long direction). This work
includes initialization, output, and time integration substeps. To
compute r derivatives, we perform a so-called “transpose” such
that each processor also has r pencils, and similarly for the f
derivatives. The flow-field arrays with z, r, and f penciling,
respectively, are dimensioned as follows

q (sr:er, sphi:ephi, nz, ndof)
! pencil along z
q_r_space (sphi:ephi, sz_r:ez_r, ndof,
nr) ! pencil along r
q_phi_space(sr:er, sz_phi:ez_phi, ndof, nphi)
! pencil along phi

Here ndof refers to the number of degrees of freedom
(number of flow variables) at each grid point and the other
dimensions can be read, for example, as follows: sz_r:ez_r
—starting z index to ending z index for an r pencil. Partitioning
and transpose routines were taken from Alan Wray’s STELLAR-
BOX code.

4. Tests

4.1. Convergence for Two-dimensional Advection

Here we solve the equation for a scalar, f (z, f, t), uniformly
advecting in the z and f directions

f

t

f

z

f
z0, 0, 2 , 0, 2 , 46[ ) [ ) ( )

f
p f p

¶
¶

+
¶
¶

+
¶
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= Î Î

with periodic boundary conditions and the initial condition

f z z, , 0 1
1

2
sin 2 sin 2 . 47( ) ( )f f= +

The CFL is fixed at unity and the number of grid points nz
and nf is varied.

Figure 2 plots the rms error at t= 6π compared with the
exact solution at t= 6π. The rate of convergence is seen to be
fourth order.

4.2. One-dimensional Euler Equations with Shocks

Figure 3 presents two test cases for the 1D Euler equations,
which were run in the code’s z direction by suppressing the
other two. Both tests employed nz= 512 grid points and
artificial pressure (with Cap= 2) to capture shocks. Figure 3(a)
shows the solution (solid line) to the 1D shock-tube problem
with initial conditions to the left and right of the diaphragm
(located at x= 0.8) as follows

u p

u p

, , 8, 0, 10 ,

, , 1, 0, 1 , 48
L L L

R R R

( ) ( )
( ) ( ) ( )
r g
r g

=
=

with 0 velocity everywhere and γ= 1.4. The computed
solution is accurate; however, small oscillations are present in
the postshock region
Shu & Osher (1989) introduced the problem of a Mach 3

shock propagating through density waves as way of testing a
method’s ability to both capture shocks and resolve nonshock
wavy features without excessive dissipation. The initial
condition is

⎧
⎨⎩

u p
x

z x
, ,

3.857143, 2.629369, 10.33333 , 4;
1 0.2 sin 5 , 0, 1 , 4.

49

( ) ( )
( )

( )

r =
<

+ 

The result of this test is shown in Figure 3 where the baseline
comparison (dashed line) was obtained using a fifth-order
WENO scheme with nz= 1600 points, the Roe flux, and
reconstruction along characteristics. The present code performs
very well.

4.3. Kelvin–Helmholtz Instability

Here we consider the benchmark for viscous Kelvin–
Helmholtz (KH) instability with a density gradient starting
with smooth initial conditions constructed by Lecoanet et al.
(2016, hereafter L2016). The full domain size is Lx× Lz=
1× 2, however, only the lower half of the z domain will be
shown, since the rest is shift symmetric. The resolution is
nx× nz with nz= 2nx. It should be noted that L2016 write the
heat conductivity as k= ρχ, where χ is the heat diffusivity.
The actual definition (which PADÉ uses) is k= ρχcp. Therefore,
to match L2016 we needed to divide our k by cp, which equals

Figure 2. Convergence for 2D advection.
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Figure 3. 1D Euler equation tests. (a)–(c) Shock tube. (a) Density. (b) Pressure. (c) Velocity. (d) A Mach 3 shock propagating into density waves (Shu & Osher 1989).
The result of the present code is compared with the WENO5–Roe method. For both tests the coefficient of artificial pressure Cap = 2 and Pade/compact filter strength
òfilter = 0.05 (applied at the end of every step). CFL = 1.

Figure 4. Density field at t = 6 for the KH instability benchmark of L2016. (a) PADÉ code with nx = 1024. (b) Pseudospectral DEDALUS code with nx = 4096. Data
provided by D. Lecoanet.
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5/2 for the setup of L1016, which assumes that the gas
constant R= cp− cv= 1 and γ≡ cp/cv= 5/3. We chose time
step Δt so that the CFL number was 1.5. We initially applied
the Padé filter after every step with òfilter= 0.0025, however,
the associated matrix becomes ill-conditioned for very small
values of òfilter when the number of grid points is sufficiently
large. To alleviate this, the strength of the Padé filter was
applied every 40 time steps with òfilter= 0.10. The simulation
was run on a laptop with an Apple M2 Pro chip using eight
CPUs. The CPU time per step was 0.3 s.

Figure 4(a) shows the density field at t= 6 obtained from
PADÉ with nx= 1024. It is compared with the result of L2016
obtained using their pseudospectral code DEDALUS with
nx= 4096; we thank Prof. D. Lecoanet (Northwestern
University) for sending us the data. The agreement is
very good.

4.4. Taylor–Couette Flow

A natural test case in cylindrical coordinates is a Taylor–
Couette flow, i.e., a viscous flow driven by rotating inner and
outer cylinders with radii ri and ro, respectively. The
corresponding rotation rates are Ωi and Ωo, giving corresp-
onding rotational speeds Ui≡Ωiri and Uo≡Ωoro. Two of the
four nondimensional parameters are the inner and outer
Reynolds numbers U dRei i nº and U r dReo o i nº , where
d= ro− ri is the gap width. The third and fourth nondimen-
sional parameters are the ratio η≡ ri/ro, and the nondimen-
sional vertical domain size λ≡ Lz/d.

The present code solves the compressible equations while
most simulations reported in the literature are for an
incompressible flow. To approximate incompressible simula-
tions the rotational Mach number of the inner cylinder is set to
0.1, the equation of state is isothermal, and isothermal
boundary conditions are applied at the two walls. The initial
density is set to a uniform value ρ0. Code units are such that
Ui= d= ρ0= 1.

Torques, Gi and Go, per unit axial length exerted on the fluid
by the inner and outer cylinders, respectively, are computed as
diagnostics:

rtorque area averaged shear stress area. 50- ( )= ´ ´

The area-averaged shear stress is given by
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where μ is the dynamic viscosity and .á ñ denotes an average
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The negative sign in Equation (52) arises from the fact that at
r= ri, the normal to the fluid surface is in the −r direction. For
a steady flow, conservation of angular momentum implies that
Gi and Go must be equal and opposite in sign.
We first consider two axisymmetric cases that produce a steady

flow with counterrotating vortices. The inner cylinder rotates at
angular velocity Ωi while the outer cylinder is fixed. Each case
was run using a 32× 32 grid (nr× nz) with òfilter= 0.005. The
first two entries of Table 1 shows that the computed torque per
unit length agrees with previous published results. Marcus (1984)
uses units in which ρ0= d=Ωri= 1. Moser et al. (1983) use the
same units but normalize G by ρ0ν

2 where ν= μ/ρ0. The values
in Table 1 use the same conventions.
Finally, a case of a 3D unsteady counterrotating Taylor–

Couette flow is considered following Dong (2008). The inner
and outer cylinders rotate counterclockwise and clockwise,
respectively, with Re Re 500i o= - = , η= 0.5 and Lz/d= 2π.
Dong (2008) defines the nondimensional torque coefficient for
the inner cylinder as

C
G

U r L
, 54

z
T i

i
1

2 0 i
2

i
2

( ) ( )
pr

=

and similarly for the outer cylinder. The number of grid points
is 48× 962 (nr, nz, nf) and the strength of the Padé filter was set
to òfilter= 0.005. Figures 5(a) and (b) show the radial velocity
in a meridional and horizontal plane and reveals the three
dimensionality of the flow. Figure 5(c) shows the torque
coefficients for the inner and outer cylinders after the flow has
reached statistical stationarity. The values agree with those
shown in Figure 3 of Dong (2008).

4.5. Vertical Shear Instability and the Effect of Varying the
Strength of the Padé filter

Here we present results for axisymmetric VSI at an early
stage of evolution following the setup of Nelson et al. (2013).
Detailed results will be presented in a forthcoming publication,
which will also include 3D results.
The parameters of the setup are given in Table 2. A locally

isothermal equation of state

p c r , 55i
2 ( ) ( )r=

is used, which represents the case of infinitely rapid relaxation
of temperature to the basic state. The square of the sound
speed, which is proportional to the temperature, is specified as a
power law

c r c r r , 56q
i
2

0
2

0( ) ( ) ( )=

Table 1
Computed Torques Gi and Go per Unit Axial Length Exerted on the Fluid by the Inner and Outer Cylinders, Respectively, for a Steady Axisymmetric Taylor–

Couette Flow

η ≡ ri/ro Lz/d Rei Gi Go Published Gi References

0.875 2.5 139.22 3.3485 −3.3482 3.3539 Marcus (1984)
0.50 1.988 78.8 1485 −1485 1487 Moser et al. (1983)

Note. These values are compared with values obtained in the cited references. The values are normalized differently in the two references as described in the text.
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where the temperature exponent q=−1, r0 is the midradius of
the computational domain, and c0 is chosen to make the scale
height H0≡H(r0)= 1.

Zero normal velocity boundary conditions are applied at all
four domain edges. Each edge abuts a sponge region of width
δsponge= 0.5H0 where the flow relaxes back to the basic state
with a characteristic period tsponge given in the table.

Figure 6 shows the azimuthal vorticity, ωf at t/T0= 37,
which is just after saturation of the linear phase of the
instability. We caution the reader that the statistically stationary
state is quite different and reached much later at t/T0≈ 350;
this will be reported in a later publication. The result of using
three different values for the strength, òfilter, of the Padé filter is
shown.

The azimuthal vorticity consists of pairs of shear layers of
opposite sign which induce up and down jets of vertical
velocity (Figure 7(a)) that are characteristic of VSI (Nelson
et al. 2013). The shear layers roll up into discrete eddies via the
KH instability. It is important to note that VSI also produces
shear layers with ∂δuf/∂r shear, i.e., radial gradients of
perturbation angular velocity. These are shown in Figure 7(b),
which plots the azimuthal velocity perturbation, δuf, and shows

that is it about two-thirds of the value of the vertical velocity
perturbation. This shear will also be subject to the KH
instability, however, it will be modified by the presence of
mean Keplerian shear.
We now discuss how a user should choose the filter strength,

òfilter. Direct numerical simulations (DNSs) of turbulent flow
are performed with molecular viscosity and all the scales of the
turbulence down to the dissipation scale are well resolved. In
this case, the very minimum value of òfilter should be chosen.
For instance in the Taylor–Couette simulations we chose
òfilter= 0.005.
However, the Reynolds number in protoplanetary disks is

too large for numerical simulations to be able to resolve all the
turbulent scales. Therefore, some treatment of the unresolved
scales is required. For engineering and geophysical flows, the
most common practice is to use an explicit model for the
subgrid stresses, the simplest being the Smagorinsky model.
Another approach, followed for all protoplanetary disk
simulations to date, is to simply let the dissipation inherent in
the numerical method damp scales near the grid cutoff. This
procedure is referred to as implicit large-eddy simulation
(ILES) and was first articulated by Boris et al. (1992).
Comparison with DNSs, in which all scales are resolved, have
since shown that it is accurate (Ritos et al. 2018). In our
approach, we use the dissipation provided by the Padé filter as
an implicit subgrid treatment. To leading order, the Padé filter
corresponds to a fourth-order hyperviscosity; see Equation (30)
in Shariff & Wray (2018) and the discussion following it.
When the Padé filter is used as an ILES treatment, òfilter

should be chosen to balance the desire to capture as wide a
range of small scales as possible (with a fixed grid size) by
lowering òfilter, while at the same not allowing to much energy
to to pileup in 2Δ waves. For illustration, Figure 6 shows the
result of varying the strength, òfilter, of the filter on the vorticity
field. The reader may refer back to Figure 1(b), which shows
the filter transfer function for different òfilter choices. The left-
hand column of plots in Figure 6 shows that with reduced òfilter
more finer scales of the flow are resolved. The right-hand
column of the plots zoom in to a square region with sides equal
to H. For the lowest filter strength (òfilter= 0.01), 2Δ
(sawtooth) oscillations can be observed in thin vortex layers
oriented at 45° to the mesh. For òfilter= 0.04 and 0.125, smaller
amplitude oscillations are present in one vorticity layer whose

Figure 5. Counterrotating Taylor–Couette flow at Re Re 500i o= - = following Dong (2008). The mesh is 48 × 962(nr × nz × nf). (a) and (b) radial velocity
contours at Uit/d = 798.8. (a) The meridional plane f = 0. (b) Horizontal plane at midheight (z = π) to show that the flow is three dimensional. (c) Torque
coefficients (black) compared with curves (red) digitized from Dong (2008, Figure 3) and shifted backward in time by UiΔt/d = 802. The negative of the torque
coefficient is plotted for the outer cylinder.

Table 2
Parameters for the Axisymmetric Vertical Shear Instability Run

Parameter Value

Orbital period, T0, at r0 1
Density, ρ0, at r0 1
Scale height, H0, at r0 1
Density exponent, p −3/2
Temperature exponent, q −1
Disk aspect ratio, H0/r0 0.10
Radial domain (including sponge), r H r H,min 0 max 0[ ] [6.5, 13.5]
Vertical domain (including sponge), z H z H,min 0 max 0[ ] [−3.5, 3.5]
Width of the sponge at the domain border, δsponge/H0 0.5
Decay period, tsponge, for the sponge, 20 time steps
Number of grid points, nr × nz 5122

Strength of the Padé filter, òfilter 0.01–0.125

Note. H0 is the disk scale height at midradius and was set to unity. Subscript
“0” refers to a quantity evaluated at midradius.
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Figure 6. Effect of varying the strength of the Padé filter, òfilter when the Padé filter is used as an implicit subgrid scale treatment for an axisymmetric VSI simulation.
Completely white pixels are where ωf exceeds the range of the legend. The mesh size is 5122. The plots in the right-hand column are intended to show the level of
numerical 2Δ oscillations, which appear as sawtooth features.
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width is about one grid diagonal, which is very thin indeed.
These oscillations are not visually detectable in plots of the
velocity field even for òfilter= 0.01. We conclude that 0.125
would be a conservative choice for òfilter.

Finally, we would like to discuss some physical effects that
manifest as diffusivity when the filter is reduced and the
effective resolution is increased. (a) The rolled-up vortices are
smaller and there are more of them. This is explained as
follows. The shear layer thickness, δ, is reduced with smaller
diffusivity. The most amplified KH wavelength λ≈ 2πδ is
therefore also reduced, and with it the size of the vortices. The
number of vortices increases because there are more waves per
unit length. (b) The shear layer vorticity increases. We have
that ωf∼ΔU/δ where ΔU, the jump in velocity across each
shear layer, is independent of diffusivity. Therefore a reduction
in δ with diffusivity leads to increased ωf. (c) The rolled-up
vortices appear earlier. The KH growth-rate UkmaxµD , where
kmax is the most amplified wavenumber. Since kmax increases
with reduced thickness, the KH vortices develop earlier with
reduced diffusivity. (d) The vorticity in the the rolled-up vortex
cores increases. For each vortex we have ωf∼ Γ/area, where

Γ∼ΔUλ is its circulation. Since the vortex area∼ λ2, we get
that ωf∼ΔU/λ, which increases since λ decreases.

4.6. Three-dimensional Vertical Shear Instability: Comparison
of Fargo and Non-Fargo Runs

In Shariff & Wray (2018) a comparison (with plots of error)
was made between runs with and without the Fargo treatment for
the case of two corotating vortices in a razor-thin disk. Here, we
perform a similar comparison for 3D VSI. The simulation was
first run until t/T0= 300.27 with Fargo activated. Next runs were
made with and without Fargo for one orbital period (T0) at
midradius. The run parameters are the same as for the
axisymmetric run presented in Table 2. The only differences are
a resolution of 512× 512× 1024 (nr× nz× nf) with an
azimuthal domain of fä [0, 2π), and a Padé filter strength of
òfilter= 0.125. For the non-Fargo run, the Padé filter was applied
every other time step due to the fact that this run required about
twice as many time steps as the run with Fargo.
Figure 8 compares the vertical vorticity (δωz) perturbation

(relative to the basic state) in the z/H0= 2 plane after a time of
0.5T0, i.e., at t/T0= 300.77. Here T0 is the orbital period at the

Figure 7. (a) Vertical velocity for the axisymmetric VSI simulation using a 5122 mesh. The units of velocity are scale heights (H0) per orbit time (T0). (b) Similarly,
the perturbation azimuthal velocity.

Figure 8. A portion of the horizontal plane (r, f) cutting through the disk at z/H0 = 2 comparing the perturbation vertical vorticity, δωz, for a 3D VSI run with and
without Fargo. Each run was started at t/T0 = 300.27 and run for 0.5T0 up to t/T0 = 300.77. (a) With Fargo. (b) Without Fargo.
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midradius of the computational domain. The difference in the
two solutions at this time is very small. Due to the chaotic
nature of the flow, the error due to the different time steps, Δt,
chosen for the two simulations grows with time and the
differences become more apparent. The CFL number was
chosen to be 1.5 and based on this, the time step selected by the
code for the non-Fargo run was Δt/T0= 2.25× 10−4. This
choice was constrained by Keplerian advection. For the Fargo
run, the code selected Δt/T0= 5.49× 10−4 for the same CFL
number, which represents a better than factor of 2 improve-
ment. In the run with Fargo, the choice of time step was
constrained by the characteristic wave speed and grid size in
the radial direction. The CPU time for the non-Fargo and Fargo
runs was 1.50 and 1.76 s per step, respectively. These represent
a 17.3% overhead for a more than factor of 2 gain in time step.
An Intel Broadwell processor was used for these runs.

We close with a brief description of the physics observed in
the 3D VSI runs. The Keplerian mean flow is counterclockwise
in Figure 8 and the vertical vorticity perturbation consists of
layers of cyclonic δωz (red bands), which induce across them a
positive jump in specific angular momentum jf= ufr as r
increases. These layers are formed by the vertical transport of
basic state angular momentum by the vertical jets that are the

main feature of VSI. This will be discussed in more detail in a
forthcoming paper. In between the cyclonic layers, one
observes weaker and more diffuse anticyclonic δωz, which
reduces jf compared to the basic state. In the inner portion of
the disk, anticyclonic δωz structures take the form of smaller
aspect ratio structures.

4.7. Parallel Scaling Tests for Three-dimensional Vertical
Shear Instability Runs

Following the suggestion of the referee, the efficiency η of
the code is defined as the ratio of the useful work to the
resources consumed. The useful work is the number Ngrid of
grid points evolved while the resources consumed is the CPU
time tcpu (per time step in seconds) times the number of cores,
Ncores. We also include the ratio Δtactual/ΔtFargo to account for
the reduced time step in non-Fargo runs

N

t N

t

t

2
, 57

grid
17

cpu cores

actual

Fargo
( )h º

D
D

where we have normalized the number of grid points to 217.
When there is perfect scaling, η should be a constant as Ncores is
increased.

Figure 9. Scaling tests for the 3D VSI setup performed using the Intel Haswell nodes. The environment variable MPI_IB_RAILS used by the IB network was set to 2
for all runs. (a) Efficiency, η, for the weak scaling test where the problem size per processor is fixed. (b) Efficiency for the strong scaling test where the total problem
size is fixed at nr × nz × nf = 512 × 512 × 1024. (c) Efficiency, η, with Fargo deactivated. The measure, η, accounts for the decrease in time step when Fargo is
deactivated.
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All the tests in this subsection were performed using Intel
Haswell nodes, which use an E5-2680V3 (Xeon) processor.
The variable MPI_IB_RAILS used by the InfiniBand (IB)
network was set to 2; this causes two IB fabrics to be used for
communication and results in reduced CPU time. Figures 9(a)
and (b) plot η for a 3D VSI setup with Fargo activated;
therefore the ratio Δtactual/ΔtFargo in Equation (57) equals
unity.

Figure 9(a) is for a weak scaling test in which the grid size
per core is kept fixed while Ncores is increased. In other words,
both Ncores and the total grid size increase simultaneously. In
the present test, the number of grid points for the one core run
is 64× 32× 64 (nr× nz× nf) and each direction is succes-
sively doubled in resolution as Ncores doubles. Figure 9(a) plots
two curves, one which used the actual CPU time (solid) and
another (dashed) for which the time taken to perform
transposes was subtracted out. Both curves show an initial
rapid decrease in η up to N 8cores = . The main cause of this is
likely the fact that each Xeon processor in a Haswell node has
12 cores which share a single memory and level 3 cache.
Contention for both resources increases as the number of cores
increases from one to 12. Therefore, we focus on the region
N 12cores  . At N 2048cores = , the efficiency has decreased to
38% of its value at N 16cores = . When the CPU time for
transposes is subtracted out, the efficiency remains relatively
flat. This indicates that the loss in efficiency is due to
communication intensive transposes. Indeed, the fraction of
time (not shown) taken for transposes increases from 0.38 to
0.73 as Ncores increases from 16 to 2048.

Figure 9(b) is for a strong scaling test in which the total
problem size is fixed at 512× 512× 1024 (nr× nz× nf) and
the number of cores is varied. At N 2048cores = , the efficiency
has decreased to 67% of its value at N 64cores = . The CPU
fraction taken for transposes increases from 0.57 to 0.73 (not
shown) in this range. When the CPU time for transposes is
subtracted out, the efficiency increases slowly. This is
explained as follows. In the strong test, the total number of
memory fetches is constant with increasing Ncores, however, the
number of cache hits (when needed data are found to be already
in the cache) is likely to be statistically higher since the number
of cache slots per fetch is higher with more cores.

Figure 9(c) compares the efficiency of the Fargo versus the
non-Fargo scheme. It shows that there is at least a factor of 3.7
advantage to using Fargo, i.e., the overhead of the Fargo
method is more than compensated by an increase in time step.

In conclusion, the all-to-all communication of transposes
leads to a significant loss in efficiency as the number of cores is
increased. To reduce this communication overhead, an effort is
underway to use a parallel Padé algorithm (Kim et al. 2021).

5. Closing Remarks

A code has been developed that uses a fourth-order Padé
scheme to simulate hydrodynamic turbulence in protoplanetary
disks. Padé schemes are nondissipative and have high resolving
power. Thus, with the same grid resolution, they are better able
to capture fine scale vortical features compared to the
dissipative shock-capturing schemes employed in most astro-
physics codes. They also have better resolving power then
central finite-difference schemes of the same order.

Suggested improvements are as follows. (i) To eliminate
communication intensive transposes, consider using parallel
tridiagonal matrix algorithms (Kim et al. 2021, and the

references therein), which require much less communication.
Kim et al. (2021) demonstrate good scaling as the number of
cores is increased. (ii). For simulations that require long radial
domains (more than ≈6 scale heights) it would be better to use
spherical rather than cylindrical coordinates. An option for this
could be provided. (iii) The sixth-order tridiagonal Padé
scheme
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with α= 1/3, a= 14/9, and b= 1/9 could be implemented.
(iv) The capability to track Lagrangian solid particles could be
provided. (v) An intercomparison effort with other codes could
be performed.
The code is available at https://github.com/NASA-Planetary-

Science/Pade-disk-code with a copy deposited to Zenodo (Shariff
2024).
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Appendix A
Molecular Viscous Force, Viscous Heating, and Heat

Conduction

The code provides the option to add terms that represent
molecular viscosity and heat conduction. Similar terms arise in
models of subgrid turbulence. For these we have coded the
models due to Smagorinsky (1963) and Vreman (2004).
However, since we have not tested them, this section describes
the implementation for the molecular/laminar case only. If the
Fargo option has been activated, the Fargo chain rule is applied
wherever needed.

A.1. Viscous Force

The viscous stress tensor is

⎛
⎝

⎞
⎠

T S S2
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3
, A1ij ij kk ijb ( )m m m d= + -

13

The Astrophysical Journal Supplement Series, 273:37 (16pp), 2024 August Shariff

https://github.com/NASA-Planetary-Science/Pade-disk-code
https://github.com/NASA-Planetary-Science/Pade-disk-code


where μ and μb are the shear and bulk viscosities, respectively,
and

S u u
1

2
, A2ij j i i j( ) ( )= ¶ + ¶

is the strain rate tensor.
Equation (A1) is implemented in subroutine lami-

nar_stress_and_heat_flux. The components of the
strain tensor (which is symmetric) are computed in sub-
routine strain_tensor as follows

⎛
⎝

⎞
⎠

S u S u
r

u

S u u

,
1

2

1
,

1

2
, A3

zz z z z z z

zr r z z r( ) ( )

= ¶ = ¶ + ¶

= ¶ + ¶

f f f

⎛
⎝

⎞
⎠

S u S
r

u u
u

r

S
r

u
u

r

,
1

2

1
,

1
. A4

rr r r r r r

r ( )

= ¶ = ¶ + ¶ -

= ¶ +

f f f
f

ff f f

The above expressions are from Aris (Aris 1989, page 181)
and agree with Batchelor (1967).

The viscous force is the divergence of the viscous stress
tensor and given by Aris (1989, page 179) for orthogonal
coordinates as follows (in his notation)

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨⎩

⎫
⎬⎭

F T ij j
h

h h h x

h h h

h h
T ij

h

h h

i

jk
T jk i

,

, no sum on . A5

i
i

j i j

i

j k

v

1 2 3

1 2 3( ) ( )

( ) ( ) ( )

= =
¶
¶

+

Here (x1, x2, x3)= (r, f, z) and the corresponding scale
factors are h1= hr= 1, h2= hf= r, and h3= hz= 1. The
quantities in braces are Christoffel symbols and the only
nonzero ones are

r r
2

12

2

21
and

1

22
. A6{ } { } { } ( )= = = -

The symbolic algebra package maxima was used to verify the
correctness of Aris’ expression (Equation (A5)) by writing
Cartesian velocities in terms of cylindrical quantities (velocities
and coordinates) and computing Cartesian viscous forces in
terms of cylindrical quantities using the chain rule throughout.
These can be be rotated to obtain the forces in cylindrical
coordinates in terms of cylindrical quantities and compared with
Equation (A5). The relevant maxima script can be found in
check_Aris.mac in the Symbolic_algebra subdirectory.

The final expressions for the viscous force area are

F
r

rT T rT
1

, A7z r zr z z zz
v [ ( ) ( ) ( )] ( )= ¶ + ¶ + ¶f f

F
r

rT T rT
r

T
1 1

, A8r r rr r z rz
v [ ( ) ( ) ( )] ( )= ¶ + ¶ + ¶ -f f ff

F T
r

T T
r

T
1 2

. A9r r z z r
v ( ) ( ) ( ) ( )= ¶ + ¶ + ¶ +f f f ff f f

These agree with the expressions given in Bird et al. (1960).

A.2. Viscous Heating

The equation for total energy e= eint+ ρuiui (per unit
volume) has a term for the work done by shear stresses
(Liepmann & Roshko 1957)

W
x

T u . A10
j

ij i
shear ( ) ( )=

¶
¶

For the internal energy equation which we solve, we must
subtract the kinetic energy dissipation

D u
x

T . A11i
j

ij ( )=
¶
¶

This gives the viscous heating term for the internal energy

Q W D T
u

x
. A12ij

i

j

v shear ( )= - =
¶
¶

Now Tij is symmetric so only the symmetric part of ∂jui
survives. Then substituting the constitutive Equation (A1) for
Tij into Equation (A12) one obtains

⎛
⎝

⎞
⎠

Q S S S2
2

3
. A13ij ij kk

v
b

2 ( )m m m= + -

A.3. Heat Conduction

The flux of internal energy due to molecular conductivity is
given by Fourier’s law

q
k

c
c T , A14

v
vcond ( ) ( )

= - 

where we have multiplied and divided by cv inside and outside
the gradient, respectively. This assumes that cv is constant, i.e.,
that we have a calorically perfect gas. Now cvT is simply eint/ρ,
and using the definition of the Prandtl number Pr≡ μcp/k we
get

k

c Pr
. A15

v
( )mg

=

Appendix B
Discrete Conservation

B.1. Theory

Here we describe how to choose boundary schemes to ensure
that the overall scheme possesses a discrete conservation
property. We follow Lele (1992) and Brady & Livescu (2019)
and offer two clarifications: (1) There is a distinction between
provisional and final weights; the weights given in Section 4.2
of Lele (1992) are provisional. (2) The weights cannot be
specified a priori and must be determined as part of the
solution. Specifically, one needs to verify that the final weights
provide a reasonable discrete conservation law. In general, the
final weights will not correspond exactly to a quadrature rule.
For a system of partial differential equations in more than

one dimension, we compute derivatives of fluxes along each
direction separately. Hence, it is sufficient to consider the 1D
partial differential equation

u

t

f

x
x L, 0, . B1[ ] ( )¶

¶
+

¶
¶

Î
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Upon integration over the domain, Equation (B1) gives the
conservation law

d

dt
u x t dx f f L, 0 . B2

L

0
( ) ( ) ( ) ( )ò = -

Padé differencing applied to Equation (B1) should possess a
discrete analog of Equation (B2); in its absence, a long time
solution can drift and fail to achieve statistical stationarity.
Padé difference schemes have the form

f fA B , B3( )¢ =

where A and B are banded matrices and henceforth, lowercase
bold letters will be used to denote column vectors.

We now state a result that was stated by Lele (1992) without
a proof, which was later provided by Brady & Livescu (2019).

Proposition 1. To obtain a discrete analog of Equation (B2),
columns 2 through N 1- of matrix B must have a weighted
sum of zero, i.e.,

w b i N0 for 2, 1 , B4T
i [ ] ( )= Î -

where w is a column vector of weights and bi is the ith column
of matrix B. The weights w are provisional; final weights will
be given below.

Remark. Not all the weights, w, can be specified a priori but
must be obtained as part of the process of satisfying
Equation (B4).

Proof. We assume that grid points x i N, 1, ,i = ¼ have been
laid out according to a smooth analytic mapping x ( )x such that

iix = , i.e., ξ is a smooth grid index variable. In implementa-
tions, it is convenient to take derivatives with respect to ξ and
then use the chain rule

⎜ ⎟⎛
⎝

⎞
⎠
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⎠
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i i i
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¶
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For simplicity we use the notation
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f
f

h
d

dx
, . B6i
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x

x¢ º
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Then the spatially discretized version of Equation (B2) is

du

dt h
A B f

1
0. B7i

i j k
ij jk k

,

1[ ] ( )å+ =-

Defining the vector U h u h u h u, , , N N
T

1 1 2 2[ ]= ¼ , we can write
Equation (B7) as

U
fA

d

dt
B 0. B8( )+ =

A weighted sum is applied to Equation (B8) to mimic the
integration in Equation (B2) as

w U w f
d

dt
A B . B9T T ( )= -

Following Brady & Livescu (2019), let b b bB , , , N1 2[ ]= ¼
where bi denotes the ith column vector of the matrix B. Now

w w b b bB , , , , B10T T
N1 2[ ] ( )= ¼

w b w b w b, , , , B11T T T
N1 2[ ] ( )= ¼

so that

w f w b fB . B12T

i

N
T

i i
1

( )å=
=

Hence Equation (B9) can be written as

w U w b w b w b
d

dt
A f f f . B13T T T

N N
i

N
T

i i1 1
2

1

( )å= - - -
=

-

In order to arrive at a discrete conservation law analogous to
Equation (B2), let us try imposing

w b f 0. B14
i

N
T

i i
2

1

( )å =
=

-

For Equation (B14) to be true for arbitrary fi we must have that

w b i N0 for 2, 1 . B15T
i [ ] ( )= Î -

In other words we want columns 2 through N 1- of the matrix
B to have a weighted sum of 0.

We now show, finally, that the trial condition in
Equation (B15) does indeed lead to a discrete conservation law.
Equation (B15) gives the set of conditions one uses to solve for
the provisional weights. Then Equation (B13) becomes

w U w b w b
d

dt
f f , B16T T T

N N1 1 ( ) = - -

where we have defined a new set of weights

w w A. B17T T ( ) º

Now wTb1 is a number and if we use the same boundary
schemes and quadrature weights at the left and right boundaries
then −wTb1=+wTbN and we can divide Equation (B16) by it.
Finally, putting back Ui= uihi (Equation (B16)) we get the
desired discrete conservation law

d

dt
w h u f f , B18

i

N

j j j N
1

1 ( )å = -
=

where the final weights are

ŵ
w
w b

A
. B19

T

T
1

( )= -

Note that this expression is homogeneous in the provisional
weights w. Hence we may scale the provisional weights as we
wish when we solve Equations (B15) to determine them. In
particular, it it is convenient to choose them to be unity in the
interior of the domain.

B.2. Application to the Present Differentiation Scheme

We consider matrix entries near the left end of the domain;
the weights near the right end are obtained by symmetry.
Referring back to Section 3.4, the first five columns of the
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right-hand-side matrix of the present Padé scheme are

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

B

a b c
a a

a a
a a

a
a

0
0

0
0

, B20

1 1 1

( )
 

 
 




=

-
-

-
-

-

where we have defined a a 2 = . The condition that the
weighted sum of the fifth column equals 0 implies that
w4=w6, which we set equal to unity. The same holds true for
the rest of the interior weights. The condition on the fourth
column implies that w3= w5, which we also set equal to unity.
Using the fact that w3= 1, the second column gives the
condition

w b a 0, B211 1 ( )- =

or

w a b 3 4 2 3 8. B221 1 ( ) ( )= = =

The third column gives

w c w a w a 0. B231 1 2 4 ( ) + - =
Using known information, we get

w c b1 3 4. B242 1 1 ( )= - =

We now have all the provisional weights.
The final weights are obtained from Equation (B19) where

the first four columns of the left-hand-side matrix for the
present scheme is

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

A

1 0
1

1
1

. B25

1

( )

a
a a

a a
a

a

=

Hence Equation (B19) gives the final weights as

^
^

w
w w

w a w a

3

8
, B261

1 2

1 1 2
( )a

= -
+
-

=

^
^

w
w w w

w a w a

7

6
, B272

1 1 2 3

1 1 2
( )a a

= -
+ +

-
=

^
^

w
w w w

w a w a

23

24
, B283

2 3 4

1 1 2
( )a a

= -
+ +

-
=

w
w w w

w a w a
j N1, 4, 3 . B29j

j j j1 1

1 1 2
[ ] ( )




a a
= -

+ +

-
= Î -- +

It is interesting that w w w 5 21 2 3  + + = , which would be the
case for the trapezoidal rule and indeed the three weights
approximate the weights 1/2, 1, and 1 for the trapezoidal rule.
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