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ABSTRACT

Magnetic fields are a dynamically important component of the turbulent interstellar medium (ISM) of star-forming galaxies.
These magnetic fields are due to a dynamo action, which is a process of converting turbulent kinetic energy to magnetic energy.
A dynamo that acts at scales less than the turbulent driving scale is known as the turbulent dynamo. The ISM is a multiphase
medium and observations suggest that the properties of magnetic fields differ with the phase. Here, we aim to study how the
properties of the turbulent dynamo depend on the phase. We simulate the non-isothermal turbulent dynamo in a two-phase
medium (most previous work assumes an isothermal gas). We show that the warm phase (7' > 10? K) is transsonic and the cold
phase (T < 10° K) is supersonic. We find that the growth rate of magnetic fields in the exponentially growing stage is similar
in both phases. We compute the terms responsible for amplification and destruction of vorticity and show that in both phases
vorticity is amplified due to turbulent motions, further amplified by the baroclinic term in the warm phase, and destroyed by the
term for viscous interactions in the presence of logarithmic density gradients in the cold phase. We find that the final ratio of
magnetic to turbulent kinetic energy is lower in the cold phase due to a stronger Lorentz force. We show that the non-isothermal
turbulent dynamo is significantly different from its isothermal counterpart and this demonstrates the need for studying the

turbulent dynamo in a multiphase medium.
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1 INTRODUCTION

The interstellar medium (ISM) of galaxies is a dynamic medium
between stars consisting of thermal gas, dust, magnetic fields, and
cosmic rays. The thermal gas in the ISM is turbulent with turbulence
being driven at a range of scales by a number of mechanisms
including stellar outflows, supernova explosions, and gravitational
instabilities (Elmegreen & Scalo 2004; Mac Low & Klessen 2004;
Scalo & Elmegreen 2004; Elmegreen 2009; Federrath et al. 2017;
Krumholz et al. 2018). This turbulence amplifies magnetic fields
via a dynamo mechanism, the process of converting the kinetic
energy of turbulence to magnetic energy, and generates multiscale
magnetic fields (Brandenburg & Subramanian 2005; Federrath 2016;
Rincon 2019; Shukurov & Subramanian 2021). The density and
temperature of the ISM gas vary over a range due to various heating
and cooling processes (Sutherland & Dopita 1993). This leads to
a multiphase structure in the ISM (Field, Goldsmith & Habing
1969; McKee & Ostriker 1977; Cox 2005; Ferriere 2020), where
the physical processes and properties differ between the phases. For
example, the stars are formed in cold, dense small volume filling
regions and the hot, diffuse gas occupies a large volume of the
ISM. The other components of the ISM such as turbulence, magnetic
fields, and cosmic rays also show differences between the phases.
Turbulence is expected to be subsonic (or transsonic) in the hot
phase of the ISM and supersonic in the cold phase (Gaensler et al.
2011; Federrath et al. 2021; Seta & Federrath 2021b). Magnetic
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fields are observed to be stronger in the denser regions of the ISM
in comparison to the diffuse medium (Heiles & Troland 2005; Beck
2016). Cosmic rays (away from their sources) diffuse in the hot,
ionized phase of the ISM but can propagate much faster in the cold,
neutral medium (Cesarsky & Kulsrud 1981; Zweibel 2017; Farber
et al. 2018; Beattie et al. 2022). Overall, the ISM is a multiphase,
turbulent plasma and in this paper, we primarily study how the
magnetic field amplification and properties differ between the ISM
phases.

Magnetic fields are an important component of the ISM of star-
forming galaxies. They provide additional support against gravity
(Boulares & Cox 1990), heat up the gas via magnetic reconnection
(Raymond 1992), alter the gas flow (Shetty & Ostriker 2006),
reduce the efficiency of star formation (Federrath 2015), control the
propagation of cosmic rays (Cesarsky 1980; Shukurov et al. 2017),
affect galactic outflows (van Voort et al. 2021), and might also play a
role in the galaxy’s evolution (Pakmor & Springel 2013). Thus, it is
important to study the strength, structure, and evolution of magnetic
fields in galaxies.

Observationally, magnetic fields in nearby spiral galaxies can be
studied using radio polarization observations. Based on these obser-
vations, magnetic fields can be divided into large- and small-scale
components. The large-scale component is probed via the Faraday
rotation measure and polarized synchrotron emission, whereas the
small-scale component is studied using the fluctuations in the Faraday
rotation measure and the level of depolarization (Sokoloff et al. 1998;
Haverkorn 2015; Beck 2016). Usually, in star-forming galaxies,
the observed small-scale random magnetic fields are stronger than
the large-scale component (see table 3 in Beck et al. 2019). In
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the nearby spiral galaxy, M51, the large-scale radio polarization
observations, which probe the hot (and warm), diffuse phase of
the ISM, show different magnetic field properties (especially the
magnetic field structure) than that seen via the recent large-scale far-
infrared polarization observations, which probe the cold, dense phase
(Fletcher etal. 2011; Borlaff et al. 2021). In the Milky Way, the large-
scale magnetic field properties inferred from OH masers (a probe of
the colder regions) and that from pulsars (a probe of warmer regions)
are different (Ogbodo et al. 2020). Even on the smaller scales in the
Milky Way, magnetic fields in the warm and cold medium can be
different (Campbell et al. 2021). Thus, observationally, the properties
of both the small- and large-scale magnetic fields differ in different
phases of the ISM.

Dynamo theory is used to study the strength, structure, and
evolution of magnetic fields in galaxies. Based on the driving scale
of turbulence (~100 pc in a typical spiral galaxy), dynamos can
also be divided into two types: the turbulent/fluctuation or small-
scale (which amplifies magnetic fields with correlation length less
than the driving scale of turbulence) and mean field or large-scale
(amplifying magnetic fields at scales greater than the driving scale of
turbulence, i.e. several kpcs in a typical spiral galaxy).! The turbulent
dynamo, which is due to the random stretching of magnetic field lines
by the turbulent velocity, quickly amplifies weak seed magnetic
fields (Subramanian 2016) and saturates due to back-reaction of
the growing magnetic fields on the turbulent flow (Kazantsev 1968;
Vainshtein & Zel’dovich 1972; Zel’dovich et al. 1984; Kulsrud &
Anderson 1992; Subramanian 1999, 2003; Haugen, Brandenburg &
Dobler 2004; Schekochihin et al. 2004; Brandenburg & Subramanian
2005; Federrath et al. 2011, 2014; McKee, Stacy & Li 2020;
Seta et al. 2020; Seta & Federrath 2021a). The saturated turbulent
dynamo generated magnetic field then seeds the mean field dynamo
(Ruzmaikin, Sokoloff & Shukurov 1988). Besides turbulence, the
mean field dynamo also needs large-scale galaxy properties such
as differential rotation, shear, and density stratification to order and
amplify magnetic fields over galaxy scales (Krause & Rédler 1980;
Ruzmaikin et al. 1988; Beck et al. 1996; Brandenburg & Subrama-
nian 2005; Shukurov & Sokoloff 2008). Even theoretically, from the
dynamo theory, we would expect the magnetic field properties to
differ with the ISM phase because of different turbulence properties
(e.g. the compressibility of the medium). Here, we primarily focus on
the turbulent dynamo in a two-phase medium to explore the magnetic
field properties in different phases.

Almost all studies of the turbulent dynamo assume turbulence
in an isothermal gas (except Gent et al. 2021, which simulates
multiphase gas in a supernova-driven turbulence setup but they do
not distinguish dynamo properties based on phases). In this work,
we use driven turbulence numerical simulations with a heating and
cooling prescription for the gas to explore the turbulent dynamo in
a two-phase medium. We aim to study how the properties of the
turbulent dynamo and the magnetic field it generates depend on the
phase of the medium.

In Section 2, we describe our numerical methods and parameters
for non-isothermal turbulent dynamo simulations. Then, in Section 3,
we discuss the properties of the two-phase, turbulent medium. We
determine and discuss the dependence of the turbulent dynamo on
the phase of the medium in Section 4. Finally, we summarize and
conclude our results in Section 5.

IThe ‘large-’ and ‘small-> scales defined based on the driving scale of
turbulence (usually in theory and simulations) can be different than that
used in the observations.
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2 NUMERICAL METHODS

2.1 Basic equations

To study the turbulent dynamo in non-isothermal plasmas, we use a
modified version of the FLASH code (version 4; Fryxell et al. 2000;
Dubey et al. 2008) to numerically solve the equations of non-ideal
compressible magnetohydrodynamics. We use the HLL3R (3-wave
approximate) Riemann solver (Waagan, Federrath & Klingenberg
2011) to solve the following equations on a uniform, triply periodic
Cartesian grid with 5123 grid points:

ap
— 4+ V. =0 1
" + V- (pu) =0, (D
d(pu 1
(p)+v'(Pu®u—7b®b>+vat
Jt 4
=V - Qvpt)+ pFui, )
ab )
5:V><(uxb)+an,V-b:O, 3)
de 1
R ((emt + pou = (b u)b)

= pu - Foi +nyl’ — n3A(T) + 2pv|7]? + 4i(v < b, (4
TT

where p is the density, u is the velocity field, b is the magnetic field,
Pt = Pu + (1/87)|b)? is the total pressure (sum of thermal, py,, and
magnetic pressures), 7;; = (1/2) (u; j +uj; —(2/3)8;; V - u)is the
traceless rate of strain tensor, F gy is the prescribed acceleration field
for driving turbulence (see Section 2.3), v is the constant viscosity, 1
is the constant resistivity, e = pein + (1/2)plu|* + (1/87)|b|* is
the total energy density (sum of internal, ejy, kinetic, and magnetic
energy densities), ny is the number density (=p/umy, where p = 1
is the mean molecular weight and my; is the mass of hydrogen), I is
the constant heating rate, 7 is the temperature of the gas, and A(T)
is the temperature-dependent cooling function (see Section 2.2 for
details of heating and cooling). We close the MHD equations with an
equation of state of an ideal monatomic gas, i.e. py, = (Y — 1)pein,
where y, = 5/3 is the adiabatic index.

2.2 Heating and cooling prescription

Various mechanisms can heat or cool the gas in the ISM, depending
on the temperature and density of the medium (Sutherland & Dopita
1993). For compressible turbulence, the density varies significantly
and thus these processes can heat or cool the gas locally, which in
turn can change the properties of turbulence and magnetic fields.
We use a constant heating rate (I') and a temperature-dependent
cooling function (A(7)) of the form (Koyama & Inutsuka 2000,
2002)

r=2x10ergs!, (5)
A(T) . —1.184 x 10°
—— = |107exp | ————
r T + 1000
-2 71/2 —92 3
+1.4 x 107 T/~ exp - cm’, (6)

where 7'is the temperature in Kelvin. These functions are constructed
such that they describe the typical heating and cooling processes in
a Milky Way type star-forming galaxy. We compute an equilibrium
temperature by balancing heating and cooling functions, i.e. I' =
nyA. If the cooling or heating is very fast, the gas approaches the
equilibrium temperature exponentially quickly (Vdzquez-Semadeni
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etal. 2007; Mandal, Federrath & Kortgen 2020). This is referred to as
the equilibrium cooling model (see Appendix A for further discussion
and comparison with the non-equilibrium cooling model). We also
set a lower temperature floor of 2 K to avoid cooling of gas below
that temperature but no upper temperature cutoff for heating.

2.3 Turbulent driving

We drive turbulence in a box of size, L = 200 pc with a uniform initial
number density of 1 cm™ to achieve a velocity dispersion, t,, of
10 km s~!. The properties of the turbulent dynamo also depend on
the nature of driving: solenoidal (due to processes such as shear
and magnetorotational instability), compressive (due to processes
such as supernova explosions, expanding radiation fronts, and spiral
shocks), or a mixture of those two (Federrath 2016). We consider two
extreme cases for the driving, i.e. either purely solenoidal (V - Fg =
0, referred to as Sol) or purely compressive (V x Fgy; = 0, referred to
as Comp). We drive the turbulent flow at large scales, 1 < kL/2mw <3
(k being the wavenumber), with a parabolic function of power, which
peaks at kL/2w =2 and decreases to zero power at kL/2w = 1, 3. Thus,
the turbulent driving scale is approximately equal to L/2 &~ 100 pc.
The correlation time of the driving is set to the expected eddy turnover
time of the turbulent flow, to = (L/2)/ums ~ 3.086 x 10 s (=
10 Myr).

2.4 Explicit diffusion

We have explicit diffusion of velocity (via the term with v in
equation 2) and magnetic (via the term with 1 in equation 3) fields
and these are characterized by the hydrodynamic (Re = ;s L/(2v))
and magnetic (Rm = u,,L/(21)) Reynolds numbers computed based
on the driving scale. We choose v and 7 such that Re = Rm = 2000.

There will also be numerical diffusion of velocity and magnetic
fields due to the discretization of the grid. For a given number of grid
points, n,, the Reynolds numbers corresponding to the numerical
diffusion is approximately equal to 2n2/ 3 (Appendix C in McKee et al.
2020). For our case of ngy = 512, the numerical Reynolds numbers are
roughly equal to 8000. We choose our Reynolds numbers to be 2000
and this ensures that the explicit diffusion is always significantly
higher and at larger scales than the numerical diffusion.

2.5 Initial conditions

We initialize our simulations with zero velocity, a uniform initial
number density of 1 cm™3, a uniform initial temperature of 5000 K,
and a weak random (zero mean) seed field with root mean square
(rms) strength of 107! G. The random seed magnetic field is
constructed to follow a power-law magnetic spectrum with a slope
of 3/2 (Kazantsev 1968). As long as the seed field is weak, the
seed field scales or structure would not affect the properties of the
turbulent dynamo (Seta & Federrath 2020).

The magnetic field, for both the Sol and Comp cases, grows
exponentially (referred to as the kinematic stage) and then reaches
a statistically steady state (referred to as the saturated stage) due to
the back-reaction of growing magnetic fields on the turbulent flow
(e.g. see fig. 1 in Seta & Federrath 2021a). We run our simulations
until the turbulent dynamo achieves the saturated stage (#/fo = 100
and 140 for the Sol and Comp cases, respectively). In the next
section, we define the phases based on the temperature of the
medium and then study the properties of turbulence in the two-phase
medium.

Turbulent dynamo in the two-phase ISM 959
3 RESULTS: TWO-PHASE MEDIUM

3.1 Phase-wise probability distribution functions of density,
temperature, and magnetic fields

Fig. 1 shows the density and temperature for Sol and Comp runs
in the saturated stage of the turbulent dynamo. Both density and
temperature vary significantly throughout the domain. On larger
scales and especially in the colder regions, structures in the density
and temperature seem to be anticorrelated, i.e. regions with higher
temperatures have lower densities and vice-versa. The density and
temperature structures, especially in the denser and colder regions,
for the Sol case are visually smaller in size in comparison to the
Comp case. The cold, dense structures are also more numerous
for the Sol run. Fig. 2 shows the corresponding velocity and
magnetic field structures. On larger scales, the velocity and magnetic
structures show some correlation with the density structures but their
morphology is complex (compare structures in Figs 1a and b with
Figs 2a and b and Figs 2c¢ and d). The magnetic structures seem to
exist on scales much larger and smaller than the density structures
(for comparison, see fig. 1b and fig. 2 in Seta & Federrath 2021b).
Thus, the magnetic fields have a complex morphology and do not
only depend on the properties of the density of the medium.

In Figs 3(a) and (b), we show the temperature—density diagram
(2D probability distribution function, 2D PDF) for both the Sol and
Comp runs in the saturated stage. Both the temperature and density
vary over a significant range. The spread towards both the low and
high density regions is larger for the Comp case in comparison to the
Sol case. In Fig. 3, we also show trends for the following common
thermodynamic processes: isothermal (7 = constant), isochoric
(volume = constant implying p = constant, as mass is constant in
these triply periodic box simulations), isobaric (pressure = constant
implying pT = constant), and adiabatic (7 p!~”: = constant, where
Ye = 5/3 is the adiabatic index). Parts of the 2D PDF might be
comparable to one of these processes but there is always a significant
spread. Thus, the temperature—density relationship is complex in
these multiphase simulations.

To divide the medium into two phases, for both runs, we choose the
temperature cutoff of 103 K, i.e. gas with T < 103 K corresponds to
the relatively colder medium and gas with T > =103 K corresponds
to the warm medium. The choice of the temperature cutoff (10° K)
is based on its relevance to the ISM (Ferriere 2020). From now on,
we divide and study the properties of the medium, turbulence in the
medium, and the turbulent dynamo into these two phases. We also
always show the properties of the medium as a whole (7" > 0 K)
for completeness. Now, we revisit the density—temperature relation
phase-wise in Fig. 3. For both cases, the relationship in the 7' <
103 K phase is somewhat closer to the isobaric relationship (in broad
agreement with Field et al. 1969; McKee & Ostriker 1977; Cox 2005;
Mac Low et al. 2005) but is flatter for the T > 10 K phase. The upper
and lower tails of the distribution tend to be isothermal.

Itis important to study and understand the PDF of the gas density in
the ISM, especially in the cold phase, to construct analytical models
of star formation (Federrath & Klessen 2012). In an isothermal setup,
the gas density PDF is assumed to follow a lognormal distribution
(Vazquez-Semadeni 1994; Passot & Vazquez-Semadeni 1998; Fed-
errath, Klessen & Schmidt 2008) or a non-lognormal distribution to
account for the spatial density intermittency (Hopkins 2013; Squire &
Hopkins 2017; Mocz & Burkhart 2019; Beattie et al. 2021). Even
for a non-isothermal gas with a polytropic equation of state, the non-
lognormal distribution works well (Federrath & Banerjee 2015). We,
here, explore the density PDF in a multiphase medium.

MNRAS 514, 957-976 (2022)
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Figure 1. 2D slices of the normalized density, o/ pmean, (@, b) and temperature, 7/Tmean, (¢, d) at z = L/2 for Sol (a, ¢, left-hand panels) and Comp (b, d, right-hand
panels) runs in their saturated (sat) stages (#/fop = 100 for Sol and #/tp = 140 for Comp). Visually, the density and temperature structures are anticorrelated. The
cold, dense structures for the Sol case are of smaller sizes but more numerous in comparison to the Comp case.

Fig. 4 show the PDF of densities in the kinematic and saturated
stages of the turbulent dynamo for the Sol and Comp cases. For both
cases, the PDF for T > 0 K region shows a double hump structure
re-confirming the two-phase nature of the medium (also agrees
with Gazol et al. 2001; Véazquez-Semadeni et al. 2007; Audit &
Hennebelle 2010). The PDFs in the kinematic and saturated stages
for both cases and all three regions: 7' < 1K, T> 10K, and T
> 0 K remain roughly the same and thus the growing magnetic field
does not have a significant effect on the density distribution.

To each phase for each case, away from the transition region, we
fit the PDF of s, = In (0/pmean, 7> 0x) to a Gaussian distribution,

2

LN(s,) = (2m02) P exp (—M) (7)
20 LN

where sy and o, s are the mean and standard deviation, respectively.

The dotted black lines in Fig. 4 show the fitted distribution for

each case. For both the cases, away from the transition region, the

lognormal distribution fits the density in the 7 < 103 Kand 7> 10° K
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phases well. This agrees with previous results from supernova-driven
turbulence simulations (de Avillez & Breitschwerdt 2004; Mac Low
et al. 2005; Gressel 2009; Gent et al. 2013). The density varies
over a larger range for the Comp case and the corresponding sy and
orn, as inferred from the fit, are also higher. Overall, this agrees
with the previous results of broader density distributions in case of
compressive driving (Federrath et al. 2008).

We show 2D PDFs of magnetic fields and density for both cases in
Fig. 5. We also show ideal magnetic field—density relations (dashed
black lines) for following types of simple gas compressions (see
fig. 1 in Tritsis et al. 2015): compression along magnetic field
lines (b o< p), compression perpendicular to magnetic field lines
in a cylindrical or filamentary geometry (b o p'?), spherical
compression (b o« p>?), and compression perpendicular to magnetic
field lines in a disc-like or slab geometry (b o p'). The b—p PDF
(also see Banerjee et al. 2009) for both the Sol and Comp cases do
not agree with those simple trends in these multiphase simulations.
Phase-wise, we find that the relationship is roughly similar in all
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Comp, sat (t/tg = 140)

Figure 2. Same as Fig. 1 but for the normalized velocity, u?/u?__, (a, b) and magnetic fields, b /b>

rms?

ims> (¢, d). The velocity and magnetic field structures show

some correlation with the density structures shown in Figs 1(a) and (b) but the magnetic structures show a complex morphology, which cannot be directly

correlated to the density structures.

the phases for the Sol run (probably due to significant mixing) but
changes with the phase for the Comp case. In the Comp run, b is
more strongly positively correlated with p in the T < 10° K phase in
comparison to the 7> 10 K phase and this probably implies stronger
compressions in the colder regions of the medium. However, there is
a significant spread in the data across the fitted trends, which shows
a more complex dependence, even in the individual phases. Overall,
the correlation analysis implies that the magnetic field strength is not
only controlled by the density of the medium.

In Fig. 6, we show the PDF of a single magnetic field component,
by/bims 1> 0k 1n different phases for both the Sol (a) and Comp (b)
cases, respectively. The magnetic field varies over a larger range in
the Comp case and this is correlated to the larger range in densities
(see Fig. 4). The velocity PDFs in these driven turbulence numerical
simulations are Gaussian (see Figs Blc and d in Appendix B) but
the magnetic fields they amplify are highly non-Gaussian or spatially
intermittent. This is evident from the heavy tail in the PDF at higher

values of b./byms =0k in Fig. 6 and the computed kurtosis much
higher than that of a Gaussian distribution (three).

For the Sol case (Fig. 6a), the standard deviation of by/byms 7> 0k
for the T < 10° K phase in the kinematic stage is higher than that
of the T > 10* K phase by a factor of two (possibly due to stronger
compression in the 7 < 10° K phase). On saturation, the standard
deviation decreases for the T < 10® K phase (effect of the back-
reaction of strong magnetic fields) but remains roughly the same for
the T > 10* K phase. The kurtosis is similar in the kinematic stage
and also reduces to a similar value on saturation. Thus, the magnetic
field intermittency in both the T < 10° K and 7 > 10° K phases
decreases on saturation. This result agrees with the conclusions from
the isothermal turbulent dynamo simulations (Schekochihin et al.
2004; Seta et al. 2020; Seta & Federrath 2021a). The kurtosis of
the region as a whole (7 > 0 K) is higher than that of each phase
(possibly because of higher contrast in values) but that too decreases
on saturation. For the Comp case (Fig. 6b), the standard deviation of

MNRAS 514, 957-976 (2022)
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Figure 3. 2D probability distribution functions (2D PDFs) of density and temperature for the Sol (a) and Comp (b) runs with colour showing the corresponding
probability, P. The dashed black lines show trends for various thermodynamic processes: isochoric (p = constant), isobaric (o7 = constant), isothermal (7' =
constant), and adiabatic (T ,o]_yg = constant, where yg = 5/3 is the adiabatic index). For both runs, the 7' — p relationship in these turbulent, multiphase
simulations is complicated and do not follow any of those simple thermodynamic relations. We select 7= 107 K as the cutoff temperature to distinguish between
the phases (dotted black line). Regions with T < 10 K represents the relatively colder medium and those with 7> 10° K corresponds to the warm phase. The
dashed coloured lines show trends for each phase: T < 10? K (blue) and 7 > 10% K (red). The trend in the T < 103 K phase is closer to the isobaric relation and

it flattens in the 7> 103 K phase.

b./bems 7> 0k in the kinematic stage is roughly four times higher in
the T < 103 K phase than that of the 7 > 10* K phase (possibly due
to an even stronger compression in comparison to the Sol case) and
reduces on saturation. Based on the kurtosis, the magnetic field in
the T > 10* K phase is more intermittent than that in the 7 < 10* K
phase (also see Appendix C for a characterization of the tangled state
of magnetic field lines in each phase). On saturation, the magnetic
intermittency in both the phases decreases but the magnetic field in
the 7> 10° K phase of the Comp case still remains more intermittent.

Overall, the densities in each phase (away from the transition
region with T = 10 K) roughly follow a lognormal distribution and
magnetic fields are non-Gaussian (non-Gaussianity decreases as the
field saturates). However, each phase is far from being isothermal
and there is a dynamic exchange between the phases. The 7 — p and
b — p PDFs are also quite complex and shows signatures of a realistic
ISM. In the next subsection, we study the properties of turbulence in
the two-phase medium.

3.2 Phase-wise properties of the turbulent medium

In Fig. 7, for both Sol and Comp runs, we describe the turbulence in
the different phases of the medium via the following three important
properties: the volume filling fraction, F, rms velocity, Uy, and rms
Mach number, M = uy/cs (cs being the sound speed). We show
their time evolution over the entire run time.

For the T < 10° K phase, F is significantly smaller than the T >
10° K phase (Figs 7a and b). The colder gas occupies only a very
small fraction of the volume (around 3—4 per cent) and warmer gas
is the primary volume filling gas (around 97-96 per cent). The rms
velocity, shown in Figs 7c¢ and d, for both the Sol and Comp cases
is very similar for both the phases (it varies significantly over the
domain, see Figs 2a and b) and is approximately equal to uy,s ~
10 km s~!. This is primarily decided by the turbulent driving (see
Section 2.3). Finally, M is higher in the 7 < 103 K phase (M ~ 5)
in comparison to the 7 > 10° K phase (M = 1) for both the runs
(M for the T < 103 K phase is slightly higher for the Comp run
compared to the Sol run). This shows that the 7 < 10° K phase is
largely supersonic and the 7 > 10° K phase is largely transsonic
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(locally, the Mach number can vary over a huge range in each phase,
see Figs B2c and d in Appendix B). This is also expected from the
observations of the ISM (Gaensler et al. 2011; Schneider et al. 2013;
Marchal & Miville-Deschénes 2021). From numerical simulations
of the turbulent dynamo in an isothermal gas, the properties of the
turbulent dynamo depend on the Mach number of the turbulent flow
(Federrath et al. 2011; Achikanath Chirakkara et al. 2021; Seta &
Federrath 2021a). In the next section, we explore the properties of
the turbulent dynamo in the two-phase medium.

4 RESULTS: TURBULENT DYNAMO IN THE
TWO-PHASE MEDIUM

Having studied the basic properties of the turbulent two-phase
medium, we now focus on the magnetic field amplification by the
turbulent dynamo. The goal here is to quantify differences and
similarities in dynamo action between different phases of the ISM
and also compare these results with those from isothermal turbulent
dynamo simulations.

4.1 Phase-wise properties of the turbulent dynamo

In Fig. 8, we show the time evolution of the ratio of the magnetic to
turbulent kinetic energy, Enqe/Eyin, for both Sol and Comp runs.
The growth rate in the kinematic stage (denoted by y) remains
approximately the same in both the 7 < 10° K and 7 > 10° K
phases of the ISM but the saturation level (ratio of Ey,./Eji, in the
saturated stage, denoted by Ry, ) is significantly lower for the 7' <
10° K phase as compared to the 7 > 10° K phase. For turbulent
dynamo simulations in an isothermal gas at different Mach numbers,
the growth rate and saturation level both change with M (Federrath
et al. 2011; Seta & Federrath 2021a). Considering that the 7 >
10’ K phase has M ~ 1 and the T < 10° K phase has M ~ 5,
the growth rate clearly does not agree with the isothermal models
but the saturation level shows the same trend as the isothermal runs
(decrease with M for M 2 1).

Federrath et al. (2011) provide an empirical model to compute
the growth rate, y[t, 11, and saturation level, Ry, as a function of
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Figure 4. PDF of 5, = In(p/pmean, 7>0K) in T < 103 K (blue), T > 10° K (red), and T > 0 K (magenta) phases for Sol (a) and Comp (b) cases in their
respective kinematic (dashed lines) and saturated (solid lines) stages. The shaded region shows one-sigma variation over 20 independent eddy turnover times in
each stage. The curves for the kinematic and saturated stages are roughly the same (they lie within the shaded region) and thus the growing magnetic field has
almost no effect on the density distribution. The double hump structure for 7> 0 K region in both cases re-confirms the number of phases to be two. For each
phase in each case, away from the transition region (densities around 7' = 10% K), we also fit the distribution of s, with a Gaussian distribution (equation 7,
dotted black lines) and the corresponding value of the mean (sp) and standard deviation (o2 A7) is given in the legend. For both cases, the lognormal distribution
fits densities in both the phases well. For the Comp case, the density varies over a larger range and also, from the fit, so and o2 ar are higher.

M based on the isothermal turbulent dynamo simulations (see their
equation 3 and Table 1). Using the model, at M = 1 (comparable to
the T > 10° K medium for our case), y ~ 0.78 10_] for the Sol case
and ~ 0.30 #, ! for the Comp case. At M = 5 (comparable to our
T < 10° K medium for our case), growth rates from the model are
~ 0.53 1, "and ~ 0.24 Iy ! for the Sol and Comp cases, respectively.
The growth rate for our runs are same for the 7 < 10° Kand 7> 10° K
phase in both the Sol (I' &~ 0.37 to’l) and Comp (I' ~ 0.18 to’l) runs
and are smaller than corresponding values estimated from the model

at both Mach numbers. This shows that overall the turbulent dynamo
in non-isothermal gas have smaller growth rates in comparison to its
isothermal counterpart. However, the ratio of growth rates for Sol and
Comp cases (*2) roughly remains the same between the isothermal
model and our simulations.

The model suggests that the saturation levels for M = 1 are ~0.24
and ~0.03 for the Sol and Comp cases and for M = 5, they are ~0.03
and ~0.006. We find that for our non-isothermal simulations, R, ~
0.13 and ~0.019 for T > 10’ K (M ~ 1) and T < 10* K (M ~ 5)
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Figure 5. Same as Fig. 3 but for 2D PDFs of magnetic field and density. The dashed black lines show b—p relations for simple gas compressions: compression
along magnetic field lines (p°), compression perpendicular to magnetic field lines (b oc p'/? for cylindrical/filamentary geometry and b oc p' for disc-like/slab
geometry), and spherical compression (b o p%3). The dependence of b on p in these multiphase simulations is very complex and cannot be easily described
by a single power-law relationship consistent with these simple gas compressions. The dependence for the Sol case is very similar in both the phases because of
significant mixing. For the Comp case, the T < 10° K phase shows a higher slope than the 7' > 10 K phase and this points towards significant gas compressions
in the colder regions. However, these trends (dashed, blue and red lines) in both the Sol and Comp runs do not fit the data well and there is a significant spread
across those lines. This further emphasizes a complex dependence and also the fact that the magnetic field does not only depend on the density of the medium.

phase, respectively, in the Sol run and 0.021 and 0.0024 in the Comp
run. We find that Ry, also is lower than that predicted from the model
based on the isothermal turbulent dynamo simulations.

Table 1 summarizes the growth rate and saturation level for the
turbulent dynamo in isothermal and non-isothermal gases. Both the
growth rate and saturation level are lower for the non-isothermal gas
for both types of driving. These differences in the growth rate and
saturation level with isothermal simulations at appropriate Mach
numbers are probably due to significant and continuous energy
exchange between the two phases of the medium (Mach number
in these multiphase simulations also varies a lot locally, see Fig. B2).
This means that the magnetic energy can be passed on between phases
and their presence in one phase need not imply they are generated in
that phase.

Having studied the phase-wise growth rate and saturation level,
in the next subsection, we explore the reason for the roughly equal
growth rate in both the phases and the lower saturation level for the
T < 10° K phase.

4.2 Phase-wise vorticity and Lorentz force

The growth of magnetic fields via the turbulent dynamo action is
directly connected to vortical motions in the turbulent flow (Mee &
Brandenburg 2006; Federrath et al. 2011) and such motions are
quantified by the vorticity,

0=V xu. (8)

In fact, the lower growth rate in the case of purely compressive driving
in comparison to purely solenoidal driving in isothermal simulations
is attributed to the lower vorticity for compressive driving (Federrath
et al. 2011). In Fig. 9, we show the rms vorticity, wnys, for different
phases in Sol and Comp runs. First, we too find that w,,s is smaller for
the Comp case in comparison to the Sol case. This aligns well with
the previous result with regards to the lower growth rate in the case of
compressive driving. Next, for both cases in all the phases, the (w;ms)
(where () denotes average over time) in the kinematic stage is higher
than that in the saturated stage. This is a direct consequence of the
back-reaction of strong magnetic fields on the velocity and implies
that the amplification of magnetic fields is reduced in the saturated
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stage. Furthermore, the difference in (w,s) between the kinematic
and saturated stage is lower for the Comp case and this is probably
because of the smaller saturation level (Fig. 8) and thus weaker back-
reaction. However, the amount of vorticity, as measured by w,ys, is
approximately equal for both the 7 < 10° K and T > 103 K phases
in both the Sol and Comp runs. This gives rise to an equally efficient
dynamo in both the phases and thus probably an equal magnetic field
growth rate. We now explicitly study various vorticity generation and
destruction terms to explain roughly equal vorticity generation in the
T < 10° K and T > 103 K phases of the medium.

The evolution of vorticity is governed by the following equa-
tion (Shukurov & Subramanian 2021):

0w 2 Jxb Vp X Vpu

— =V x(uxw)+vVo+V x +

at —_——— cp 0?2

Ourb @diss
®Lorentz @baroclinic
+2vV x (tVInp)+V x F;, ©)]
—_— —
OVinp @driv

where c is the speed of light, j = (¢/4m)V X b is the current density,
and py, is the thermal pressure (other terms are as described after
equation 4). On the right-hand side of equation (9), the first term
denotes the generation/destruction of vorticity by turbulent motions
(wurb» see Batchelor 1950, for a discussion on the analogy between
the magnetic induction and vorticity evolution equations), the second
term denotes the diffusion of vorticity (@y;ss), the third term captures
the effect of the Lorentz force (j X b/c, @Lorentz), the fourth term is
a baroclinic term (Wparoclinic, = 0 for an isothermal gas), the fifth term
is due to viscous interactions in the presence of logarithmic density
gradients (wv1n,), and the sixth term is due to the turbulent driving
(wdriv, = 0 for purely compressive driving).

Each term in the right-hand side of equation (9) is a vector
quantity and thus it is difficult to quantify its role in the growth or
decay of vorticity. Following Kipyld et al. (2018), we take an inner
product of these terms with vorticity and this gives a scalar quantity,
the sign of which indicates growth (positive) or decay (negative).
Furthermore, we normalize those values by w;n to preserve the units
(e.g. (@ Ouwr)/wms has units of s72). In Fig. 10, we show the
time evolution of the mean (over the volume of interest) of these
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Figure 6. Same as Fig. 4 but for the magnetic field component, by/byys, 1 > 0 k. PDFs are highly non-Gaussian or spatially intermittent and the computed standard
deviation (o) and kurtosis (/C) for the corresponding kinematic (kin) and saturated (sat) stages in each case are given in the legend (the mean and skewness of
the distribution & 0). The standard deviation is always higher for the T < 103 K phase as compared to the T > 103 K phase (roughly by a factor of two for
the Sol case and four for the Comp case). On saturation, o in the T < 103 K phase decreases for both cases but in the 7 > 10° K phase roughly remains the
same. The kurtosis is similar in both the phases for the Sol case but is higher for the 7> 10> K phase in the Comp run. Overall, the kurtosis always decreases
on saturation. This implies that the magnetic field in both phases becomes less intermittent as the turbulent dynamo saturates.

normalized values for the first five terms in the right-hand side of
equation (9) in different phases for both the Sol and Comp runs.
In Table 2, we give their corresponding time-averaged values in the
kinematic and saturated stages.

For the Sol run, at the start, ( - ®griv)/Oms = 102572 acts like
a seed term for the vorticity as other terms are negligible. The
contribution of this term remains roughly the same throughout the run
and is eventually much smaller in comparison to the first five terms.
For the Comp run, (® - @iy)/®rms X 1073 572 and is negligible

even at the start of the simulation. Here, the dominant terms are
((U . (’:’baroclinic)/wrms and <w . d)V lnp>/wrms (bOIh %10_285_2 for I/IO s
1). Thus, the initial seed w for the Comp case is primarily generated
by the fourth (@parocinic) and fifth (&v i, ,) terms in these multiphase
simulations.

In the kinematic stage of the turbulent dynamo, as expected, the
effect of Lorentz force (@porentz» Se€ Figs 10e and f) is negligible
and thus the vorticity is primarily controlled by the other four terms,
which are @b, @diss» Dparoctinics and @y 1y ,. All these four terms are
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Figure 7. Properties of the turbulent medium: volume filling fraction, F (a, b), rms velocity, u;ms (¢, d), and rms Mach number, M (e, f) as a function of time
(t/tp) for the Sol (left-hand panels) and Comp (right-hand panels) runs. They are also divided by the phases: T < 103 K (colder, blue), T > 10% K (warm, red),
and the medium as a whole (7' > 0 K, magenta). Most of the volume is filled by the warmer 7'> 10 K gas and the T < 10’ K phase occupies only 3—4 per cent
of the volume. For both cases, u;ms ~ 10 km s~!. The T' < 10° K phase is supersonic (M = 5) and the T > 103 K phase is transsonic (M ~ 1).

significant in strength but @, is always one of the dominant terms
for both the phases in the Sol and Comp runs (see the last column
in Table 2) and it is positive, which implies vorticity amplification.
Wharoclinic 18 equally strong (and positive, so amplifying vorticity) in
the 7> 10° K phase (in fact slightly more than @, for the Sol
run) but is weaker for the 7 < 10° K phase, primarily because of
compression which aligns density and pressure gradients. On the
other hand, wv1,, is weaker in the 7 > 10° K phase and stronger
(though negative, so destroying vorticity) in 7 < 10° K phase because
of higher density and density gradients in the colder regions of the

MNRAS 514, 957-976 (2022)

medium. These relative trends are similar for the Sol and Comp cases
but the fluctuations are larger in the Comp case, probably indicating
these terms act on a larger length scales (also, see a larger size of
density or temperature structures in Fig. 1 for the Comp case in
comparison to the Sol case). The smaller size of density structures in
the Sol case might also lead to more misaligned density and pressure
gradients, which in turn would enhance the baroclinic term (as also
seen in Fig. 10 and equation 9). Overall, these terms combined give a
similar level of @, in both the phases of the medium, which in turn
probably gives a roughly equal growth rate of the turbulent dynamo.
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Table 1. Table showing the comparison of the growth rate and saturation level between isothermal (using the model in
Federrath et al. 2011, at appropriate Mach numbers) and non-isothermal (or multiphase; this work) turbulent dynamo
simulations for purely solenoidal (Sol) and purely compressive (Comp) driving. The columns are as follows: 1. nature
of driving, 2. phase of the medium, 3. estimated Mach number, M, 4. growth rate in the non-isothermal case, vlty l],

5. growth rate in the isothermal case at the appropriate Mach number, y;so[7, 1, 6. relative difference in the growth rate
between the isothermal and non-isothermal cases, Ay/y = (yiso — ¥)/y, 7. saturation level in the non-isothermal case,
Rga, 8. saturation level in the isothermal case at the appropriate Mach number, Rqqiso, and 9. relative difference in the
saturation level between the isothermal and non-isothermal cases, ARgat/Rsat = (Rsatiso — Rsat)/Rsat-

Driving Phase M V(t(;l) Mso(t(;l) Ayly Rsat Rsatiso ARgat/Rsa
Sol T<10°K 48+ 03 037 + 0.02 0.53 0.43  0.019 £ 0.002 0.03 0.58
T>100K 12401 037 4+ 0.02 0.78 1.11 0.13 4+ 0.02 0.24 0.85
Com T<10°K 54404 0.18 + 0.01 0.24 0.33  0.0024 £ 0.0007 0.006 1.50
P T>100K 1.1 +£0.1 0.18 & 0.01 0.30 0.66  0.021 £ 0.005 0.03 0.43
r r r ——— 1078
T
i)
Sol, T < 10? K, {wmms)kin = (0.72+£0.02) x 10713 571, 3 —— Comp, T < 10% K, (Wms)kin = (0.54£0.06) x 10713 571,
(Wrms)sat = (0.59£0.02)x 10713 57! (Wmssa = (0.51£0.06)x 10713 571
Sol, T > 103 K, (Wems)kin = (0.76 £0.03)x 10713 s=1, ]| —— Comp, T > 103 K, (WrmsHkin = (0.49£0.03) x 1013 571 |
(Wrms)sat = (0.60£0.03) x 10713 571 (Wrms)sat = (0.45£0.02) x 10713 571
Sol, T > 0 K, {wrms)kin = (0.76 £0.03) x 10713 571, —— Comp, T >0K, (Wms)kin = (0.49+0.03) x 10713 571,
(Wrms)sat = (0.60 +£0.03) x 107183571 (Wrms)sat = (0.45 £0.02) X 10713 ¢!
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Figure 9. Time evolution of the rms vorticity, wms, for different phases (7' < 103 K, T> 103 K, and T > 0 K) in Sol (a) and Comp (b) runs. In the legend,
we also give the wms averaged over the kinematic (#/fp = 5 to 35 for the Sol run and #/fy = 12 to 75 for the Comp run) and saturated (#/to = 80 to 100 for the
Sol run and #/ty = 120 to 140 for the Comp run) stages. wms is always smaller for the Comp run making it a less efficient dynamo. Also, (@rms)kin > (@rms)sat
for both cases and thus the growth of magnetic fields is reduced as the dynamo saturates. Finally, ws is roughly similar between both the 7 < 10> K and T >
10% K phases for both runs in their respective kinematic and saturated stages. This is the probable reason for the approximately equal growth rate in different
phases of the medium, as seen in Fig. 8.

As the magnetic field saturates, @y orent; increases but still remains
subdominant compared to the other terms in all the phases for both the
Sol and Comp runs. In the saturated stage, the value for the dominant
terms for all cases decreases in comparison to the kinematic stage.

This leads to a lower @, in Fig. 9, which in turn leads to a reduction
in the growth of magnetic fields (also see Seta & Federrath 2021a,
for a similar conclusion via other probes). The viscous dissipation
term, @giss, 15 always small compared to the other terms for all cases
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Figure 10. Volume average of inner product of first five terms on the right-hand side of the vorticity (@) evolution equation (equation 9) with @, normalized by
the wrms, for the Sol and Comp runs in all three phases: 7' < 103 K (blue), 7> 10° K (red), and T > 0 K (magenta). The corresponding time averaged values
in the kinematic and saturated stages are given in the legend. Initially, for the Sol run, @ seed is from @griy ((® * Odriv)/Orms ~ 102572 and for the Comp
case, it is from @paroctinic and @v 1n, (for #/tg S 1, (@ - Gparoclinic)/@rms = (@ - OV 1n p)/Orms ~ 10~285~2). For both runs, @b 1S always dominant and positive
(implying vorticity amplification) in all phases. Additionally, for the T < 103 K phase, @y 1n p is dominant (negative, implying vorticity destruction) and for the T
>10°K phase, @paroclinic (positive, implying vorticity amplification) is dominant. These dominant terms for each case decreases as the magnetic field saturates.
Wdiss and @ orentz are always sub-dominant.
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Table 2. Summary of volume averaged inner products of vorticity generation/destruction terms with vorticity, normalized by wms, and then time
averaged in their respective kinematic and saturated stages for both types of driving (Fig. 10). The columns are as follows: 1. nature of driving, 2. phase,
3. stage, kin: kinematic and sat: saturated, 4. turbulent amplification/decay term, @b, 5. viscous dissipation term, @giss, 6. Lorentz force term, @p orentz.
7. baroclinic term, @paroclinic,> 8- Viscous interactions due to logarithmic density gradients, @v 1, 5, and 9. dominant terms out of all five terms. Columns

4-8 are in units of 10727572,

Driving Phase Stage (@ - @wrb)/@rms

(@ - diss) /@rms (@ - DLorentz) /@rms (@ + Dbaroclinic) / @rms

(w- @vinp)/wms Dominant terms

T <10°K kin 1.9 £ 03 0.10 £ 0.03 - 1.5 £ 0.1 —-20+03 Dturbs DV In p
sat 1.1 £02 —0.01 £ 0.02 0.46 £ 0.05 09 + 0.1 —-12+02 Dturbs OV In p
Sol 7> 103K kin 0.65 £ 0.08 —0.35 £ 0.02 - 0.97 £ 0.05 0.44 + 0.06 @haroclinics Oturb
- sat 0.39 £ 0.05 —0.24 £ 0.01 0.21 £ 0.04 0.61 £ 0.05 0.25 + 0.04 @baroclinics Pturb
T>0K kin 0.71 £ 0.07 —0.33 £ 0.02 - 0.99 £ 0.05 0.33 £+ 0.05 @baroclinics Oturb
sat 0.42 £ 0.05 —0.23 £ 0.01 0.22 £ 0.04 0.62 £ 0.05 0.18 £ 0.03 @baroclinics Pturb
T<10°K kin 09 £ 0.7 —0.02 £ 0.05 - 0.8 £ 0.2 —1.1 +£03 @rurbs DV In p
sat 09 £ 0.7 —0.04 £ 0.05 0.01 £0.01 0.7 &£ 0.1 —-09 +£02 Dturbs DV In p
Comp T>10°K kin 0.52 + 0.09 —0.18 &£ 0.02 - 0.43 £ 0.08 0.17 & 0.04 @turb s Dbaroclinic
sat 0.52 + 0.09 —0.15 £ 0.02 0.00 £ 0.01 0.35 £ 0.07 0.13 + 0.03 @turb » Dbaroclinic
T>0K kin 0.53 + 0.09 —0.17 £ 0.02 - 0.45 £ 0.08 0.13 £ 0.03 @trb > Dbaroclinic
sat 0.46 £+ 0.07 —0.15 £ 0.02 0.00 £ 0.01 0.36 £+ 0.07 0.10 + 0.02 @turb s Dbaroclinic

and this is probably because of a well-resolved physical velocity
diffusion (see Section 2.4). For the Comp run, the net effect of these
terms is weaker (implying a weaker growth rate) compared to the Sol
case and they also have a smaller difference between the kinematic
and saturated stages (implying a weaker back-reaction).

In summary, oy (see the next paragraph for further discussion on
this term) is always dominant and positive in both the phases. In the
T < 10°K phase, the wvi,, term is strong (negative, destruction
of vorticity) and in the 7 > 10° K phase, the @paroclinic term is
strong (positive, amplification of vorticity). The other terms are quite
subdominant in comparison to these terms. These trends remain the
same for both the stages and types of driving (see Table 2).

The turbulent amplification/destruction term in the vorticity evo-
lution equation (@, in equation 9) can be further expanded into

Vxuxw)y=(@ -VYu—u-V)Yw—o (V- -u), (10)
——— e N N
Drurb @gir @ady ®com

where the first term denotes amplification of vorticity by stretching
(wy), the second term denotes advection of vorticity (@waqy), and
the third term denotes compression of vorticity (@com, this can lead
to amplification or destruction of vorticity depending on the local
compression or expansion). Like with each term in equation (9), we
take an inner product of these terms with @ and normalize it by @w;ys.
The time evolution of the mean (over the volume of interest) of these
quantities is shown in Fig. 11 and their time-averaged values in the
kinematic and saturated stages are given in Table 3.

The vortex stretching term, g, is dominant in the 7 > 10° K
phase (also, in the 7 > 0 K phase or the entire region) and the
vortex compression term, @eom, 1S dominant in the 7" < 10°K phase
(though it is negative, implying growth of vorticity, see Table 3).
Thus, @u always leads to amplification of vorticity though via
different physical processes, vortex compression in the T < 103 K
phase and vortex stretching in the 7> 10 K phase. In the Comp case,
Wagy 18 also high and positive, implying significant local advection of
vorticity by turbulent motions. This also leads to an overall reduction
in vorticity in comparison to the Sol case.

After exploring the reason for a similar growth rate between the
phases, we now study the reason for the lower saturation level for the
T < 103 K phase as compared to the 7 > 10° K phase (see Fig. 8).
Fig. 12 shows the rms strength of the Lorentz force, |j X b/c¢|ims,

in both the phases and the medium as a whole (7' > 0 K) for the
Sol and Comp runs. The Lorentz force and thus the back-reaction
is stronger in the T < 10° K phase as compared to the 7 > 10° K
phase for both types of driving (this also indicates a difference in
local magnetic field structure between the phases, see Appendix C
for further discussion). Thus, the magnetic fields in the T < 10° K
phase stop growing slightly earlier than the 7 > 10° K phase due
to a stronger Lorentz force and this leads to a lower saturation level
(note that the growth rate is the same for both phases). The trends
are similar for both the Sol and Comp runs.

5 SUMMARY AND CONCLUSIONS

With a motivation to explore magnetic fields in different phases of the
ISM, we use driven turbulence numerical simulations with prescribed
(Milky Way type) heating and cooling function (Section 2.2) to study
the turbulent dynamo action in a non-isothermal gas (most previous
work studies the turbulent dynamo in an isothermal setting). Our main
aim is to understand how the properties of the turbulent dynamo and
the magnetic field it amplifies depend on the phase of the medium.

We numerically solve the equations of non-ideal compress-
ible magnetohydrodynamics (equation (1) — equation (4)) for a
monatomic, ideal gas in a box of size 200 pc and turbulence
being continually driven with a root mean square (rms) velocity
of 10 km s~'. We use two extreme cases for the driving: purely
solenoidal (Sol) and purely compressive (Comp). Initially, the
simulation is setup with a uniform number density of 1 cm™, a
uniform temperature of 5000 K, and a weak random seed field with
rms strength of 10719 G.

As expected, the magnetic field amplifies exponentially and then
saturates due to the back-reaction by strong magnetic fields on the
turbulent flow. We chose a cutoff temperature of 10° K for phase
division, i.e. T < 10° K phase for the cold medium and 7' > 10° K
phase for the warm medium (Fig. 1). We then study the properties of
turbulence and magnetic fields separately in these two phases. The
key results and conclusions from the study are summarized below:

(1) The 2D PDFs of temperature—density and magnetic field-
density are complex and do not follow simple trends (Figs 3 and
5). The density PDF roughly follows a lognormal distribution in
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Figure 11. Same as Fig. 10 but for @gy, @ady, and weom (equation 10). In the 7' < 10° K phase, @¢om is dominant (though negative, so leads to vorticity
amplification) and in the 7> 10° K phase, @y is dominant. @,qy is always very sub-dominant except in the T < 103 K phase for the Comp run.

both the 7 < 10° K and T > 10° K phases (Fig. 4). The magnetic
field is non-Gaussian in both the phases and the non-Gaussianity
decreases on saturation (Fig. 6).

(i1) Each phase individually is far from an isothermal gas and there
is a continuous dynamic energy exchange between the phases.

(iii) For both the Sol and Comp driving, the T < 10° K phase
occupies a very small fraction of the volume (< 4 per cent) and is
highly supersonic (M & 5). On the other hand, the 7> 10 K phase
fills a large fraction of the volume (2 96 per cent) and is transsonic
(M=1).

(iv) The magnetic field growth rate in the exponential growth
phase (kinematic stage) is the same for both the phases (T < 10° K
and T > 10° K, Fig. 8). This disagrees with isothermal turbulent
dynamo runs at different Mach numbers, where the growth rate
decreases with M for M 2 1. Once the turbulent dynamo saturates,
the ratio of the magnetic to turbulent kinetic energy (saturation level)
is lower for the T < 10° K phase and this result aligns with isothermal
turbulent dynamo simulations. The growth rate and saturation level

MNRAS 514, 957-976 (2022)

for the Sol driving is higher than the Comp driving and thus, also in
agreement with isothermal runs, the Sol driving gives a more efficient
turbulent dynamo. However, for both the Sol and Comp cases, the
growth rate and saturation level in our non-isothermal simulations
are lower than the respective isothermal turbulent dynamo runs at
appropriate Mach numbers (Table 1). This suggests that the turbulent
dynamo action in a non-isothermal gas is different from its isother-
mal counterpart and this difference is probably due to continuous
energy (including the magnetic energy) exchange between the two
phases.

(v) We show that the growth rate is the same in different phases
because an approximately equal rms vorticity is generated in both the
phases (Fig. 9). Furthermore, the vorticity in the Comp run is lower
than that in the Sol run, leading to a less efficient turbulent dynamo.
The rms vorticity also decreases on saturation, which implies a
weaker amplification of magnetic fields. This is a direct consequence
of the back-reaction of strong magnetic fields on the turbulent
flow.
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Table 3. Same as Table 2 but for vortex stretching (@, column 4), advection (@agy, column 5), and compression (@com,
column 6). Columns 4—6 are in units of 10~27s~2 (Fig. 11) and the last column shows the dominant terms out of all

three terms.

Driving Phase Stage (@ + Dgtr) [ Opms (@ + Wady)/®rms (@ + @com)/Drms Dominant terms
T<10°K kin 0.08 + 0.03 —0.07 &+ 0.08 —0.42 £+ 0.05 eom
sat 0.08 £ 0.03 0.00 + 0.05 —0.28 £+ 0.03 com
Sol 7> 10° K kin 0.89 + 0.08 —0.04 + 0.01 0.08 + 0.02 g
= sat 0.50 &+ 0.05 —0.01 £+ 0.01 0.03 + 0.01 o
T>0K kin 0.85 £ 0.07 —0.04 £+ 0.01 0.06 £ 0.02 g
sat 0.48 + 0.05 —0.01 £+ 0.01 0.01 + 0.01 o
T<10°K kin 0.09 £ 0.05 03 £+ 02 —0.6 + 02 coms Dady
sat 0.10 £ 0.06 03 4+ 0.2 —0.6 + 02 Dcoms Dady
Comp T'>10° K kin 041 + 0.05 0.04 + 0.03 —0.12 £+ 0.07 g
sat 0.33 £ 0.03 0.05 £ 0.02 —0.13 &+ 0.06 g
T~ 0K kin 0.40 + 0.04 0.05 + 0.02 —0.14 + 0.07 o
sat 0.33 £ 0.03 0.05 £+ 0.02 —0.15 &+ 0.06 o
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) B
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Figure 12. RMS strength of the Lorentz force, |j X b/c|ms, in different phases for both the Sol (a) and Comp (b) runs. For both cases, the Lorentz force is
stronger in the 7' < 107 K phase as compared to the 7> 103 K phase. This leads to a stronger back-reaction and thus a lower saturation level for the T < 10° K

phase.

(vi) We study different terms responsible for the growth and
destruction of vorticity (equation 9, Fig. 10, and Table 2). The
turbulent amplification/destruction term (@) is always a dominant
(always positive, implying vorticity amplification) term for all cases.
In addition, the baroclinic term (@paroclinic) 1S dominant and positive
(implying vorticity amplification) in the 7 > 103 K phase (due to
misaligned density and pressure gradients) and the term for viscous
interactions in the presence of logarithmic density gradients (wvn,)
is dominant and negative (implying vorticity destruction) in the cold
phase (due to higher density and density gradients). The viscous
dissipation (wgiss) and Lorentz force (@poren,) terms are always
subdominant. Overall, the combination of these terms gives equal
rms vorticity in both the phases of the medium.

(vii) We further study the contribution of vortex stretching (wg),
advection (w,gy), and compression (Weom) 10 @b (equation 10,
Fig. 11, and Table 3). @y, is strongest in the 7" > 10> K phase
and wqom (though negative, so amplifying vorticity) is strongest in
the 7' < 103 K phase. @,q, is quite low except in the 7 < 10 K phase
of the Comp case.

(viii) The magnetic field grows at an equal rate in both the phases
(as suggested by the equal growth rate) but the growth first stops in
the colder phase due to a stronger Lorentz force (Fig. 12).

In the future, we plan to explore the following two extensions of
this work. First, we aim to study the power spectrum of velocity
and magnetic fields in different phases. However, this has to be done
via structure functions (Mohapatra et al. 2022a; Seta et al. 2022)
as each phase is randomly distributed in space, which leads to a
non-uniform separation and thus it would be difficult to compute the
power spectrum directly. Secondly, we aim to simulate the multiphase
medium generated by supernova-driven turbulence. This would also
have the hot (~10°K) gas and then the turbulent dynamo can be
studied separately in all the three phases (cold, warm, and hot) of the
multiphase ISM.
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in the framework of the National Computational Merit Allocation
Scheme and the ANU Merit Allocation Scheme.
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The data from simulations is available upon a reasonable request to
the corresponding author, Amit Seta (amit.seta@anu.adu.au).
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APPENDIX A: VARYING THE COOLING
IMPLEMENTATION

In our simulations, the time-step is primarily decided based on the fol-
lowing three physical processes: fastest speed (dfyyp, equation Al),
fastest heating or cooling, (d7..01, equation A2), and the diffusion of
velocity and magnetic fields (dzg¢r, equation A3). They are given by

dx

dtvpp = CFLcoetr 12\’
MAX ((u2 2+ 03) )

b
_ , Al
"= Vi “y
€int
T . — A2
1S AT — g T (A2)
dts zlﬂ (A3)
A= 5 MAX . )’

where CFL. o is the coefficient for the Courant—Friedrichs—Lewy
(CFL) condition (chosen to be 0.6 throughout), dx is the grid
resolution, u is the gas speed, c; is the sound speed, v, is the Alfvén
speed, b is the magnetic field, p is the density, ssf is the subcycling
safety factor, e, is the internal energy, ny is the number density
(=p/pumy, where ;1 = 1 is the mean molecular weight and my is the
mass of hydrogen), A is the cooling function (equation 6), I" is the
heating function (equation 5), v is the viscosity, 1 is the resistivity,
and the function MAX returns the maximum of a quantity within the
domain (in equation A1) or among a list of variables (in equation A3).
One would naturally expect the time-step to be minimum of all three
time-steps (equation Al — equation A3) but dz..o can be quite small
in comparison to other two time-steps. This can be numerically very
expensive, especially for our dynamo runs as the simulations usually
runs over 2> 100 eddy turnover times.

In our simulations, we treat the cooling and heating functions
as a source term in an operator split fashion, i.e. after every time
step = MIN(dtyup, dfairr), we update the internal energy to reflect
the corresponding cooling and heating. For the equilibrium cooling
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Figure Al. The ratio of the magnetic to turbulent kinetic energy, Emag/Ein.
for two different cooling models: equilibrium cooling (Eq. cooling) and non-
equilibrium cooling (Non-eq. cooling, with two different ssf, 0.5 and 5.0).
There is a slight variation in the curve for Non-equation cooling, ssf = 0.5
case but the overall growth rate and saturation level do not depend on the
cooling implementation.

model, we first obtain an equilibrium temperature by balancing the
heating and cooling functions (I' = nyA). Then if the time taken
to achieve the equilibrium temperature from the temperature at that
time is less than d.. (With ssf = 1), then the temperature is made to
approach the equilibrium temperature exponentially fast (Vazquez-
Semadeni et al. 2007). If not, the cooling and heating is performed
according to the time-step.

We also try the non-equilibrium cooling model, where we update
the internal energy according the cooling time-step, dz.o (With ssf =
0.5 and 5.0). Here, for each spatial cell, we evolve the internal energy
in steps of dz.., and this can be different for different cells (also see
section 2.2.5 in Mohapatra et al. 2022b). We compare the runs with
the equilibrium and non-equilibrium cooling (two different ssf, 0.5
and 5.0) models for the purely solenoidal driving (Sol) and 2523 grid
points (other parameters stay the same as in Section 2). In Fig. A1, we
show the ratio of the magnetic to turbulent kinetic energy, which has
a slight deviation for the non-equilibrium cooling model with ssf =
0.5 but the overall growth rate and saturation level are not affected
much. In Fig. A2, we show the PDF of density and temperature for
all three cases and they are roughly equal in all three cases. Thus,
we conclude that the properties of the multiphase medium and the
magnetic field it amplifies do not depend on the exact way the cooling
and heating is implemented and we adopt the equilibrium cooling
model for our runs to maximize numerical efficiency.
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Fig. A1) and the shaded region shows one-sigma variation. There is slight variation at lower temperatures but both the density and temperature PDFs practically

overlap for all three cases.
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103 K phase (due to lower densities) and for the Comp case (due to a broader density distribution, see Fig. 4).
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APPENDIX B: PROBABILITY DISTRIBUTION
FUNCTIONS OF VELOCITY AND LOCAL MACH
NUMBER

Figs Bla and b shows 2D PDFs of velocity and density for both
the Sol and Comp runs. For both cases, the velocity shows a very
low level negative correlation (practically uncorrelated) with the
density and this is true in all the phases. Figs B1(c) and (d) shows
the PDF of the velocity component, u,/ut;ms 1> o k, for both the Sol
and Comp cases in different phases. Like the density (Fig. 4), the
velocity PDF does not vary significantly between the kinematic
and saturated stages. The velocity PDF always roughly follows a
Gaussian distribution with a mean approximately equal to zero in
all the phases and for both the cases. The standard deviation of the
velocity PDF is higher for the Comp case as the density varies over
a larger range for that case (Fig. 4). For both cases, the standard
deviation is higher in the 7 > 10* K phase due to lower densities.
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The correlation of Mach number with density is more significant.
Fig. B2 shows 2D PDFs of the local Mach number (M ocar = Usms/Cs,
computed at each point locally) and density for both runs. In both
cases, the correlation is positive and stronger for the 7' < 10° K phase
and weakens for the 7 > 10° K phase. These results are different
from those in Federrath & Banerjee (2015), which shows a negative
Miocal — p correlation (see their fig. 7) for turbulence driven in a gas
with a polytropic equation of state and y, = 5/3. This is probably due
to the multiphase nature of the medium in our simulations. Figs B2¢
and d shows PDF of log(M 1) for both Sol and Comp runs. Overall
(T = 0 K region), like density PDFs in Fig. 4, show a double hump
structure in both cases confirming the two-phase nature of the gas.
Though the rms Mach number, M (Figs 7e and f), in the T < 10* K
phase is &5 and that in the 7 > 10° K phase is ~1, Mgy in
both phases varies over a huge range and there is significant overlap
(especially at lower M.,1) between the PDFs in the two phases.
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Figure B2. Same as Fig. B1 but for the local Mach number, Moca1 (=urms/cs at each point locally). Mca1-p shows stronger positive correlation in the 7' <
10° K phase and the correlation decreases significantly in the 7 > 10° K phase (a, b). Like the density PDFs in Fig. 4, the PDF of log(Mgcq) for 7> 0 K
region shows a double hump structure for both cases, re-confirming the two-phase nature of the medium. Though the rms Mach number, M, =5 in the T <
10% K phase and ~1 in the T > 103 K phase (Figs 7e and f), Mo varies over a huge range in both the phases for both the Sol and Comp runs and there is a

significant overlap between the PDFs in two phases.
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Figure C1. Time evolution of the rms curvature, s, normalized by driving scale of turbulence (L/2, see Section 2.3) for both the Sol (a) and Comp (b) runs
in all three phases: T < 10° K (blue), T > 103 K (red), and T > 0 K (magenta). The corresponding time-averaged values in the kinematic and saturated stages
for each case are given in the legend. Practically, the line for the 7> 10% K phase (filling most of the volume) overlaps with that for the whole region. For both
runs, the magnetic field line curvature is higher for the T < 103 K phase and decreases on saturation. Also, the curvature is always higher for the Sol case in

comparison to the Comp case.

APPENDIX C: CURVATURE OF MAGNETIC
FIELD LINES

The magnetic field structure is also expected to be different in
different phases of the ISM. In this work too, the local magnetic
field structure varies between the 7 < 103 K and T > 10 K phases.
This is confirmed via various direct and indirect measures shown in
the main text, especially via b—p 2D PDFs (Fig. 5), b,/b:ns PDFs
(Fig. 6), and the time evolution of the Lorentz force (Fig. 12).
We characterize the local magnetic field structure in terms of
curvature of magnetic field lines, usually defined by ||5 - V||, where
b =b/||b|| denotes the magnetic field unit vector (Schekochihin
et al. 2004).

In numerical simulations, 5 - Vb need not be perpendicular to b
(primarily due to numerical error in computing the gradient) and the
curvature, «, can be more accurately computed as (Yang et al. 2019;

MNRAS 514, 957-976 (2022)

Yuen & Lazarian 2020)
kK =1b x (b-Vb). (CD)

Fig. C1 shows the time evolution of rms curvature, ks, in all the
phases for both the Sol and Comp runs. For both runs, the curvature

is higher in the T < 10® K phase in comparison to the 7 > 10> K
phase and decreases for both phases as the magnetic field saturates
(the level of decrease is lower for the Comp run). This indicates
slightly more tangled magnetic field lines in the T < 10° K phase and
the kinematic stage for both types of driving. Also, since the values
are always higher for the Sol case, the magnetic field lines are more
tangled for the purely solenoidal driving in comparison to the purely
compressive driving.
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