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Summary. In the framework of dynamo theory of the solar cycle
self-consistent numerical solutions of the non-linear mean field
MHD equations (including Lorentz force) within a compressible
stratified medium are given for a cartesian geometry. For both
steady (o%) and oscillatory (aw) turbulent dynamos the growth
of the magnetic field is limited by a mean flow driven by the
Lorentz force. Magnetic buoyancy supports this mechanism but
isnot able to suppress dynamo action totally or to set narrow limits
to the dynamo models investigated. Flow velocities of the order
of 1 ms™! are sufficient to limit the magnetic field amplitude to
about 10 mT (mean toroidal field of the Sun). For an oscillatory
dynamo of the solar type the flow pattern has a one-cell-geometry
with fluid rising to the surface near the spot zone (zone of maxi-
mum toroidal field in the vicinity of the equator), flowing towards
the pole and sinking down there. This may account for the ob-
served poleward motion of the prominence zone.

Key words: a-cffect — dynamo — hydromagnetics — magnetic' field
— solar cycle

1. Introduction

The concept of mean field electrodynamics (recently reviewed by
Krause, 1976; see also Moffat, 1978) led to the construction of
turbulent a-effect dynamo models for the solar cycle (recently
reviewed by Stix, 1976a), the Earth’s magnetic field (Steenbeck
and Krause, 1969; Deinzer et al., 1974), magnetic fields in pre-
main-sequence evolution and Ap-stars (SchiiBler, 1975), fields in
the convective cores of massive stars (Pihler, 1976) and the gal-
actic field (Stix, 1975). All these investigations used either the
pure kinematic approach, i.e. no reaction of the growing magnetic
field on the motions driving the dynamo was taken into account
(therefore an exponential growth of the field resulted) or used a
very crude model, the “cut-off-a-effect” (Stix, 1972; Jepps, 1975),
in order to produce a finite amplitude magnetic field. Cut-off-
a-effect means that the induction term (i.e. «) is arbitrarily set
zero if the magnetic field exceeds some critical value, B,, generally
identified with the equipartition value with respect to the fluid
motion (but see Busse, 1975; Galloway et al., 1977 ; Peckover and
Weiss, 1978). Other ad-hoc models for a non-linearity were given
by Riidiger (1973) and Yoshimura (1978a,b). In the framework
of his dynamo model, Moffat (1972) gave a consistent description
of the reaction of the magnetic field on the induction mechanism.
Recently, Watanabe (1977) calculated the depence of « on the
field strength and applied the results to a turbulent dynamo in
the Earth’s core. Another approach to nonlinear effects in the

small scale is due to Vainshtein (1971). Frisch et al. (1975; see
also Pouquet and Patterson, 1978) paid attention to inverse cas-
cades of magnetic helicity towards small wavenumbers in turbu-
lent media including dynamical effects.

Rather than looking at the field regeneration mechanism in
the small length scale, Malkus and Proctor (1975) investigated
the capability of large scale motions driven by the mean magnetic
field through the Lorentz force to limit the magnetic field to a
finite amplitude. For an incompressible medium it was possible
to construct such models by means of numerical integration for
o?-dynamos (Proctor, 1977; Hellmich, 1978) and aw-dynamos
(Nelle, 1977). This field limitation process resembles that used by
Busse (1973) in the framework of his dynamo model. Other hy-
dromagnetic dynamo models were constructed by Soward (1973)
and Gubbins (1975). The investigations referred to above dealt
with incompressible or Boussineq media. However, calculations
for the compressible case with a strongly stratified medium are
necessary to reach a better approximation to the situation in the
convective regions of stars and the Sun.

Parker (1977) claimed that “buoyancy has important quantita-
tive effects on the operation of the solar dynamo”. This conclusion
was drawn from an estimate of the rising velocity of individual
flux tubes (Parker, 1975). However, inclusion of the effects of
tube expansion and viscosity reduces the rising velocity drastically
(SchiiBler, 1977) and from this point of view there seem to be no
severe restrictions to the operation of the solar dynamo. On the
other hand, the influence of buoyancy on the mean field dynamo
process can be investigated consistently only by a MHD calcu-
lation including the buoyancy term in the momentum equation
for a compressible medium stratified by a gravitational acceler-
ation. Together with the information about the effect of buoyancy
we then gain insight into the pattern of flow associated with large
scale dynamo action, especially for the case of the Sun.

2. Equations and Procedure

Consider a cartesian coordinate system (x,y,z). We shall solve
the MHD equations within the rectangular domain 0<x<L,
0=<z<L with a length scale L, assuming infinite extension in y-
direction with /0y =0. The equations that describe the problem
are

du _ 1
p[a—t+(u . V)u] = Vp+41t (VxB)xB+pg

+v[Vu+ivV(v-u)]. €))
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B=(B,,B,,B,) denotes the mean magnetic field, u=(u,,u,,u,)
the mean velocity, p the mass density, p the gas pressure, a the
turbulent indtiction (x-effect); all variables quoted so far are func-
tions of x, z and ¢. g=(0,0, —g) denotes the constant gravita-
tional acceleration, v the dynamical viscosity and n the magnetic
diffusivity. Equation (1) is the momentum equation, Eq. (2) the
equation of continuity and Eq. (3) the MHD induction equation.
To close this set we assume the ideal gas law with a temperature
profile T(z) which does not vary in time. Hence, we do not in-
clude an energy equation; this is possible because the presence
of a weak magnetic field (say, 10 mT mean toroidal field for the
solar convection zone) does not have a significant influence on

the (convective or radiative) energy transport and the temperature.

profile. However, this assumption may not be justified for con-
centrated (1 T) rather than mean fields, but such flux concen-
trations are not included in the theory presented here.

Locally, i.e. for regions small enough for curvature to be un-
important, we can identity (x, y, z) with spherical polar coordinates
(8, 9,r) and the condition 0/0y=0 with axisymmetry, 8/d¢ =0.
In the case of the Sun this is possible if we use L=2 10® m, the
vertical extension of the convection zone (Baker and Temesvary,
1966). The rectangular region has the topology of a spherical
shell with the depth of the convection zone (z=0: bottom, z=L:
surface) and a horizontal extension from pole (x=0) to equator
(x=L). Therefore, we can speak of a “toroidal”” magnetic field
B,=(0, B,,0) and a “poloidal” field B,=(B,,0, B,) and define u,
and u, analogously. Let us rewrite Egs. (1)—(3) in a more suitable
form by introduction of the following modifications:

a) Subtraction of the undisturbed hydrostatic stratification

Pu(2), pu(z) with dpy/dz=—py- g from the momentum Eq. (1)

b) Introduction of a vector potential A=(0,4,,0) for the

poloidal field with B,=V x A in order to oniit one equation and
satisfy V - B=0 automatically

c) Usage of dimensionless variables

d) Inclusion of an arbitrary additional toroidal shear flow
u,(2) =(0,u,(z),0) assumed not to be influenced by the magnetic
field. u, resembles a differential rotation and is needed to calculate
aw-dynamos.

This procedure results in the following set of dimensionless
equations (for simplicity we use the same symbols for the dimen-
sionless variables as before).

p [g—':-l-'(u . V)u] =—I' (G VpT+ p2)

+(VxB)xB+P,(Vu+iV(V-w) (4
o
b§=_v-(pu). )
%=(Bp-V)“S+Vx(u,pr+upXB,)+R¢Vx(o?-Bp)-l'Vng
(6)
0A

W=("" xB,)+R, - &-B, +V?A.

p is the density perturbation (total density minus hydrostatic
density). Since (5) is a scalar equation and only the y-compo-
nents of (6) and (7) do not vanish, this represents a system of 6
equations for 6 variables u, 5, B,, A,. The dimensionless numbers

349
that describe the physical situation are:
I=g-L*n72, ®
the non-dimensional gravity, _
G=L-A7", O

the number of isothermal scale heights A =%T;/ug in the box,
where Tj is the temperature scale and # is the universal gas
constant,

Pm=v . (Po'l)_la (10)

the imagnetic Prandtl number, where p,=p;(0) is the scale of
the density,

Ry=ay-L-q7%, (11)

the a-Reynolds number with o, the scale of the a-effect. The
function & in Egs. (6) and (7) represents the spatial dependence of
the a-effect (i.e. 4 is a normalized profile). When u,+0 there is a
fifth prescribed parameter

Rm=k0'L"’_l’ (12)

the ‘shear’ Reynolds number, where k, is a typical velocity dif-
ference which will be specified later.

In the case of P, we have to distinguish between non-turbu-
lent and turbulent media. For the former, the dynamical viscosity
v is constant (independent of density, P, =const.) while within a
turbulent medium (as the solar convection zone seems to be), the
kinematical viscosity v/p ~v,- I (v,=turbulent velocity, /=typical
extension of a turbulent eddy) is constant (i.e. P,,~ p). We show
results for both cases in the next section ; they are slightly different.
As time unit in Egs. (4)—(7) we use the magnetic diffusion time
tp=L%n"" while the velocity scale is u,=# - L™!. The scale B,
of the magnetic field is chosen such as to give

(13)

where V, , is the Alfvén velocity relevant for B, and py=py (0).
As boundary conditions we assume A,=B,=0forall boundaries,
thus limiting the magnetic field to the integration domain. Con-
sequently, the Lorentz force vanishes at the boundaries and it is
consistent to use free slip boundaries for the fluid motion, i.e.
vanishing normal component of the velocity and vanishing normal
derivative of the tangential component at the boundaries. To-
gether we have:

B} - L?/(4n - pu(0) - n)=V3 /UG =1,

A,=B,=u,=0u,/0z=0u,/0z=0 for z=1.

A,=B,=u,=0u,/0x=0u,/0x=0

z=0, (14)

(15)

Equations (4)—(7) together with the boundary conditions (14)
and (15) have been solved numerically as an initial value problem
using the explicit finite difference scheme of Dufort and Frankel
(1953). Stability problems arising in the course of test calculations
made it necessary to include an arbitrary diffusion term in the
equation of continuity (5) (Harlow and Amsden, 1971) which
then reads .

‘;—¢= —V - (pu)+yV32p.

for x=0, x=1.

()

The parameter y can be adjusted for numerical convenience. We
use y=0.5 throughout the calculations. The dependence of the
results on y is negligible; this was tested by variation of y in the
range 0.25<y=<1. (§') is of second order and we have to add an-
other boundary condition. We assume a vanishing normal deriv-
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Fig. 1. Stationary configuration of magnetic
field, flow pattern and density perturbation
for an a?>-dynamo with 4 scale heights for
the turbulent case
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ative:
dp/dx=0 for x=0, x=1 (16)
0p/oz=0 for z=0, z=1.

Through this choice we avoid mass diffusion across the boundaries
and ensure constant mass within the integration domain.

3. Results

Parameter Choice

A simple model (u=0, a=const.) which can be easily solved

"analytically has been used to test the numerical method and to
choose optimal values for timestep A¢ and grid dimensions. At
=10"3 and a grid with 11 points in x-direction and 20 points in
z-direction resulted as the best choice and these values have been
used throughout the calculations.

The dimensionless numbers I', G, P,,, R, have been determined
by our aim to apply the calculations primarily to the solar con-
vection zone; however, the results are relevant in principle for
all astrophysical situations where an active turbulent dynamo is
possible. With L=2 108 m and a turbulent magnetic diffusivity
7=10% m? s~! (Kohler, 1973) the velocity scale is uy=0.5m s™*.
A gravitational acceleration g=2.7 10> m s~2 leads to I'~2 10"
for the case of the Sun. This value is much too big to be tolerated
by the numerical scheme. However, only the value of G=L - A™*
determines the effect of buoyancy (SchiiBler, 1978), i.e. only the
ratio of the factors in front of gravity and pressure in the momen-
tum Eq. (4). With a typical value of 10° K for the lower convection
zone we get GR6. We use values in the range G=0...5 and
I'=100. Still I'>1 holds and the main properties of the results
are likely to be relevant for the Sun. Using p,=10"2gem™3
condition ¥, o/uy=1 gives By=1.8 mT for the scale of the mag-
netic field. The magnetic Prandtl number P, characterizes the
efficiency of viscous compared to Ohmic dissipation. As mentioned
in the preceding section we have to distinguish between the
laminar case (P,,=const.) and the turbulent case [P, =P, (z=0)
- p(2)]. We shall show results for both cases in the range P,

DENSITY PERTURBATION

=0.02...1.0; the upper value seems to be plausible for fully
developed turbulence.

Isothermal Model: «*-dynamo

In order to demonstrate the principal properties of the solutions
we choose an isothermal situation as a simple model which
preserves the main features. It has the advantage of a constant
scale height of pressure and density. The interesting features, i.e.
the geometry of magnetic field and flow pattern and the influence
of buoyancy and compressibility on the field limitation can be
clarified with this model; the inclusion of a temperature stratifi-
cation leads only to small quantitative changes.

First we show results for an a®-dynamo, a dynamo operating
only through turbulent induction (a-effect). In order to investi-
gate the influence of buoyancy we restrict the induction region
to a small horizontal strip z; $zSz,, using the error function @
for a smooth transition (Roberts and Stix, 1972):

4(z)=0.5 - [@(z;z 1) —45(2_‘122)],

d is the width of the transition zone; a small value of d (e.g. d
=0.05) restricts the a-effect almost completely to the interval
[z,,2,]. Buoyancy tends to transport magnetic flux out of this
region and therefore supports field limitation. We shall show,
however, that buoyancy is not able to stop dynamo action com-
pletely if we use a reasonable number of scale heights. Stationary
field configurations and the flow pattern for a model with z, =0.4,
z,=0.5, and I'=100.0, G=4 are shown in Fig. 1 for the case of
constant (turbulent) kinematic viscosity with P, (0)=1. Calcula-
tions without velocity field show that the dynamo is excited for
R,z 19.25; we use R,=20.5 to be well beyond the critical value.
A stationary state is reached within 2 or 3 magnetic diffusion
times; it does not depend on the choice of the initial values. We use

t=0.

For ¢, =0.01 we have an initial toroidal field of 0.02 mT maxi-
mum. B and 4 are ‘seed fields’ which are amplified through

a7

u=0, BP=A®=c,-sin(n-x) -sin(n-z) for
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Fig. 2. aKinetic and magnetic energy (per unit length, arbitrary
units) as functions of the number of scale heights within the in-
tegration domain. Rhombs indicate the values calculated. (Tur-
bulent case) b Same as Fig. 2a for the non-turbulent case

dynamo action. Each frame in Fig. 1 represents the integration
domain. The grid resolution is indicated by small bars. The left
frame in the upper row shows field lines of the poloidal field
(B,,0,B,), the middle frame contours of constant toroidal field
(0,B,,0). The field lines of the toroidal field run perpendicular
to the plane of the paper and point away from the observer.
Poloidal and toroidal field peak in the induction region to a value
of 10.0 (18 mT for solar values). The left frame in the lower row
represents the flow pattern of the poloidal velocity field (v,,0,u,);
the arrows indicate the direction of the flow while their length is
proportional to the flow velocity. The maximum value of the
poloidal flow velocity is 4.1 (about 2 m s~ ! for solar parameters).
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Fig. 3. Time evolution of E,;, and E,,,, (per unit length, arbitrary
units) for the model of Fig. 1 with R,=19.5. Time is given in
units of the magnetic diffusion time. Note the different scales for
E,;,and E_,.. Rhombs indicate the values calculated. (Turbulent
case)

One can see a four-cell structure of the flow : Fluid is streaming
vertically (mainly upwards) in the vicinity of the axis of symmetry
and transports magnetic flux out of the induction region to the
upper (and lower) parts. There the flow turns and material streams
back horizontally. In a steady state (such as the picture shows)
flux production, transport and dissipation are in balance and the
pattern of flow and magnetic field remains constant in time. The
preference of the upward flow is due to buoyancy; it is the more
marked the more scale heights we use. Lines of constant toroidal
velocity are shown in the middle frame of the lower row. It repre-
sents a shear flow with the axis of symmetry as the neutral line. The
toroidal field produced by this shear has (according to Lenz’s
rule) the opposite direction of the toroidal field due to the a-effect.
The maximum toroidal velocity is 2.05 (about 1 m s~ *). Lines of
constant density perturbation (deviation from the hydrostatic
stratification)aredrawnin theright frame of thelower row. Density
is reduced with respect to the non-magnetic stratification in the
vicinity of the induction strip (leading to buoyancy) and increased
in the upper and lower parts. Due to the small value of I' (as com-
pared to the solar value) the density reduction is quite large (up
to 20% of the hydrostatic density) but this does not affect the
buoyancy force which depends on G.

Moreover, the density reduction is never big enough to cause
an instability of the Rayleigh-Taylor type. Using solar values we
can calculate the total magnetic and kinetic energy per unit length
in y-direction by integration over the surface of the rectangle.
The values are

Eo/1=0.226 10" Wsm™!;  E_,./I=0.73510' Ws m~%.

The ratio of the energies is Ey;,/Ep,e =0.0308; a kinetic energy of
only 3% of the magnetic energy is sufficient to limit the growth
of the magnetic field. This arises from the fact that the velocity
field mainly has the function of transporting the flux out of the
induction region to the outer parts where it can be dissipated.

From E,;, and E,,, we may derive mean values of 7 mT for the
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of the dynamo excitation, represented by the magnetic Reynolds
number R,. The critical value is R, ,;, ~19.25. Rhombs indicate
the values calculated. (Turbulent case)
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magnetic field and 0.2 ms™! for the velocity, compared to peak
values of 18 mT and 2 ms™~!. Hence, we can infer that the kinetic
energy is distributed less uniformly than the magnetic energy.

The case of constant dynamical viscosity v (non-turbulent
case) leads to very similar magnetic field and flow patterns. Due
to the increase of the kinematical viscosity v/p with decreasing
density, the preference of the upward (buoyant) motion is not as
marked as in Fig. 1. The reduced efficiency of buoyancy is visible
in the energies, too: the magnetic energy is increased by a factor
6 compared to the case with turbulent viscosity while the kinetic
energy is slightly reduced. Hence, reduced buoyancy leads to less
effective field amplitude limitation. Increased buoyancy, on the
other hand, supports the limitation process. This is shown in Fig. 2
(a,b) which gives the dependence of kinetic and magnetic energy
(in arbitrary units) on the number of scale heights of pressure
and density. Figure 2a shows the case of turbulent viscosity,
Fig. 2b the case of non-turbulent viscosity. It is clearly visible
that the kinetic energy behaves similarly in both cases; the mag-
netic energy in the turbulent case falls significantly with increasing
number of scale heights (i. e. increasing buoyancy) while it stays
nearly constant in the non-turbulent case. The effect of buoyancy
is far more pronounced for turbulent viscosity. From the model
of Baker and Temesvary (1966) follows that the isothermal model
is sufficient up to 8000 km below the solar photosphere. From
the bottom of the convection zone to this point we cover x10
pressure scale heights and ~6 density scale heights. We can
extrapolate the curves given in Fig. 2 to get values relevant for
the solar convection zone. In both cases we have a finite amplitude
for magnetic field and large scale flow even for 10 scale heights.
Buoyancy influences the amplitude of the steady-state field but
seems not to be able to suppress dynamo action altogether or to
increase the critical value of R,. We do not give the exact numbers
arising from this extrapolation because R, has to be adjusted
anyhow to give the right order of magnitude of the field. Exact
values of the amplification parameters for the solar dynamo are
still not known.

EKIN |-
EMAG |

Fig. 5. Dependence of E;, and E,,, (per unit length, arbitrary
units) on viscosity [P, (0)] for the turbulent case using the same
model as in Fig. 1. P,(0)=1 means that turbulent viscosity and
turbulent magnetic diffusivity have the same numerical value

The time evolution of kinetic and magnetic energy for the
model of Fig. 1 is given in Fig. 3. The amplification parameter
R, has been reduced to a slightly supercritical value, i.e. R,=19.5,
in order to slow down the approach of the solution to a steady
state. The time is given in units of the magnetic diffusion time
Tp=L*- 1~ ' ~10 yr. Due to the strong damping effects (magnetic
diffusivity, turbulent viscosity) the stationary state is reached by
a monotonic increase of E,,, and E,;, and not in an oscillatory
manner (Hellmich, 1978) after ~51,. The energies of the station-
ary state as functions of R, for the same model are given in Fig. 4.
We see a fast growth with R, while E,;, grows even slightly faster
than E,,,, although for R,=20.75 it is only a few percent of E -
For R,%21.0 the flow velocity exceeds the value tolerable by the
numerical method and further calculations could not be carried
out. Figure 5 represents the dependence of the energies on vis-
cosity (B,,) for the turbulent case. Increasing viscosity reduces the
efficiency of field limitation substantially as one can see by the
growth of the magnetic energy while the kinetic energy stays
nearly constant. As the flow is hampered by the strong viscous
forces, field limitation occurs at a higher level of E,,,. Viscous
energy dissipation does not balance this effect. Note that the ratio
E\in/ Emag grows in the limit P,,—0. The figures corresponding to
Figs. 3-5 for the non-turbulent case show the same qualitative
behaviour as those shown for constant kinematical viscosity
(turbulent case).

aw-dynamo

Most of the dynamo models of the solar cycle are of the aw-type,
i.e. the toroidal magnetic field is generated from the poloidal
field by means of differential rotation (‘w’) while turbulent in-
duction (‘a’) produces poloidal field out of toroidal field and
closes the chain. Differential rotation is observable at the surface
of the Sun and as the aw-models describe many global features
of the solar cycle correctly, it seems to be natural to investigate field
limitation by large scale velocities for such a dynamo model.
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Fig. 6a. Flow pattern and density perturbation
for an oscillatory aw-dynamo [I'=100, G=4,
P,(0)=1, turbulent case, z,=0.5, z, =0.45,
2,=0.55, d=D=0.05, R,=10, R,=245).
These patterns do not vary significantly in the
course of the cycle, therefore they are only
given once. The phase refers to Fig. 6b
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This has been done by Nelle (1977) for the incompressible case
and we shall give results of calculations with our compressible
stratified model. As for the a2-dynamos we restrict the turbulent
induction to a narrow horizontal strip within the integration
domain in order to give buoyancy the best opportunity to inhibit
dynamo action. We specify the additional vertical toroidal shear
du,/dz introduced in Eq. (6) to have a Gaussian profile:

k

dudz=——=2
==
(18) describes a toroidal flow with a transition from a region of
high velocity z <z, to a region of low velocity z2 z, and a tran-
sition region z,— D <$z<z,+D. A model with negative vertical
shear is necessary to describe the equatorward migration of the
spot zone in the course of the solar cycle (Stix, 1976b). k, is a
constant number which gives the amount of shearing ; the Reynolds
number R,=k,Ln~! measures the inductive effect of the shear
flow. The a-effect is assumed to be given by (17). If we take into

exp {—[(z~z)/DP}, (18)

account the observational evidence that the mean toroidal field -

is much larger than the mean poloidal field in the solar convection
zone, we can assume the field generation due to the a-effect to
be small compared to the field generation by shear flow. There-
fore we can neglect the term with o in (6). The shear flow is as-
sumed to be constant in time and to be unchanged by the magnetic
field. This can be justified by comparing the huge energy content
of the solar differential rotation to that of the magnetic fields.
Excitation of the acw-dynamo is controlled by the dynamo number
P=R,- R, with R,<R,. We show results for a model with a-
effect in the region 0.45<2z<50.55 and a transition zone D=0.05.
The dynamo is excited for PR P, ;, 2300 (results of linear cal-
culations without Lorentz force). Figure 6a shows the flow pattern
and the density perturbation. In the course of the cycle these do
not vary significantly; for this reason we show them only once.
Figure 6a refers to the phase of the magnetic field shown in Fig.
6b. The parameters are P=2450 (R,=10.0, R, =245.0),I"=100.0,
G =4 and the turbulent case with P, (0)=1.

The poloidal flow consists mainly of a one-cell structure
transporting flux out of the region of maximum magnetic field.
There, we find the maximum upward velocities ; this region moves
slightly towards x=1 (equatorwards) as the cycle proceeds. The
flow at z=1 (‘surface’) is directed towards x =0 (‘pole’) through
the whole cycle. Toroidal flow (the additional shear flow is sub-
tracted) and density perturbation do not change significantly
during the cycle; the toroidal flow represents a shear flow which
— according to Lenz’s rule — opposes the shear of the driving
flow u (z). Hence, the shear surface is situated in the same region
as that of u,. The density perturbation is negative in the region
of maximum magnetic field due to the outflow of material when
the field increases. For this model the maximum poloidal velocity

DENSITY PERTURBATION

is 12.15 (6 m s™!), the maximum toroidal velocity is 6.4 (3.2ms ™)
(values in brackets refer to solar parameters). Thus flow velocities
of the order of meters per second (the average values are much
smaller) are sufficient to limit the magnetic field produced by an
aw-dynamo to the observed solar value. The velocity field re-
presents a very slow circulation which seems unlikely to be detected
under the noise of convective motions in the upper parts of the

- solar convection zone. This picture does not change significantly

if we use a detailed convection zone model instead of the iso-
thermal approximation presented here or change other param-
eters like 4, D, P, (0), etc. The peak velocities are always of the
order of a few meters per second while the average motion is as
slow as a few tens of centimeters per second.

Figure 6 (b—g) shows a sequence of magnetic field configura-
tions covering nearly a half period of the oscillation. The period
is 0.03 7y, a very small value which is caused by the spatial coin-
cidence of shear zone and turbulent induction zone. Spatial sep-
aration of the induction effects leads to increasing periods and
values comparable to the solar cycle (t~2 - t,) are possible
(Deinzer and Stix, 1971). The period is not influenced by the non-

* linearity introduced in the equations. Dynamo waves of poloidal

and toroidal magnetic field travelling in the positive x-direction
(from ‘pole’ to ‘equator’) are shown in Fig. 6. Nearly half the
period is covered in Fig. 6g and the magnetic field polarity is
reversed as compared to Fig. 6b. For the velocity field, however,
a whole period is covered since the Lorentz force driving the flow
is quadratic in B. The equatorward migration of the region of
maximum toroidal field leads to the migration of the sunspot
zones and the formation of the butterfly diagram. The maximum
toroidal field amounts to 5.93 (about 10 mT for solar parameters)
while the maximum poloidal field is about 1 mT. The ratio of
toroidal to poloidal field depends on R,/R,, which can be adjusted
to give any desired value (at the present stage of knowledge about
the solar convection zone).

4. Conclusions

The results of the calculations can be summarized as follows:

a) The non-linear magnetic field limitation due to large scale
circulation works for a compressible stratified medium as well as
for an incompressible medium.

b) Buoyancy supports field limitation and (in the case of
turbulent viscosity) leads to a much smaller amplitude of the
‘magnetic field as compared to non-buoyant models. However, in
every realistic case buoyancy is not able to inhibit dynamo action
totally or to increase the critical Reynolds number considerably.

c) The geometry of the magnetic field does not differ consider-
ably from that of the linear case. The period of the aw-dynamo is

~ unchanged.
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Fig. 6b-g.Series of magnetic field configurations covering nearly a half period of the oscillation. The period is 1~ 0.03 7. The phases
are: b)1=0,¢)t~0.11,d)t=~0.217,ex0317,f)tx041,8)tx057

d) Flow velocities of a few meters per second (peak value) may
be sufficient to limit the magnetic field to 10 mT (average toroidal
field of the Sun). The ‘surface’ flow of the aw-dynamo is poleward ;
this might contribute to the observed poleward migration of the
prominence region (Hyder, 1965). The toroidal flow is a shear
flow with opposite shearing as compared to the driving shear
flow (differential rotation).

¢) Usage of a turbulent (constant kinematical) viscosity leads
toalargerinfluence of buoyancy than does non-turbulent (constant
dynamical) viscosity. This results from the fact that in the latter
case the kinematical viscosity increases with decreasing density.
In both cases increased viscosity leads to increased magnetic field
amplitude.

The weak points of the models presented here are:

a) Idealized geometry: Although topological equivalent to a
spherical shell, a rectangular region does not account for effects
of curvature. However, this is not likely to influence the solutions
significantly. More restrictive is the fact that the calculations are
only two-dimensional. The existence of the solar sector structure
and of active lengths prove the necessity of three-dimensional
models.

b) Arbitrary spatial distribution of induction effects (a-effect,
shear flow) results from our unsufficient knowledge about con-
vection and the solar interior. Calculations with different param-
eter values produced results that agree to order of magnitude.

c) Besides the spatial distribution also the efficiency of the
a-effect is unknown. The amplification factors had to be adjusted

to the observed magnetic field strength. However, the flow velocity
corresponding to this value seems to be reasonable.

d) The uppermost layers (down to a depth of 10,000 km) of
the solar convection zone are not included since they contain too
many scale heights to be tolerated by the numerical scheme.

e) Large scale flows like supergranulation and giant cells have
been omitted in order to leave the model easy to survey. Super-
granulation probably has a vertical extent of about 10,000 km
down from the photosphere, a region not covered by the calcula-
tions (see d).

f) As we deal with mean field models the effect of fluctuations
(sunspots, flux tubes etc,) are not included. However, the rising
velocity of individual flux tubes agrees to order of magnitude to
the flow velocities obtained in these calculations (SchiiBler, 1977;
1978).
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