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We prove that the initial value problem for force-free electrodynamics in Euler variables is not well
posed. We establish this result by showing that a well-posedness criterion provided by Kreiss fails to hold
for this theory, and using a theorem provided by Strang. To show the nature of the problem we display a
particular bounded (in Sobolev norms) sequence of initial data for the force-free equations such that at any
given time as close to zero as one wishes, the corresponding evolution sequence is not bounded. Thus, the
force-free evolution is noncontinuous in that norm with respect to the initial data. We furthermore prove
that this problem is also ill-posed in the Leray-Ohya sense.
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I. INTRODUCTION

It is well known that in the neighborhood of a pulsar or a
black hole, the presence of strongly magnetic fields gives
rise to the generation of a very diluted plasma. In that
region, the electromagnetic field dominates over the matter
constituting those plasma, and the resulting uncoupled
dynamics is commonly known as force-free electrodynam-
ics (FFE).
A complete theory of FFE has been developed in several

works. A recent review is presented in [1], in which many
theoretical aspects of the corresponding dynamics are
generalized from a relativistic perspective, focusing on
intrinsic geometrical properties of the theory, and providing
further results. In a previous work series by Uchida, [2,3], a
covariant formulation of FFE without spacetime sym-
metries assumptions is developed, using Euler potentials
as evolution variables. Euler potentials are scalar functions
that were introduced by Stern [4] in the early 1970s from a
noncovariant formulation. This formulation often appears
in numerical simulations, see for example [5,6].
In [7], Komissarov focused on the hyperbolicity of

general degenerated force-free electromagnetic theories
from a noncovariant viewpoint, in which the evolution
equations were presented in the form of conservation laws.
Subsequently, Pfeiffer [8] modified Komissarov’s equa-
tions to obtain a symmetric-hyperbolic evolution system.
Very recently, in [9], Geroch’s geometric formalism of
symmetric-hyperbolic systems was used to introduce a
covariant hyperbolization of FFE in Maxwell variables, and
a detailed analysis of the characteristic structure of the
evolution system as well as the resulting causal cone
structure was performed. In that work, the authors
used the same techniques successfully employed in [10]
for nonlinear generalizations of Maxwell’s theory of

electromagnetism, in which FFE is not included there
(see [9] for more details).
In this work we study the problem of hyperbolicity for

the version of force-free electrodynamics in Euler poten-
tials (FFEEP). We prove that FFEEP is not strongly
hyperbolic, that is, the associated Cauchy problem is not
well posed. In particular, it is not possible to find a
hyperbolizer (that is, a symmetric, nondegenerate and
positive definite bilinear form) for the evolution equations
like the one found in [9]. To do so, we make use of an
algebraic criterion introduced by Kreiss [11] that provides
necessary and sufficient conditions for a square first order
system to be well-posed. From a detailed analysis of the
characteristic structure of the dynamic equations, we see
that there is not a complete set of eigenvectors of the
corresponding algebraic problem (characteristic equations),
allowing us to prove that force-free evolution is generally
noncontinuous with respect to the initial data, in any
Sobolev norm. We illustrate this feature by constructing
a bounded sequence of initial data such that, for any time as
close to zero as desired, the corresponding evolution
sequence is not bounded. Finally, we study the problem
of well-posedness of FFEEP in the sense of Leray and
Ohya, and we prove that this system is also ill-posed in
that sense.

A. Outline, units and conventions

This paper is organized as follows. In Sec. II we present a
brief review about force-free electrodynamics as a degen-
erate theory, and several geometric and algebraic properties
that arise from this fact are discussed. Furthermore, we
introduce Euler potentials and the notion of flux surfaces in
spacetime. In Sec. III we present the evolution system that
will be treated along this work. In particular we discuss
gauge freedom, hyperbolicity and wave-set structure of the
dynamic equations. Section IV is devoted into studying
the ill posedness of this version of FFE. We first show the
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failure of a necessary and sufficient criterion for squared
first order systems to be well posed, then we perform a
3þ 1 decomposition of the evolution equations that will be
used later on, and we prove, with an explicit example, lack
of continuity (in Sobolev norms) of the evolution with
respect to the initial data. Finally, we study the hyper-
bolicity of FFEEP in the sense of Leray and Ohya. The
Appendix is dedicated to review the main ideas about
hyperbolicity in the Leray-Ohya sense, and to fix notation
and definitions we shall adopt.
The signature convention of the spacetime metric we will

use along this work is ð−;þ;þ;þÞ, and we will take units
such that c ¼ G ¼ 1, where c is the speed of light in
vacuum and G Newton’s universal constant of gravitation.
For Maxwell’s equations, we will adopt Gaussian units.

II. PRELIMINARIES

A. Force-free electrodynamics

Force-free electrodynamics is a nonlinear version of
Maxwell’s equations imposing the force-free approxima-
tion. Recall that Maxwell’s equations are given by [12]

�∇aFab ¼ −4πJb;
∇½aFbc� ¼ 0;

ð1Þ

where Fab is an antisymmetric (0, 2) smooth tensor field
over a background spacetime ðM; gabÞ, and Ja the electro-
magnetic 4–current, which is conserved by virtue of the
antisymmetry of Fab. Associated to the theory there is an
electromagnetic energy-momentum tensor, namely

Tab ¼
1

4π

�
FacFb

c −
1

4
gabFcdFcd

�
: ð2Þ

In the presence of matter this tensor is in general not
conserved, by virtue of (1). Indeed,

∇bTab ¼ −Fa
bJb; ð3Þ

and it implies that locally, the energy-momentum loss is
just the work exerted by the electric force ρE times the
velocity of the particles.
In the context of relativistic magnetohydrodynamics, the

total energy-momentum tensor contains the contributions
both of matter and electromagnetic field. The force-free
approximation consists in neglecting the matter contribu-
tion in situations where it is orders of magnitude smaller
than the electromagnetic contribution.1 Thus, by total
conservation of energy-momentum tensor, we get

FabJb ¼ 0; ð4Þ

from which it follows that Fab is a degenerate 2–form. This
property implies that there is a frame (defined by Ja) in
which the electric field vanishes. Such approximation is
relevant in general electromagnetic systems which are
magnetically dominated,2 that is, when the effect of electric
currents are neglected in comparison those of magnetic
presures, then the system becomes a plasma whose only
effect is, due to its conductivity, to make the electric field
much smaller than the magnetic field.
Thus, Maxwell’s field can be evolved independently of

matter degrees of freedom, and a complete set of equations
for the electromagnetic field is obtained by adding to
system (1) the force-free condition (4). Indeed, contracting
the first equation in (1) with Fbc we get

�
Fbc∇aFab ¼ 0;

∇½aFbc� ¼ 0:
ð5Þ

Notice that solutions of vacuum Maxwell’s equations are
trivially solutions of (5), but in general there are more
solutions and they behave quite differently fromMaxwell’s.
From a pure algebraic viewpoint, condition (4) means

that detðFÞ ¼ 0, or which is the same,

�FabFab ¼ 0; ð6Þ

where �Fab is the action on Fab of the Hodge operator �,
given by

�Fab ¼ 1

2
εabcdFcd; ð7Þ

and εabcd is the volume element compatible with gab. This
condition leads to interesting geometric properties of force-
free systems, that will be developed in a particular case in
the next section. Straightforwardly, the antisymmetry and
degeneracy of Maxwell’s tensor implies that the kernel of
Fa

b is a two-dimensional vector space and thus there exist
two linearly independent vectors fua; vag such that

Fa
bub ¼ Fa

bvb ¼ 0: ð8Þ

Assuming some regularity for Fab, one can show that
both vector fields that satisfy property (8) are integrable;
that is, they smoothly generate a 2–dimensional surface,
known as the flux surface or field sheet. This integrability
condition3 follows from the fact that ∇½aFbc� ¼ 0.

1In [7], force-free electrodynamics is defined as the zeroth
order system of relativistic magnetohydrodynamics under matter
perturbations.

2In general, it is not expected that the condition of magnetic
dominance is preserved during evolution.

3More explicitly, the kernel of Fab is integrable in the above
sense if it is tangent to two–dimensional submanifolds of
ðM; gabÞ.
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The magnetic field line measured by any observer ta

corresponds to the intersection between the flux surface
and the observer’s hypersurface ft ¼ constg. Since
FabFab > 0, such a flux surface is temporal and so it is
possible to interpret it as the world sheet of the initial
magnetic field line during evolution. In particular, Eq. (4)
implies that Ja is tangent to it.
Another relevant aspect of force-free systems is a trivial

consequence of Eq. (4). Indeed, the equality F½abFcd�Jd ¼ 0
holds, and since F½abFcd� is a 4–form over a 4–dimensional
manifold, it must be proportional to the associated volume
element, which is a nondegenerate tensor. Thus, there must
beF½abFcd� ¼ 0, which implies4 thatFab is simple, i.e., there
exist two covector fields l1

a, l2
a such that, locally,

Fab ¼ 2l1
½al

2
b�: ð9Þ

It is clear that l1 and l2 are linearly independent, and for
magnetically dominated systems, both are spacelike vector
fields. Recalling now property (8) we see that l1 and l2 are
orthogonal to the flux surfaces.

B. Euler potentials

Integrability condition of the kernel of Fa
b also implies

the local existence of two scalar fields, say fϕ1;ϕ2g such
that flux surfaces are described5 by the intersection of the
level set of these to functions, ϕ1 ¼ const and ϕ2 ¼ const.
These functions are commonly known as Euler potentials
and share several interesting properties. By the local
expression (9), it must be

Fab ¼ ∇aϕ1∇bϕ2 −∇bϕ1∇aϕ2; ð10Þ

and the vector potential in Euler variables reads

Aa ¼
1

2
ðϕ1∇aϕ2 − ϕ2∇aϕ1Þ: ð11Þ

For i ¼ 1, 2, let us denote the normal vector fields of the
flux surfaces as

la
i ≔ gab∇bϕi: ð12Þ

At this point, it is convenient to introduce certain internal
structure for ease of notation. For i ¼ 1, 2, let εij be an
antisymmetric symbol such that ε12 ¼ 1, and assume that
there is an inverse, εij, with the following property:

εijεjk ¼ −δik: ð13Þ

Here, δij is the identity map, that is δijAj ¼ Ai. For a given
fi, let us denote fi ≔ εijfj. Inversely, and by consistence
with (13), fi ¼ −εijfj. Such an internal structure allows
one to express the fields (10) and (11) in a more convenient
way. Indeed,

Fab ¼ εij∇aϕi∇bϕj; ð14Þ

and

Aa ¼
1

2
εijϕi∇aϕj: ð15Þ

Notice that there is certain freedom in the choice of Euler
potentials such that Fab remains invariant. In effect, if one
considers the following general transformation:

ϕi ↦ ~ϕj ¼ ~ϕjðϕiÞ; ð16Þ

the gradients change as

∇a
~ϕj ¼

∂ ~ϕj

∂ϕi
∇aϕi ≔ χij∇aϕi; ð17Þ

where we have denoted

χij ≔
∂ ~ϕj

∂ϕi
: ð18Þ

On the other hand, Maxwell’s tensor transforms as

~Fab ¼ εij∇a
~ϕi∇b

~ϕj

¼ εijχkiχ
l
j∇aϕk∇bϕl

¼ detðχÞFab; ð19Þ

where in the last step we used the fact that any (2, 0)
antisymmetric symbol in the internal space is proportional
to εij. The proportionality factor is exactly the determinant
of χ. Thus, only transformations like (16) with det ðχÞ ¼ 1
leave Fab invariant. These are transformations that belong
to the SLð2;RÞ group.
This condition has also a relevant geometric significance.

Indeed, it is straightforward to see that

detðχÞ ¼
���� ∂ð

~ϕ1; ~ϕ2Þ
∂ðϕ1;ϕ2Þ

����; ð20Þ

so the invariance condition is equivalent to require that the
Jacobian of transformation (16) is the unity. This is a
necessary and sufficient condition for the area element to
not change under a coordinate change.
Finally, we will find it useful to introduce the bilinear

form given by
4See [13], prop. 3.5.35.
5See also [14].
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Gij ≔ li · lj ¼ gab∇aϕi∇bϕj: ð21Þ

By construction Gij is symmetric, and satisfies

detðGÞ ¼ 1

2
εijεkmGikGjm

¼ 1

2
ðεijla

i l
b
j Þðεkmgaclc

kgbdld
mÞ

¼ F
2
; ð22Þ

where F ≔ FabFab is a positive function for magnetically
dominated systems. Thus, detðGÞ ≠ 0 in general and Gij is

invertible. Namely, there exists a symmetric quantity ~Gij

such that ~GijGjk ¼ δik. On the other hand, notice that there
is another way to construct a symmetric symbol of rank
(2, 0) fromGij, namely,Gij ≔ εikεjlGkl. A straightforward
calculation shows that

~Gij ¼ 2

F
Gij; ð23Þ

so both quantities contain the same information up to a
scale factor.

C. Well-posedness

This section contains a brief review of the main ideas
about well posed systems in physics. In particular, we
introduce the notions of hyperbolicity, strong, symmetric,
and weak first order systems, as well as the basic notions of
well-posed and ill-posed systems. We shall follow the
theory and definitions given in [11,15–19] and provide
some essential definitions for general quasilinear first order
systems.
One of the fundamental questions that arise in under-

standing the evolution of dynamical systems in physics is
their hyperbolicity. This concept captures some aspects that
should hold even in the most fundamental scenarios, and its
understanding leads one to answer questions about: unique-
ness of solutions for a given initial data, preservation of the
asymptotic decay of the solution with respect to that of their
initial data, and estimates about time of existence of the
solutions, among others. All of these aspects are related to
the continuity of the map that goes from the set of initial
data to the set of solutions.
To start, let us consider the linear constant-coefficient

problem given by

� ∂tu ¼ Ai∂iu ≕ Pð∂Þu;
uðx; 0Þ ¼ fðxÞ ð24Þ

where u ¼ uðx; tÞ ∈ Cs, x ¼ ðx1;…; xnÞ are space coor-
dinates, and Ai is a s × s constant complex matrix valued
vector in Rn. The main purpose that drives us to deal with

these problems is to give necessary and sufficient con-
ditions for the associated Cauchy problem to be well posed,
that is, under what conditions there exists a unique solution
of (24) that depends continuously on the initial data. It turns
out that under certain circumstances those conditions are
also valid for more general systems, namely those where
the matrices Ai are smooth functions of u, like (30). It
follows also that if the constant-coefficient equation system
is ill-posed for some values of Ai, any quasilinear system
having in a point those values of AiðuÞ will be also
ill-posed, as we shall assert later on.
Let us now restrict the possible initial data of (24) into

complex functions fðxÞ of the form

fðxÞ ¼ 1

ð2πÞn=2
Z
Rn

eik·xf̂ðkÞdnk; ð25Þ

where f̂ðkÞ is of compact support. The unique smooth
solution of (24)–(25) is

uðx; tÞ ¼ 1

ð2πÞn=2
Z
Rn

eik·xePðikÞtf̂ðkÞdnk; ð26Þ

where PðikÞ, which is formally obtained by substitution of
ikj for ∂=∂xj, is called the symbol6 of Pð∂Þ.
Definition II.1 System (24) is called well posed if there

exists a unique solution in a neighborhood of t ¼ 0, and
that solution depends continuously on the initial data; that
is, there exists a norm ∥ · ∥ and two constants C, α such
that for all initial data like (25) and t > 0,

∥uðx; tÞ∥ ≤ Ceαt∥fðxÞ∥: ð27Þ

In order to characterize well-posed systems like (24), it
suffices to give algebraic conditions on the principal part of
the equations, such that the corresponding Cauchy problem
is well-posed. There are several notions of hyperbolicity.
We shall review here such notions that will be relevant
along this work.
Definition II.2 System (24) is called strongly hyper-

bolic if for any covector kc, the matrix A ≔ Aiki has only
purely real eigenvalues and is diagonalizable.
Due to the fact that any complex matrix A is diago-

nalizable with only real eigenvalues if and only if there
exists a symmetrizer H, that is, a positive definite bilinear
form, such that HA is symmetric, it follows that (24) is
strongly hyperbolic if and only if for each ka there is a
matrix HðkÞ such that HðkÞA is symmetric.
Definition II.3 System (24) is symmetric hyperbolic if it

is possible to find a common symmetrizer H for all
possible kc.

6We refer the reader to [20] in which pseudodifferential
analysis is discussed in detail.
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Notice that the notion of symmetric hyperbolicity is a
sufficient but not necessary condition to guarantee well
posedness. Strong hyperbolicity, however, ensures well
posedness of the initial value problem in the sense of
definition II. 2, that is, once a particular Sobolev norm has
been chosen.
A set of important and clarifying results about well

posedness for constant-coefficient first order systems is
provided by Kreiss in [11]. These results reduce the
problem of well posedness into a pure algebraic issue.
Theorem II.1 A system like (24) is well posed if and

only if there exist constants C and α such that for all t > 0,

jePðikÞtj ≤ Ceαt; ð28Þ

for all k ∈ Rn, where j · j is the usual matrix norm.
Theorem II.2 Let F denote a set of matrices A ∈ Cn×n.

The following conditions are equivalent:
(i) There is a constant K1 with jeAtj ≤ K1 for all A ∈ F

and all t ≥ 0.
(ii) For all A ∈ F and all s ∈ C with ReðsÞ > 0 the

matrix A − sI is non singular, and there is a
constant K2 such that

jðA − sIÞ−1j ≤ K2

ReðsÞ ; A ∈ F; ReðsÞ > 0:

(This condition is known as the Resolvent
Condition).

(iii) There is a positive constant c with the following
property: for each A ∈ F, there exists a Hermitian
matrix H ¼ HðAÞ ∈ Cn×n with

c−1In×n ≤ H ≤ cIn×n and HAþ AH� ≤ 0:

If the system is such that the matrix A ¼ Aiki previously
introduced in Definition II. 2 has imaginary eigenvalues but
their eigenvectors do not form a base (this is the case if A is
not diagonalizable), then the system is called weakly
hyperbolic. In some particular cases one can show that
the system is weakly well posed in the sense of Kreiss [11];
namely that they satisfy an inequality of the following
form:

jePðikÞtj ≤ β½1þ ðj~kjtÞγ�eαt; ð29Þ

for some real constants α, β, γ and t ≥ 0. These type of
systems are characterized by the appearance of terms that

grow polynomially in j~kjt in the matrix exponential, ePðikÞt,
and so cannot be bounded independently of j~kj. The above
inequality means that the solution is a continuous function
of the initial data but in different topologies, i.e., Sobolev
spaces of different orders. This is not a pleasurable situation
for it means that every time we restart an iteration (say
for solving the system via approximations), the solution

becomes a less smooth one. In any case, estimate (29) is
very rare to encounter; it often happens that generic lower
order perturbations (which might arise for instance from
treating variable-coefficient systems and making higher
order energies) destroy it. A clarifying example can be
found in [15], after Definition 2, in which the correspond-
ing system is well posed but in the weak sense (29), lower
order terms that can be added to it, causing an exponential
growth (in frequency) of the solution.
In this work we will see that the constant-coefficient

rendition of force-free equations with Euler potentials is
only weakly hyperbolic, and we shall refer these sort of
systems as ill-posed systems.
As previously asserted, all the results provided above can

be generalized to general quasilinear systems, i.e, systems
like

� ∂tuα ¼ Aαc
βðt; x; uÞ∂cuβ þ Bαðt; x; uÞ;

uαjo ¼ fα;
ð30Þ

where uα ¼ uαðt; xÞ are unknown arbitrary tensor fields,
and Aαi

β and Bα depend smoothly on their arguments.
While the behavior of solutions of these type of problems is
not yet fully understood, it is possible to use the constant-
coefficient theorems to prove well posedness for small time
intervals with a correspondingly generalized definition of
well-posedness.
Theorem II.4 For 0 < To < ∞, let uoðt; xÞ, t ∈ ½0; ToÞ

be a smooth solution of a quasilinear evolution system like
(30). We shall say the system is well posed at the solution
uo and with respect to a norm ∥ · ∥ if given any δ > 0 there
exists ε > 0 such that for any smooth initial data fðxÞ with
∥f − fo∥ < ε, where foðxÞ ≔ uoð0; xÞ, there exists a
smooth solution uðt; xÞ defined in a strip 0 ≤ t < T, that
satisfies juðt; ·Þ − uoðt; ·Þj < δ when jT − Toj < δ.
To discuss the hyperbolicity of general quasilinear

systems, modifications of some properties stated in the
constant-coefficient case must be made. Indeed, there is the
following
Theorem II.5 System (30) is strongly hyperbolic if

there exists a symmetrizer, that is, a symmetric, positive
definite matrix Hαβ ¼ Hαβðt; x; u; kÞ, depending smoothly
on its arguments, such that hαβ ≔ HαγAγc

βkc is also
symmetric for all one-forms kc.
Again, via the smoothness required both on the coef-

ficients in (30) as in Hαβ, strong hyperbolicity holds if and
only if the principal part Aαc

βðt; x; uÞkc has a complete set
of eigenvectors with purely real eigenvalues. Nevertheless,
in order to prove that a quasilinear system is notwell posed,
a simple and useful result provided by Strang in [21] can be
employed. In that work, the author deals with higher order
systems of the form
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∂tu ¼
X
jαj≤m

AαðxÞDαu; ð31Þ

where x ¼ ðx1;…; xnÞ ∈ Rn, u ¼ uðt; xÞ ∈ Cs,
α ≔ ðα1;…; αnÞ ∈ Nn

o and

Dα ≔
∂ jαj

∂xα11 � � � ∂xαnn ; jαj ≔ α1 þ � � � þ αn:

Strang asserts that if a system like (31) is well posed in L2

norm, then their principal parts, with the coefficients
evaluated at any point and any solution close to the initial
data, must be also well posed in the sense of definition II. 1
(see [21] for details). The relevance of this theorem is the
fact that it shows that the problem of well posedness is a
microlocal (or high frequency phenomena, as we shall see)
issue. Since for quasilinear systems the principal part
coincides with the linearization at an arbitrary point, if
we take the linearization of the system around a constant
solution and we prove that the resulting system is not well
posed, then the full system will be not well posed. We will
use this technique to show that force-free system written in
Euler variables is in general non continuous with respect to
the initial data.

III. THE SYSTEM

A. The equations

Rewriting system (5) by expressing Maxwell’s tensor in
terms of Euler potentials ϕi, i ¼ 1, 2, we get the following
equation system:

εij∇aϕk∇cð∇aϕi∇cϕjÞ ¼ 0; k ¼ 1; 2; ð32Þ

where εij and all the internal structure we shall use was
previously introduced (see section II B).
It is straightforward to see that (32) is invariant under

unitary gauge transformations like (16). Moreover, once the
gauge choice is made in one spacelike hypersurface, then it
will remain fixed for all time. This important property is a
direct consequence of the feature that Euler potentials are
constant along each magnetic world sheet. In particular,
they are constant at the intersection of the flux surface and
any Cauchy hypersurface Σ. Thus, once the initial data of
(32) is given, and so the gauge choice is made at each point
of Σ, the gauge transformation will remain constant during
evolution.
Indeed, if ϕi ↦ ~ϕi is any transformation like (16)–(17),

then locally we have

0 ¼ ∇½a∇b� ~ϕk

¼ ð∇½aχjkjjÞljjjb� þ χk
j∇½aljjjb�

¼ ð∇½aχjkjjÞljjjb�: ð33Þ

Taking now a vector field ta in the orthogonal comple-
ment of fla

1;la
2g, i.e. tangent to flux surfaces, and

contracting (33) with talb
i, we get

ðta∇aχk
jÞGij ¼ 0; ð34Þ

or equivalently, since Gij is invertible [see Eq. (23)],

ta∇aχk
j ¼ 0: ð35Þ

Thus, the functions χi
j are constant along the field

surfaces ϕi ¼ const, as expected. Moreover, once the gauge
choice is done in one spacelike hypersurface, then it will
remain fixed for all time.

B. Hyperbolicity and wave-set structure

In this section we analyze the hyperbolicity of system
(32). For that, it is enough to study the behavior of high
frequency linearized perturbations in off an arbitrary back-
ground, [22]. Due to the finite propagation speed of such
perturbations, it turns out that we only need to concentrate
in a very small neighborhood around an arbitrary point of
space-time.
For ε > 0, let us consider the one-parameter family of

solutions of (32) given by:

ψ iðεÞ ¼ ϕi þ εφief=
ffiffi
ε

p
; ð36Þ

where ϕi is any background solution of (32), and f a
smooth complex scalar field. As ε approaches to zero, more
oscillations there will be in a given small neighborhood,
and they will become in size closer and closer to the
background solution ϕi. We shall refer to this limit as the
high-frequency limit. This is analog to the limit as the wave
number in the spacelike plane of an observer ta tends to
infinity.
Replacing (36) in (32) and taking carefully7 the limit

ε → 0, we get the following algebraic equation for φi:

εijðlaklb
j − Gkjδ

b
aÞkakbφi ¼ 0; ð37Þ

7Recall that if p∶O → C is a complex-valued continuous
function defined over a neighborhood O ⊂ M, then

lim
ε→0

pðxÞeqðxÞ
ε

exists on O if and only if p≡ 0.
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where la
i andGkj are evaluated at the background solution,

and ka ≔ ∇af.
Equation (37) is called the principal part of (32), and

contains only the terms of the corresponding linearized
equation of (32) that are of higher orders in frequency. It
describes completely the characteristic structure (or wave-
set) of the system with respect to a generic wave front
propagation plane, ka.
Let us study the characteristic equations of system (32).

Recall that real roots of these equations determine the
causal cone structure of the theory, i.e., which are the
propagation planes through which wavelike solutions can
propagate.
By defining the scalars κi ≔ li · k, with i ¼ 1, 2,

Eq. (37) is equivalent to the problem

Ai
jφi ¼ 0; ð38Þ

where the operator A is given by

Ai
j ≔ εilðκjκl − k2GjlÞ; ð39Þ

and k2 ¼ kaka. Since we are looking for nontrivial sol-
utions of (38), the dispersion relation becomes

detðAÞ ¼ k2
�
Fk2

2
− Gijκiκj

�
¼ 0: ð40Þ

Thus, the possible planes are given by k2 ¼ 0 or
F
2
k2 − Gijκiκj ¼ 0. Notice that if κ1 ¼ κ2 ¼ 0 (this is the

case when ka is tangent to the field sheet) both conditions
coincide, and the operator A is trivial. Thus, φi is arbitrary
and there are two linearly independent solutions for each
null direction.
Otherwise, let us analyze both cases separately:
(i) Case I (Cone): k2 ¼ 0.

If κ1 or κ2 are not null, then φi ¼ κi is a solution of
(38). Thus, we obtain a 1-dimension space of sol-
utions for each null direction, given by fακi∶α ∈ Rg.

(ii) Case II (Wedge): F
2
k2 −Gijκiκj ¼ 0.

Recalling that F
2
¼ detðGÞ, Gij ¼ εikεjlGkl,

and setting li ≔ jlijni, with n1 · n1 ¼ n2 · n2 ¼ 1,
we get

0 ¼ detðGÞk2 −Gijκiκj

¼ jl1j2jl2j2½ð1 − ðn1 · n2Þ2Þk2−ððk · n1Þ2
þ ðk · n2Þ2 − 2ðn1 · n2Þðk · n1Þðk · n2ÞÞ�

¼ jl1j2jl2j2½1 − ðn1 · n2Þ2�ðk2 − k2⊥Þ
¼ jl1j2jl2j2½1 − ðn1 · n2Þ2�k2jj; ð41Þ

where k⊥ is the norm of the component of ka in the
space spanned by la

1 and la
2 (i.e., perpendicular to

the magnetic sheet). Thus, since ðn1 · n2Þ2 < 1, the

expression vanishes if and only if k ¼ k⊥. Choosing
an orthonormal basis feai g in which fea0; ea3g are
over the flux surfaces, we get

k2 ¼ −k20 þ k23 þ k2⊥; ð42Þ

and we see that the condition for which we have roots
is that thewave vector part that is perpendicular tola

i
must be null. Thus, if k3 ≠ 0, we have only two
possibilities: k0 ¼ k3 and k0 ¼ −k3.
On the other hand notice that, by virtue of the

invertibility of Gij, the problem (38) is further
equivalent to

Bi
jφ

j ¼ 0; ð43Þ

where the operator B is given by

Bi
j ≔ ~Gilðκjκl − k2GjlÞ; ð44Þ

and ~Gij given by (23). Moreover, we get straightfor-
wardly that

Bi
j ¼ −k2hij; ð45Þ

where

hij ≔ δij −
~Gilκlκj
k2

ð46Þ

is a projector into the space perpendicular to κi with
respect toGij, seeingGij as an “internal metric” with
inverse ~Gij given by (23). Indeed, hijhjk ¼ hik, and
defining κ̄i ≔ ~Gijκj we get

hijκ̄j ¼
2κ̄i

Fk2

�
F
2
k2 −Glmκlκm

�
¼ 0: ð47Þ

Thus, φi ¼ κ̄i is a solution of (43), implying that
ϕi ¼ εijκ̄

j is a solution of (38). We get, again, a 1-
dimensional space of solutions for each of the
directions obtained above, given by fγεijκ̄j∶γ ∈ Rg.

C. Equivalent first order reduction
of the algebraic equations

In this section we perform a 3þ 1 decomposition of the
principal part [Eq. (37)] of system (32) following the
guidelines of [23]. Then, we reduce it into an equivalent
first order system in a very particular way that avoids the
appearance of spurious constraints. Using the information
obtained from the wave-set in the previous section, we
analyze the kernel of the equivalent reduced system, and
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see that there is not a complete eigenvector set at each
direction.
Let us consider a spacelike hypersurface Σo, take an

arbitrary point p ∈ Σo and choose a gauge transformation
like (16) such that la

i are perpendicular to each other on p.
Let Op be an open neighborhood of p within an open set
O ⊂ M which is foliated by spacelike hypersurfaces that
are the level surfaces of a smooth time function t∶O → R.
Let ta ≔ ð∂=∂tÞa be the normal vector field of each
hypersurface on the foliation, and choose the coordinate
t such that ta∇at ¼ 1. Over each hypersurface, define an
orthonormal frame feaig3i¼0, with ea0 ¼ ð∂=∂tÞa and for
i ¼ 1, 2, eai are along the la

i direction.
Using the customary notation

la
i ¼ ð0; ~liÞ; ka ¼ ðk0; ~kÞ; la

jka ¼ ~lj · ~k;

Eq. (37) reads

−εijGkjk20φi þ εij½j~kj2Gkj − ð~lk · ~kÞð~lj · ~kÞ�φi ¼ 0: ð48Þ

By defining the variables

ui ¼ k0φi; vi ¼ j~kjφi; ð49Þ

we obtain the following system:

0
BBBBBBBB@

k0 0 − k2
1
þk2

3

j~kj − ð~l1·~kÞð~l2·~kÞ
j~kjG22

0 k0 − ð~l1·~kÞð~l2·~kÞ
j~kjG11

− k2
2
þk2

3

j~kj

j~kj 0 −k0 0

0 j~kj 0 −k0

1
CCCCCCCCA

0
BBB@
u1
u2
v1
v2

1
CCCA¼ 0: ð50Þ

System (50) is completely equivalent to (48) in the
following sense: for any ~k ≠ 0, there exists a biunivocal
relation between solutions of both systems (50) and (48);
that is, every solution of the original second order system,
(48), is a solution of the above system and vice-versa. In
particular, this method of obtaining first order systems out
of second order in Fourier space does not include any
constraint nor spurious solutions on the initial data, and that
is why both systems are equivalent as well. Thus, if we
show that the above first order system is ill posed, the
original second order system will also be ill posed.
It is straightforward to check that the matrix in (50) is

generally nondiagonalizable when k0 ¼ k3 ¼ 0. We shall
later exhibit this feature by choosing particular configura-
tions for ka and la

i, from which we shall find solutions that
grow linearly in frequencies.
The solutions of the above system, both in the Cone-case

and in the Wedge-case exhibited in the previous section, are
given by

Cone∶ ui ¼ k0κi; vi ¼ j~kjκi;
Wedge∶ ui ¼ −k0εij ~Gjlκl; vi ¼ −j~kjεij ~Gjlκl: ð51Þ

Thus, if k0 ≠ 0, we have in total four linearly indepen-
dent solutions of (50) when considering both Cone-case

(that is, k0 ¼ �j~kj) and Wedge-case (k0 ¼ �k3).
On the contrary, when k0 ¼ k3 ¼ 0 (that is, at the edge of

the wedge), we only get one solution in this case, getting in
total three linearly independent solutions.
In summary, we have found a complete set of solutions

of (50) at all points except at the points lying in the straight
line k0 ¼ k3 ¼ 0. This is the case when the wave-vector is
perpendicular to the plane fe0; e3g, so ka ¼ spanfl1;l2g;
and we get

ka ¼ κ̄ila
i : ð52Þ

It is interesting to note that perturbations of Fab con-
structed from those perturbations of ϕi for which
k0 ¼ k3 ¼ 0, vanish. Indeed, recall that a general pertur-
bation of Maxwell’s tensor written like in (14) is given by

δFab ¼ 2εijl½a
iXb�

j; ð53Þ

where Xa
i ¼ δla

i. In the high frequency limit, we get
Xa

i ¼ φika, where φi ¼ δϕi. Using it in the above formula
for δFab, we get

δFab ¼ 2εijφjl½a
ikb�: ð54Þ

Setting φi ¼ κ̄i and ka given in (52), we see that δFab ¼ 0.
Thus, whenever k0 ¼ k3 ¼ 0, perturbations of Fab con-
structed from nonvanishing perturbations of la

i vanish.
These are spurious modes because they do not appear when
considering just Maxwell perturbations, and provide gauge
solutions that might make the system to be ill posed, as we
shall see in the next section.

IV. ILL POSEDNESS

A. Kreiss’s algebraic criterion failure

Strang’s theorem asserts that if a quasilinear system like
(31) is well posed, then the system that results by evaluating
the variable-coefficients in any point is also well posed.
Thus, to show that the present system is not well posed, it
suffices to check that at least one of its constant coefficients
renditions is ill posed. Recall that Kreiss’s algebraic
criterion provided in Theorem II 2 (see Sec. II C) is valid
only for constant-coefficient first order systems. Thus, in
order to apply it, let us assume that the linearization
procedure done in (36) is around background solutions
with constant l

∘a
i.
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For simplicity, let us choose a particular configuration of system (50), such that k1 ¼ k2 ¼
ffiffiffi
2

p
κ, 0 < κ ∈ R, and

k0 ¼ k3 ¼ 0. Now, for s ∈ R and following Kreiss’s theorem (see Theorem II 2), let us construct the matrix
D ≔ A − sI given by

D ¼

0
BBB@

−s 0 −κ −ακ
0 −s −κ=α −κ
2κ 0 −s 0

0 2κ 0 −s

1
CCCA; α ≔

jl1j
jl2j

> 0; ð55Þ

where A is the matrix of (50) evaluated in this particular configuration. The inverse of D is computed to be

D−1 ¼ 1

s2ðs2 þ 4κ2Þ

0
BBBBB@

−sðs2 þ 2κ2Þ −2ακ2s κs2 −ακs2

2κ2s
α sðs2 þ 2κ2Þ κs2

α −κs2

−2κðs2 þ 2κ2Þ −4ακ3 −sðs2 þ 2κ2Þ −2ακ2

4κ3

α 2κð2κ2 − s2Þ 2κ2s
α sðs2 þ 2κ2Þ

1
CCCCCA
: ð56Þ

Note that there are elements of the above matrix that
cannot be bounded like the resolvent condition of Kreiss’s
theorem. It is evident8 that there exists an open interval
I ⊂ R of positive values of s such that, for all β > 0,

jðA − sIÞ−132 j >
β

s
: ð57Þ

Thus, the resolvent condition does not hold for all s ∈ C,
and system (50) is not well posed.
We recall here that since Kreiss’s criterion is applicable

to (constant) matrices, it can be used only for constant-
coefficients linear first order systems. Nevertheless, the
generalization to the quasilinear first order system is direct,
using the result provided by Strang in [21]. Strang asserts
that if a quasilinear first order system is well posed, then the
linear system obtained by freezing the coefficients at any
arbitrary point is also well posed. Thus, the counter-
reciprocal statement leads us to conclude the opposite:
since the system (50) with frozen coefficients is not well
posed, then the general quasilinear system shares the same
property.

B. Constructing diverging initial data

As a consequence of what we have shown in the previous
section, we should find solutions of the system that grow in

frequency and time. The divergence with s in (57) was of
second order, so we expect to have a Jordan block of order
one (i.e., only one missing eigenvector) and so a mode
growing linearly both in frequency and time. It is of our
interest to display their behavior because they may even-
tually appear in numerical simulations. In the next section,
we will use this mechanism to generate an explicit bounded
sequence (in Sobolev norms) of initial data such that the
corresponding evolution sequence diverges.
By the identification k0 ↔ i∂t in (50), we arrive to the

linear first order system given by

∂tU ¼ AU; where ð58Þ

A ¼

0
BBBBBBBB@

0 0
−k2

1
−k2

3

j~kj − ð~l1·~kÞð~l2·~kÞ
j~kjG22

0 0 − ð~l1·~kÞð~l2·~kÞ
j~kjG11

−k2
2
−k2

3

j~kj

j~kj 0 0 0

0 j~kj 0 0

1
CCCCCCCCA
; ð59Þ

and we have redefined the variables such that

U ¼
� ∂tφ̂i

j~kjφ̂i

�
; i ¼ 1; 2; ð60Þ

where we have also identified φi ↔ φ̂i. System (58)9 will
be used to find explicit solutions that diverge in frequency
and time, and to provide a sequence of initial data for which
continuity of the evolution with respect to it does not hold.

8Indeed,

jðA − sIÞ−132 j ¼
4ακ3

s2ðs2 þ 4κ2Þ >
β

s

if and only if

pðsÞ ≔ −βs3 − 4βκ2sþ 4ακ3 > 0:

Since pð0Þ ¼ 4ακ3 > 0, continuity of p guarantees an open
interval I ⊂ R of positive values for s for which pðsÞ > 0.

9A “differential” way to get (58) is by taking a linearization of

the full system (32) around a solution ϕo
i with constant l

∘a
i, and

Fourier transform in space.
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The matrix A in (59) has four imaginary eigenvalues
given by

λð1Þ� ð~kÞ ¼ � jk3jffiffiffi
2

p i; λð2Þ� ð~kÞ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ

k23
2

r
;

and in particular ReðλðjÞ� Þ ¼ 0. Thus, we can expect a priori
the system to be well posed.10 Nevertheless, if k3 ¼ 0, then
λð1Þ ¼ 0 is a root with multiplicity 2, and if the system were
well posed, the corresponding Jordan block of the Jordan
matrix J ¼ P−1AP should be diagonal, that is, the corre-
sponding eigenspace should have dimension 2.
Nevertheless, for ~k ≠ 0, there is a unique form to have an

eigenvalue with algebraic multiplicity greater than 1, that is,
taking k3 ¼ 0. In that case, the eigenvalues are

λ� ¼ �ij~kj; λ0 ¼ 0; ð61Þ

and a Jordan decomposition of A is

J ¼

0
BBBBB@

ij~kj 0 0 0

0 −ij~kj 0 0

0 0 0 j~kj
0 0 0 0

1
CCCCCA
; ð62Þ

which clearly has a missing eigenvector. Exponentiating A
using the above Jordan decomposition, we get the general
solution of (58):

UðtÞ¼

0
BBBBBB@

ieij~kjt −ie−ij~kjt 0 − jl1jk2
jl2jk1

ieij~kjt −ie−ij~kjt 0 1

eij~kjt e−ij~kjt − jl1jk2
jl2jk1 − jl1jk2

jl2jk1 ð1þj~kjtÞ
eij~kjt e−ij~kjt 1 1þj~kjt

1
CCCCCCA

0
BBBBB@

V0
1

V0
2

V0
3

V0
4

1
CCCCCA
:

ð63Þ

From here we see that choosing any set ðV0
1;…; V0

4Þ ∈
R4 with V0

4 ≠ 0, we generate initial data that give rise to
solutions that grow linearly both in frequency and time.

C. On the lack of continuity along evolution

Due to the fact that there are solutions that grow linearly
in j~kj, it is possible to see that the evolution (63) is in
general noncontinuous with respect to the initial data. To
see this, it suffices to fix an instant of time t ¼ T > 0,
(which could be taken arbitrarily small) and check that
there does not exist a constant C > 0 such that

∥uðT; xÞ∥ ≤ C∥fðxÞ∥; ð64Þ

for all initial data fðxÞ given at t ¼ 0, where uðT; xÞ is the
corresponding evolution of that data until t ¼ T.
To see that such C does not exist we shall construct a

bounded sequence of initial data for (58), such that the
corresponding sequence of solutions is unbounded in norm
at time T, (from now on, we will refer that sequence as the
evolution sequence). We shall build this sequence using the
same configuration as in (55), in which k1 ¼ k2, k3 ¼ 0,
and α ≔ jl1j=jl2j.
To build the solution we shall use the finite propagation

speed of perturbations (which is the speed of light) so that
we can consider locally plane wave solutions. Consider a
flat background spacetime which is foliated by constant
time planes. Let Σo be the slice ft ¼ 0g, and for R; T > 0,
let BðR; TÞ ⊂ Σo be the ball of radius Rþ T. Let us
consider a smooth background solution ϕi such that on
the domain of dependence of BðR; TÞ the gradients la

i are
constant and perpendicular to each other. Suppose that
outside the ball, background solutions decay smoothly to
zero so that the corresponding norms are uniformly
bounded.
We shall be looking for initial data

Φo ¼ ðφo
1;φ

o
2Þ; ∂tΦjo ¼ ðð∂tφ1Þo; ð∂tφ2ÞoÞ ð65Þ

of (58) such that Φo ∈ H1ðΣo;R2Þ and
∂tΦjo ∈ L2ðΣo;R2Þ. As usual, define the norm of the
solution ΦðtÞ ¼ ðφ1;φ2Þ at time t as

∥ΦðtÞ∥ ≔ ð∥∂tΦ∥2L2ðΣt;R2Þ þ ∥Φ∥2H1ðΣt;R2ÞÞ1=2; ð66Þ

where ∥Φ∥L2ðΣ;R2Þ ≔ ∥jΦj∥L2ðΣÞ and

∥Φ∥2H1ðΣ;R2Þ ≔
Z
Σ
jφ1j2 þ jφ2j2 þ j∇φ1j2 þ j∇φ2j2: ð67Þ

Let us consider the following initial data sequence for the
perturbations, given on Σo:

φn
1jo ¼ φn

2jo ¼ 0; ð68Þ

ð∂tφ
n
1ÞjoðxÞ ¼

�
eikn·x=

ffiffiffi
n

p
; if x ∈ BðR; TÞ

gnðxÞ; if x ∈ ΣonBðR; TÞ
ð69Þ

ð∂tφ
n
2Þjo ¼ −

ð∂tφ
n
1Þjo
α

; ð70Þ

where kn ¼ nð1; 1; 0Þ and gn is a bounded sequence in
L2ðΣonBðR; TÞÞ such that ∂tϕ

n
1jo is smooth over Σo and the

norm of each element of the initial data sequence is
bounded.10See [11], Lemma 2.3.1.
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Denoting Φn ≔ ðφn
1;φ

n
2Þ, the norm of the above data is

∥Φn
o∥2 ¼ ∥∂tΦn

o∥2L2ðΣoÞ

¼ ∥∂tΦn
o∥2L2ðBðR;TÞÞ þ ∥∂tΦn

o∥2L2ðΣonBðR;TÞÞ

¼
�
1þ 1

α2

��jBðR; TÞj
n

þ ∥gn∥2L2ðΣonBðR;TÞÞ

�
ð71Þ

where jBðR; TÞj is the volume of the ball in Σo. Thus, this
sequence is uniformly bounded since gn is so.
We shall see now that the restriction of the corresponding

evolution sequence on the ball BðRÞ ⊂ ΣT of radius R at
ΣT ¼ ft ¼ Tg grows without bound. Thus, if the restriction
grows with n without bound, the norm over the full time
slice ΣT will also will also grow without bound. Finite
propagation speed assures us that the solution sequence at
BðRÞ will be just the evolution of the original plane wave
sequence defined on BðR; TÞ. Indeed, this solution will be
unique in the whole domain of dependence of BðR; TÞ as a
consequence of Holmgren’s uniqueness theorem,11since
the corresponding initial data is smooth and is given over
BðR; TÞ ⊂ Σo which is a noncharacteristic surface. Thus, in
order to analyze the behavior of the evolution on BðRÞ, it
suffices to evolve the restriction of the initial data on
BðR; TÞ as if it were a plane wave over the whole space.
This corresponds to evolve system (58) by taking as initial
data

φ̂n
i jo ¼ 0; ∂tφ̂

n
1jo ¼

1ffiffiffi
n

p ; ∂tφ̂
n
2jo ¼−

∂tφ̂
n
1jo
α

: ð72Þ

The evolution at time t ¼ T is given by

φ̂n
1ðT; ~kÞ ¼

Tffiffiffi
n

p ; φ̂n
1ðT; ~kÞ ¼ −

T
α

ffiffiffi
n

p ; ð73Þ

which corresponds to the unique solution

φn
1ðT; xÞ ¼

Tffiffiffi
n

p eikn·x; φn
2ðT; xÞ ¼ −

T
α

ffiffiffi
n

p eikn·x; ð74Þ

inside BðRÞ ⊂ ΣT .
For the norm of the full solution at time t ¼ T, we get

∥ΦnðTÞ∥2 ≥ ∥ΦnðTÞjBðRÞ∥2
¼ ∥ΦnðTÞ∥2H1ðBðRÞÞ þ ∥∂tΦnðTÞ∥2L2ðBðRÞÞ
¼ ∥ΦnðTÞ∥2L2ðBðRÞÞ þ ∥j∇ΦnðTÞj∥2BðRÞÞ
þ ∥∂tΦnðTÞ∥2L2ðBðRÞÞ

¼ 2T2

�
1þ 1

α2

�
jBðRÞjnþOð1=nÞ; ð75Þ

where we have denoted

∥j∇Φj∥2BðRÞÞ ≔
X2
j¼1

∥j∇φij∥2L2ðBðRÞÞ:

Thus, there cannot exist a bound of the solution in terms of
a bound of the initial data, for any finite time, t.
A similar proof is also valid for any Sobolev norm,

thus controlling an arbitrary finite number of derivatives,
and moreover, as shown by Strang, it can be extended for
perturbations around arbitrary smooth solutions. Essentially,
aswe are considering perturbations of higher frequencies,we
can zoom in to smaller neighborhoods. Assuming the
background solution to be smooth, it only matters their
values at the zooming points.

D. Ill posedness in the Leray-Ohya sense

Leray-Ohya hyperbolicity [25,26] seems to be a weaker
condition than strong hyperbolicity, for it uses topologies
which do not arise from norms, but rather from more
general topological spaces, as Gevrey spaces, where semi-
norms weighting derivatives of functions to all orders are
used (see [27] for detailed discussions). Thus, one might
entertain the idea that force-free in Euler potentials could be
hyperbolic in that sense. We show here that this is not the
case. We refer the reader to the Appendix for notations and
definitions.
We begin by considering the system (32) which is a set of

two partial differential equations for the potentials ϕ1 and
ϕ2. This system can be put in the Leray form (A1). Indeed,
setting N ¼ 2, u1 ¼ ϕ1 and u2 ¼ ϕ2, we get

H1
1≡ ð∇aϕ1Þð∇aϕ2Þ∇b∇b− ð∇aϕ1Þð∇bϕ2Þ∇a∇b; ð76Þ

H1
2≡ ð∇aϕ1Þð∇bϕ1Þ∇a∇b− ð∇aϕ1Þð∇aϕ1Þ∇b∇b; ð77Þ

b1 ¼ 0; ð78Þ

and similarly for the second equation. By this way, (32)
now reads

H1
1u1 þH1

2u2 ¼ 0; ð79Þ

H2
1u1 þH2

2u2 ¼ 0; ð80Þ

and the associated Leray indices are

mðϕ1Þ¼2; mðϕ2Þ¼2; nð79Þ¼0; nð80Þ¼0: ð81Þ

By identifying ∇a ↔ ka in (79)–(80) and computing the
characteristic determinant of the principal part, we arrive to
the same dispersion relation obtained in Sec. III B, Eq. (40),
when analyzing the characteristic structure of force-free
systems. While k2 is a hyperbolic polynomial of second11See [24], Theorem 5.1., and [17], Prop. 5. for references.
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degree, it is easy to see that Fk
2

2
− Gijkakb∇aϕi∇aϕj is not

hyperbolic.

V. CONCLUDING REMARKS

In this article we considered the equations that describe
force-free electrodynamics using Euler potentials. Studying
the hyperbolicity of such formulation, we found that in
these variables the theory is not strongly hyperbolic, and
thus the system does not constitute a well-posed initial
value problem. This implies that there is no energy (norm)
for which the solution is bounded by the same norm in the
initial data. To show this, it was sufficient to find an
equivalent first order reduction of the equations that
violates an algebraically equivalent criterion for strongly
hyperbolic systems proposed by Kreiss [11]. Using
Strang’s theorem for constant-coefficient systems we could
see that the system is not well posed in general.
We performed a characteristic decomposition of the FFE

system in Euler potentials with respect to a generic wave
front propagation direction and we derived the resulting
causal structure, finding two possible propagation planes.
We could find a complete set of eigenvectors in both cases,
except at a two dimensional set of planes formed by the
intersection of two null planes. This property does not
appear when studying the hyperbolicity of the system in
Maxwell variables, see for instance [8,9]. The reason for
the occurrence of this peculiarity is that perturbations
leading to divergent solutions in the present formulation
are not physical, i.e., the Maxwell tensor Fab constructed
from these growing perturbations vanish identically.
On the other hand, and with the aim of displaying the

growing modes, explicit initial configurations were con-
structed such that the subsequent evolution led into fields
that developed a linear growth with frequencies. The study
of these solutions was completed by showing that evolution
is generally noncontinuous with respect to the initial data.
This is so for any norm built out from the initial data and a
finite number of its derivatives. To this end we explicitly
constructed a bounded initial data sequence and show that
the corresponding sequence of solutions at any given time,
however small, is unbounded, thus violating continuity for
those norms.
Furthermore, the same system was studied in the context

of Leray-Ohya hyperbolicity. This kind of hyperbolicity is
weaker than the one studied previously (strong hyper-
bolicity), because it focuses on the initial value problem
from initial data that belong to certain spaces of functions
whose topologies do not arise from any norm. An example
of these spaces are Gevrey classes; i.e., C∞ functions but
with Taylor series not necessarily convergent [27,28]. We
could see that FFEEP is also ill posed in the sense of
Leray-Ohya.
From the above results we conclude that FFEEP should

not be used in numerical simulations or other kinds of
approximations. Growing linear perturbations will become

arbitrarily stiff as the grid frequency is increased.
Furthermore nonlinearities can alter that growth making it
to become exponential, rendering computations nonsensical.
The above results might not be conclusive in the

following sense. There are very simple examples (see,
e.g., [11]) for which by choosing Sobolev norms of
different weights for different variables one can show
continuity. These are very special cases, for generic lower
order perturbations of such a systems render them discon-
tinuous. It might be that the present system falls in that
category. For those, the general theory is hopeless and so
one should aim for finding very particular energy norms
and showing their corresponding nonlinear estimates. After
that, numerical schemes should be used such that those
estimates are preserved at the discrete level.
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APPENDIX: HYPERBOLICITY
IN THE LERAY-OHYA SENSE

In this appendix we perform a brief review of Leray
systems and the notion of hyperbolicity in the Leray-Ohya
sense, after introducing the notion of hyperbolic polyno-
mials and hyperbolic operators. We refer the reader to the
books [27,28], in which there is a detailed discussion of the
original works [25,26].
Hyperbolic polynomials. Over a smooth manifold M, let

P∶ T�
pM → R be a polynomial of degree n, withp ∈ M. Let

us now consider the set C�ðp; PÞ ≔ fX ∈ T�
pMjPðXÞ ¼ 0g.

In many contexts, and depending on the particular poly-
nomial P one is considering, C�ðp; PÞ can be interpreted as
the boundary of a coneof covectors onT�

pM, sometimes used
in general relativity for referring to the set of covectors that
make positive definite a certain symmetric structure (con-
structed fromP, for instance)12 The polynomial PðXÞ is said
to be hyperbolic if there exists Y ∈ T�M such that every
straight line passing by Y which does not intercept the origin
X ¼ 0, intersects the set C�ðp;PÞ in n distinct points. An
operator L is said to be hyperbolic at p if it principal part
defines a hyperbolic polynomial.
Leray-Ohya hyperbolicity. Consider now a system of N

partial differential equations for N unknown scalar fields,

12Actually, it is possible to construct covector cones as duals to
the well-known mathematical cones in the following way: given a
(formal) cone C ⊂ V on a vector space V, we define the set
C� ≔ fω ∈ V�jωðvÞ ≥ 0; ∀ v ∈ Cg, that is clearly a convex
cone.
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uA, A ¼ 1;…; N, defined over M. We say that such system
is a Leray system if it is possible to associate to any field uA

an non-negative integer mI, I ¼ 1;…; N and to each
equation another non-negative integer, namely nJ, J ¼
1;…; N such that it reads

HJ
Iðx; ∂mK−nJ−1uK; ∂mI−nJÞuI
þ bJðx; ∂mK−nJ−1uKÞ ¼ 0; J ¼ 1;…; N; ðA1Þ

where summation over index I is understood and there is
not a sum over integers mI and nJ. The operator HJ

I,
known as the principal part of (A1), is an operator of order
at most mI − nJ, and it depends on, at most, mK − nJ − 1

derivatives of each field uK. If mI − nJ < 0, then we set
HJ

I ¼ 0. Similarly, if mK − nJ < 0 for some K, then HJ
I

does not depend on uK . The remaining terms bJ also
depend on at most mK − nJ − 1 derivatives of each uK , and
do not depend on those uK such that mK − nJ < 0. It is
clear that the operator HJ

I may not be linear in the fields
nor in their derivatives. The numbers mI and nJ are called
Leray indices.
Recall that to a given differential operator ∂α, we can

associate a monomial kα by the way

∂α ≔ ∂α0
0 � � � ∂αn

n ↔ kα ≔ kα00 � � � kαnn ;

where k
αj
j are real variables. With the above identification,

it makes sense to define the characteristic determinant of
system (A1), given by

Dðx; u; kÞ ≔ det ðHJ
Iðx; ∂mK−nJ−1uK; kmI−nJÞÞ: ðA2Þ

This is a homogeneous polynomial of degreeP
ImI −

P
JnJ. If D≢0, then we say the system is regular

in the Cauchy-Kovalevskaya sense. Consider now the
Cauchy problem associated with (A1) with initial data
given over a Cauchy surface Σ. We say that system (A1) is
hyperbolic in the sense of Leray-Ohya if it is possible to
write the characteristic determinant as a product of q
hyperbolic polynomials

Dðx; u; kÞ ¼ P1ðx; u; kÞ � � �Pqðx; u; kÞ; ðA3Þ

such that the following condition holds:

max
i
fdegðPiÞg ≥ max

I
fmIg −min

J
fnJg; ðA4Þ

where degðPiÞ is the degree of Piðx; u; kÞ. Systems which
are hyperbolic in the Leray-Ohya sense are well posed in
certain Gevrey class spaces.
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