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Ill posedness of force-free electrodynamics in Euler potentials
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We prove that the initial value problem for force-free electrodynamics in Euler variables is not well
posed. We establish this result by showing that a well-posedness criterion provided by Kreiss fails to hold
for this theory, and using a theorem provided by Strang. To show the nature of the problem we display a
particular bounded (in Sobolev norms) sequence of initial data for the force-free equations such that at any
given time as close to zero as one wishes, the corresponding evolution sequence is not bounded. Thus, the
force-free evolution is noncontinuous in that norm with respect to the initial data. We furthermore prove
that this problem is also ill-posed in the Leray-Ohya sense.
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I. INTRODUCTION

It is well known that in the neighborhood of a pulsar or a
black hole, the presence of strongly magnetic fields gives
rise to the generation of a very diluted plasma. In that
region, the electromagnetic field dominates over the matter
constituting those plasma, and the resulting uncoupled
dynamics is commonly known as force-free electrodynam-
ics (FFE).

A complete theory of FFE has been developed in several
works. A recent review is presented in [1], in which many
theoretical aspects of the corresponding dynamics are
generalized from a relativistic perspective, focusing on
intrinsic geometrical properties of the theory, and providing
further results. In a previous work series by Uchida, [2,3], a
covariant formulation of FFE without spacetime sym-
metries assumptions is developed, using Euler potentials
as evolution variables. Euler potentials are scalar functions
that were introduced by Stern [4] in the early 1970s from a
noncovariant formulation. This formulation often appears
in numerical simulations, see for example [5,6].

In [7], Komissarov focused on the hyperbolicity of
general degenerated force-free electromagnetic theories
from a noncovariant viewpoint, in which the evolution
equations were presented in the form of conservation laws.
Subsequently, Pfeiffer [8] modified Komissarov’s equa-
tions to obtain a symmetric-hyperbolic evolution system.
Very recently, in [9], Geroch’s geometric formalism of
symmetric-hyperbolic systems was used to introduce a
covariant hyperbolization of FFE in Maxwell variables, and
a detailed analysis of the characteristic structure of the
evolution system as well as the resulting causal cone
structure was performed. In that work, the authors
used the same techniques successfully employed in [10]
for nonlinear generalizations of Maxwell’s theory of
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electromagnetism, in which FFE is not included there
(see [9] for more details).

In this work we study the problem of hyperbolicity for
the version of force-free electrodynamics in Euler poten-
tials (FFEEP). We prove that FFEEP is not strongly
hyperbolic, that is, the associated Cauchy problem is not
well posed. In particular, it is not possible to find a
hyperbolizer (that is, a symmetric, nondegenerate and
positive definite bilinear form) for the evolution equations
like the one found in [9]. To do so, we make use of an
algebraic criterion introduced by Kreiss [11] that provides
necessary and sufficient conditions for a square first order
system to be well-posed. From a detailed analysis of the
characteristic structure of the dynamic equations, we see
that there is not a complete set of eigenvectors of the
corresponding algebraic problem (characteristic equations),
allowing us to prove that force-free evolution is generally
noncontinuous with respect to the initial data, in any
Sobolev norm. We illustrate this feature by constructing
a bounded sequence of initial data such that, for any time as
close to zero as desired, the corresponding evolution
sequence is not bounded. Finally, we study the problem
of well-posedness of FFEEP in the sense of Leray and
Ohya, and we prove that this system is also ill-posed in
that sense.

A. Outline, units and conventions

This paper is organized as follows. In Sec. Il we present a
brief review about force-free electrodynamics as a degen-
erate theory, and several geometric and algebraic properties
that arise from this fact are discussed. Furthermore, we
introduce Euler potentials and the notion of flux surfaces in
spacetime. In Sec. III we present the evolution system that
will be treated along this work. In particular we discuss
gauge freedom, hyperbolicity and wave-set structure of the
dynamic equations. Section IV is devoted into studying
the ill posedness of this version of FFE. We first show the
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failure of a necessary and sufficient criterion for squared
first order systems to be well posed, then we perform a
3 + 1 decomposition of the evolution equations that will be
used later on, and we prove, with an explicit example, lack
of continuity (in Sobolev norms) of the evolution with
respect to the initial data. Finally, we study the hyper-
bolicity of FFEEP in the sense of Leray and Ohya. The
Appendix is dedicated to review the main ideas about
hyperbolicity in the Leray-Ohya sense, and to fix notation
and definitions we shall adopt.

The signature convention of the spacetime metric we will
use along this work is (—, +, 4+, +), and we will take units
such that ¢ = G =1, where ¢ is the speed of light in
vacuum and G Newton’s universal constant of gravitation.
For Maxwell’s equations, we will adopt Gaussian units.

II. PRELIMINARIES

A. Force-free electrodynamics

Force-free electrodynamics is a nonlinear version of
Maxwell’s equations imposing the force-free approxima-
tion. Recall that Maxwell’s equations are given by [12]

V, F* = —4zJ’;
{ (1)

v[thc] =0,

where F;, is an antisymmetric (0, 2) smooth tensor field
over a background spacetime (M, g,; ), and J* the electro-
magnetic 4—current, which is conserved by virtue of the
antisymmetry of F,,. Associated to the theory there is an
electromagnetic energy-momentum tensor, namely

1

Ty = (FFy =g, FeiF, (2)
ab 4r act' b 4 ab cd |+

In the presence of matter this tensor is in general not
conserved, by virtue of (1). Indeed,

V,T% = —F4,J", (3)

and it implies that locally, the energy-momentum loss is
just the work exerted by the electric force pE times the
velocity of the particles.

In the context of relativistic magnetohydrodynamics, the
total energy-momentum tensor contains the contributions
both of matter and electromagnetic field. The force-free
approximation consists in neglecting the matter contribu-
tion in situations where it is orders of magnitude smaller
than the electromagnetic contribution." Thus, by total
conservation of energy-momentum tensor, we get

n [7], force-free electrodynamics is defined as the zeroth
order system of relativistic magnetohydrodynamics under matter
perturbations.
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F abe =0, (4)

from which it follows that F';, is a degenerate 2—form. This
property implies that there is a frame (defined by J¢) in
which the electric field vanishes. Such approximation is
relevant in general electromagnetic systems which are
magnetically dominated,? that is, when the effect of electric
currents are neglected in comparison those of magnetic
presures, then the system becomes a plasma whose only
effect is, due to its conductivity, to make the electric field
much smaller than the magnetic field.

Thus, Maxwell’s field can be evolved independently of
matter degrees of freedom, and a complete set of equations
for the electromagnetic field is obtained by adding to
system (1) the force-free condition (4). Indeed, contracting
the first equation in (1) with F;,,. we get

{ F, .V, F? =0;

5

V[anc] — 0 ( )

Notice that solutions of vacuum Maxwell’s equations are

trivially solutions of (5), but in general there are more

solutions and they behave quite differently from Maxwell’s.

From a pure algebraic viewpoint, condition (4) means
that det(F) = 0, or which is the same,

*FebF =0, (6)

where *F4 is the action on F® of the Hodge operator ,
given by

1
*Fab — E‘c’.adech (7)

and €,,,.4 1s the volume element compatible with g,;,. This
condition leads to interesting geometric properties of force-
free systems, that will be developed in a particular case in
the next section. Straightforwardly, the antisymmetry and
degeneracy of Maxwell’s tensor implies that the kernel of
F%, is a two-dimensional vector space and thus there exist
two linearly independent vectors {u®, v} such that

F“bub = Fabl)b =0. (8)

Assuming some regularity for F,;,, one can show that
both vector fields that satisfy property (8) are integrable;
that is, they smoothly generate a 2—dimensional surface,
known as the flux surface or field sheet. This integrability
condition® follows from the fact that Vi Fpg =0.

In general, it is not expected that the condition of magnetic
dominance is preserved during evolution.

*More explicitly, the kernel of F, is integrable in the above
sense if it is tangent to two—dimensional submanifolds of

(M’ gab)-
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The magnetic field line measured by any observer ¢
corresponds to the intersection between the flux surface
and the observer’s hypersurface {z = const}. Since
F,,F® > 0, such a flux surface is temporal and so it is
possible to interpret it as the world sheet of the initial
magnetic field line during evolution. In particular, Eq. (4)
implies that J¢ is tangent to it.

Another relevant aspect of force-free systems is a trivial
consequence of Eq. (4). Indeed, the equality F,, FqJ =0
holds, and since F,,F'4 is a 4—form over a 4—dimensional
manifold, it must be proportional to the associated volume
element, which is a nondegenerate tensor. Thus, there must
be F(,,Fqp = 0, which implies4 that F, is simple, i.e., there
exist two covector fields £}, #2 such that, locally,

Fop=200,0%.

©)

Itis clear that #' and #? are linearly independent, and for
magnetically dominated systems, both are spacelike vector
fields. Recalling now property (8) we see that #' and £ are
orthogonal to the flux surfaces.

B. Euler potentials

Integrability condition of the kernel of F¢; also implies
the local existence of two scalar fields, say {¢,, ¢,} such
that flux surfaces are described’ by the intersection of the
level set of these to functions, ¢»; = const and ¢, = const.
These functions are commonly known as Euler potentials
and share several interesting properties. By the local
expression (9), it must be

Foy = va¢1vb¢2 - vb¢1va¢2’ (10)
and the vector potential in Euler variables reads
1
Aa = E (¢lva¢2 - ¢2va¢1)' (1 1)

Fori = 1, 2, let us denote the normal vector fields of the
flux surfaces as

= gubvb¢i' (12)

At this point, it is convenient to introduce certain internal

structure for ease of notation. For i = 1, 2, let €Y be an

antisymmetric symbol such that £'> = 1, and assume that

there is an inverse, ¢;;, with the following property:

ij — i
efsjk——(sk.

(13)

*See [13], prop. 3.5.35.
3See also [14].
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Here, &'; is the identity map, that is 6';A/ = A’. For a given
fi» let us denote f*:= ¢ f,. Inversely, and by consistence
with (13), f; = —¢;; f7. Such an internal structure allows
one to express the fields (10) and (11) in a more convenient
way. Indeed,

Fo = gijva¢ivb¢j’ (14)

and

1 ..
A, = Et‘«’”(fhvaébj- (15)
Notice that there is certain freedom in the choice of Euler
potentials such that F,, remains invariant. In effect, if one
considers the following general transformation:

¢ > 951 = 4§j(¢i)’ (16)
the gradients change as
- 0, i
Va¢j = Téva¢i =X jvaqsi’ (17)
where we have denoted
Yy
)(lj = a¢] (18)
On the other hand, Maxwell’s tensor transforms as
Fab = gijvaégivbd;j
= €ij)(ki)(fjva¢kvb¢f
= det(Z)FaM (19)

where in the last step we used the fact that any (2, 0)
antisymmetric symbol in the internal space is proportional
to €. The proportionality factor is exactly the determinant
of y. Thus, only transformations like (16) with det (y) = 1
leave F,;, invariant. These are transformations that belong
to the SL(2,R) group.

This condition has also a relevant geometric significance.
Indeed, it is straightforward to see that

_ a(&l’ &2)
det(z) _‘ (1. 2)

so the invariance condition is equivalent to require that the
Jacobian of transformation (16) is the unity. This is a
necessary and sufficient condition for the area element to
not change under a coordinate change.

Finally, we will find it useful to introduce the bilinear
form given by

, (20)
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Gij=¢;-;= gabva¢ivb¢j- (21)

By construction G;; is symmetric, and satisfies
det(G) = _&'ij&'kaiijm
= (‘c’jjf?f?)(gkmgacfckghdl’ﬂdm)

, (22)

| N = N —

where F := F?F,, is a positive function for magnetically
dominated systems. Thus, det(G) # 0 in general and G;; is

invertible. Namely, there exists a symmetric quantity GY
such that G/G k= 5'¢. On the other hand, notice that there
is another way to construct a symmetric symbol of rank
(2,0) from G,;, namely, G := "¢/ Gy,. A straightforward
calculation shows that

~ 2
G =G, (23)
F

so both quantities contain the same information up to a
scale factor.

C. Well-posedness

This section contains a brief review of the main ideas
about well posed systems in physics. In particular, we
introduce the notions of hyperbolicity, strong, symmetric,
and weak first order systems, as well as the basic notions of
well-posed and ill-posed systems. We shall follow the
theory and definitions given in [11,15-19] and provide
some essential definitions for general quasilinear first order
systems.

One of the fundamental questions that arise in under-
standing the evolution of dynamical systems in physics is
their hyperbolicity. This concept captures some aspects that
should hold even in the most fundamental scenarios, and its
understanding leads one to answer questions about: unique-
ness of solutions for a given initial data, preservation of the
asymptotic decay of the solution with respect to that of their
initial data, and estimates about time of existence of the
solutions, among others. All of these aspects are related to
the continuity of the map that goes from the set of initial
data to the set of solutions.

To start, let us consider the linear constant-coefficient
problem given by

{ Ou = A'Q;u =: P(0)u; (24)
u(x,0) = f(x)
where u = u(x,t) € C*, x = (xy,...,x,) are space coor-

dinates, and A’ is a s x s constant complex matrix valued
vector in R”. The main purpose that drives us to deal with
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these problems is to give necessary and sufficient con-
ditions for the associated Cauchy problem to be well posed,
that is, under what conditions there exists a unique solution
of (24) that depends continuously on the initial data. It turns
out that under certain circumstances those conditions are
also valid for more general systems, namely those where
the matrices A’ are smooth functions of u, like (30). It
follows also that if the constant-coefficient equation system
is ill-posed for some values of A’, any quasilinear system
having in a point those values of A’(u) will be also
ill-posed, as we shall assert later on.

Let us now restrict the possible initial data of (24) into
complex functions f(x) of the form

10 = G [, TR 29)

where f(k) is of compact support. The unique smooth
solution of (24)—(25) is

1 . NN
u(x, t) = W/” ek x PR F () dnk, (26)

where P(ik), which is formally obtained by substitution of
ik; for 9/0x;, is called the symbol® of P(0).

Definition IL.1 System (24) is called well posed if there
exists a unique solution in a neighborhood of t = 0, and
that solution depends continuously on the initial data; that
is, there exists a norm || - || and two constants C, a such
that for all initial data like (25) and t > 0,

llu(x, Il < Ce |l f (). (27)

In order to characterize well-posed systems like (24), it
suffices to give algebraic conditions on the principal part of
the equations, such that the corresponding Cauchy problem
is well-posed. There are several notions of hyperbolicity.
We shall review here such notions that will be relevant
along this work.

Definition I1.2 System (24) is called strongly hyper-
bolic if for any covector k., the matrix A = A'k; has only
purely real eigenvalues and is diagonalizable.

Due to the fact that any complex matrix A is diago-
nalizable with only real eigenvalues if and only if there
exists a symmetrizer H, that is, a positive definite bilinear
form, such that HA is symmetric, it follows that (24) is
strongly hyperbolic if and only if for each k, there is a
matrix H(k) such that H(k)A is symmetric.

Definition I1.3 System (24) is symmetric hyperbolic if it
is possible to find a common symmetrizer H for all
possible k..

®We refer the reader to [20] in which pseudodifferential
analysis is discussed in detail.
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Notice that the notion of symmetric hyperbolicity is a
sufficient but not necessary condition to guarantee well
posedness. Strong hyperbolicity, however, ensures well
posedness of the initial value problem in the sense of
definition II. 2, that is, once a particular Sobolev norm has
been chosen.

A set of important and clarifying results about well
posedness for constant-coefficient first order systems is
provided by Kreiss in [11]. These results reduce the
problem of well posedness into a pure algebraic issue.

Theorem ILI.1 A system like (24) is well posed if and
only if there exist constants C and a such that for all t > 0,

|eP(ik)t| < Ce™, (28)

for all k € R", where | - | is the usual matrix norm.
Theorem I1.2 Let F denote a set of matrices A € C"™".
The following conditions are equivalent:
(i) There is a constant K, with |e"'| < K| forall A € F
and all t > 0.
(i) For all A€ F and all s € C with Re(s) > 0 the
matrix A — sl is non singular, and there is a
constant K, such that

(A—sD)Y| < A€F,  Re(s)>0.

Re(s)’

(This condition is known as the Resolvent
Condition).

(iii) There is a positive constant ¢ with the following
property: for each A € F, there exists a Hermitian
matrix H= H(A) € C™" with

c 'y, <H<cl,, and HA+AH*<0.

If the system is such that the matrix A = A’k; previously
introduced in Definition II. 2 has imaginary eigenvalues but
their eigenvectors do not form a base (this is the case if A is
not diagonalizable), then the system is called weakly
hyperbolic. In some particular cases one can show that
the system is weakly well posed in the sense of Kreiss [11];
namely that they satisfy an inequality of the following
form:

"] < BI1+ ([K|r) ], (29)

for some real constants a, B, y and ¢ > 0. These type of
systems are characterized by the appearance of terms that
grow polynomially in ||¢ in the matrix exponential, e”(%)’,
and so cannot be bounded independently of |k|. The above
inequality means that the solution is a continuous function
of the initial data but in different topologies, i.e., Sobolev
spaces of different orders. This is not a pleasurable situation
for it means that every time we restart an iteration (say
for solving the system via approximations), the solution
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becomes a less smooth one. In any case, estimate (29) is
very rare to encounter; it often happens that generic lower
order perturbations (which might arise for instance from
treating variable-coefficient systems and making higher
order energies) destroy it. A clarifying example can be
found in [15], after Definition 2, in which the correspond-
ing system is well posed but in the weak sense (29), lower
order terms that can be added to it, causing an exponential
growth (in frequency) of the solution.

In this work we will see that the constant-coefficient
rendition of force-free equations with Euler potentials is
only weakly hyperbolic, and we shall refer these sort of
systems as ill-posed systems.

As previously asserted, all the results provided above can
be generalized to general quasilinear systems, i.e, systems
like

{ Ouu* = A% 4(t, x, u)d.u’ + B*(t, x, u);

30
wl, = fo. G0

where u® = u”(t,x) are unknown arbitrary tensor fields,
and A%; and B® depend smoothly on their arguments.
While the behavior of solutions of these type of problems is
not yet fully understood, it is possible to use the constant-
coefficient theorems to prove well posedness for small time
intervals with a correspondingly generalized definition of
well-posedness.

Theorem I1.4 For0 < T, < oo, let u,(t,x),t €[0,T,)
be a smooth solution of a quasilinear evolution system like
(30). We shall say the system is well posed at the solution
u, and with respect to a norm || - || if given any 6 > 0 there
exists € > 0 such that for any smooth initial data f(x) with
If = foll <& where f,(x):=u,(0,x), there exists a
smooth solution u(t,x) defined in a strip 0 <t < T, that
satisfies |u(t,-) —u,(t,-)| < & when |T —T,| < 6.

To discuss the hyperbolicity of general quasilinear
systems, modifications of some properties stated in the
constant-coefficient case must be made. Indeed, there is the
following

Theorem IL.5 System (30) is strongly hyperbolic if
there exists a symmetrizer, that is, a symmetric, positive
definite matrix Ho3 = H,5(t, X, u, k), depending smoothly
on its arguments, such that hyg = H, A" gk. is also
symmetric for all one-forms k..

Again, via the smoothness required both on the coef-
ficients in (30) as in H .4, strong hyperbolicity holds if and
only if the principal part A% 4(t, x, u)k. has a complete set
of eigenvectors with purely real eigenvalues. Nevertheless,
in order to prove that a quasilinear system is not well posed,
a simple and useful result provided by Strang in [21] can be
employed. In that work, the author deals with higher order
systems of the form
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Ou = ZAa(x)D“u, (31)
|a|<m
where x=(xg,...,x,) €R", u=u(t,x) e C,
a= (a,...,a,) € N? and
olal
D : la| =a; + -+ a,.

Ox{t - Oxy’

Strang asserts that if a system like (31) is well posed in L?
norm, then their principal parts, with the coefficients
evaluated at any point and any solution close to the initial
data, must be also well posed in the sense of definition II. 1
(see [21] for details). The relevance of this theorem is the
fact that it shows that the problem of well posedness is a
microlocal (or high frequency phenomena, as we shall see)
issue. Since for quasilinear systems the principal part
coincides with the linearization at an arbitrary point, if
we take the linearization of the system around a constant
solution and we prove that the resulting system is not well
posed, then the full system will be not well posed. We will
use this technique to show that force-free system written in
Euler variables is in general non continuous with respect to
the initial data.

III. THE SYSTEM
A. The equations

Rewriting system (5) by expressing Maxwell’s tensor in
terms of Euler potentials ¢;, i = 1, 2, we get the following
equation system:

€IV, HV(VpVp) =0, k=12 (32)

where ¢ and all the internal structure we shall use was
previously introduced (see section II B).

It is straightforward to see that (32) is invariant under
unitary gauge transformations like (16). Moreover, once the
gauge choice is made in one spacelike hypersurface, then it
will remain fixed for all time. This important property is a
direct consequence of the feature that Euler potentials are
constant along each magnetic world sheet. In particular,
they are constant at the intersection of the flux surface and
any Cauchy hypersurface X. Thus, once the initial data of
(32) is given, and so the gauge choice is made at each point
of X, the gauge transformation will remain constant during
evolution. _

Indeed, if ¢); > ¢, is any transformation like (16)—(17),
then locally we have
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0=V, Vyr
= (Vi) j1p) + 16 Via? 1o
= (Viaxw)e) - (33)

Taking now a vector field ¢* in the orthogonal comple-
ment of {¢%,¢%}, i.e. tangent to flux surfaces, and
contracting (33) with 1£?;, we get

1"V )Gi; = 0, (34)
or equivalently, since G;; is invertible [see Eq. (23)],
Z“Va)(kj = U. (35)

Thus, the functions y,/ are constant along the field
surfaces ¢»; = const, as expected. Moreover, once the gauge
choice is done in one spacelike hypersurface, then it will
remain fixed for all time.

B. Hyperbolicity and wave-set structure

In this section we analyze the hyperbolicity of system
(32). For that, it is enough to study the behavior of high
frequency linearized perturbations in off an arbitrary back-
ground, [22]. Due to the finite propagation speed of such
perturbations, it turns out that we only need to concentrate
in a very small neighborhood around an arbitrary point of
space-time.

For € > 0, let us consider the one-parameter family of
solutions of (32) given by:

yi(e) = i +eie! V7, (36)

where ¢; is any background solution of (32), and f a
smooth complex scalar field. As e approaches to zero, more
oscillations there will be in a given small neighborhood,
and they will become in size closer and closer to the
background solution ¢;. We shall refer to this limit as the
high-frequency limit. This is analog to the limit as the wave
number in the spacelike plane of an observer * tends to
infinity.

Replacing (36) in (32) and taking carefully7 the limit
e — 0, we get the following algebraic equation for ¢;:

€ij(fakfbj - ij5ba)k”kb</)i =0, (37)

"Recall that if p:O — C is a complex-valued continuous
function defined over a neighborhood O C M, then

9

limp(x)e -

=0

exists on O if and only if p = 0.
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where £¢; and Gy; are evaluated at the background solution,
and k, ==V, f.

Equation (37) is called the principal part of (32), and
contains only the terms of the corresponding linearized
equation of (32) that are of higher orders in frequency. It
describes completely the characteristic structure (or wave-
set) of the system with respect to a generic wave front
propagation plane, k,.

Let us study the characteristic equations of system (32).
Recall that real roots of these equations determine the
causal cone structure of the theory, i.e., which are the
propagation planes through which wavelike solutions can
propagate.

By defining the scalars «;:=7¢; -k, with i=1, 2,
Eq. (37) is equivalent to the problem

Al i®Pi = 0, (38)
where the operator A is given by

Aij = 8if(Kij - szﬂ”)’ (39)
and k> = k°,. Since we are looking for nontrivial sol-
utions of (38), the dispersion relation becomes

2
det(A) = &2 [F k

T—G’m}_o (40)

Thus, the possible planes are given by k> =0 or
£k* — GUk;x; = 0. Notice that if k; =k, = 0 (this is the
case when k” is tangent to the field sheet) both conditions
coincide, and the operator A4 is trivial. Thus, ¢; is arbitrary
and there are two linearly independent solutions for each
null direction.
Otherwise, let us analyze both cases separately:
(i) Case I (Cone): k> = 0.
If k; or k, are not null, then ¢; = k; is a solution of
(38). Thus, we obtain a 1-dimension space of sol-
utions for each null direction, given by {ax;:a € R}.

(i) Case II (Wedge): gkz - Ginin =0.
Recalling that £ =det(G), G = e*e’Gy,,
and setting ¢; = |£;|n;, with ny -ny =ny -ny = 1,
we get
0 = det(G)k* — Gin~Kj

= |\ PIE2P[(1 = (ny - m2)?) 2= ((k - ny)?
+ (k- n)? = 2(ny - ) (k- my) (k- n3))]
= |12 P[1 = (my nz)z](kz k%)

= 21|62 [1 = (ny - n2)?]RT, (41)
where k| is the norm of the component of k¢ in the
space spanned by % and £“, (i.e., perpendicular to
the magnetic sheet). Thus, since (n; - n,)?> < 1, the
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expression vanishes if and only if k = k. Choosing
an orthonormal basis {e?} in which {ef,e4} are
over the flux surfaces, we get

K= -k} + K3+ k3, (42)

and we see that the condition for which we have roots
is that the wave vector part that is perpendicular to £¢;
must be null. Thus, if k3 # 0, we have only two
possibilities: kg = k3 and kg = —k5.

On the other hand notice that, by virtue of the
invertibility of G%, the problem (38) is further
equivalent to

Bipi =0, (43)

where the operator B is given by

B = G" (kjk, — K>Gp). (44)
and G given by (23). Moreover, we get straightfor-
wardly that

Bij = _kZhij, (45)
where
. . GMKZ(K-
W= ——5— (46)

is a projector into the space perpendicular to k; with
respect to G, seeing G; as an “internal metric” with

inverse G given by (23). Indeed, h';h/} =
defining &' = G'x; we get

i, and

2k

h';k) = e

< k? — GmegKm):O. (47)

Thus, ¢’ = &' is a solution of (43), implying that
¢ = eijfcf is a solution of (38). We get, again, a 1-
dimensional space of solutions for each of the
directions obtained above, given by {ye;&/ 1y € R}.

C. Equivalent first order reduction
of the algebraic equations

In this section we perform a 3 + 1 decomposition of the
principal part [Eq. (37)] of system (32) following the
guidelines of [23]. Then, we reduce it into an equivalent
first order system in a very particular way that avoids the
appearance of spurious constraints. Using the information
obtained from the wave-set in the previous section, we
analyze the kernel of the equivalent reduced system, and
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see that there is not a complete eigenvector set at each
direction.

Let us consider a spacelike hypersurface X, take an
arbitrary point p € X, and choose a gauge transformation
like (16) such that £¢; are perpendicular to each other on p.
Let O, be an open neighborhood of p within an open set
O c M which is foliated by spacelike hypersurfaces that
are the level surfaces of a smooth time function 7: O — R.
Let 1*:=(0/0t)* be the normal vector field of each
hypersurface on the foliation, and choose the coordinate
¢ such that *V ,t = 1. Over each hypersurface, define an
orthonormal frame {e?;}3_;, with e = (9/0t)* and for
i=1, 2, e are along the £¢; direction.

Using the customary notation

- - -

k= (ko k), £k, =2k,

Eq. (37) reads

~e0Gy ki + €[[kGyy ~ (£ (2 Rl = 0. (48)

By defining the variables
wi=kop v = Koy (49)

we obtain the following system:

k ki (1R)(Z2 k)
. _kt _ Gk
|| k|G u;

_ Gk Btk u
0 % e, o 1}2 =0.  (50)
N 1
|k 9 —kg 0 o
0 |k 0 —ko

System (50) is completely equivalent to (48) in the
following sense: for any k # 0, there exists a biunivocal
relation between solutions of both systems (50) and (48);
that is, every solution of the original second order system,
(48), is a solution of the above system and vice-versa. In
particular, this method of obtaining first order systems out
of second order in Fourier space does not include any
constraint nor spurious solutions on the initial data, and that
is why both systems are equivalent as well. Thus, if we
show that the above first order system is ill posed, the
original second order system will also be ill posed.

It is straightforward to check that the matrix in (50) is
generally nondiagonalizable when ky = k3 = 0. We shall
later exhibit this feature by choosing particular configura-
tions for k* and #“;, from which we shall find solutions that
grow linearly in frequencies.

The solutions of the above system, both in the Cone-case
and in the Wedge-case exhibited in the previous section, are
given by

PHYSICAL REVIEW D 95, 064005 (2017)
v; = |klx;;

V; = _|%|€ijéjf/<f. (51)

Cone: u; = kok;,

Wedge: u; = _kogl’jéjf’(f,

Thus, if k3 # 0, we have in total four linearly indepen-
dent solutions of (50) when considering both Cone-case
(that is, ky = :I:|%|) and Wedge-case (ky = £k3).

On the contrary, when ky = k3 = 0 (that is, at the edge of
the wedge), we only get one solution in this case, getting in
total three linearly independent solutions.

In summary, we have found a complete set of solutions
of (50) at all points except at the points lying in the straight
line ky = k3 = 0. This is the case when the wave-vector is
perpendicular to the plane {eg, e3}, s0 k* = span{Z, %> };
and we get

ke = kire. (52)

It is interesting to note that perturbations of F? con-
structed from those perturbations of ¢; for which
ko = k3 = 0, vanish. Indeed, recall that a general pertur-
bation of Maxwell’s tensor written like in (14) is given by

SFab = 2¢li¢la X, (53)

where X4, = 67¢;. In the high frequency limit, we get
X = @;k, where ¢; = 6¢;. Using it in the above formula
for 6F, we get

SF =219, k"), (54)

Setting @' = &' and k given in (52), we see that F** = 0.
Thus, whenever k, = k; = 0, perturbations of F¢* con-
structed from nonvanishing perturbations of #“; vanish.
These are spurious modes because they do not appear when
considering just Maxwell perturbations, and provide gauge
solutions that might make the system to be ill posed, as we
shall see in the next section.

IV. ILL POSEDNESS

A. Kreiss’s algebraic criterion failure

Strang’s theorem asserts that if a quasilinear system like
(31) is well posed, then the system that results by evaluating
the variable-coefficients in any point is also well posed.
Thus, to show that the present system is not well posed, it
suffices to check that at least one of its constant coefficients
renditions is ill posed. Recall that Kreiss’s algebraic
criterion provided in Theorem I12 (see Sec. II C) is valid
only for constant-coefficient first order systems. Thus, in
order to apply it, let us assume that the linearization
procedure dongain (36) is around background solutions
with constant ¢ ;.
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For simplicity, let us choose a particular configuration of system (50), such that k; = k, = v/2k, 0 < k € R, and
ko = k3 = 0. Now, for s € R and following Kreiss’s theorem (see Theorem II2), let us construct the matrix

D = A — sl given by

-s 0 —K
0 —s —
D s —k/a
2k 0 -5
0 2 0

—ak
—K 1]

s a:=—>0, 55
0 |25 (53)
—s

where A is the matrix of (50) evaluated in this particular configuration. The inverse of D is computed to be

—s(s% + 2k?) —2ax’s Kks? —axks?
_— 1 s s(s? + 26%) xs? —ks? (56)
s2(s* 4 4k?) | —2x(s? +262) —dax? —s(s% + 2x?%) —2ax?
& 2k (2K% — 5?) s s(s? 4 2«?)

Note that there are elements of the above matrix that
cannot be bounded like the resolvent condition of Kreiss’s
theorem. It is evident® that there exists an open interval
I C R of positive values of s such that, for all § > 0,

(A=snz] > 2. (57)
Thus, the resolvent condition does not hold for all s € C,
and system (50) is not well posed.

We recall here that since Kreiss’s criterion is applicable
to (constant) matrices, it can be used only for constant-
coefficients linear first order systems. Nevertheless, the
generalization to the quasilinear first order system is direct,
using the result provided by Strang in [21]. Strang asserts
that if a quasilinear first order system is well posed, then the
linear system obtained by freezing the coefficients at any
arbitrary point is also well posed. Thus, the counter-
reciprocal statement leads us to conclude the opposite:
since the system (50) with frozen coefficients is not well

posed, then the general quasilinear system shares the same
property.

B. Constructing diverging initial data

As a consequence of what we have shown in the previous
section, we should find solutions of the system that grow in

8Indeed,

4o

A-sDi|=—5—5>C
I( sI)3; | (2 +4K2) s
if and only if

p(s) = —ﬂs3 — 4ﬂK2S + dax3 > 0.

Since p(0) = 4ax® > 0, continuity of p guarantees an open
interval I C R of positive values for s for which p(s) > 0.

frequency and time. The divergence with s in (57) was of
second order, so we expect to have a Jordan block of order
one (i.e., only one missing eigenvector) and so a mode
growing linearly both in frequency and time. It is of our
interest to display their behavior because they may even-
tually appear in numerical simulations. In the next section,
we will use this mechanism to generate an explicit bounded
sequence (in Sobolev norms) of initial data such that the
corresponding evolution sequence diverges.

By the identification ky <> i0, in (50), we arrive to the
linear first order system given by

0,U =AU, where (58)
0 0 oK (4R (k)
|| k|G
_ (21 B(;ﬂzz) —k%—k%
a=|0 0 KIG1, I . (%9)
k| 0 0 0
0 [k 0 0

and we have redefined the variables such that

0,(;
U:< @ > i=1.2: (60)

|kl

where we have also identified ¢; <> @;. System (58)° will
be used to find explicit solutions that diverge in frequency
and time, and to provide a sequence of initial data for which
continuity of the evolution with respect to it does not hold.

’A “differential” way to get (58) is by taking a linearization of

°a
the full system (32) around a solution ¢°; with constant Z ;, and
Fourier transform in space.
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The matrix A in (59) has four imaginary eigenvalues
given by

7 k - k2
(k) = i%i, DK) = £\ I1G + 45+ 3.

and in particular Re(ﬂg)) = (. Thus, we can expect a priori
the system to be well posed.lo Nevertheless, if k3 = 0, then
A = 0is a root with multiplicity 2, and if the system were
well posed, the corresponding Jordan block of the Jordan
matrix J = P~'AP should be diagonal, that is, the corre-
sponding eigenspace should have dimension 2.

Nevertheless, for k # 0, there is a unique form to have an
eigenvalue with algebraic multiplicity greater than 1, that is,
taking k3 = 0. In that case, the eigenvalues are

Ay = ilk

N )«0 - O, (61)

and a Jordan decomposition of A is

ikl 0 0 0

S| 0 ikl o (3 | (©2)
0 0 0 [k
0 0 0 0

which clearly has a missing eigenvector. Exponentiating A
using the above Jordan decomposition, we get the general
solution of (58):

ikl |k _Alk
ie ie 0 A V(l)
ieilklt _jo=ilkle 1 V9
U(t): ei\z\t e—i\%\t _lalk _|f1\k2(1_|_|7('|t) Vo
[£2]ke [2alk 3
o . v
ellkle g=ilklt 1 1+ k|t
(63)

From here we see that choosing any set (VY,..., V) €
R* with V9§ # 0, we generate initial data that give rise to
solutions that grow linearly both in frequency and time.

C. On the lack of continuity along evolution

Due to the fact that there are solutions that grow linearly
in |k|, it is possible to see that the evolution (63) is in
general noncontinuous with respect to the initial data. To
see this, it suffices to fix an instant of time t =7 > 0,
(which could be taken arbitrarily small) and check that
there does not exist a constant C > 0 such that

1%See [11], Lemma 2.3.1.
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lu(T, x)Il < Cllf(x)Il, (64)

for all initial data f(x) given at t = 0, where u(T, x) is the
corresponding evolution of that data until r = 7.

To see that such C does not exist we shall construct a
bounded sequence of initial data for (58), such that the
corresponding sequence of solutions is unbounded in norm
at time 7', (from now on, we will refer that sequence as the
evolution sequence). We shall build this sequence using the
same configuration as in (55), in which k; = k,, k3 =0,
and a := |£4|/]£5].

To build the solution we shall use the finite propagation
speed of perturbations (which is the speed of light) so that
we can consider locally plane wave solutions. Consider a
flat background spacetime which is foliated by constant
time planes. Let X, be the slice {# = 0}, and for R, T > 0,
let B(R,T)CZ, be the ball of radius R+ 7. Let us
consider a smooth background solution ¢; such that on
the domain of dependence of B(R, T) the gradients #“; are
constant and perpendicular to each other. Suppose that
outside the ball, background solutions decay smoothly to
zero so that the corresponding norms are uniformly
bounded.

We shall be looking for initial data

@, = (¢f, ¢3), 9,®[, = ((0191)°. (0,2)°) ~ (65)
of (58) such that ®,€H'(X,,R?) and
9,®|, € L*(%,,R?). As usual, define the norm of the
solution ®(t) = (¢, ¢,) at time ¢ as

IR = (10,PNF25 o)+ ||q’||§,l(mz))l/2, (66)
where [|@||;2z r2) = || @]l 25 and
”(D”?-II(E,RZ) = /): o1 + o> + Vo P + [V 2. (67)

Let us consider the following initial data sequence for the
perturbations, given on Z,:

Pilo = o3l = 0; (68)

) _ [e*¥/y/n, if xeB(R,T)
unl = {0 e  ©)
CY (70)

where k, = n(1,1,0) and g, is a bounded sequence in
L*(Z,\B(R, T)) such that 9,¢"|, is smooth over X, and the
norm of each element of the initial data sequence is
bounded.
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Denoting ®" := (¢!, ¢4), the norm of the above data is
I051% = N0, @5 1172 s,
- ”a (I) ”2 + ”a (I) ”LZ 2 \B(R T))

|B(R,T)|

where |B(R, T)| is the volume of the ball in X,. Thus, this
sequence is uniformly bounded since g, is so.

We shall see now that the restriction of the corresponding
evolution sequence on the ball B(R) C X; of radius R at
Yr = {t = T} grows without bound. Thus, if the restriction
grows with n without bound, the norm over the full time
slice X will also will also grow without bound. Finite
propagation speed assures us that the solution sequence at
B(R) will be just the evolution of the original plane wave
sequence defined on B(R, T). Indeed, this solution will be
unique in the whole domain of dependence of B(R, T) asa
consequence of Holmgren’s uniqueness theorem,''since
the corresponding initial data is smooth and is given over
B(R,T) C X, which is a noncharacteristic surface. Thus, in
order to analyze the behavior of the evolution on B(R), it
suffices to evolve the restriction of the initial data on
B(R,T) as if it were a plane wave over the whole space.
This corresponds to evolve system (58) by taking as initial
data

AN ~n 1
P |o =0, at(pl |0 :\/_ﬁ’ at(p2|o - a

The evolution at time ¢ = T is given by

> T - T
(T, k) =——=, (T, k) =———=, 73
(/)1( ) \/ﬁ (pl( ) (l\/ﬁ ( )
which corresponds to the unique solution
n r ik,x. n ik, -x
RTx) = e gi(T) = — e (74)

inside B(R) C ;.
For the norm of the full solution at time ¢t = T, we get

lo"(T)|I° > IICD”(T)| 2
= o"(T) I, ) 119, (D"(T)ll R)
= (T) + |||V(I)n( )HIB(R))

+ ||al¢n(T)”L2 B(R

= 2T2<1

HSee [24], Theorem 5.1., and [17], Prop. 5. for references.

+%>|B(R)|n+(9(1/n), (75)
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where we have denoted

I |V(I)| ”%g(R))

2
= Z ” |V(pl| ”iz(B(R))
j=1

Thus, there cannot exist a bound of the solution in terms of
a bound of the initial data, for any finite time, .

A similar proof is also valid for any Sobolev norm,
thus controlling an arbitrary finite number of derivatives,
and moreover, as shown by Strang, it can be extended for
perturbations around arbitrary smooth solutions. Essentially,
as we are considering perturbations of higher frequencies, we
can zoom in to smaller neighborhoods. Assuming the
background solution to be smooth, it only matters their
values at the zooming points.

D. 1Il posedness in the Leray-Ohya sense

Leray-Ohya hyperbolicity [25,26] seems to be a weaker
condition than strong hyperbolicity, for it uses topologies
which do not arise from norms, but rather from more
general topological spaces, as Gevrey spaces, where semi-
norms weighting derivatives of functions to all orders are
used (see [27] for detailed discussions). Thus, one might
entertain the idea that force-free in Euler potentials could be
hyperbolic in that sense. We show here that this is not the
case. We refer the reader to the Appendix for notations and
definitions.

We begin by considering the system (32) which is a set of
two partial differential equations for the potentials ¢; and
¢,. This system can be put in the Leray form (A1). Indeed,
setting N = 2, u! = ¢, and u®> = ¢,, we get

H' = (Vo)) (Vi) VOV, = (Vo) (V) VOV,; - (76)
H'y= (V1) (VP1)VV, = (Vg ) (Vi1 )V, (T7)

b =0; (78)

and similarly for the second equation. By this way, (32)
now reads

HY u' + H'u?> = 0; (79)
H21M1 +H22M2:0; (80)
and the associated Leray indices are

m(¢;) =2;

By identifying V, <> k, in (79)—(80) and computing the
characteristic determinant of the principal part, we arrive to
the same dispersion relation obtained in Sec. III B, Eq. (40),
when analyzing the characteristic structure of force-free
systems. While & is a hyperbolic polynomial of second

m(p,)=2; n(79)=0; n(80)=0. (81)
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degree, it is easy to see that %kz — Gk kPN y;V p; is not
hyperbolic.

V. CONCLUDING REMARKS

In this article we considered the equations that describe
force-free electrodynamics using Euler potentials. Studying
the hyperbolicity of such formulation, we found that in
these variables the theory is not strongly hyperbolic, and
thus the system does not constitute a well-posed initial
value problem. This implies that there is no energy (norm)
for which the solution is bounded by the same norm in the
initial data. To show this, it was sufficient to find an
equivalent first order reduction of the equations that
violates an algebraically equivalent criterion for strongly
hyperbolic systems proposed by Kreiss [11]. Using
Strang’s theorem for constant-coefficient systems we could
see that the system is not well posed in general.

We performed a characteristic decomposition of the FFE
system in Euler potentials with respect to a generic wave
front propagation direction and we derived the resulting
causal structure, finding two possible propagation planes.
We could find a complete set of eigenvectors in both cases,
except at a two dimensional set of planes formed by the
intersection of two null planes. This property does not
appear when studying the hyperbolicity of the system in
Maxwell variables, see for instance [8,9]. The reason for
the occurrence of this peculiarity is that perturbations
leading to divergent solutions in the present formulation
are not physical, i.e., the Maxwell tensor F,;, constructed
from these growing perturbations vanish identically.

On the other hand, and with the aim of displaying the
growing modes, explicit initial configurations were con-
structed such that the subsequent evolution led into fields
that developed a linear growth with frequencies. The study
of these solutions was completed by showing that evolution
is generally noncontinuous with respect to the initial data.
This is so for any norm built out from the initial data and a
finite number of its derivatives. To this end we explicitly
constructed a bounded initial data sequence and show that
the corresponding sequence of solutions at any given time,
however small, is unbounded, thus violating continuity for
those norms.

Furthermore, the same system was studied in the context
of Leray-Ohya hyperbolicity. This kind of hyperbolicity is
weaker than the one studied previously (strong hyper-
bolicity), because it focuses on the initial value problem
from initial data that belong to certain spaces of functions
whose topologies do not arise from any norm. An example
of these spaces are Gevrey classes; i.e., C* functions but
with Taylor series not necessarily convergent [27,28]. We
could see that FFEEP is also ill posed in the sense of
Leray-Ohya.

From the above results we conclude that FFEEP should
not be used in numerical simulations or other kinds of
approximations. Growing linear perturbations will become
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arbitrarily stiff as the grid frequency is increased.
Furthermore nonlinearities can alter that growth making it
to become exponential, rendering computations nonsensical.

The above results might not be conclusive in the
following sense. There are very simple examples (see,
e.g., [11]) for which by choosing Sobolev norms of
different weights for different variables one can show
continuity. These are very special cases, for generic lower
order perturbations of such a systems render them discon-
tinuous. It might be that the present system falls in that
category. For those, the general theory is hopeless and so
one should aim for finding very particular energy norms
and showing their corresponding nonlinear estimates. After
that, numerical schemes should be used such that those
estimates are preserved at the discrete level.
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APPENDIX: HYPERBOLICITY
IN THE LERAY-OHYA SENSE

In this appendix we perform a brief review of Leray
systems and the notion of hyperbolicity in the Leray-Ohya
sense, after introducing the notion of hyperbolic polyno-
mials and hyperbolic operators. We refer the reader to the
books [27,28], in which there is a detailed discussion of the
original works [25,26].

Hyperbolic polynomials. Over a smooth manifold M, let
P: T,M — Rbeapolynomial of degree n, with p € M. Let
us now consider the set C*(p, P) == {X € T;,M|P(X) = 0}.
In many contexts, and depending on the particular poly-
nomial P one is considering, C*(p, P) can be interpreted as
the boundary of a cone of covectors on 7', M, sometimes used
in general relativity for referring to the set of covectors that
make positive definite a certain symmetric structure (con-
structed from P, for instance)' The polynomial P(X) is said
to be hyperbolic if there exists Y € T*M such that every
straight line passing by Y which does not intercept the origin
X = 0, intersects the set C*(p, P) in n distinct points. An
operator L is said to be hyperbolic at p if it principal part
defines a hyperbolic polynomial.

Leray-Ohya hyperbolicity. Consider now a system of N
partial differential equations for N unknown scalar fields,

12Actually, it is possible to construct covector cones as duals to
the well-known mathematical cones in the following way: given a
(formal) cone C C V on a vector space V, we define the set
C*:={we V*w(v) 20, YV veC}, that is clearly a convex
cone.
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ud, A =1,...,N, defined over M. We say that such system
is a Leray system if it is possible to associate to any field u*
an non-negative integer my;, I =1,...,N and to each
equation another non-negative integer, namely n;, J =
1, ..., N such that it reads

HJI(X, am,(—nj—l MK, am,—nj)ul

+ b/ (x, oMKy =0, J=1,...,N, (Al)
where summation over index / is understood and there is
not a sum over integers m; and n;. The operator H’,,
known as the principal part of (A1), is an operator of order
at most m; — ny, and it depends on, at most, myg —n; — 1
derivatives of each field uX. If m; —ny < 0, then we set
H’,; = 0. Similarly, if mg —n; < 0 for some K, then H’,
does not depend on uX. The remaining terms b’ also
depend on at most mg — n; — 1 derivatives of each X, and
do not depend on those uX such that my —n; < 0. It is
clear that the operator H/; may not be linear in the fields
nor in their derivatives. The numbers m; and n; are called
Leray indices.

Recall that to a given differential operator 9%, we can
associate a monomial k% by the way

aa = agou,azn < k%= k8°~~kif”,
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where k?’ are real variables. With the above identification,
it makes sense to define the characteristic determinant of
system (Al), given by

D(x,u, k) = det (H ;(x, omx=m=1yK fm=nr)), (A2)
This is a homogeneous polynomial of degree
> ymyp =Y ny. If D0, then we say the system is regular
in the Cauchy-Kovalevskaya sense. Consider now the
Cauchy problem associated with (A1) with initial data
given over a Cauchy surface X. We say that system (A1) is
hyperbolic in the sense of Leray-Ohya if it is possible to

write the characteristic determinant as a product of ¢
hyperbolic polynomials

D(x,u, k) = Py(x,u,k)---P,(x,u, k), (A3)
such that the following condition holds:
max{deg(P,)} > max{m,} ~min{n,}.  (A4)

where deg(P;) is the degree of P;(x, u, k). Systems which
are hyperbolic in the Leray-Ohya sense are well posed in
certain Gevrey class spaces.
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