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Abstract: Primordial magnetic fields (PMFs) may explain observations of magnetic fields
on extragalactic scales. They are most cleanly constrained by measurements of cosmic
microwave background radiation (CMB) anisotropies. Their effects on cosmic recombination
may even be at the heart of the resolution of the Hubble tension. We present the most
detailed analysis of the effects of PMFs on cosmic recombination to date. To this end we
extend the public magneto-hydrodynamic code ENZO with a new cosmic recombination
routine, Monte-Carlo simulations of Lyman-α photon transport, and a Compton drag term
in the baryon momentum equation. The resulting code allows us, for the first time, to
realistically predict the impact of PMFs on the cosmic ionization history and the clumping
of baryons during cosmic recombination. Our results identify the importance of mixing of
Lyman-α photons between overdense- and underdense- regions for small PMF strength. This
mixing speeds up recombination beyond the speed-up due to clumping. We also investigate
the effects of pecuilar flows on the recombination rate and find it to be small for small
PMF strengths. For non-helical PMFs with a Batchelor spectrum we find a surprising
dependency of results on ultra-violet magnetic modes. We further show that the increase
in the ionization fraction at low redshift by hydrodynamic baryon heating due to PMF
dissipation is completely compensated by the faster recombination from baryon clumping.
The present study shall serve as a theoretical foundation for a future precise comparison
of recombination with PMFs to CMB data.
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1 Introduction

The local Universe seems to be permeated by magnetic fields in virtually all astrophysical
environments observed [1]. Fields with large coherence scales of ∼ µG magnitude are present
in the Milky Way and other galaxies. Though details are not clear, these fields may be due
to the action of a large-scale dynamo amplifying an initially small seed field [2]. Fields of
similar strengths are also found in higher redshift galaxies [3, 4], where the fewer rotations
those galaxies have undergone should make the dynamo less efficient. Magnetic fields of
µG strengths are observed in clusters of galaxies and could be explained by outflows of the
fields in galaxies within the cluster [5]. More difficult to explain are the fields of ∼ 50 nG
strengths recently observed in filaments of the cosmic structure [6–8], in factor ∼ ten overdense
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regions, and it has been argued that a primordial origin may be the best explanation [9].
It came to a surprise in 2010 that observations of TeV and GeV γ-rays from blazars seem
be most straightforwardly interpreted by an almost volume-filling cosmic magnetic field in
the extragalactic medium, albeit of potentially weak strength B0 > 10−15 G [10–15] (see
also [16–22] for more recent observations). It may well be that all of these fields have a purely
astrophysical origin, nevertheless, the community is far from a detailed understanding.

Alternatively, it has been proposed that magnetic fields may be a remnant of the early
Universe. A plethora of magnetogenesis scenarios exist (for reviews cf. [1, 23, 24]). In case such
a primordial magnetic field (hereafter, PMF) had ever been in equipartition with radiation,
such as plausible during cosmic phase transitions (e.g. the electroweak transition), the smallest
fraction ∼ 10−10 of this magnetic energy density surviving to the present, may be sufficient
to explain all present day fields without dynamo action. In such scenarios the bulk of the
magnetic energy density is indeed dissipated [25] with important details of such dissipation
currently under debate [26–30], particularly in the non-helical case. Another possibility is that
a PMF is generated right during inflation, in case conformal invariance of electro-magnetism
is broken in the early Universe. In contrast to phase-transition generated magnetic fields,
which have a very blue “Batchelor” spectrum [31, 32], inflationary produced fields have to be
approximately scale-invariant and dissipation plays a much less important role.

It seems fair to say that the origin of magnetic fields in the present-day Universe is
unknown, and further observations and theoretical work is needed. A seemingly clean argument
in favor of PMFs would be their detection at very high redshift, before the epoch of structure
formation, which is thought to provide the seed fields required by astrophysical generation
mechanism.1 An excellent probe could be the accurate observations of the spectrum of, and
the anisotropies in the cosmic microwave background radiation (hereafter, CMB), which has
already led to precision determination of cosmological parameters in a ΛCDM model, as well
as its approximate confirmation. Indeed many authors have studied the effects of PMFs on
the CMB. They considered anisotropic expansion [35], spectral y and µ distortions [36–38],
anisotropies due to Alfven and slow magnetic waves [39–60], a changing ionization history
due to plasma heating [38, 57, 61–64], extra polarization due to PMFs [41–43, 59, 65–73],
as well as non-Gaussianity in bi- and tri-spectrum [57, 74–84]. Most works have not seen
evidence for PMFs and have imposed upper limits in the comoving ∼ nG range.2 It is noted
that these upper limits are much larger than the field strength B0 ∼ 0.005 nG [85] required
for clusters of galaxies to have an exclusively primordial origin.

More recently one particular effect of PMFs on CMB anisotropies has been identified.
Independent on PMFs being of inflationary or phase transition origin, the small-scale part
of the PMFs, dissipating around recombination, induces small-scale, non-linear density
fluctuations in the baryons even for fairly weak B0 ∼ 0.01–0.05 nG final present day field [86–
88]. This is possible as on small scales the photons are free-streaming, and magnetic
stresses may induce density fluctuations only opposed by the comparatively low baryon

1There are also a number of recent studies attempting to constrain approximately scale-invariant PMFs
from the enhanced structure formation on small scales [33, 34].

2The exception here is the limit on PMFs of B0 < 0.05 nG [84] on inflationary fields from the non-Gaussianity
in the tri-spectrum when the inflationary curvature mode is taken into account.
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pressure. Recombination in such a “clumpy” Universe is sped up, due to high-density regions
recombining earlier [89], thereby moving the peaks of the CMB to higher multipoles. This
effect was confirmed in numerical MHD simulations and has been used to impose fairly
stringent limits on PMFs [88].3

It has been subsequently shown that an earlier recombination due to PMFs and the
associated baryon clumping, reduces the sound horizon and seems promising to relieve the
Hubble tension [90, 91]. The Hubble tension is a ∼ 5σ tension between the present day
Hubble constant H0 inferred in the local Universe from Type 1A supernovae calibrated on
Cepheids, and H0 from CMB observations employing ΛCDM and a standard recombination
history (see [92] for a review). Using the most recent Planck data, and three local H0
determinations, a 3 − 4σ detection of baryon clumping before recombination was claimed,
with an associated increase in H0 to higher values [90]. When combing with other data sets,
such as BAO, Type 1A supernovae and DES, the clumping detection significantly reduced.
An analysis without the three local H0 observations, using combinations of Planck data with
high multipole CMB data ACT and SPT [93–95], did not show a clear detection of clumping.
Thus CMB data only does not favor clumping but also does not rule it out to the degree
that clumping could enhance the prediction for H0. It is noted here that the existence of
PMFs may be tested by direct observation of the remnant recombination radiation [96] and
the formation of dark matter mini-halos [97].

All of the above analysis was performed using ad hoc three-zone baryon density probability
distribution functions (pdfs) describing the clumping by one parameter b, the clumping factor,
which is the variance of baryon density perturbations. Here the ionization history was
computed by appropriately averaging the electron fraction of three independent regions with
different baryon densities. Though such models may be good for a first description of clumping,
they are insufficient for an accurate comparison between theory and observations, given the
accuracy of current and future CMB data. In particular, one can show that the ionization
history does not depend only on the baryon pdf, but on the evolution of baryon density of each
gas element. In realistic scenarios the baryon pdf also evolves, whereas in three-zone models
it is simply assumed constant. Moreover, three-zone models may assume a very unrealistic
baryon pdf. Finally, a direct connection between the change in ionization history due to PMFs
and the present-day leftover PMF field is hard to accurately establish in three-zone models.

In this paper we wish to address these issues, in order to obtain as precise as possible
predictions. Such a study can only be performed by resorting to a host of full three-dimensional
MHD simulations, which include all effects known to date. In the course of our study we
analyze other so far unnoted effects, such as the effect of peculiar motions on the Lyman-α
photon escape rate, and the transport of Lyman-α photons between different regions. We find,
that in particular the latter effect is of importance. The goal of the paper is to improve the
study of PMFs during recombination significantly as a preparation for an accurate comparison
of PMF theory with CMB data in a future publication.

The outline of the paper is as follows. In section 2 we discuss details of the numerical
MHD simulations, the employed MHD solver, the physical effects included, and the newly
written recombination routine. We then present results of a realistic baryon pdf. Section 3

3The study used an effective three zone model and employing older CMB data.
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reviews standard recombination theory and presents results of a Monte-Carlo analysis of
the propagation of Lyman-alpha photons during recombination. In section 4 we analyze
the effects of Lyman-α photon mixing on the ionization history, presenting a new explicit
expression for the recombination rate in the full-mixing limit. Section 5 presents results of
MHD simulations of PMFs before, during, and after recombination. Particular emphasis
is laid on non-helical PMFs with a Batchelor spectrum and the change of the global free
electron fraction Xe ≡ ⟨ne⟩/⟨nH⟩ (i.e. the ratio of the average free-electron abdundance to
the average abundance of hydrogen nuclei) compared to a non-magnetized Universe. In
section 6 we discuss the combined effect of baryon clumping and hydrodynamic heating by
PMF dissipation on Xe. Conclusions are drawn in section 7. In appendix A we present
the details of our Lyman-α Monte-Carlo simulation. Appendix B briefly describes helium
recombination. Appendix C presents a numerical convergence study.

2 Numerical simulations of compressible MHD in the expanding Universe

2.1 Physical problem to be solved

In this paper we want solve the following problem. We assume a Gaussian-distributed
primordial magnetic field Bprim = B(t → 0). We then want to follow the time evolution
of the magnetic field B, coupled to the evolution of baryon density and peculiar velocity
fields, ρb and v, respectively. The MHD equations in an expanding Universe are given in
refs. [25, 98]. Here we complement them by including photon drag on baryons, assuming
photons to be free-streaming (i.e. have a mean-free path much larger than the scales of
interest) thus uniform on the small scales of interest. We moreover neglect gravitational
potentials, since we are interested in scales much smaller than the baryon Jeans scale. The
equations to be solved are therefore

a ∂t(a3ρb) + ∇ · (a3ρbv) = 0, (2.1)

∂t(av) + (v · ∇)v + α a v = −∇(c2
sρb)

ρb
+ B × (∇ × B)

4πρb
, (2.2)

∂t(a2B) = a∇ × (v × B), (2.3)

where all gradients are comoving, baryon velocity is in the CMB rest frame, and a is the scale
factor, whose time evolution is given by ȧ/a = H, where H is the Hubble rate. Note that
the equation for the magnetic field does not account for the Biermann-battery effect, which
is relevant at much later times than of interest here [99, 100]. In the Euler equation (2.2),
the (spatially-varying) baryon sound speed is

c2
s = ntot

ρb
Tb ≡ nH(1 + xe) + nHe

ρb
Tb, (2.4)

where Tb is the baryon temperature, xe ≡ ne/nH is the (spatially-varying) free-electron
fraction, with ne the electron density and nH = np + nH0 the sum of proton and neutral
hydrogen density, and nHe ≈ 0.08 nH is the total helium density, in both neutral and ionized
forms. Even though photons are free-streaming, it is well known that in this limit the
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abundant photons still play an important role, as they induce a drag force on the baryons [89]
proportional to the drag rate α, given by

α = 4
3

neσThργ

ρb
, (2.5)

where σTh is the Thomson cross section, ργ is the (uniform) photon energy density and mp

the proton mass. Before recombination α ≫ H so photon drag forces the MHD evolution
in the viscous regime, i.e. with Reynolds number of order unity. After recombination, the
MHD evolution becomes turbulent.

We see that the MHD equations must be complemented by an evolution equation for
the local ionization fraction xe, relevant to both photon drag and baryon pressure. The
evolution of xe takes the following form:

∂txe + a−1v · ∇xe = ṅe|rec
nH

, (2.6)

where ṅe|rec is the (local) rate of change of free-electron density due to cosmological recom-
bination, which we will discuss in more detail in the following sections. The most relevant
quantity for CMB anisotropies is the global free-electron fraction Xe, defined as

Xe ≡ ⟨ne⟩
⟨nH⟩

= ⟨nHxe⟩
⟨nH⟩

= ⟨ρbxe⟩
⟨ρb⟩

, (2.7)

where ⟨. . .⟩ denotes a spatial average. Accurately computing the effect of PMFs on Xe is
one of the main goals of this work.

Though the baryon temperature Tb is to excellent approximation given by the CMB
temperature TCMB due to Thomson scattering for redshifts z ≳ 1000, it may deviate at
lower redshifts. In particular, Tb may exceed TCMB due to the energy released into the
plasma by magnetic field dissipation [61]. The evolution of the local baryon temperature
is governed by the following equation

dTb

dt
= 2

3
dρb/dt

ρb
+ 8σT hxenHργ

3mecntot

(
TCMB − Tb

)
+ 2Γ

3ntot
, (2.8)

where the terms on the r.h.s. are due to adiabatic cooling/heating, CMB cooling/heating,
and heating due to magnetic field dissipation, with Γ the volumetric heating rate. We will
discuss Γ and the effects of this dissipation in section 6.

2.2 Numerical implementation

For the numerical simulations of PMFs before, during and after recombination we used the
publicly available code ENZO [101]. We chose the MUSCL solvers with Dedner divergence
cleaning described in [102]. Through rescaling all physical quantities by appropriate powers of
the scale factor a, the MHD equations given above can be reformulated as the MHD equations
in a Minkowski, static metric, with an additional drag term proportional to the Hubble
rate. The Minkowski metric is chosen to coincide with the CMB rest frame. Specifically,
we defined the rescaled variables

dt̃ ≡ a−3/2dt, ρ̃b ≡ a3ρb, ṽ ≡ a1/2v, B̃ ≡ a2B. (2.9)
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In terms of these variables, the MHD equations become

∂ρ̃b

∂t̃
+ ∇ ·

(
ρ̃bṽ

)
= 0, (2.10)

∂ṽ
∂t̃

+
(
ṽ · ∇

)
ṽ +

(
α̃ + H̃

2

)
ṽ = −∇(c̃2

sρ̃b)
ρ̃b

−
B̃ ×

(
∇ × B̃

)
4πρ̃b

, (2.11)

∂B̃
∂t̃

= ∇ ×
(
ṽ × B̃

)
, (2.12)

where we have defined the rescaled sound speed, photon drag rate and expansion rate as

c̃s ≡ a1/2cs, α̃ ≡ a3/2α, H̃ ≡ a3/2H. (2.13)

For details the reader is referred to appendix B of [25]. The rescaling induces only one extra
Hubble redshift term in the Euler equation, such that standard MHD codes in Minkowski
space may be used when this term is included. It is noted that this rescaling may be applied
during matter domination as well as radiation domination. As Tb = TCMB ∝ 1/a for z ≳ 1000,
up to the dependence on xe we have cs ∝ 1/a1/2 which implies that c̃s is approximately
constant. Nevertheless, c̃s drops by an approximate factor 1/

√
2 during recombination due

to the factor two smaller total particle number density when xe → 0.
In the rescaled variables, the free-electron fraction xe evolves according to

∂xe

∂t̃
+ ṽ · ∇xe = a3/2 ṅe|rec

nH
, ñH ≡ a3nH. (2.14)

To evolve xe, we coupled the MHD simulations to a “chemical” solver which computes
the abundances of singly ionised hydrogen and helium at each time step. The existing
chemistry solver in ENZO [103] was optimized for non-equilibrium gas chemistry in the
coronal limit [104] and is not suited for this study. We instead developed a new routine using
a 6th order Runge-Kutta solver. We will discuss the recombination rate ṅe|rec in great detail in
sections 3 and 4, but in a nutshell, we include the most relevant processes during cosmological
recombination and develop a new analytic result valid in the limit of scales much smaller
than the mixing length of Lyman-α photons. We checked that our routine reaches 0.5–1.5%
accuracy in comparison with Recfast [105] when computing recombination in a homogeneous
Universe. Our routine does not, however, reach the sub-percent accuracy of state-of-the art
cosmological recombination codes Hyrec [106, 107] and Cosmorec [108], which include
many other physical effects. As we will see, PMFs may easily change the free-electron fraction
at the ∼ 20% level, and such an extreme accuracy is therefore not required for our purposes.

Let us emphasize that our implementation of recombination within the MHD simulations
is an important novel aspect of this work, which goes well beyond the “three-zone model”
implementations of past works, as we will discuss again later.

2.3 Results

All MHD simulations in this paper use default cosmological values of h = 0.67, Ωbh
2 = 0.0224,

Ωch
2 = 0.12, and Yp = 0.24 for Hubble parameter, baryon density, CDM density, and

helium mass fraction, respectively. In figure 1 results of a numerical simulation of a PMF
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Figure 1. Two dimensional visualisations of the evolution of a PMF and the generated baryon density
fluctuations in a 2563 numerical MHD simulation of a non-helical PMF with Batchelor spectrum.
Initial conditions at redshift z = 4500 were chosen as VA,rms = 12cs (i.e. comoving 0.526 nG) and
vanishing density baryon fluctuations. The left panels show the projected V 2

A,rms whereas the right
panels show the projected baryon overdensity ∆ ≡ ρb/⟨ρb⟩ at three different redshifts z = 3000, 1000
and 100.
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in a comoving (24 kpc)3 box with resolution 2563 are shown. In particular, the left panels
show projected magnetic energy density at redshifts z = 3000, z = 1000, and z = 100,
respectively, whereas the right panels show projected baryon overdensity ∆ ≡ ρb/⟨ρb⟩ for
the same redhifts. As initial conditions we chose a particular random configuration of a
non-helical PMF with Batchelor spectrum

B(L) ∼ L−5/2 (2.15)

where L is length scale.4 All modes with wavelength in the range 24 kpc ≥ λ ≥ 3 kpc were
excited. The rms magnetic field strength in the simulation box has been normalized to
B̃rms = 0.525 nG comoving. This corresponds to an Alfven velocity twelve times as large
as the speed of sound of singly ionized hydrogen and helium.5 The simulation started at
redshift z = 4500 with vanishing peculiar flows and uniform baryon density. Note that
such initial conditions are very realistic. At early times when the photon mean free path
lγ < L, the effective speed of sound is large, cs = c/

√
3, such that the fluid is incompressible

and no substantial density fluctuations can be generated by relatively weak PMFs. When
lγ ∼ L photon dissipation is so strong that all pre-existing peculiar velocities will be erased.
Only when lγ ≫ L at lower redshift will magnetic stresses slowly be able to accelerate the
fluid and build up density perturbations. For details of the evolution of PMFs in the early
Universe the reader is referred to [25].

It is seen that by redshift z = 3000 the PMF has generated slightly non-linear density
fluctuations on ∼ kpc scales. These overdensities seem to follow a filamentary structure.
At redshift z = 1000, close to the maximum clumping produced in baryons, structures
appear more fuzzy. This is due to the fluid leaving the viscous regime and transitioning into
turbulence, due to the drop of electron density and the associated significant reduction of
drag force. By redshift z = 100, when the clumping has significantly diminished, structures
are even more fuzzy. At all three redshifts magnetic structures are more extended.

In figure 2 the evolution of comoving magnetic energy density, root-mean-square velocity,
and clumping factor

b ≡ ⟨ρ2
b⟩ − ⟨ρb⟩2

⟨ρb⟩2 (2.16)

are shown for this simulation. During the freely decaying evolution of the PMF the magnetic
energy density is reduced by more than two orders of magnitude, leading to a final comoving
rms field of B0 ≈ 4.38 × 10−2 nG. Here the most rapid reduction occurs right around
recombination, as dissipation which could not occur before due to the large photon drag

4Eq. (2.15) should be taken illustrative, meaning that the rms magnetic field strength when smoothed
over L scales as L−5/2. In praxis, to assure a divergence-free field ∇B = 0, the Fourier modes of the
vector potential A with B = ∇ × A are excited with random amplitudes drawn from a Gaussian with width
σk ∼ (k/k0)5/2−3/2−1, where k is wavevector and k0 a reference scale. Here the exponent −3/2 stems from
phase space, i.e. ⟨B2⟩ = k3⟨B̃2

k⟩ where B̃k is the Fourier amplitude, and the exponent −1 from the relationship
between B̃k = k × Ã. Finally, one can show that a completely non-helical field is attained when setting all
phases to zero in the Fourier decomposition.

5The speed of sound of singly ionized hydrogen and helium and the Alfven velocity at redshift z = 1090 are
cs ≈ 6.33 km/s and vA = 4.34 km/s[B0/(0.03 nG]), respectively.
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Figure 2. Redshift evolution of the comoving magnetic energy density ϵB = B̃2
rms/8π, normalized

to unity for B̃rms = 4.38 × 10−2 nG (top), of the root-mean-square velocity over the speed of sound
(middle), and of the baryon clumping factor b given in eq. (2.16) (bottom). Baryon density fluctuations
are generated before recombination by the Lorentz force of the stochastic magnetic field. All quantities
are evaluated for the numerical simulation shown in figure 1.

occurs when the fluid becomes turbulent. One may also observe the transition from viscous
MHD to turbulent MHD by the increase of the root-mean-square velocity from subsonic
values to slightly supersonic values during recombination. The PMF evolution time scale
during recombination is thus not governed by the Hubble time, as during most other periods
of the early Universe, but the shorter time scale of change in Xe. It is noted that even after
recombination there is still some further decay. Simple analytic estimates [25] predict only
logarithmic decay after recombination, but since the redshift range between recombination
and the present is substantial, even logarithmic decay is still notable. The clumping factor
of the baryons increases from zero to a maximum of b ≈ 1.7 at redshift z ≈ 1250 to then
decrease to much lower values b ≈ 0.1 at redshift z ≈ 10. Due to the reduction of the
speed of sound and the beginning of turbulent evolution right at recombination, clumping
quickly increases due to magnetic stresses and then decreases due to baryonic pressure
forces at recombination. The box size employed is such as to have the maximum effect at
recombination, in order to induce the maximum change in ionisation history ∆Xe observable
by the CMB anisotropies. Much smaller modes (simulation boxes) would induce the peak in
b at higher redshifts, whereas much large modes would induce a peak in b at lower redshifts.
We discuss this point further in section 5.2.

The left panel of figure 3 shows the pdf of baryon overdensity P (∆) for a large number
of redshifts. Red lines are for the redshift range z = 4400–1500 with the pdf becoming
continuously harder, while green lines are for the redshift range z = 1000–10 with the pdf
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becoming softer again. At the peak of clumping a small fraction of volume ∼ 10−3 exists
at extreme overdensities of ∆ > 10, while most of the volume is at ∆ ≈ 0.2. The effects
of PMFs on the baryons even for a final magnetic field strength as low as ∼ 0.05 nG are
thus quite drastic. We note that those trends are not so well observed in figure 1, as there
projected density is shown. The existence of very high-density zones poses a problem for the
computation of the clumping factor. As we show in appendix B, in order to correctly resolve
these high-density regions one needs very high resolution or adaptive mesh. The computed
clumping factor b increases with resolution. However, also shown in appendix B is that
the quantity which is really of interest, the ionization fraction Xe, converges even at lower
resolutions. In three zone models a classification of the density fluctuations by b was employed.
In realistic MHD simulations as performed here, the clumping factor should not really be
used as a quantitative measure to obtain the connection between Xe and PMF strength B0.

For comparison, “three-zone models” used in previous analyses assume an unrealistic
PDF P (∆) = ∑3

i=1 f i
V δD(∆ − ∆i), where the three overdensities ∆i and volume-filling

fractions f i
V are constant in time, and satisfy ∑i f i

V = 1 = ∑
i f i

V ∆i, and ∑i f i
V ∆2

i = 1 + b.
Here b is the clumping factor. This problem is underconstrained, so different models (M1,
M2, etc. . . ) make some extra ad-hoc assumptions to fix all six parameters {fi, ∆i}. In
the right panel of figure 3 we compare the numerically-obtained pdf of baryon density at
z = 1500 to the M1 three-zone model with the same clumping factor b = 1.28. It is seen
that the M1 model gives a particularly poor representation of the baryon pdf. The same
holds for the M2 model. Both predict a much larger fraction of baryons at ∆ > 1 and a
lower fraction of underdense regions than the simulations. We thus suspect that three-zone
models overestimate the effect on ∆Xe, or vice versa, for a similar ∆Xe much larger clumping
factors will occur in the realistic case, with a significant fraction of the contribution to the
clumping factor from very high-density regions.

3 Lyman-α photon transport during recombination

In what follows we give a brief review of cosmological recombination and motivate the need
for a Monte-Carlo computation of Lyman-α photon transport in an inhomogeneous Universe.
We focus on Hydrogen recombination, which is most relevant to the MHD evolution (during
the second Helium recombination, xe is always in the range (1, 1.08), regardless of the details
of helium recombination), as well as to CMB anisotropies. For completeness, we briefly
describe our simplified model for Helium recombination in appendix B.

3.1 Review of standard hydrogen recombination

3.1.1 The standard effective 3-level atom model

We assume that helium has fully recombined by the time hydrogen recombination starts,
which is a very accurate approximation (see e.g. ref. [109]). As a consequence the abundances
of free electrons and protons are equal by charge neutrality, ne = np. We denote by n1s the
abundance of neutral hydrogen in its ground state, which to excellent accuracy is equal to the
total abundance of neutral hydrogen, n1s ≈ nH0 = nH − ne, where nH is the total abundance
of hydrogen, ionized and neutral. To simplify the calculation, we assume that angular
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Figure 3. Left: probability P (∆) to find a volume element at density between ∆ and ∆ + d∆, where
∆ ≡ ρb/⟨ρb⟩. The redshift evolution for the numerical simulation shown in figure 1 at z = 4000, 3000,
2000, 1000, 500, 100 and 10 is shown. P (∆) is shown by red (green) lines before (after) the maximum
of the clumping factor occurs at zmax ≈ 1250. The lines for P (∆) at redshifts z = 4000 and z = 10 are
slightly thicker. For z > zmax the maximum moves to lower densities and very high density regions
get more and more probable, whereas for lower redshifts z < zmax the maximum moves to higher
densities and very high density regions get less and less probable. Right: the probability P (∆)∆ to
find a baryon at density between ∆ and ∆ + d∆ at redshift z = 1500, compared with the analogous
quantity f i

V ∆i for the M1 three-zone model at the same clumping factor b = 1.28, shown with green
dots. This illustrates that three zone models do not capture the baryon probability function correctly.

momentum substates within a given energy shell are in statistical equilibrium, so that, in
particular, the abundance of hydrogen in the 2p and 2s states are related through n2p = 3n2s.

Direct recombinations to the ground state are highly inefficient due to the very short
mean-free-path of Lyman-continuum photons. As a consequence, recombination proceeds
through the excited states, with a rate given by [110]

ṅe|rec = −αen2
e + βen2s, (3.1)

where αe is the case-B radiative-recombination coefficient and βe is the corresponding
photoionization rate per atom in the 2s state.6 Note that instead of the exact effective
recombination coefficient AB(Tγ , Tb) computed in ref. [106], where Tγ and Tb are the photon
and baryon temperatures, respectively, we use the RecFast approximation [105, 111, 112]
αe(Tb) = 1.14 AB(Tγ = 0, Tb), where AB(0, Tb) is obtained from ref. [113], and obtain βe

by detailed balance.
This equation must be complemented by an evolution equation for the abundance of

excited hydrogen n2 = n2s + n2p = 4n2s. It evolves due to three processes: radiative
recombinations (and the corresponding photoionization), two-photon transitions from the
2s state, and Lyman-α transitions from the 2p state:

ṅ2 = −ṅe|rec + ṅ2s|2γ + ṅ2p|Lyα. (3.2)

6We choose to write all the rates in terms of the abundance of hydrogen in the 2s state, instead of the
total abundance of excited hydrogen n2 = 4n2s. Therefore, βe is 4 times the photoionization rate per atom in
the n = 2 state.
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Up to small corrections, the two-photon term is

ṅ2s|2γ = −Λ2γ

(
n2s − n1se−Eα/Tγ

)
, (3.3)

where Λ2γ ≈ 8.22 s−1 is the 2s → 1s two-photon spontaneous decay rate and Eα = 10.2 eV
is the energy between the ground and first excited state.

Naively, the net decay rate in the Lyman-alpha transition would take a similar form,
with the much larger 2p → 1s spontaneous decay rate A2p,1s ≈ 6.3 × 108 s−1. However,
because the Lyman-α transition is optically thick, only a small fraction of emitted photons
redshift out of the line and escape reabsorption. In the Sobolev approximation, this fraction
is Pesc ≈ 8πH/(3λ3

αn1sA2p,1s) ≪ 1, where λα is the Lyman-α wavelength and H is the
expansion rate. The net decay rate in the Lyman-α transition is thus

ṅ2p|Lyα = −PescA2p,1s

(
n2p − 3n1se−Eα/Tγ

)
= Rα

(
n2s − n1se−Eα/Tγ

)
, (3.4)

where
Rα = 3PescA2p,1s = 8πH

λ3
αn1s

. (3.5)

In practice, we may solve for n2s in the quasi-steady state approximation, taking advantage
of the very short timescale for transitions into and out of the excited states relative to the
expansion rate:

ṅ2s ≈ 0 = αen2
e − βen2s − (Λ2γ + Rα)

(
n2s − n1se−Eα/Tγ

)
, (3.6)

implying

n2s = αen2
e + (Λ2γ + Rα)n1se−Eα/Tγ

βe + Λ2γ + Rα
. (3.7)

Inserting this result into eq. (3.1), one obtains the following net rate of recombinations:

ṅe|rec = −C
(
αen2

e − βen1se−Eα/Tγ

)
, (3.8)

where the dimensionless parameter C is the famous Peebles suppression factor

C = Λ2γ + Rα

βe + Λ2γ + Rα
, (3.9)

which quantifies the efficiency of net transitions to the ground state (accounting for the
suppression of Lyman-α transitions due to their large optical depth) relative to the total
net rate of transitions out of the excited state. The Peebles C factor is much less than
unity for z ≳ 1000 (of order C ∼ 10−2 near the peak of the visibility function at z ≈ 1100),
and becomes close to unity for z ≲ 800.

In the absence of large inhomogeneities, the background ionization history is obtained by
solving eq. (3.8) with the background abundances ne = ⟨ne⟩ and n1s = ⟨n1s⟩.
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3.1.2 Perturbed recombination in the no-mixing limit

The generalization of the recombination rate to a perturbed Universe is well-known in the
limit that the characteristic distance Dα traveled by Lyman-α photons before re-absorption
(as opposed to merely scattering) is much shorter than the length scale λ of perturbations of
interest [114, 115]. In that case, recombination is entirely local.7 The local net recombination
rate is then still given by eq. (3.8), where ne and n1s are now the local ionized and neutral
hydrogen densities, and with a modified net rate of Lyman-α loss obtained from substituting
H → H + 1

3∇ · v in eq. (3.5), where ∇ · v is the local divergence of baryon peculiar velocities.
The latter substitution accounts for the enhanced (or decreased) redshifting of Lyman-
α photons out of resonance for diverging (or converging) local bulk flows. Note that this
substitution is exact (in the limit that Dα ≪ λ) for large diverging local bulk flows with ∇ · v >

0, as long as the local optical depth for true Lyman-α absorption, inversely proportional to
(H + ∇ · v/3), remains large, which in practice means as long ∇ · v/3 ≲ 104H. However, for
converging local bulk flows with ∇ · v < 0, the expression only holds as long as ∇ · v/3 > −H,
and special care should be given for more negative local velocity divergence.

In the case of non-linear baryon perturbations sourced by primordial magnetic fields of
the characteristic strengths we consider in this paper, we find root-mean-square values for
the local divergence of peculiar flows of (∇ · v)rms ∼ 20H, indicating that bulk flows could
in principle have a very significant effect on the net rate of Lyman-α decays. However, the
problem we consider is not within the Dα ≪ λ limit: as we will see, Dα is of the same order
or larger than λ ≈ 1 kpc, the typical magnetically induced velocity- and density- fluctuation
length. As a consequence, recombination is no longer local, as different patches “communicate”
through Lyman-α photons, and the net rate of recombination must be re-examined.

In the next subsection, we evaluate the typical distance Dα traveled by Lyman-α photons
using Monte Carlo simulations.

3.2 Lyman-α mixing length from Monte Carlo simulations

In our Monte-Carlo simulations we inject Lyman-α photons into the plasma, and follow their
evolution in physical and frequency space during the ∼ 105–107 scattering events on neutral
hydrogen, before reionzation by the CMBR black body of the excited n = 2 state and thus
absorption of the Lyman-α photon. Photons which diffuse in frequency too far onto the red
wing of the Lyman-α resonance line are likely lost by redshifting. Photons which “diffuse”
too far in physical space are subject to different local physical conditions in ∇v and density.
The details of our Monte Carlo method are presented in appendix A.

Figure 4 shows the fractions fα(D) of Lyman-α photons having traveled between creation
and destruction further than distance D. In the top panel, we show this function for different
redshifts, highlighting the fact that at lower redshifts Lyman-α photons travel further before
being destroyed. This is due to the decrease in the photoionization rate by CMB photons βe,
whereas the Lyman-α de-excitation rate A2p,1s remains constant. It is seen that appreciable
fractions of photons travel further than the typical comoving fluctuation length λ ≈ 1 kpc.

7This limit also requires the mean-free path of Lyman-continuum photons to be short relative to the scales
of interest. This mean-free path is of order a comoving parsec [116], much smaller than the scales we consider
here, so we need not consider the finite propagation of Lyman-continuum photons.
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Figure 4. Fraction of Lyman-α photons which have traveled further than a given comoving distance
D before being destroyed (i.e. absorbed followed by a photoionization or 2-photon decay). Top: this
fraction is shown as a function of comoving distance D, for several discrete redshifts 900 ≤ z ≤ 1400.
The light dotted line shows the result for simple diffusion at redshift z = 1100, i.e. a Gaussian
distribution with the same variance as that inferred from the realistic distribution. Bottom: this
fraction, interpreted as a scale-dependent Lyman-α mixing fraction, is shown as a function of redshift,
for comoving scales D = 0.3, 1 and 3 kpc, respectively, from top to bottom.

Figure 4 also shows by the dotted line the equivalent distribution at z = 1100, in case the
propagation would be a diffusive random walk. It is seen that simple diffusion does not apply.
As argued in ref. [116] the distribution is more like a blast wave. Most of the distance is
covered during a few ∼ 103 scattering events, when the Lyman-α photon is temporarily on
the extreme red or blue wing of the line, as here the mean free path drastically increases (cf.
figure 13). During the remainder of the ∼ 105–107 scatterings, when the Lyman-α photons
are in the core of the line, hardly any distance is covered.

As can be observed from the top panel of figure 4 Lyman-α photon mixing on ∼ kpc
scales is substantial but not complete, in particular at high redshifts. The bottom panel shows
the evolution of fα(D) with redshift, for three different scales, D = 0.3, 1, and 3 kpc, from
top to bottom. This fraction can be interpreted as a “mixing fraction” for each length scale.

Figure 5 investigates the fraction of Lyman-α photons which is lost due to redshifting, as
a function of bulk flows. Without bulk flows, in a Universe with cosmological parameters as
inferred from the best-fit to the Planck data, the fraction of photons lost due to redshifting
and lost due to two photon decay are fz(v = 0) ≈ 5 × 10−3 and f2γ ≈ 1.5 × 10−2 at redshift
z ≈ 1100, respectively. In the presence of peculiar flows results are very dependent of
the coherence scale λ of the flow. The yellow line shows result for λ ≫ Dα and is in full
agreement with the analytical result. However, for smaller λ the effect is much diminished as
the Lyman-alpha photons alternatively travel through diverging and converging flows. For
λ = 0.1 kpc the result of fz(v = 0) is essentially recovered, whereas for λ = 1 kpc there is a
small deviation from fz(v = 0), with however a reduction for ∇ · v < 0 and an enhancement
for ∇ · v > 0. In section 5 we perform MHD simulations for a variety of magnetic field
strength. From these simulations we can infer at typical λ ≈ 0.1 kpc and 1 kpc for PMFs with
a Batchelor spectrum leading to a “final” field strength of 20 pG and 136 pG, respectively.
We suspect therefore that for low final field strengths the effects of peculiar flows on the
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Lyman-α escape rate should be negligible, whereas for much stronger PMFs, we expect an
additional reduction of Xe due to peculiar flows. However, this latter field strength seems
already ruled out if only the effect of clumping is taken into account [88].

It is our goal to obtain a very precise prediction of the average ionzation fraction Xe.
To verify our suspicion that additional losses of Lyman-α photons due to bulk flows are
negligible, we have indulged in a more elaborate Monte Carlo simulation of Lyman-α photon
loss. In particular, we have used snapshots of the numerical simulations in order to have a
realistic and detailed knowledge of the density- and velocity- distribution at a given redshift.
We have then “emitted” Lyman-α photons from a great number of randomly chosen locations
and followed their propagation in physical space and evolution of energy space. This allowed
us to compute the global Lyman-α photon loss rate numerically8 and compare it to the one
in a Universe without pecuilar bulk flows and fully mixed Lyman-α photons. Differences
between these two global loss rates are due to two effects: bulk flows and the effect of
partial Lyman-α mixing important at higher redshifts where Dα becomes relatively small.
To isolate the two effects we ran our Monte-Carlo simulations with and without pecuilar
flows. For a simulation with Batchelor spectrum leading to a final field of 20 pG we did
find an enhancement of the loss reate by only a few percent, with the loss rate at the most
important redshifts around recombination z ∼ 1100 virtually identical. The enhancement
of a few per cent was in almost equal parts due to bulk flows and partial Lyman-α photon
mixing. By computing the changes in ionization history due to the small enhancement of
Lyman-α photon loss in a homogeneous Universe (for simplicity) we could conclude that the
relative change should be below the one per cent level for those field strengths not already
ruled out. We conclude therefore that negelcting bulk flows and assuming full Lyman-α
mixing introduces errors in Xe not larger than one per cent.

4 Hydrogen recombination with Lyman-α photon mixing

In the previous section we have found that in an inhomogeneous Universe, with inhomogeneities
on comoving kpc scales, Lyman-α photons of different regions may actually partially mix. We
now investigate the effect on the average ionization fraction during recombination. Our work
is mostly concerned with hydrogen recombination, and we briefly describe our approximate
treatment of Helium recombination in appendix B.

4.1 Net Lyman-α transition rate in the full-mixing limit

4.1.1 General setup

In order to treat Lyman-α photon mixing, we must return to the first-principles derivation of
the net decay rate in the Lyman-α transition. We will follow ref. [117].

At a fundamental level, the net decay rate depends on the photon occupation number
fν(n̂) in the vicinity of the Lyman-α resonance, averaged over photon propagation directions

8In particular we evaluated the integral (1/V )
∫

Cαen2
e by Monte Carlo integration and compared it to the

fully Lyman-α mixed (cf. section 4) result (1/V ) Cmix ∫ αen2
e which was applied in the simulations.
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Figure 5. The fraction of Lyman-α photons lost due to redshifting as a function of the gradient of
the bulk velocity over the Hubble constant ∇ · v/H. Results of the Monte-Carlo simulation are shown
by dots with lines as a visual aid. The 3D simulation assumes a bulk flow of form vb = v0sin(2π x/λ)
in x-direction and photons are injected at x = 0. Purple, green, blue, and yellow dots are for comoving
λ = 0.1 kpc λ = 1. kpc, λ = 10 kpc, and λ = 1 Mpc respectively. The two black dots show the analytical
result i.e. H → H + ∇v/3, for coherent bulk flows on very large scales, illustrating agreement between
the Monte-Carlo and the analytical result. The computation was performed at redshift z = 1100, the
redshift of the approximate peak of the CMB visibility function.

n̂ and integrated over the line profile ϕ(ν):

ṅ2p|Lyα = −A2p,1s

[
n2p − 3n1s

∫∫
d2n̂

4π
dν ϕ(ν)fν(n̂)

]
, (4.1)

where the line profile integrates to unity,
∫

dν ϕ(ν) = 1. To obtain ṅ1s|Lyα, we must therefore
solve the radiative transfer equation for fν(t, x⃗, n̂).

Near the Lyman-α resonance, photons may undergo resonant scattering events γLyα +
H(1s) → γ′

Lyα + H(1s), true absorption events γLyα + γbb + H(1s) → H∗, where H∗ is an
excited (or ionized) atom in a s of d angular momentum state and γbb is a blackbody photon
with energy corresponding to the H(2p) → H∗ transition, or the reverse “true emission”
process, see e.g. refs. [117, 118]. The radiative transfer equation then takes the form

∂tfν + n̂ · ∇fν − Hν ∂νfν = ḟν |scat + ḟν |em,ab. (4.2)

The timescale it takes a photon to redshift across the optically thick part of the line is much
shorter than a Hubble time, and one may therefore solve this equation in the quasi-steady-state
approximation, i.e. neglecting the partial time derivative ∂tfν .

Before describing the scattering and emission/absorption terms, we first define psc ≡
A2p,1s/Γ2p, where Γ2p is the total rate of all transitions out of the 2p state. The quantity psc is
the probability that an atom in the 2p state decays to the ground state rather than be excited
or ionized by a blackbody photon. We denote its complementary by pab = 1 − psc. These two
probabilities only depend on photon temperature and are therefore nearly homogeneous.

The scattering term ḟν |scat does not change photon number, and only changes photon
direction and frequency. The latter effect is due to the thermal motions of scattering atoms. It
is not essential to our derivation, and we shall therefore ignore atomic velocities as a first pass,
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and come back to this point at the end of the derivation. In that limit, resonant scattering
simply changes photon propagation directions, while preserving the angle-integrated photon
occupation number: ∫

d2n̂ ḟν |scat(n̂) ≈ 0. (4.3)

The true emission/absorption term in eq. (4.2) is given by (see ref. [117] for a derivation,
which is easily generalized to arbitrary angular dependence):

ḟν |em,ab = pab
3A2p,1s

8πν2 ϕ(ν)
(
n1sf(em) − n1sfν

)
, (4.4)

f(em) ≡ p−1
ab

(
n2p

3n1s
− psc

∫∫
d2n̂

4π
dν ϕ(ν)fν(n̂)

)
. (4.5)

4.1.2 Net decay rate in the full-mixing limit

We now consider the limit in which the characteristic distance traveled by Lyman-α photons
between emission and (true) absorption is much longer than the wavelength of perturbations
of interest. In that case, we may assume that the photon occupation number is approximately
isotropic and homogeneous, fν(t, x⃗, n̂) ≈ ⟨fν⟩.

Inserting this approximation into the radiative transfer equation, and averaging over
angles, we see that the gradient term n̂ ·∇fν and the scattering term (in the limit of negligible
atomic motions) both drop out. Taking the spatial average of the equation (and recalling
that we make the steady-state approximation and neglecting ∂tfν), we then obtain

∂ν⟨fν⟩ ≈ ⟨τab⟩ϕ(ν)
[
⟨fν⟩ − fmix

(em)

]
, (4.6)

where ⟨τab⟩ is the average optical depth to true absorption,

⟨τab⟩ = 3A2p,1s

8πHν3
α

pab⟨n1s⟩, (4.7)

where we approximated ν ≈ να, the resonant frequency, and we have moreover defined

fmix
(em) ≡

⟨n1sf(em)⟩
⟨n1s⟩

= p−1
ab

( ⟨n2p⟩
3⟨n1s⟩

− psc

∫
dν ϕ(ν)⟨fν⟩

)
. (4.8)

Equation (4.7) is a simple linear 1st-order ODE, to be solved under the boundary condition
of thermal equilibrium ⟨fν⟩ → e−hν/Tγ ≈ e−Eα/Tγ at ν → +∞ (neglecting feedback from
higher-order lines, and again approximating ν ≈ να within the boundaries of the problem).
It has the explicit solution

⟨fν⟩ = fmix
(em) +

(
e−Eα/Tγ − fmix

(em)

)
exp

[
−⟨τab⟩

∫ ∞

ν
dν ′ϕ(ν ′)

]
. (4.9)

Integrating this equation over the line profile and using the definition of fmix
(em), eq. (4.8), we

obtain, in the relevant limit that ⟨τab⟩ ≫ 1,∫
dν ϕ(ν) ⟨fν⟩ ≈ ⟨n2p⟩

3⟨n1s⟩
+ pab

⟨τab⟩

(
e−Eα/Tγ − ⟨n2p⟩

3⟨n1s⟩

)
. (4.10)
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We are now in a position to compute the local net Lyman-α decay rate: it is given by
eq. (4.1), where n2p and n1s are local abundances, but fν = ⟨fν⟩ is the homogeneous photon
occupation number, that is,

ṅ2p|Lyα = −A2p,1s

[
n2p − 3n1s

∫
dν ϕ(ν)⟨fν⟩

]

= −Rmix
α n1s

[
⟨n2s⟩
⟨n1s⟩

− e−Eα/Tγ

]
− 3A2p,1s

[
n2s − n1s

⟨n2s⟩
⟨n1s⟩

]
, (4.11)

where we substituted n2p = 3n2s and we have defined

Rmix
α ≡ 8πH

λ3
α⟨n1s⟩

= 1/⟨R−1
α ⟩. (4.12)

We see that, in the limit that the baryon density is homogeneous, so that n1s = ⟨n1s⟩ and
n2s = ⟨n2s⟩, this net decay rate reduces to eq. (3.4), as it should. However, in the presence
of inhomogeneities, the net decay rate can be significantly different, especially due to the
second term in the right-hand-side of eq. (4.11), given that A2p,1s ≫ Rα.

4.1.3 Effect of diffusion and bulk flows

So far we have entirely neglected photon frequency diffusion due to resonant scattering off
of thermally moving atoms, as well as the effect of bulk flows. The former effect is known
to lead to O(4%) corrections to the Lyman-α net decay rate at z ≈ 1100, see e.g. ref. [119],
and we expect that correctly incorporating them would lead to similar corrections in the
full-mixing limit. Since Lyman-α photons scatter many times between emission and true
absorption, for perturbations much smaller than the Lyman-α re-absorption length scale,
they scatter off many patches with incoherent peculiar velocities. Hence, on small scales bulk
flows act effectively as an additional contribution to thermal motions. Therefore we expect
that, in the full mixing limit, baryon peculiar velocities v can be effectively incorporated
by substituting Tb → Tb + mp⟨v2⟩/3 ≈ Tb

(
1 + ⟨v2⟩/3c2

s

)
in the resonant scattering diffusion

operator, where we took the limit Xe ≪ 1 in c2
s. Assuming the effect of frequency diffusion

scales linearly with Tb as long as it is perturbative, we expect bulk flows to start significantly
affecting the net Lyman-α decay rate when ⟨v2⟩/3c2

s ≳ 1/(4%) ∼ 25, i.e. when ⟨v2⟩1/2 ≳ 9cs.

4.2 Local recombination rate in the full mixing limit

To find the local recombination rate, we must again solve for the abundance of excited
hydrogen in the steady-state approximation. Instead of eq. (3.6), we now have

0 ≈ ṅ2s = αen2
e − βen2s − Λ2γ

(
n2s − n1se−Eα/Tγ

)
−Rmix

α n1s

[
⟨n2s⟩
⟨n1s⟩

− e−Eα/Tγ

]
− A2p,1s

[
n2s − n1s

⟨n2s⟩
⟨n1s⟩

]
. (4.13)

We solve this equation in two steps. First, we take its spatial average. This eliminates the
last term, and results in an equation for ⟨n2s⟩ identical to eq. (3.6), with the substitutions
(n2

e, n1s, n2s, Rα) → (⟨n2
e⟩, ⟨n1s⟩, ⟨n2s⟩, Rmix

α ) with solution therefore identical to eq. (3.7) with
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the same substitutions. Next, we solve the local quasi-steady state equation (4.13) for n2s,
given n2

e, n1s and their average values. In practice, given that A2p,1s ≫ βe, Rα, Λ2γ , the
solution is very well approximated by

n2s ≈ n1s
⟨n2s⟩
⟨n1s⟩

. (4.14)

We can now finally compute the local net recombination rate, ṅe|rec = −(αen2
e − βen2s),

which, after substituting the solution for n2s, becomes

ṅe|rec = −Cmix
(
αen2

e − βen1se−Eα/Tγ

)
− (1 − Cmix)αe

(
n2

e − n1s

⟨n1s⟩
⟨n2

e⟩
)

, (4.15)

where the full-mixing Peebles-C factor Cmix is given by eq. (3.9) with the substitution
Rα → Rmix

α = 1/⟨R−1
α ⟩.

Equation (4.15) is one of our main new analytic results. The first term is a modification
of the standard Peebles recombination rate with C → Cmix. The second term, proportional
to 1 − Cmix, is a qualitatively new term, which accounts for the spatial mixing of Lyman-α
photons. This term could in principle have a very significant effect on the net recombination
rate when Cmix ≪ 1. However, it averages to zero, hence should produce a relatively minor
effect on the average free-electron density, as we will indeed confirm below.

4.3 Illustration with simple 2-zone model

To illustrate the difference between the no-mixing and full-mixing regimes, we consider a
toy model in which the Universe consists of equi-probable regions with baryon overdensities
∆± = ρ±

b /⟨ρb⟩ = n±
H/⟨nH⟩ = 1 ±

√
b, where b is the baryon clumping parameter, which we

shall take to be constant b = 0.5.
In each case, we solve for the free-electron fraction xe ≡ ne/nH in each zone, and then

compute the “global” free-electron fraction Xe, through

Xe ≡ ⟨ne⟩
⟨nH⟩

= 1
2
[
∆+x+

e + ∆−x−
e

]
. (4.16)

In the no-mixing limit, we simply solve two independent ODEs for the ionization fraction
x±

e in each “zone”. In contrast, in the full-mixing limit, the 2 ODEs are coupled, since they
each depend on average quantities such as ⟨n1s⟩ = ⟨nH⟩(1 − Xe).

We show the solutions in the two limit cases in figure 6. The left panel shows the separate
evolutions of x±

e in the no-mixing and full-mixing limits, and the right panel shows the
evolution of the global ionization fraction Xe in both limits. We see that, first of all, the
deviation of Xe from the standard ionization fraction is typically much smaller than the
deviations of the ionization fractions in each zones. Second, we see that the evolution of
Xe in the no-mixing and full-mixing limits are very similar. We will however see that there
are more significant deviations between these two limits in the realistic case of a Batchelor
spectrum (section 5), particularly at lower redshifts.
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Figure 6. Change in the free-electron fraction relative to the standard history, in a simple toy model
with two equi-probable zones with baryon densities ρ±

b = ⟨ρb⟩(1 ±
√

b), with clumping parameter
b = 0.5, in the no-mixing limit (dashed), and in the full-mixing limit (solid). Left: separate evolution
of x+

e (red), x−
e (blue) and Xe ≡ ⟨ne⟩/⟨nH⟩ (purple). Right: zoom-in on the evolution of Xe in the

no-mixing and full-mixing limits. We see that the two limits give very similar results.

5 A realistc calculation of recombination in the presence of primordial
magnetic fields

In this section we show results for the typical perturbations in the ionization fraction during
recombination in a magnetized Universe. We first present some general results and then
consider the best strategy to obtain precise results. All calculations in this section assume
non-helical PMFs with a Batchelor spectrum and if not otherwise stated, are performed in
the limit of full mixing, i.e. using eq. (4.15) for the net recombination rate.

5.1 General trends

PMF evolution in the early Universe is described by freely decaying MHD. Individual magnetic
modes excite fluid motions which then dissipate. Before recombination those fluid motions are
associated with baryon clumping which then decays again. As a first application of our code
we determine when a particular magnetic mode of given proper scale L and field strength
B is dissipated. We define this time approximately by the time of maximum clumping.
In [25] an analytic model based on numerical results was developed. It found that magnetic
modes dissipate when the eddy turn-over time approximately equals the Hubble time, i.e.
when L ≈ v/H, where v are the peculiar motions excited by the magnetic field. During
recombination the fluid undergoes a transition from viscous MHD, when the photon drag
coefficient α defined in eq. (2.5) is much greater than the expansion rate H, to turbulent
MHD when α falls below H due to the drop in electron density.

In the viscous regime α ≫ H peculiar velocities may be estimated by v ≈ v2
A/(αL),

implying v ≈ vA/
√

α/H, whereas in the turbulent regime, v ≈ vA. We can combine the two
regimes by approximating v ≈ vA/

√
1 + α/H, implying the following expression for L

L ≈ vA√
H(α + H)

, (5.1)

giving the length scale which is dissipated as a function of redshift and magnetic field strength.
In figure 7 the dotted lines show the prediction for two different field strengths. This can
be compared to the results of the code when magnetic plane waves of wavelength L are
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Figure 7. Comparison of numerically obtained and theoretically inferred redshifts zdiss of the
dissipation of magnetic modes as a function of their comoving scale, for two different field strength,
i.e. vA = 1 and 10cs before recombination. The theoretical prediction (see text) is given by the dotted
lines, whereas the numerically determined redshifts are shown by the green (va = 10cs) and purple
(va = cs) points. The numerical “experiments” evolve one magnetic mode of a fixed comoving scale
and the redshift of dissipation is defined as the redshift of maximum clumping.

evolved from early times (the green and purple points). It is observed that the theoretical
approximation is good at early times z > 1000 but deviates from the numerical results at
lower redshift (or larger scales). Figure 7 is therefore useful to find those magnetic modes
which induce the maximum clumping shortly before recombination. The clumping induced
by modes smaller/larger that this mode is already decaying/has not fully developed yet.

Next we consider the impact of individual effects on the ionization fraction Xe and the
evolution of the clumping factor. We use the same PMF spectrum as that with results shown
in figures 1 and 2, but omit particular effects. In figure 8 we show results for the perturbation
in the ionization fraction. The purple line shows results when the reduction of speed of sound
during recombination is taken into account and full Lyman-α photon mixing between different
regions is assumed. The orange line shows results when instead of full mixing fα = 1, mixing
according to the Monte-Carlo simulations in section 4 (i.e. figures 4 with mixing “length”
3 kpc) is assumed. It is seen that the deviations between the two is very small. The blue line
shows results for full mixing but not taking into account of the reduction of speed of sound
during recombination. Here a deviation of order 10 per cent is observed. Somewhat larger
deviations are attained when Lyman-α photon mixing is neglected shown by the green line.
Coincidentally, in this case Xe is close to that of the three-zone model M1 with b = 0.5.

In the right panel of figure 8 we show the evolution of the clumping factor with the
same different physical effects considered in the left panel. The reduction of speed of sound
enhances clumping, whereas as expected, details of Lyman-α transport do not have an effect
on clumping. It is noted that in all cases, the final field at redshift z = 10 is 4.38 × 10−2 nG.
Some residual clumping of b ≈ 0.1 survives to low redshifts.

The MHD simulations of the PMF evolution assume as initial condition a particular
random realization of the spectrum. It is important to know if different random realizations
result in deviating Xe predictions, in particular, if there is realization variance. We have
compared results for three different random realizations of the PMF field. We found that the
global ionization fraction Xe varies by at most ∼ 1% between different realizations. Hence
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Figure 8. Relative change of the global ionization fraction Xe when compared to a homogeneous
Universe without PMFs (left) and evolution of the clumping factor (right), for a number of 2563

numerical simulations of a non-helical PMF with Batchelor spectrum. Initial conditions were chosen
as VA,rms = 12cs and Lbox = 24 kpc with all modes in the range 3 kpc ≤ λ ≤ 24 kpc excited. In both
panels, the different lines correspond to: full Lyman-α mixing, i.e. fα = 1 (purple), no Lyman-α
mixing, i.e. fα = 0 (green), Lyman-α mixing as given by the MC results of the last section with mixing
length scale 3 kpc (orange), and full Lyman-α mixing but with the reduction of speed of sound during
recombination neglected (blue). For comparison, the dotted line shows results of the M1 three-zone
model (no Lyman-α mixing) for clumping factor b = 0.5. It is seen that the reduction of speed of
sound during recombination has a some impact on b, whereas details of the Lyman-α mixing do not.

the realization variance is well below the overall effect of PMFs on Xe, which is of order
20%. We also found that the clumping factor vary by at most ∼ 10%, well below peak
clumping of order b ∼ 2. We conclude that realization variance is of order ∼ 5% of the
effects we compute, and may be safely neglected.

5.2 Optimizing calculations for non-helical magnetic fields with a Batchelor
spectrum

It is our ultimate goal to calculate accurately the changes in ionization fraction ∆Xe as
a function of final surviving rms magnetic field Bf strength. Here define Bf as the total
surviving root-mean-square magnetic field at redshift z = 10. Though in principle our code
can accomplish this, in practice we have the limitation of feasible numerical resolution. In
particular, there are three mutually possibly conflicting requirements on numerical resolution:

• Each individual Fourier mode has to be resolved sufficiently to obtain convergence of
results as a function of resolution. In appendix C we demonstrate that in order to have
approximately ∼ 10% accurate results in ∆Xe and Bf , individual modes have to be
resolved at least with resolution 323, preferably 643.

• All magnetic modes which contribute to Bf and whose induced clumping effects ∆Xe

have to be included. Referring to figure 7 we see that a larger range of scales is processed
before and during recombination, potentially requiring very large numerical resolutions.

• There has to be a larger number of those magnetic modes which mostly influence ∆Xe

(those which produce the peak in clumping shortly before recombination) as otherwise
there could be large realization variance.
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To illustrate the point more clearly. Given a simulation box of physical size Lbox we
can populate randomly all modes ki = (2π/Lbox)ni, where ni are integers with i denoting
spatial direction. If we populate all modes n =

√
n2

1 + n2
2 + n2

3 ≤ 8, we need at least 2563

resolution in order to resolve all modes with at least 323. If we identify the nrec ≈ 6 ± 1
modes with those which have the main impact on recombination there will be not much
realization variance, as there are many modes ∼ n2

rec∆nrec ∼ 72. That was the case for all
the simulations shown so far (cf. discussion at the end of section 5.1). However, in that
case we will not be able to populate ultraviolet modes larger than kmax = (4/3)krec. Those
ultraviolet modes will still have an influence on recombination due the residual clumping
they had produced and due to mode-mode coupling. Vice versa, if we take kmax = 4krec as to
include enough UV modes, than there should be significant realization variance as there are
only ∼ n2

rec∆nrec ∼ 4 of the most important modes for recombination. We will investigate
uncertainties due to missing ultra-violet modes and realization variance further below.

We will now demonstrate that the easiest spectra to simulate are those of phase-transition
generated non-helical PMFs with Batchelor spectrum. Considering inflationary fields with
approximately scale-invariant spectra we may directly refer to figure 7 to assess the range
of scales required to simulate to obtain an accurate result. Taking for example the case
vA = 10cs, in order to simulate all magnetic modes which dissipate between redshift z ≈ 5000
and z ≈ 500, we need to resolve all scales between L ≈ 0.3 kpc and 30 kpc, implying a
dynamic range of ∼ 100. This would require simulations with resolution 32003 which would
require 1000–10000 times larger computer resources than used here.9 On the other hand,
as B(L) ∼ L−5/2 for Batchelor spectra, the dynamic range required is much compressed
compared to scale-invariant fields. Before recombination the mode dissipation redshift zdiss
scales as (B/L)2/3 such that modes a factor two smaller dissipate at a redshift zdiss a factor
27/3 ≈ 5 larger. For scale-invariant fields the factor is only 22/3 ≈ 1.6. For fully helical fields
with Batchelor spectrum, the necessary dynamic range is also compressed, but not as much
as in the non-helical case, as the inverse cascade pushes fields to larger scales.

We will from now on focus on the non-helical Batchelor case. In order to establish which
scales need to be resolved in the simulation, we perform a series of smaller simulations. The
scales resolved and initial magnetic field strengths Bini

rms of these simulations are shown in
table 1. Field strength and length scales in all these simulations were chosen as to mimic
the Batchelor spectrum, i.e. B(L) ∼ L−5/2, i.e. Run 1 presents the largest scales with
smallest Bini

rms and Run 6 presents the smallest scales with largest Bini
rms. Obtaining results for

these simulations allows us, to assess, in the absence of mode-mode coupling, which modes
contribute most to the final field strength Bfin

rms and which modes most to the perturbation in
∆Xe. Results for the evolution of clumping factor, magnetic energy density, and ionization
fraction are shown in figure 9. As expected, the peak in the clumping occurs at successively
higher redshifts as one goes from Run 1 to Run 6.10 Run 3 produces the largest clumping
right before hydrogen recombination, the “neighboring” runs Run 2 and Run 4 also lead to
some significant clumping shortly before hydrogen recombination. This compares well with

9We note here that 2D simulations significantly overestimate the effects on recombination.
10Strictly speaking should Run 5 and Run 6 be started at higher initial redshift. Due to the strength of the

photon drag at early times this is however computationally very expansive. We have verified that changing
the initial redshift to somewhat higher values does not significantly change the evolution at lower redshift.
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Run Size Lmin (kpc) Lmax (kpc) Bini
rms (pG) Bfin

rms (pG) zdiss

1 2563 1.5 6. 21.9 8.54 < 1000
2 643 1.03 1.03 51.0 3.54 ≈ 1000
3 643 0.713 0.713 121 2.77 ≈ 1500
4 643 0.492 0.492 327 0.865 ≈ 3300
5 643 0.339 0.339 827 0.627 ≈ 7850
6 643 0.224 0.224 2093 0.738 ≈ 18700

Table 1. Size, minimum scale resolved, maximum scale resolved, initial magnetic field strength, final
magnetic field strength, and approximate dissipation redshift estimated from figure 7 for six smaller
simulations Run 1–Run 6.
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Figure 9. Redshift evolution of the clumping factor (top), magnetic energy density (middle) and
fractional change to the global ionization fraction (bottom) for the simulations Run 1–Run 6. Here a
value of unity for magnetic energy density corresponds to a field strength of B̃rms = 4.38 × 10−2 nG.

the analytic estimate of “dissipation” redshift also given in table 1, defined as the redshift of
peak clumping for a mode. These are between zdiss ≈ 1000 and 3300 for runs Run 2–Run 4.
In the bottom panel of figure 9 we see that indeed Xe is mostly affected by Run 3, and to a
lesser degree by Run 2 and Run 4. In the absence of mode-mode coupling effects, one could
imagine that only resolving the scales resolved in Run 2 to Run 4, would already lead to a
fairly accurate estimate for ∆Xe. This corresponds to a required dynamic range of only two.
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Run Size Lmin (kpc) Lmax (kpc) Bini
rms (pG)

7 2563 1. 8. 60.4
8 2563 0.339 1.5 900
9 2563 0.234 1.5 2278
10 2563 0.1875 1.5 3966

Table 2. Size, minimum scale resolved, maximum scale resolved, and initial magnetic field strength
for Run 7–Run 10.
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Figure 10. Dependency of ∆Xe on the ultraviolet cut-off of the magnetic field spectrum. Each curve
represents the average ∆Xe of four different random realizations of a PMF with Batchelor spectrum. It
is seen that including higher-k modes, which dissipate well before recombination (i.e. at zdiss ≈ 2 × 104

for Run 9 and zdiss ≈ 3.3 × 104 for Run 10) do have impact on ∆Xe due to mode-mode coupling.

Inspecting the middle panel of figure 9 one infers that the final magnetic field is dominated by
the larger modes resolved in Run 1 with a subdominant contribution from Run 2 and Run 3.

This suggests the following strategy to obtain relatively precise results. The final magnetic
field strength may be obtained by a simulation of the relevant larger scales, whereas ∆Xe

may be obtained by an independent simulation of the relevant smaller scales. In table 2 we
show the size, resolved scales, and initial magnetic field for simulations to obtain the final
field (Run 7) and the impact on Xe (Run 8–Run 10). Here Run 8 resolves all scales of Run
2–Run 5. In figure 10 we show averaged results of three realizations of each Run 8–Run
10. It is seen that including even smaller modes than initially deemed necessary from the
results of Run 2–Run 6 have impact on ∆Xe. There is a significant difference in ∆Xe between
Run 8 and Run 9, which becomes even larger between Run 8 and Run 10. The smallest
modes in Run 10 have zdiss ≈ 3.3 × 104 and due to mode-mode coupling effects still have
an important effect on Xe. Such small modes naively thought to dissipate at high redshift
should therefore still be included. We are currently not able to assess if the inclusion of even
smaller modes further enhances the Xe reduction. We note here that a 2563 simulations
requires already significant computing power, i.e. approximately 2 CPU-years. This is mostly
due the exceedingly small drag time 1/α at higher redshifts.

As it is necessary to include more UV modes, the nrec for Run 10 is only two. We
therefore expect significant realization variance. In figure 11 the average ∆Xe is shown for

– 25 –



J
C
A
P
0
3
(
2
0
2
5
)
0
1
2

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 600  800  1000  1200  1400  1600

R
e
la

ti
v
e
 i

o
n
iz

a
ti

o
n
 f

ra
c
ti

o
n

redshift

Figure 11. The average ∆Xe and one-sigma ranges of three different random realizations of a PMF
with Batchelor spectrum Run 10. It is seen that random realization uncertainties are substantial,
around ∼ 20%. This is in contrast do the small realization variance found for the results displayed in
figure 8, since those simulations included a large number of modes dissipating during recombination,
but did hardly include important ultra-violet modes.

Run 10, albeit based only on four different realizations. The dotted lines show the average
plus, minus one standard deviation. It is observed that realization variance is significant,
∼ 20%, such that it is preferable to reduce the error due to realization variance by averaging
the result of a larger number of simulations with different realizations.

6 The combined effects of plasma heating and baryon clumping

It is well known [61] that the decay of magnetic turbulence induces a heat source for the
baryons which may influence the ionization fraction Xe substantially at lower redhifts. Similar
holds for ambipolar diffusion at even lower redshifts. An increase of the baryon temperature
Tb over that of the CMB TCMB lowers the temperature-dependant recombination rate which
leads to higher residual ionization fractions. The evolution of the baryon temperature with
time t is given by (2.8). At redshifts z ≈ 1000 the ionization fraction is still fairly high
Xe ≈ 0.1 such that baryon cooling by electron Thomson scattering on CMB photons keeps
Tb very close to TCMB. However, at slightly lower redshifts z ≈ 900 when Xe ≈ 10−2 the
heating of baryons due to the dissipation of magnetic fields can significantly increase the
baryon temperature. This in turn reduced the temperature dependent recombination rate
which leads to higher residual Xe.

A higher residual Xe in the redshift range ∼ 400–900 induces a suppression of the CMB
anisotropies at higher multipoles due to residual scatterings of photons out of the beam. It
also introduces a feature at small multipoles l ∼ 100–200. These effects may be constrained
by high-precision CMB data, as has been done in [57, 62, 64, 120, 121]. These authors
used an analytic expression from [61] to approximate the heating rate due to magnetic field
dissipation. The only study which attemps to compute the heating rate numerically [122]
could not simulate at higher magnetic field strength, as they were facing the complication
of baryon clumping, which many MHD solvers have problems with. We introduced heating
of baryons due to magnetic field dissipation in the modified ENZO code. To this end we
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Figure 12. The ionization fraction Xe as a function of redshift for four different cases: the
homogeneous case without clumping and dissipation (orange), the inhomogeneous case due to baryon
clumping, but without dissipation (blue), the homogeneous case without clumping but with dissipation
(purple), and the realistic inhomogeneous case with clumping and dissipation (green).

use a uniform heating rate11

Γ = 1
V

d

dt

∫
dV
(1

2ρbv2 + 1
8π

B2
)

, (6.1)

which allows us to evolve the local baryon temperature. We did not consider the less important
heating due to ambipolar diffusion. We are thus able, for the first time, to treat both effects,
clumping and heating at the same time.

Results are shown in figure 12. Here a particularly strong magnetic field with Batchelor
spectrum was chosen, with remaining magnetic field strength of 1.2 nG at z = 1088 leading to
a final field of 0.13 nG at redshift z = 10. According to [121], which give the limit B < 0.18 nG
at z = 1088 such a field should be clearly ruled out due to heating. It should also be ruled out
due to clumping, if the three-zone model M1 with older data is used [88], due to modifications
of Xe at z ≈ 1100 rather than at z ≈ 400–900. In figure 12 one sees the ionization fraction
for four different simulations. The orange line shows Xe for a homogeneous Universe with
no magnetic fields. The purple line shows Xe when the heating rate is extracted from the
MHD simulation and used in a homogeneous Universe. This corresponds to the evolution of
Xe computed in [121] with the difference that the heating rate is not taken from an analytic
approximation but computed directly in the code. This case seems clearly ruled out by
current CMB data. The blue line shows Xe when heating is not taken into account, but
the baryon inhomogeneities, i.e. clumping, are. In this case the average Xe is lower than
in the no magnetic field case, and taking only the low z evolution into account the model
should not be ruled out. The same holds for the realistic case, when clumping and heating
is taken into account, which is shown by the green line. The realistic case in fact is very
close to the no magnetic field case at low redshifts. Baryon heating due to magnetic field

11Magnetic- and kinetic- energy dissipation here occurs over numerical viscosity, which is a common practice
in MHD simulations in astrophysics [123]. In principle we could have computed the local dissipation rate
when using the standard energy evolution equation in ENZO amended by CMB cooling/heating, as ENZO
conserves energy. However, we do not think that the approximation of applying a global average homogeneous
heating rate could change our conclusions below drastically.
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dissipation increases Xe at lower redshift, whereas the clumping of baryons decreases Xe

with the net effect being only small change from the no magnetic field case. In fact we have
performed many more simulations with varying magnetic field strengths including the effects
of clumping and heating and in none of these simulations have we ever found an increased Xe.
We conclude therefore, that current limits on PMFs from baryon heating do not apply, as
they have not taken into account clumping. We stress, that constraints on this model come
from clumping, and the associated changes of Xe around the peak of the visibility function
at z ≈ 1090, inducing a change in the sound horizon, modified Silk damping, and a change
in the width of the visibility function, but not from hydrodynamic heating.

7 Conclusions

In this paper we presented an in depth analysis of the effects of primordial magnetic fields
on the process of cosmic recombination. It had been shown priorly that PMFs of sufficient
magnitude lead to non-linear inhomogeneities in the baryons (clumping) on small scales
before recombination, and that this clumping could result in a partial solution to the cosmic
Hubble tension. However, prior analysis was in large parts based on approximative three
zone models and omitted a number of physical effects. For our analysis we employed full
3D MHD simulations including the effects of photon drag and cosmic expansion. These
MHD simulations were coupled to a new recombination code, sufficiently accurate to obtain
∼ 10–20% accurate results in the relative perturbation of the ionization fraction ∆Xe/Xe

due to the existence of PMFs. We employed detailed Monte-Carlo (MC) simulations of
Lyman-α photon propagation in space and frequency. These simulations establish that for
the typical peculiar flows found in the MHD simulations for observationally allowed PMF
strengths, the Lyman-α photon escape fraction due to redshifting is not much changed
from that in an unmagnetized Universe. However, the MC simulations also established that
Lyman-α photons are almost fully mixed between underdense- and overdense- regions such
that the recombination process is no further local. We derived an analytic result for the
recombination process in an inhomogeneous Universe with fully mixed Lyman-alpha photons,
which leads to a reduction of the average ionization fraction compared to the non-mixed case.
We investigated the dependence of results for PMFs with Batchelor spectrum on ultra-violet
magnetic modes and found some unexpected dependency.

Our study may serve as the theoretical foundation of a precise comparison between the
theory of recombination with PMFs and CMB observations.
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A Monte Carlo simulations of the Lyman-α escape fraction

The thermally averaged cross section12 for a Lyman-α photon to scatter of a hydrogen atom
in the 1s ground state is given by

⟨σ⟩th = 1
(2π)3

∫
dΩ dp p2

( 2π

mT

)3/2
exp

( −p2

2mT

)
σ(p) , (A.1)

where m is hydrogen mass. Here the cross section is given by

σ = 3λ2
α

8π

Γ2
α

(ωr − ωα)2 + Γ2
α/4 , (A.2)

where ωr and ωα are photon circular frequency in the atomic rest frame and the Lyman-α
circular frequency, respectively, λα is the Lyman-α wavelength, and Γα is the decay rate
of the excited 2p state back to the ground state. Here ωr relates to the photon frequency
ω in the gas rest frame

ωr = ω

(
1 −

p∥
m

− U∥

)
, (A.3)

where p∥ = k̂ · p and U∥ = k̂ · U are the atomic momentum and fluid velocity parallel to the
photon direction given by the unit vector k̂. Introducing the new variable

x = (ω − ωα)
ωαvth

(A.4)

where vth =
√

2T/m as well as p̃ = p/
√

2mT one can rewrite the thermally averaged cross
section as follows

⟨σ⟩ =
( 1√

π

∫
dp̃⊥1 exp(−p̃2

⊥1)
)( 1√

π

∫
dp̃⊥2 exp(−p̃2

⊥2)
)

·
(

1√
π

∫
dp̃∥

exp(−p̃2
∥)σ0Γ2

α

ω2
αv2

th(x − p̃∥ − U∥/vth)2 + Γ2
α/4

)
(A.5)

where σ0 = 3λ2
α/8π. Eq. (A.5) has been written as an equation immediately usable for

Monte Carlo methods. First note that the first two terms in brackets are unity. The third
term in brackets is thus simply ⟨σ⟩. In the Monte Carlo we try to sample one-dimensional
cumulative distributions between zero and unity by randomly generated numbers between
zero and unity. Eq. (A.5) can be used for that to obtain the likely hydrogen (p̃⊥1, p̃⊥2, p̃∥) on
which the photon scatters. Given those, one may compute the new frequency of the photon
after scattering. After performing three successive Lorentz transformations, first from the
gas rest frame at emission to the gas rest frame at absorption, than from the gas rest frame
at absorption to the atomic rest frame, and than vice versa, and assuming that vth, U ≪ 1
and that atomic recoil can be neglected, we find

xout ≈ xin −
(Uabs

∥ − U em
∥ )

vth
− p̃∥(1 − µ) + p̃⊥

√
1 − µ2cos(β) , (A.6)

12Note that in this section all units are natural, i.e. ℏ = c = k = 1. In case numerical values are given they
refer to values at redshift z = 1100, close to the standard recombination redshift.
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Here the rescaled photon frequencies xin and xout refer to the frequency in the gas rest frame
at the location of emission and the frequency after re-scattering in the gas rest frame at
the location of absorption, whereas Uabs

∥ and U em
∥ are the fluid velocities parallel to the

photon momentum at the location of absorption and emission, respectively. Furthermore,
p̃⊥ =

√
p̃2

⊥1 + p̃2
⊥2 is the total perpendicular rescaled momentum, µ = k̂in · k̂out is the cosine of

the scattering angle between the incoming and outgoing photons, and β is another scattering
angle between zero and 2π. We note that beta always has a flat distribution and µ is flat in
the interval [−1, 1] for isotropic scattering, but not for dipole scattering.

After absorption of a line photon the hydrogen atom is in a metastable 2p state. In
most cases it will spontaneously de-excite into the 1s state by re-emission of a Lyman-α
photon with frequency xout. However, on rare occasions ∼ 10−7 the metastable 2p state will
be photo-ionised by CMBR photons or decay via the two-photon transition.13 It is evident
that the small probability for reionsation makes a Monte-Carlo very challenging, as a larger
number of interactions have to be followed before the fate of the Lyman-α photon is known.

Our Monte-Carlo simulation proceeds as follows

(1) Inject a photon with frequency x = 0 at a random location (we checked explicitly that
injecting it from a Voigt profile does not change results)

(2) Compute the thermally averaged cross section σ and the photon mean free path
lγ = 1/(σnH) where nH is the neutral hydrogen density

(3) Advance the photon over a path length Dl = ϵlγ . Here values of ϵ = 10−1–10−2 are
used and results are independent of it.

(4) Redshift the photon by an amount ∆x = −HDl/vth

(5) Determine probalistically if the photon scatters after having traveled distance Dl. This
is the case when a random number between zero and unity is larger that exp(−ϵ).

(6) If not return to (2), if yes proceed to (7)

(7) Determine via random number if (a) a Lyman-α photon is re-emitted (i.e. re-scattering
of the Lyman-α photon or the much less likely alternatives (b) the intermediate n = 2
state is reionised or (c) the state decays via a two-photon transition. In case (a) go
to (8), in case (b) and (c) proceed to the next injected photon (1) where in (b) no net
recombination has occurred, and in (c) it has.

(8) Using three random numbers determine via eq. (A.5) the probable p̃∥, p̃⊥1, and p̃⊥2 of
the scattering atom. Using two more random numbers determine µ and β and compute
the new gas rest frame frequency xout from eq. (A.6). Return to (2).

Lyman-α photons which are lost since they redshifted out on the red wing out of
resonance may be identified as the loop does not leave anymore the range (2)–(6). These

13On less rare occasions ∼ 10−4 the hydrogen atom will be further excited by CMBR photons into n > 2
levels. These higher excitations will with near unity probability eventually de-xcite into the ground state with
the generation a new Lyman-α photon. We do not treat this process in the current Monte-Carlo.
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Figure 13. Comoving Lyman-α photon mean free path in as a function of photon frequency x at
redshift z ≈ 1100.

photons never reach (7), thus never scatter anymore, and their frequency becomes ever
smaller. Accounting for the numbers of different scenarios it is straightforward to compute
the well-known Peebles factor C eq. (3.9).

The mean free path as a function of frequency is shown in figure 13. It is seen that it is
extremely small (e.g. compare for example to the horizon lH ∼ 100 Mpc. Taking into account
that σ ∼ 1/x2 on the wing, even photons on the extreme thermal red wing, i.e. x ∼ −105

may still scatter. However, at such small x between each scattering the frequency redshifts
further, reducing the cross section even more, such that the photons with exceedingly high
probability become inert (except if reionisation happens during those few last scatterings).
One may estimate the x at which the probability for the Lyman-α photon becoming inert for
the 1s-2s transition is approximately fifty percent. One can show [124] that on the wing the
probability distribution function P (xout) one obtains from eq. (A.6) is approximately given
by a Gaussian with width unity and centered on xout = xin − 1/xin. That is x performs a
random walk during the many scatterings with, however, a drift term which pulls it back to
the center of the line x = 0. This drift term competes with the drift away from the center of
the line due to redshifting. Demanding approximate equality between these two drift terms

− H

σ(x50)nHvth
≈ −1

x50
(A.7)

one obtains at which x50 the probability is approximately 50% to loose the photon. We
obtain x50 ≈ 60 which is confirmed by the simulations. At this frequency the mean free path
is approximately comoving 0.1 kpc and as the frequency hovers often for many scatterings
around x50 the distance traveled is easily in the larger than kpc regime, the scale on which
magnetic fields excite inhomogeneities in density and flow.

We present next how the results of our Monte-Carlo simulation in a homogeneous Universe
compares to the theoretical C-factor. We consider this as our test problem for the routine
of these somewhat challenging simulations (the evolution of one photon takes on average
∼ 20 seconds). Figure 14 shows the MC results compared to eq. (3.9) for varying Hubble
constants, setting Λ2γ to zero.14 It is seen that the comparison is close to perfect. This

14Our simulations reproduce well photon loss due to the 2s-1s two γ transition.
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Figure 14. Comparison of the theoretical and Monte-Carlo derived value of the C factor eq. (3.9) in
a homogeneous Universe, employing Λ2γ = 0, as a function of ζ, where the cosmological expansion is
given by ζH. Here H is the correct Hubble rate at recombination. The solid line shows the theoretical
value whereas the points with error bars show results of the MC simulation.

and the test displayed in figure 5 for Lyman-α escape in the presence of bulk flows gives us
confidence that our Monte-Carlo simulation is reliable.

B Helium recombination

The details of helium recombination are not crucial for the purposes of this work: the first
helium recombination takes place around z ∼ 6000, before the beginning of our simulations,
and during the second helium recombination the free-electron fraction is limited to the
range 1 ≤ xe ≤ 1.08, regardless of the details of the recombination process. Changes to the
ionization history during helium recombination are also less critical to CMB anisotropies. We
therefore defer a detailed study to future work, and in the meantime have implemented a
simple 3-level model for helium, accounting only for transitions from the singlet 2P state
(the equivalent of the hydrogen Lyman-α line), and for hydrogen continuum opacity, but
neglecting transitions from the triplet 2P state. We adopt the simple model of ref. [109].
We also ran an MC simulation for the Lyman-α transition in Helium and found an even
larger mixing fraction (i.e. smaller propagation distances) than for hydrogen, so that Helium
recombination can also be assumed to proceed in the “full-mixing” regime. We implemented
the full-mixing regime in a similar fashion as for hydrogen.

C Convergence study

In this appendix we briefly study the convergence of results with the number of employed
zones. Figure 15 shows the evolution of clumping factor, magnetic energy density, and
ionization fraction Xe for a particular PMF spectrum and amplitude for three different
resolutions, 643, 1283, and 2563. As modes only up to k = 2 are excited, these modes are
effectively resolved by 32, 64, and 128 zones, respectively. From figure 15 it is seen that
convergence in the clumping factor is not attained. In particular, the higher the resolution,
the higher the clumping factor. This is because the clumping factor is dominated by the very
few highest density regions, which can only be resolved with a large number of zones. On
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Figure 15. Evolution of the clumping factor b (top), magnetic energy density (middle) and change
to the global free-electron fraction (bottom) for different resolutions of the simulation. The simulation
box is 6kpc and vrms

A = 30cS . All modes with k ≤ 2 have been randomly excited. Here a mode is given
by vA(x) = vk

Asin(2πkx + ϕk) in a simulation box 0 ≤ x ≤ 1 and vk
A and ϕk are random amplitude

and phase for the mode k. A non-helical magnetic field with a Batchelor spectrum has been assumed.
The pink, green, and blue lines are for resolutions 643, 1283, and 2563, respectively.

the other hand, figure 15 shows that approximate convergence in magnetic energy density
and Xe is attained even at lower resolution. This is possible because those very high-density
regions, which are not properly resolved, recombine very early independently of the exact
overdensity. As they are rare as well, no significant impact on Xe is observed. We infer that
32 or 64 zones per Fourier mode should give somewhat accurate results.
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