
CHAPTER

9
SURFACE RADIATIVE
EXCHANGE IN THE
PRESENCE OF
CONDUCTION AND
CONVECTION

9.1 INTRODUCTION

In the previous few chapters we have considered only the analysis of radiative exchange in
enclosures with specified wall temperatures or fluxes, i.e., we have neglected interaction with
other modes of heat transfer. In practical systems, of course, it is nearly always the case that
radiation from a boundary is affected by conduction into the solid and/or by convection from
the surface. Then, two or three modes of heat transfer must be accounted for simultaneously.
The interaction may be quite simple, or it may be rather involved. For example, heat loss
from an isothermal surface of known temperature, adjacent to a radiatively nonparticipating
medium, may occur by convection as well as radiation; however, convective and radiative heat
fluxes are independent of one another, can be calculated independently, and may simply be
added. If boundary conditions are more complex (i.e., surface temperatures are not specified),
then radiation enters the remaining conduction/convection problem as a nonlinear boundary
condition.

In a number of important applications, a conduction analysis needs to be performed on
an opaque medium, which loses (or gains) heat from its surfaces by radiation (and, possibly,
convection). In such cases radiation enters the conduction problem as a nonlinear boundary
condition; however, the radiative flux in this boundary condition may depend on the radiative
exchange in the surrounding enclosure. In other applications, conduction and/or convection in
a transparent gas or liquid needs to be evaluated, bounded by opaque, radiating walls. Again,
radiation enters only as a boundary condition, with the transparent medium itself occupying
the enclosure governing the radiative transfer. In both types of applications radiation and
conduction–convection are interdependent, i.e., a change in radiative heat flux disturbs the
overall energy balance at the surface, causing a change in temperature as well as conductive–
convective fluxes, and vice versa.

Many important applications of interactions between surface radiation and other modes of
heat transfer have been reported in the literature. We will limit ourselves here to the discussion
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FIGURE 9-1
Schematic of a space radiator tube with longitudinal fins.

of a few very basic cases (i) to show the basic trends of how the different modes of heat transfer
interact with one another, and (ii) to outline some of the numerical schemes that have been
used to solve such problems. At the end of each section a short description of more advanced
problems is given, as well as a list of references.

9.2 CONDUCTION AND SURFACE
RADIATION—FINS

The vast majority of combined conduction–surface radiation applications involve heat transfer
through vacuum, e.g., heat loss from space vehicles or vacuum insulations. As a single example
we will discuss here the performance of a simple rectangular-fin radiator used to reject heat
from a spacecraft.

Consider a tube with a set of radial fins, as schematically shown in Fig. 9-1. In order to
facilitate the analysis, we will make the following assumptions:

1. The thickness of each fin, 2t, is much less than its length in the radial direction, L, which
in turn is much less than the fin extent in the direction of the tube axis. This implies that
heat conduction within the fin may be calculated by assuming that the fin temperature is
a function of radial distance, x, only.

2. End losses from the fin tips (by convection and radiation) are negligible, i.e., ∂Ti/∂xi (L) ' 0.

3. The thermal conductivity of the fin material, k, is constant.

4. The base temperatures of all fins are the same, i.e., T1(0) = T2(0) = Tb, and the fin
arrangement is symmetrical, i.e., T1(x1) = T2(x2 =x1), etc.

5. The surfaces are coated with an opaque, gray, diffusely emitting and reflecting material of
uniform emittance ε.

6. There is no external irradiation falling into the fin cavities (Ho = 0, T∞ = 0).

The first three assumptions are standard simplifications made for the analysis of thin fins
(see, e.g., Holman [1]), and the other three have been made to make the radiation part of the
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problem more tractable. Performing an energy balance on an infinitesimal volume element (of
unit length in the axial direction) dV = 2t dx, one finds:

conduction going in at x across cross-sectional area (2t)
= conduction going out at x+dx

+ net radiative loss from top and bottom surfaces (2 dx)
or

−2tk
dT
dx

∣∣∣∣∣
x

= −2tk
dT
dx

∣∣∣∣∣
x+dx

+ 2qR dx.

Expanding the outgoing conduction term into a truncated Taylor series,

dT
dx

∣∣∣∣∣
x+dx

=
dT
dx

∣∣∣∣∣
x

+ dx
d2T
dx2

∣∣∣∣∣∣
x

+ · · · ,

then leads to
d2T
dx2 =

1
tk

qR. (9.1)

Here qR(x) is the net radiative heat flux leaving a surface element of the fin, which may be
determined in terms of surface radiosity, J, from equations (5.24) and (5.25) as1

qR(x1) = J(x1) −
∫ L

x2=0
J(x2) dFd1−d2, (9.2)

J(x1) = εσT4(x1) + (1 − ε)
∫ L

x2=0
J(x2) dFd1−d2. (9.3)

The expression for radiative heat flux may be simplified by eliminating the integral, equa-
tion (5.26),

qR(x1) =
ε

1 − ε

[
σT4

1 (x1) − J1(x1)
]
. (9.4)

The view factor between two infinitely long strips may be found from Appendix D, Configura-
tion 5, or from Example 4.1 as

Fd1−d2 =
x1 sin2α x2 dx2

2S3
0

=
sin2α x1x2 dx2

2(x2
1 − 2x1x2 cosα + x2

2)3/2
. (9.5)

Equation (9.1) requires two boundary conditions, namely,

T(x=0) = Tb,
dT
dx

(x=L) = 0. (9.6)

Before we attempt a numerical solution, it is a good idea to summarize the mathematical
problem in terms of nondimensional variables and parameters,

θ(ξ) =
T(x)
Tb

, J(ξ) =
J(x)
σT4

b

, Nc =
kt

σT3
b L2

, ξ =
x
L
, (9.7)

1For the radiative exchange it is advantageous to attach subscripts 1 and 2 to the x-coordinates to distinguish
contributions from different plates, even though T(x), J(x), qR(x), etc., are the same along each of the fins.
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where θ and J are nondimensional temperature and radiosity, and Nc is usually called the
conduction-to-radiation parameter, sometimes also known as the Planck number. With these defi-
nitions,

d2θ

dξ2 =
1

Nc

ε
1 − ε

[
θ4(ξ) −J(ξ)

]
, (9.8a)

J(ξ) = ε θ4(ξ) + (1 − ε)
∫ 1

ξ′=0
J(ξ′) K(ξ, ξ′) dξ′, (9.8b)

K(ξ, ξ′) =
1
2

sin2α
ξξ′

(ξ2 − 2ξξ′ cosα + ξ′2)3/2
, (9.8c)

subject to

θ(ξ=0) = 1,
dθ
dξ

(ξ=1) = 0. (9.8d)

As for convection-cooled fins, a fin efficiency, η f , is defined, comparing the heat loss from
the actual fin to that of an ideal fin (a black fin, which is isothermal at Tb). The total heat loss
from an ideal fin (ε = 1, J = σT4

b ) is readily determined from equation (9.2) and Appendix D,
Configuration 34, as

Qideal = 2L qR,ideal = 2L σT4
b (1 − F1−2) = 2L sin

α
2
σT4

b , (9.9)

while the actual heat loss follows from Fourier’s law applied to the base, or by integrating over
the length of the fin, as

Qactual = −2tk
dT
dx

∣∣∣∣∣
x=0

= 2
∫ L

0
qR(x) dx. (9.10)

Thus,

η f =
Qactual

Qideal
= −

Nc

sin α
2

dθ
dξ

∣∣∣∣∣
0

=
1

sin α
2

ε
1 − ε

∫ 1

0
(θ4
−J ) dξ, (9.11)

where the last expression is obtained by integrating equation (9.8a) along the length L of the fin.
The set of equations (9.8) is readily solved by a host of different methods, including the

net radiation method [finite-differencing equation (9.8b) into finite-width isothermal strips, to
which equation (5.34) can be applied] or any of the solution methods for Fredholm equations
discussed in Section 5.6. Because of the nonlinear nature of the equations it is always advisable
to employ the method of successive approximations, i.e., a temperature field is guessed, a
radiosity distribution is calculated, an updated temperature field is determined by solving the
differential equation (for a known right-hand side), etc.

Sample results for the efficiency, as obtained by Sparrow and coworkers [2], are shown in
Fig. 9-2. The variation of the fin efficiency is similar to that for a convectively cooled fin (with
the heat transfer coefficient replaced by a “radiative heat transfer coefficient,” hR = 4εσT3

b ).
Maximum efficiency is obtained for Nc → ∞, i.e., when conduction dominates and the fin
is essentially isothermal. For ε < 1 the efficiency is limited to values η f < 1 since a black
configuration will always lose more heat. It is also observed that the fin efficiency (but not the
actual heat lost) increases as the opening angle α decreases: For small opening angles irradiation
from adjacent fins reduces the net radiative heat loss by a large fraction, but not as much as for
the “ideal” fin (with irradiation from adjacent fins, which are black and at Tb).

Many other studies discussing the interaction of surface radiation and one-dimensional con-
duction may be found in the literature. For example, Hering [3] and Tien [4] considered the
fins of Fig. 9-1 with specularly reflecting surfaces, and Sparrow and coworkers [2] investigated
the influence of external irradiation. Fins connecting parallel tubes were studied by Bartas and
Sellers [5], Sparrow and coworkers [6, 7], and Lieblein [8]. Single annular fins (i.e., annular
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FIGURE 9-2
Radiative fin efficiency for longitudinal plate
fins [2].

disks attached to the outside of tubes) were studied by Chambers and Sommers [9] (rectan-
gular cross-section), Keller and Holdredge [10] (variable cross-section), and Mackay [11] (with
external irradiation), while Sparrow and colleagues [12] investigated the interaction between
adjacent fins. Various other publications have appeared dealing with different geometries, sur-
face properties (including nongrayness effects), irradiation conditions, etc. A partial listing is
given with [13–35].

More recently, some researchers have considered combined conduction–surface radiation
in media with cavities, such as porous media [36, 37], packed beds of spheres [38], mirror
furnaces [39], and honeycomb panels [40–42].

9.3 CONVECTION AND SURFACE
RADIATION

As in the case of pure convection heat transfer, it is common to distinguish between external
flow and internal flow applications. If the flowing medium is air or some other relatively inert
gas, the assumption of a transparent, or radiatively nonparticipating, medium is often justified.
As an example we will consider here the case of a transparent gas flowing through a cylindrical
tube of diameter D = 2R and length L, which is heated uniformly at a rate of qw (per unit surface
area). As schematically shown in Fig. 9-3, the fluid enters the tube at x = 0 with a mean, or bulk,
temperature Tm1. Over the length of the tube the supplied heat flux qw is dissipated from the
inner surface by convection (to the fluid) and radiation (to the openings and to other parts of the
tube wall), while the outer surface of the tube is insulated. The two open ends of the tube are
exposed to radiation environments at temperatures T1 and T2, respectively. The inner surface
of the tube is assumed to be gray, diffusely emitting and diffusely reflecting, with a uniform
emittance ε. Finally, for a simplified analysis, we will assume that the convective heat transfer
coefficient, h, between tube wall and fluid is constant, independent of the radiative heat transfer,
and known.

With these simplifications an energy balance on a control volume dV = πR2
× dx yields:

enthalpy flux in at x + convective flux in over dx = enthalpy flux out at x+dx,
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FIGURE 9-3
Forced convection and radiation of a transparent medium flowing through a circular tube, subject to constant wall heat
flux.

or

ṁcpTm(x) + h [Tw(x) − Tm(x)] 2πR dx = ṁcpTm(x+dx) = ṁcp

[
Tm(x) +

dTm

dx
(x) dx

]
, (9.12)

or

dTm

dx
=

2h
ρcpumR

[Tw(x)−Tm(x)] , (9.13)

where axial conduction has been neglected, and the mass flow rate has been expressed in terms
of mean velocity as ṁ = ρumπR2. Equation (9.13) is a single equation for the unknown wall and
bulk temperatures Tw(x) and Tm(x) and is subject to the inlet condition

Tm(x=0) = Tm1. (9.14)

An energy balance for the tube surface states that the prescribed heat flux qw is dissipated by
convection and radiation or, applying equation (5.26) for the radiative heat flux,

qw = h [Tw(x) − Tm(x)] +
ε

1 − ε

[
σT4

w(x) − J(x)
]
. (9.15)

The radiosity J(x) is found from equation (5.24) as

J(x) = εσT4
w(x) + (1−ε)

{
σT4

1 Fdx−1 + σT4
2 Fdx−2 +

∫ L

0
J(x′) dFdx−dx′

}
, (9.16)

where Fdx−1 is the view factor from the circular strip of width dx at x to the opening at x=0, Fdx−2 is
the one to the opening at x=L, and dFdx−dx′ is the view factor between two circular strips located
at x and x′, as indicated in Fig. 9-3. All view factors are readily determined from Appendix
D, Configurations 9 and 31, and will not be repeated here. Equations (9.13), (9.15), and (9.16)
are a set of three simultaneous equations in the unknown Tw(x), Tm(x), and J(x), which must
be solved numerically. Before we attempt such a solution, it is best to recast the equations in
nondimensional form. Defining the following variables and parameters,

ξ =
x
D
, θ(ξ) =

(
σT4

qw

)1/4

, J(ξ) =
J

qw
, (9.17a)

St =
h

ρcpum
, H =

h
qw

(qw

σ

)1/4
, (9.17b)
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transforms equations (9.13) through (9.16) to

dθm

dξ
= 4 St [θw(ξ) − θm(ξ)] , θm(ξ=0) = θm1, (9.18)

1 = H [θw(ξ) − θm(ξ)] +
ε

1 − ε

[
θ4

w(ξ) −J(ξ)
]
, (9.19)

J(ξ) = ε θ4
w(ξ) + (1 − ε)

{
θ4

1 Fdξ−1 + θ4
2 Fdξ−2 +

∫ L/D

0
J(ξ′) dFdξ−dξ′

}
. (9.20)

Equation (9.19) becomes indeterminate for ε = 1. For the case of a black tube J = θ4
w, and

equations (9.19) and (9.20) may be combined as

1 = H [θw(ξ) − θm(ξ)] + θ4
w(ξ) − θ4

1 Fdξ−1 − θ
4
2 Fdξ−2 −

∫ L/D

0
θ4

w(ξ′) dFdξ−dξ′ . (9.21)

Example 9.1. A transparent gas flows through a black tube subject to a constant heat flux. The convec-
tive heat transfer coefficient is known to be constant such that Stanton numbers and the nondimensional
heat transfer coefficient are evaluated as St = 2.5 × 10−3 and H = 0.8. The environmental temperatures
at both ends are equal to the local gas temperatures, i.e., θ1 = θm1 and θ2 = θm2 = θm(ξ=L/D), and the
nondimensional inlet temperature is given as θm1 = 1.5. Determine the (nondimensional) wall temper-
ature variation as a function of relative tube length, L/D, using the numerical quadrature approach of
Example 5.11.

Solution
Since the tube wall is black we have only two simultaneous equations, (9.18) and (9.21), in the two
unknowns θm and θw. However, the equations are nonlinear; therefore, an iterative procedure is
necessary. For simplicity, we will adopt a simple backward finite-difference approach for the solution of
equation (9.18), and the numerical quadrature scheme of equation (5.52) for the integral in equation (9.21).
Evaluating temperatures at N + 1 nodal points ξi = i∆ξ (i = 0, 1, . . . ,N) where ∆ξ = L/(ND), this implies(

dθm

dξ

)
ξi

'
θm(ξi) − θm(ξi−1)

∆ξ
, i = 1, 2, . . . ,N,

∫ L/D

0
θ4

w(ξ′)
dFdξ−dξ′

dξ′
dξ′ '

L
D

N∑
j=0

c j θ
4
w(ξ j) K(ξi, ξ j), i = 0, 1, . . . ,N,

where the c j are quadrature weights and, from Configuration 9 in Appendix D,2

K(ξi, ξ j) = 1 −
Xi j(2X2

i j+3)

2(X2
i j+1)

; Xi j = |ξi − ξ j|.

Similarly, the two view factors to the openings are evaluated from Configuration 31 in Appendix D as

Fdξi−k =
X2

i j + 1
2√

X2
i j + 1

− Xi j,

where
j = 0 if k = 1 (opening at ξ = ξ0 = 0),

j = N if k = 2 (opening at ξ = ξN = L/D).

To solve for the unknown θm(ξi) and θw(ξi), we adopt the following iterative procedure:

1. A wall temperature is guessed for all wall nodes, say,

θw(ξi) = θ1, i = 0, 1, . . . ,N.

2Note that K(ξ, ξ′) has a sharp peak at ξ′ = ξ. Therefore, and also in light of the truncation error in the finite-
differencing of dθm/dξ, it is best to limit the quadrature scheme to Simpson’s rule [43].
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FIGURE 9-4
Axial surface temperature development for combined convection and surface radiation in a black tube subjected to
constant wall heat flux.

2. A temperature difference is calculated from equation (9.21), i.e.,

φi = H [θw(ξi) − θm(ξi)] = 1 − θ4
w(ξi) + θ4

1 Fdξi−1 + θ4
2 Fdξi−2 +

L
D

N∑
j=0

c j θ
4
w(ξ j) K(ξi, ξ j).

3. The gas bulk temperature is calculated from equation (9.18) as

θm(ξi) = θm(ξi−1) +
4 St ∆ξ

H
φi; θm(ξ0) = θ1.

4. An updated value for the wall temperatures is then determined from the definition for φi, that is,

θnew
w (ξi) = ω

[
θm(ξi) +

1
H
φi

]
+ (1 − ω)θold

w (ξi),

where ω is known as the relaxation parameter. The iteration scheme is called underrelaxed if ω < 1,
and overrelaxed ifω > 1. Ifω is chosen too large, the iteration will become unstable and not converge
at all. A good or optimal value for the relaxation parameter must usually be found by trial and error.
Detailed discussions on relaxation may be found in standard numerical analysis texts such as [44,45].
Some representative results are shown in Fig. 9-4 for several values of L/D. Because of the strong
nonlinearity of the problem, and the crude numerical scheme employed here, large numbers of nodes
are necessary to achieve good accuracy (N ' 40L/D), together with strong underrelaxation (ω < 0.02).

For the case of pure convection (ε = 0, or φi ≡ 1) the tube wall temperature rises linearly with axial
distance, since constant wall heat flux implies a linear increase in bulk temperature and, therefore,
(assuming a constant heat transfer coefficient) in surface temperature. This is not the case if radiation
is present, in particular for short tubes (small L/D). Near both ends of the tube, much of the radiative
energy leaves through the openings, causing a distinct drop in surface temperature. For long tubes
(L/D > 50) the surface temperature rises almost linearly over the central parts of the tube, although the
temperature stays below the convection-only case: Due to the higher temperatures downstream, some
net radiative heat flux travels upstream, making overall heat transfer a little more efficient. It should
be noted here that the assumption of a constant heat transfer coefficient is not particularly realistic,
since it implies a fully developed thermal profile. It is well known that for pure convection h → ∞
at the inlet and, thus, θw(ξ = 0) = 1 [1]. Near the inlet of a tube the actual temperature distribution
for pure convection is very similar to the one depicted in Fig. 9-3, which is driven by radiation losses.
Although for pure convection a fully developed thermal profile and constant h are eventually reached
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(at L/D > 20 for turbulent flow), in the presence of radiation a constant heat transfer coefficient is never
reached (because the radiation term makes the governing equations nonlinear).

A number of researchers have investigated combined convection and radiation for a trans-
parent flowing medium. Flow through circular tubes was considered by Siegel and cowork-
ers [46–48] for a number of situations, but always assuming a constant and known heat transfer
coefficient. Dussan and Irvine [49] and Chen [50] calculated the local convection rate by solving
the two-dimensional energy equation for the flowing medium, but they made severe simplifi-
cations in the evaluation of radiative heat fluxes. The most general tube flow analysis has been
carried out by Thorsen and Kanchanagom [51, 52]. Similar problems for parallel-plate channel
flow were investigated by Keshock and Siegel [53] (for a constant heat transfer coefficient) and
Lin and Thorsen [54] (for two-dimensional convection calculations). Combined radiation and
forced convection of external flow across a flat plate has been addressed by Cess [55,56], Sparrow
and Lin [57], and Sohal and Howell [58]. Fluidized bed heat transfer has also been investigated
by a number of researchers [59–61] and, finally, the interaction between surface radiation and
free convection has been studied, both numerically and experimentally [62–71].

References
1. Holman, J. P.: Heat Transfer, 7th ed., McGraw-Hill Book Company, New York, 1990.
2. Sparrow, E. M., E. R. G. Eckert, and T. F. Irvine: “The effectiveness of radiating fins with mutual irradiation,”

Journal of the Aerospace Sciences, no. 28, pp. 763–772, 1961.
3. Hering, R. G.: “Radiative heat exchange between conducting plates with specular reflection,” ASME Journal of

Heat Transfer, vol. C88, pp. 29–36, 1966.
4. Tien, C. L.: “Approximate solutions of radiative exchange between conducting plates with specular reflection,”

ASME Journal of Heat Transfer, vol. 89C, pp. 119–120, 1967.
5. Bartas, J. G., and W. H. Sellers: “Radiation fin effectiveness,” ASME Journal of Heat Transfer, vol. 82C, pp. 73–75,

1960.
6. Sparrow, E. M., and E. R. G. Eckert: “Radiant interaction between fins and base surfaces,” ASME Journal of Heat

Transfer, vol. C84, pp. 12–18, 1962.
7. Sparrow, E. M., V. K. Jonsson, and W. J. Minkowycz: “Heat transfer from fin-tube radiators including longitudinal

heat conduction and radiant interchange between longitudinally non-isothermal finite surfaces,” NASA TN D-
2077, 1963.

8. Lieblein, S.: “Analysis of temperature distribution and radiant heat transfer along a rectangular fin,” NASA TN
D-196, 1959.

9. Chambers, R. L., and E. V. Sommers: “Radiation fin efficiency for one-dimensional heat flow in a circular fin,”
ASME Journal of Heat Transfer, vol. 81C, no. 4, pp. 327–329, 1959.

10. Keller, H. H., and E. S. Holdredge: “Radiation heat transfer for annular fins of trapezoid profile,” ASME Journal
of Heat Transfer, vol. 92, no. 6, pp. 113–116, 1970.

11. Mackay, D. B.: Design of Space Powerplants, Prentice-Hall, Englewood Cliffs, NJ, 1963.
12. Sparrow, E. M., G. B. Miller, and V. K. Jonsson: “Radiating effectiveness of annular-finned space radiators

including mutual irradiation between radiator elements,” Journal of Aerospace Sciences, vol. 29, pp. 1291–1299,
1962.

13. Abarbanel, S. S.: “Time dependent temperature distribution in radiating solids,” J. Math. Phys., vol. 39, no. 4, pp.
246–257, 1960.

14. Eckert, E. R. G., T. F. Irvine, and E. M. Sparrow: “Analytical formulation for radiating fins with mutual irradiation,”
American Rocket Society Journal, vol. 30, pp. 644–646, 1960.

15. Nilson, E. N., and R. Curry: “The minimum weight straight fin of triangular profile radiating to space,” Journal
of the Aerospace Sciences, vol. 27, p. 146, 1960.

16. Hickman, R. S.: “Transient response and steady-state temperature distribution in a heated, radiating, circular
plate,” Technical Report 32-169, California Institute of Technology, Jet Propulsion Laboratory, 1961.

17. Heaslet, M. A., and H. Lomax: “Numerical predictions of radiative interchange between conducting fins with
mutual irradiations,” NASA TR R-116, 1961.

18. Nichols, L. D.: “Surface-temperature distribution on thin-walled bodies subjected to solar radiation in interplan-
etary space,” NASA TN D-584, 1961.

19. Schreiber, L. H., R. P. Mitchell, G. D. Gillespie, and T. M. Olcott: “Techniques for optimization of a finned-tube
radiator,” ASME Paper No. 61-SA-44, June 1961.

20. Olmstead, W. E., and S. Raynor: “Solar heating of a rotating spherical space vehicle,” International Journal of Heat
and Mass Transfer, vol. 5, pp. 1165–1177, 1962.

21. Wilkins, J. E.: “Minimum-mass thin fins and constant temperature gradients,” J. Soc. Ind. Appl. Math, vol. 10,
no. 1, pp. 62–73, 1962.



276 9 SURFACE RADIATIVE EXCHANGE IN THE PRESENCE OF CONDUCTION AND CONVECTION

22. Hrycak, P.: “Influence of conduction on spacecraft skin temperatures,” AIAA Journal, vol. 1, pp. 2619–2621, 1963.
23. Karlekar, B. V., and B. T. Chao: “Mass minimization of radiating trapezoidal fins with negligible base cylinder

interaction,” International Journal of Heat and Mass Transfer, vol. 6, pp. 33–48, 1963.
24. Stockman, N. O., and J. L. Kramer: “Effect of variable thermal properties on one-dimensional heat transfer in

radiating fins,” NASA TN D-1878, 1963.
25. Kotan, K., and O. A. Arnas: “On the optimization of the design parameters of parabolic radiating fins,” ASME

Paper No. 65-HT-42, August 1965.
26. Mueller, H. F., and N. D. Malmuth: “Temperature distribution in radiating heat shields by the method of singular

perturbations,” International Journal of Heat and Mass Transfer, vol. 8, pp. 915–920, 1965.
27. Russell, L. D., and A. J. Chapman: “Analytical solution of the ‘known-heat-load’ space radiator problem,” Journal

of Spacecraft and Rockets, vol. 4, no. 3, pp. 311–315, 1967.
28. Frost, W., and A. H. Eraslan: “An iterative method for determining the heat transfer from a fin with radiative

interaction between the base and adjacent fin surfaces,” AIAA Paper No. 68-772, June 1968.
29. Donovan, R. C., and W. M. Rohrer: “Radiative conducting fins on a plane wall, including mutual irradiation,”

ASME Paper No. 69-WA/HT-22, November 1969.
30. Schnurr, N. M., A. B. Shapiro, and M. A. Townsend: “Optimization of radiating fin arrays with respect to weight,”

ASME Journal of Heat Transfer, vol. 98, no. 4, pp. 643–648, 1976.
31. Eslinger, R., and B. Chung: “Periodic heat transfer in radiating and convecting fins or fin arrays,” AIAA Journal,

vol. 17, no. 10, pp. 1134–1140, 1979.
32. Gerencser, D. S., and A. Razani: “Optimization of radiative–convective arrays of pins fins including mutual

irradiation between fins,” International Journal of Heat and Mass Transfer, vol. 38, pp. 899–907, 1995.
33. Chung, B. T. F., B. X. Zhang, and E. T. Lee: “A multi-objective optimization of radiative fin array systems in a

fuzzy environment,” ASME Journal of Heat Transfer, vol. 118, no. 3, pp. 642–649, 1996.
34. Krishnaprakas, C. K.: “Optimum design of radiating rectangular plate fin array extending from a plane wall,”

ASME Journal of Heat Transfer, vol. 118, pp. 490–493, 1996.
35. Krishnaprakas, C. K.: “Optimum design of radiating longitudinal fin array extending from a cylindrical surface,”

ASME Journal of Heat Transfer, vol. 119, pp. 857–860, 1997.
36. Fitzgerald, S. P., and W. Strieder: “Radiation heat transfer down an elongated spheroidal cavity,” AIChE Journal,

vol. 43, pp. 2–12, 1997.
37. Liang, X. G., and W. Qu: “Effective thermal conductivity of gas–solid composite materials and the temperature

difference effect at high temperature,” International Journal of Heat and Mass Transfer, vol. 42, no. 10, pp. 1885–1893,
1999.

38. Singh, B. P., and M. Kaviany: “Effect of solid conductivity on radiative heat transfer in packed beds,” International
Journal of Heat and Mass Transfer, vol. 37, no. 16, pp. 2579–2583, 1994.

39. Haya, R., D. Rivas, and J. Sanz: “Radiative exchange between a cylindrical crystal and a monoellipsoidal mirror
furnace,” International Journal of Heat and Mass Transfer, vol. 40, pp. 323–332, 1997.

40. Hollands, K. G. T., and K. Iynkaran: “Analytical model for the thermal conductance of compound honeycomb
transparent insulation, with experimental validation,” Solar Energy, vol. 51, pp. 223–227, 1993.

41. Jones, P. D.: “Correlation of combined radiation and conduction in evacuated honeycomb-cored panels,” Journal
of Solar Energy Engineering, vol. 118, pp. 97–100, 1996.

42. Schweiger, H., A. Oliva, M. Costa, and C. D. Segarra: “Monte Carlo method for the simulation of transient
radiation heat transfer: Application to compound honeycomb transparent insulation,” Numerical Heat Transfer –
Part B: Fundamentals, vol. 35, pp. 113–136, 1999.
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Problems

9.1

∋ ∋a ds

R

qsolA satellite shaped like a sphere (R = 1 m) has a gray-diffuse surface
coating with εs = 0.3 and is fitted with a long, thin, cylindrical antenna,
as shown in the adjacent sketch. The antenna is a specular reflector
with εa = 0.1, ka = 100 W/m K, and d = 1 cm. Satellite and antenna are
exposed to solar radiation of strength qsol = 1300 W/m2 from a direction
normal to the antenna. Assuming that the satellite produces heat at
a rate of 4 kW and—due to a high-conductivity shell—is essentially
isothermal, determine the equilibrium temperature distribution along the antenna. (Hint: Use the
fact that d� R not only for conduction calculations, but also for the calculation of view factors.)

9.2 A long, thin, cylindrical needle (L � D) is attached perpendicularly to a large, isothermal base plate
at T = Tb = const. The base plate is gray and diffuse (εb = αb), while the needle is nongray and diffuse
(ε , α). The needle exchanges heat by convection and radiation with a large, isothermal environment
at T∞.
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(a) Neglecting heat losses from the free tip of the needle, formulate the problem for the calculation
of needle temperature distribution, total heat loss, and fin efficiency.

(b) Implement the solution numerically for L = 1 m, D = 1 cm, k = 10 W/m K, h = 40 W/m2 K,
ε = 0.8, α = 0.4, εb = 0.8, Tb = 1000 K, T∞ = 300 K.

9.3

120 cm

Refractory
brick

Heating
element

Sample

SiC tube
15 cm

15 cm

30 cm

0.5 cm 5 cm

Refractory

In the emissometer of Vader and coworkers [72] and Sikka [73],
the sample is kept inside a long silicon carbide tube that in turn, is
inside a furnace, as shown in the sketch. The furnace is heated with
a number of SiC heating elements, providing a uniform flux over a
45 cm length as shown. Assume that there is no heat loss through
the refractory brick or the bottom of the furnace, that the inside
heat transfer coefficient for free convection (with air at 600◦C) is
10 W/m2 K, that the silicon carbide tube is gray-diffuse (ε = 0.9, k =
100 W/m K), and that the sample temperature is equal to the SiC
tube temperature at the same height. What must be the steady-
state power load on the furnace to maintain a sample temperature
of 1000◦C? In this configuration a detector receiving radiation from
a small center spot of the sample is supposedly getting the same
amount as from a blackbody at 1000◦C (cf. Table 5.1). What is the
actual emittance sensed by the detector, i.e., what systematic error is caused by this near-blackbody,
if the sample is gray and diffuse with εs = 0.5?

9.4 A thermocouple with a 0.5 mm diameter bead is used to measure the local temperature of a hot,
radiatively nonparticipating gas flowing through an isothermal, gray-diffuse tube (Tw = 300 K, εw =
0.8). The thermocouple is a diffuse emitter/specular reflector with εb = 0.5, and the heat transfer
coefficient between bead and gas is 30 W/m2 K.

(a) Determine the thermocouple error as a function of gas temperature (i.e., |Tb − T1| vs. T1).
(b) In order to reduce the error, a radiation shield in the form of a thin, stainless-steel cylinder

(ε = 0.1, R = 2 mm, L = 20 mm) is placed over the thermocouple. This also reduces the heat
transfer coefficient between bead and gas to 15 W/m2 K, which is equal to the heat transfer
coefficient on the inside of the shield. On the outside of the cylinder the heat transfer coefficient
is 30 W/m2 K. Determine error vs. gas temperature for this case.

To simplify the problem, you may make the following assumptions: (i) the leads of the thermocouple
may be neglected, (ii) the shield is very long as far as the radiation analysis is concerned, and (iii) the
shield reflects diffusely.

9.5 Repeat Problem 5.36 for the case in which a radiatively nonparticipating, stationary gas (k = 0.04
W/m K) is filling the 1 cm thick gap between surface and shield.


