
CHAPTER

8
THE MONTE CARLO
METHOD FOR
SURFACE EXCHANGE

8.1 INTRODUCTION

Very few exact, closed-form solutions to thermal radiation problems exist, even in the absence
of a participating medium. Under most circumstances the solution has to be found by numer-
ical means. For most engineers, who are used to dealing with partial differential equations,
this implies use of finite difference and finite element techniques. These methods are, of course,
applicable to thermal radiation problems whenever a solution method is chosen that transforms
the governing equations into sets of partial differential equations. For surface exchange, how-
ever, radiative transfer is governed by integral equations, which may be solved numerically by
employing numerical quadrature for the evaluation of integrals, or more approximately using the
“net radiation method” of the previous three chapters. With these techniques the solutions to
relatively simple problems are readily found. However, if the geometry is involved, and/or if
radiative properties vary with direction, then a solution by conventional numerical techniques
may quickly become extremely involved if not impossible.

Many mathematical problems may also be solved by statistical methods, through sampling
techniques, to any degree of accuracy. For example, consider predicting the outcome of the next
presidential elections. Establishing a mathematical model that would predict voter turnout
and voting behavior is, of course, impossible, let alone finding the analytical solution to such a
model. However, if an appropriate sampling technique is chosen, the outcome can be predicted
by conducting a poll. The accuracy of its prediction depends primarily on the sample size,
i.e., how many people have been polled. Solving mathematical problems statistically always
involves the use of random numbers, which may be picked, e.g., by placing a ball into a spinning
roulette wheel. For this reason these sampling methods are called Monte Carlo methods (named
after the principality of Monte Carlo in the south of France, famous for its casino). There is
no single scheme to which the name Monte Carlo applies. Rather, any method of solving a
mathematical problem with an appropriate statistical sampling technique is commonly referred
to as a Monte Carlo method.

Problems in thermal radiation are particularly well suited to solution by a Monte Carlo tech-
nique, since energy travels in discrete parcels (photons) over (usually) relatively long distances
along a (usually) straight path before interaction with matter. Thus, solving a thermal radiation
problem by Monte Carlo implies tracing the history of a statistically meaningful random sample
of photons from their points of emission to their points of absorption. The advantage of the
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FIGURE 8-1
Comparison of Monte Carlo and conventional solution tech-
niques.

Monte Carlo method is that even the most complicated problem may be solved with relative
ease, as schematically indicated in Fig. 8-1. For a trivial problem, setting up the appropriate
photon sampling technique alone may require more effort than finding the analytical solution.
As the complexity of the problem increases, however, the complexity of formulation and the
solution effort increase much more rapidly for conventional techniques. For problems beyond a
certain complexity, the Monte Carlo solution will be preferable. Unfortunately, there is no way
to determine a priori precisely where this crossover point in complexity lies. The disadvantage
of Monte Carlo methods is that, as statistical methods, they are subject to statistical error (very
similar to the unavoidable error associated with experimental measurements).

The name and the systematic development of Monte Carlo methods dates from about 1944
[1], although some crude mathematical sampling techniques were used off and on during
previous centuries. Their first use as a research tool stems from the attempt to model neutron
diffusion in fission material, for the development of the atomic bomb during World War II. The
method was first applied to thermal radiation problems in the early 1960s by Fleck [2, 3] and
Howell and Perlmutter [4–6].

For a thorough understanding of Monte Carlo methods, a good background in statistical
methods is necessary, which goes beyond the scope of this book. In this chapter the method
as applied to thermal radiation is outlined, and statistical considerations are presented in an
intuitive way rather than in a rigorous mathematical fashion. For a more detailed description,
the reader may want to consult the books by Hammersley and Handscomb [1], Cashwell and
Everett [7], and Schreider [8], or the monographs by Kahn [9], Brown [10], Halton [11], and
Hajji-Sheikh [12]. A first monograph dealing specifically with Monte Carlo methods as applied
to thermal radiation has been given by Howell [13]. Another more recent one by Walters and
Buckius [14] emphasizes the treatment of scattering. An exhaustive review of the literature
up until 1997, that uses some form of radiative Monte Carlo analysis, has been given also by
Howell [15]. Since then a large number of researchers have applied Monte Carlo simulations to a
vast array of problems, ranging from nanoscale radiation properties to large-scale tomography,
surface radiation, participating media, transient radiation, combined modes heat transfer, etc.,
too numerous to review in this book.

Probability Distributions
When a political poll is conducted, people are not selected at random from a telephone directory.
Rather, people are randomly selected from different groups according to probability distributions,
to ensure that representative numbers of barbers, housewives, doctors, smokers, gun owners,
bald people, heat transfer engineers, etc. are included in the poll. Similarly, in order to follow
the history of radiative energy bundles in a statistically meaningful way, the points, directions
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and wavelengths of emission, reflective behavior, etc. must be chosen according to probability
distributions.

As an example, consider the total radiative heat flux being emitted from a surface, i.e., the
total emissive power,

E =

∫
∞

0
Eλ dλ =

∫
∞

0
ελEbλ dλ. (8.1)

Between the wavelengths of λ and λ + dλ the emitted heat flux is Eλ dλ = ελEbλ dλ, and the
fraction of energy emitted over this wavelength range is

P(λ) dλ =
Eλ dλ∫
∞

0 Eλ dλ
=

Eλ
E

dλ. (8.2)

We may think of all the photons leaving the surface as belonging to a set of N energy bundles
of equal energy (each consisting of many photons of a single wavelength). Then each bundle
carries the amount of energy (E/N) with it, and the probability that any particular bundle has a
wavelength between λ and λ + dλ is given by the probability density function P(λ). The fraction
of energy emitted over all wavelengths between 0 and λ is then

R(λ) =

∫ λ

0
P(λ) dλ =

∫ λ

0 Eλ dλ∫
∞

0 Eλ dλ
. (8.3)

It is immediately obvious that R(λ) is also the probability that any given energy bundle has
a wavelength between 0 and λ, and it is known as the cumulative distribution function. The
probability that a bundle has a wavelength between 0 and ∞ is, of course, R(λ → ∞) = 1, a
certainty. Equation (8.3) implies that if we want to simulate emission from a surface with N
energy bundles of equal energy, then the fraction R(λ) of these bundles must have wavelengths
smaller than λ.

Now consider a pool of random numbers equally distributed between the values 0 and
1. Since they are equally distributed, this implies that a fraction R of these random numbers
have values less than R itself. Let us now pick a single random number, say R0. Inverting
equation (8.3), we find λ(R0), i.e., the wavelength corresponding to a cumulative distribution
function of value R0, and we assign this wavelength to one energy bundle. If we repeat this
process many times, then the fraction R0 of all energy bundles will have wavelengths below
λ(R0), since the fraction R0 of all our random numbers will be below this value. Thus, in order
to model correctly the spectral variation of surface emission, using N bundles of equal energy,
their wavelengths may be determined by picking N random numbers between 0 and 1, and
inverting equation (8.3).

Random Numbers
If we throw a ball onto a spinning roulette wheel, the ball will eventually settle on any one
of the wheel’s numbers (between 0 and 36). If we let the roulette wheel decide on another
number again and again, we will obtain a set of random numbers between 0 and 36 (or between
0 and 1, if we divide each number by 36). Unless the croupier throws in the ball and spins
the wheel in a regular (nonrandom) fashion,1 any number may be chosen each time with equal
probability, regardless of what numbers have been picked previously. However, if sufficiently
many numbers are picked, we may expect that roughly half (i.e., 18/37) of all the picked numbers
will be between 0 and 17, for example.

1This is, of course, the reason casinos tend to employ a number of croupiers, each of whom works only for a very
short period each day.
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FIGURE 8-2
Convergence of Monte Carlo method for
different sets of random numbers.

During the course of a Monte Carlo simulation, generally somewhere between 105 and
107 random numbers need to be drawn, and they need to be drawn very rapidly. Obviously,
spinning a roulette wheel would be impractical. One solution to this problem is to store
an (externally determined) set of random numbers. However, such a table would require a
prohibitive amount of computer storage, unless it were a relatively small table, that would be
used repeatedly (thus destroying the true randomness of the set). The only practical answer is
to generate the random numbers within the computer itself. This appears to be a contradiction,
since a digital computer is the incarnation of logic (nonrandomness). Substantial research has
been carried out on how to generate sets of sufficiently random numbers using what are called
pseudorandom number generators. A number of such generators exist that, after making the
choice of a starting point, generate a new pseudorandom number from the previous one. The
randomness of such a set of numbers depends on the quality of the generator as well as the
choice of the starting point and should be tested by different “randomness tests.” For a more
detailed discussion of pseudorandom number generators, the reader is referred to Hammersley
and Handscomb [1], Schreider [8], or Taussky and Todd [16].

Accuracy Considerations
Since Monte Carlo methods are statistical methods, the results, when plotted against number of
samples, will generally fluctuate randomly around the correct answer. If a set of truly random
numbers is used for the sampling, then these fluctuations will decrease as the number of samples
increases. Let the answer obtained from the Monte Carlo method after tracing N energy bundles
be S(N), and the exact solution obtained after sampling infinitely many energy bundles S(∞).
For some simple problems it is possible to calculate directly the probability that the obtained
answer, S(N), differs by less than a certain amount from the correct answer, S(∞).

Even if it were possible to directly calculate the confidence level for more complicated
situations, this would not take into account the pseudorandomness of the computer-generated
random number set. That this effect can be rather substantial is seen from Fig. 8-2, which depicts
the Monte Carlo evaluation of the view factor between two parallel black plates [17]. Both sets
of data use the same computer code and the same random number generator (on a UNIVAC
1110). If a starting value of 1 is used, the results are still fairly inaccurate after 5000 bundles; if
a starting value of 12,345 is used (this number gave the fastest-converging results of the ones
tested for the random number generator used here), good convergence is achieved after only
4000 bundles. Obviously, careful investigation of the random number generator can increase
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convergence and accuracy and thus decrease computer time considerably. Randomness tests
performed on sets of generated numbers showed that a starting value of 12,345 performs well
in all tests and indeed results in a “better” set of random numbers than the starting value of 1
for the random number generator employed by Modest and Poon [17].

For radiative heat transfer calculations the most straightforward way of estimating the error
associated with the sampling result S(N) is to break up the result into a number of I subsamples
S(Ni), such that

N = N1 + N2 + . . . + NI =

I∑
i=1

Ni, (8.4)

S(N) =
1
N

(
N1S(N1) + . . . + NIS(NI)

)
=

1
N

I∑
i=1

NiS(Ni). (8.5)

Normally, each subsample would include identical amounts of bundles, leading to

Ni = N/I; i = 1, 2, . . . , I, (8.6)

S(N) =
1
I

I∑
i=1

S(Ni). (8.7)

The I subsamples may then be treated as if they were independent experimental measurements
of the same quantity. We may then calculate the variance or adjusted mean square deviation of the
mean

σ2
m =

1
I(I − 1)

I∑
i=1

[S(Ni) − S(N)]2 . (8.8)

The central limit theorem states that the mean S(N) of I measurements S(Ni) follows a Gaussian
distribution, whatever the distribution of the individual measurements. This implies that we
can say with 68.3% confidence that the correct answer S(∞) lies within the limits of S(N) ± σm,
with 95.5% confidence within S(N)± 2σm, or with 99% confidence within S(N)± 2.58σm. Details
on statistical analysis of errors may be found in any standard book on experimentation, for
example, the one by Barford [18].

8.2 NUMERICAL QUADRATURE BY
MONTE CARLO

Before discussing how statistical methods can be used to solve complicated radiative transfer
problems, we will quickly demonstrate that the Monte Carlo method can also be employed
to evaluate integrals numerically (known as numerical quadrature). Consider the integral∫ b

a f (x) dx. The most primitive form of numerical quadrature is the trapezoidal rule, in which f (x)
is assumed constant over a small interval ∆x, i.e. [19, 20],∫ b

a
f (x) dx '

N∑
i=1

f
[
xi = (i − 1

2 )∆x
]
∆x; ∆x =

b − a
N

. (8.9)

For large enough values of N equation (8.9) converges to the correct result. Note that the
values of xi are equally distributed across the interval between a and b. If we were to draw N
random locations equally distributed between a and b, we would achieve the same result in a
statistical sense. Therefore, we can evaluate any integral via the Monte Carlo method as∫ b

a
f (x) dx '

N∑
i=1

f [xi = a + (b − a)Ri] ∆x; ∆x =
b − a

N
, (8.10)
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where Ri is a set of random numbers equally distributed between 0 and 1. Equation (8.10) is an
efficient means of integration if the integrand f (x) is poorly behaved as, e.g., in the evaluation of
k-distributions in Chapter 11 (integration over spectral variations of the absorption coefficient
of molecular gases). However, if f (x) varies by orders of magnitude (but in a predictable
manner) across a ≤ x ≤ b, picking equally distributed xi results in putting equal emphasis on
important as well as unimportant regions. The stochastic integration can be made more efficient
by determining the xi from a probability density function (PDF) p(x). We may write∫ b

a
f (x) dx =

∫ b

a

f (x)
p(x)

p(x) dx =

∫ 1

0

f (x(ξ))
p(x(ξ))

dξ (8.11)

where

ξ(x) =

∫ x

a
p(x) dx,

∫ b

a
p(x) dx ≡ 1. (8.12)

The PDF is chosen in such a way that f/p remains relatively constant across a ≤ x ≤ b, assuring
that each stochastic sample makes roughly the same contribution to the result. The integral may
then be evaluated as ∫ b

a
f (x) dx '

b − a
N

N∑
i=1

f (xi)
p(xi)

, xi = ξ−1(Ri). (8.13)

Equations (8.10) and (8.13) are also useful if integration is an integral part of a Monte
Carlo simulation, such as the Backward Monte Carlo scheme described in Chapter 21. Finally,
extension to two- and higher-dimensional integrals is obvious and trivial.

8.3 HEAT TRANSFER RELATIONS FOR
RADIATIVE EXCHANGE BETWEEN
SURFACES

In the absence of a participating medium and assuming a refractive index of unity, the radiative
heat flux leaving or going into a certain surface, using the Monte Carlo technique, is governed
by the following basic equation:

q(r) = ε(r)σT4(r) −
∫

A
ε(r′) σT4(r′)

dFdA′→dA

dA
dA′, (8.14)

where
q(r) = local surface heat flux at location r,
T(r) = surface temperature at location r,
ε(r) = total hemispherical emittance of the surface at r,

A = surface area of the enclosure, and
dFdA′→dA = generalized radiation exchange factor between

surface elements dA′ and dA.
In equation (8.14) the first term on the right-hand side describes the emission from the surface,
and the integrand of the second term is the fraction of energy, originally emitted from the surface
at r′, which eventually gets absorbed at location r. Therefore, the definition for the generalized
exchange factor must be:

dFdA′→dA ≡ fraction of the total energy emitted by dA′ that is absorbed by
dA, either directly or after any number and type of reflections. (8.15)

This definition appears to be the most compatible one for solution by ray-tracing techniques and
is therefore usually employed for calculations by the Monte Carlo method. Figure 8-3 shows a
schematic of an arbitrary enclosure with energy bundles emitted at dA′ and absorbed at dA.
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FIGURE 8-3
Possible energy bundle paths in an arbi-
trary enclosure.

If the enclosure is not closed, i.e., has openings into space, some artificial closing surfaces
must be introduced. For example, an opening directed into outer space without irradiation
from the sun or Earth can be replaced by a black surface at a temperature of 0 K. If the opening is
irradiated by the sun, it is replaced by a nonreflecting surface with zero emittance for all angles
but the solar angle, etc.

The enclosure surface is now divided into J subsurfaces, and equation (8.14) reduces to

Qi =

∫
Ai

qi dAi = εiσT4
i Ai −

J∑
j=1

ε jσT4
j A jFj→i − qextAsFs→i, 1 ≤ i ≤ J, (8.16)

where
qext = external energy entering through any opening in the enclosure,
As = area of the opening irradiated from external sources,

and the ε j and T j are suitable average values for each subsurface, i.e.,

ε jσT4
j =

1
A j

∫
A j

εσT4 dA. (8.17)

Although heat flow rates Qi can be calculated directly by the Monte Carlo method, it is of
advantage to instead determine the exchange factors: Although the Qi’s depend on all surface
temperatures in the enclosure, the Fi→ j’s either do not (gray surfaces) or depend only on the
temperature of the emitting surface (nongray surfaces), provided that surface reflectances (and
absorptances) are independent of temperature (as they are to a very good degree of accuracy).
Since all emitted energy must go somewhere, and, by the Second Law of Thermodynamics the
net exchange between two equal temperature surfaces must be zero, the summation rule and
reciprocity also hold for exchange factors, i.e.,

J∑
j=1

Fi→ j = 1, (8.18)

εiAiFi→ j = ε jA jF j→i, (8.19)

(the former, of course, only for enclosures without openings).
A large statistical sample of energy bundles Ni is emitted from surface Ai, each of them

carrying the amount of radiative energy

∆Ei = εiσT4
i Ai/Ni. (8.20)
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If Ni j of these bundles become absorbed by surface A j either after direct travel or after any
number of reflections, the exchange factor may be calculated from

Fi→ j = lim
Ni→∞

(
Ni j

Ni

)
'

(
Ni j

Ni

)
Ni�1

. (8.21)

MONT3D is a publicly available Fortran code [21–24], given in Appendix F, that calculates general
exchange factors for complicated three-dimensional geometries. Monte Carlo calculations of
exchange factors, by their nature, automatically obey the summation rule, equation (8.18),
but—due to the inherent statistical scatter—reciprocity, equation (8.19), is not fulfilled. Several
smoothing schemes have been given in the literature that assure that both equations (8.18) and
(8.19) are satisfied [25–29].

8.4 RANDOM NUMBER RELATIONS FOR
SURFACE EXCHANGE

In order to calculate the exchange factor by tracing the history of a large number of energy
bundles, we need to know how to pick statistically meaningful energy bundles as explained
in Section 8.1: for each emitted bundle we need to determine a point of emission, a direction
of emission, and a wavelength of emission. Upon impact of the bundle onto another point of
the enclosure surface, we need to decide whether the bundle is reflected and, if so, into what
direction.

Points of Emission
Similar to equation (8.1) we may write for the total emission from a surface A j:

E j =

∫
A j

εσT4 dA. (8.22)

Since integration over an area is a double integral, we may rewrite this equation, without loss
of generality, as

E j =

∫ X

x=0

∫ Y

y=0
εσT4dy dx =

∫ X

0
E′j dx, (8.23)

where

E′j(x) =

∫ Y

0
εσT4dy. (8.24)

Thus, we may apply equation (8.3) and find

Rx =
1
E j

∫ x

0
E′j dx. (8.25)

This relationship may be inverted to find the x-location of the emission point as a function of a
random number Rx:

x = x(Rx). (8.26)

Once the x-location has been determined, equation (8.3) may also be applied to equation (8.24),
leading to an expression for the y-location of emission:

Ry =
1

E′j(x)

∫ y

0
εσT4dy, (8.27)

and
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FIGURE 8-4
Geometry for Example 8.1.

y = y(Ry, x). (8.28)

Note that the choice for the y-location depends not only on the random number Ry, but also on
the location of x.

If the emissive power may be separated in x and y, i.e., if

E = εσT4 = Ex(x)Ey(y), (8.29)

then equation (8.25) reduces to

Rx =

∫ x

0
Ex(x) dx

/∫ X

0
Ex(x) dx, (8.30)

and equation (8.27) simplifies to

Ry =

∫ y

0
Ey(y) dy

/∫ Y

0
Ey(y) dy, (8.31)

that is, choices for x- and y-locations become independent of one another. In the simplest case
of an isothermal surface with constant emittance, these relations reduce to

x = RxX, y = RyY. (8.32)

Example 8.1. Given a ring surface element on the bottom of a black isothermal cylinder with inner
radius ri = 10 cm and outer radius ro = 20 cm, as indicated in Fig. 8-4, calculate the location of emission
for a pair of random numbers Rr = 0.5 and Rφ = 0.25.

Solution
We find

E =

∫
A

Eb dA = Eb

∫ 2π

0

∫ ro

ri

r dr dφ.

Since this expression is separable in r and φ, this leads to

Rφ =

∫ φ

0
dφ

/∫ 2π

0
dφ =

φ

2π
, or φ = 2πRφ,

and

Rr =

∫ r

ri

r dr
/∫ ro

ri

r dr =
r2
− r2

i

r2
o − r2

i

,

or
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r =
√

r2
i + (r2

o − r2
i )Rr.

Therefore, φ = 2π × 0.25 = π/2 and r =
√

100 + (400 − 100)0.5 = 15.8 cm. While, as expected for a
random number of 0.25, the emission point angle is 90◦ away from the φ = 0 axis, the r-location does not
fall onto the midpoint. This is because the cylindrical ring has more surface area at larger radii, resulting
in larger total emission. This implies that more energy bundles must be emitted from the outer part of
the ring.

Wavelengths of Emission
Once an emission location has been chosen, the wavelength of the emitted bundle needs to be
determined (unless all surfaces in the enclosure are gray; in that case the wavelength of the
bundle does not enter the calculations, and its determination may be omitted). The process of
finding the wavelength has already been outlined in Section 8.1, leading to equation (8.3), i.e.,

Rλ =
1

εσT4

∫ λ

0
ελEbλ dλ, (8.33)

and, after inversion,
λ = λ(Rλ, x, y). (8.34)

We note that the choice of wavelength, in general, depends on the choice for the emission
location (x, y), unless the surface is isothermal with constant emittance. If the surface is black or
gray, equation (8.33) reduces to the simple case of

Rλ =
1
σT4

∫ λ

0
Ebλ dλ = f (λT). (8.35)

Directions of Emission
The spectral emissive power (for a given position and wavelength) is

Eλ =

∫
2π
ε′λIbλ cosθ dΩ =

1
π

Ebλ

∫ 2π

0

∫ π/2

0
ε′λ cosθ sinθ dθ dψ. (8.36)

As we did for choosing the (two-dimensional) point of emission, we write

Rψ =
Ebλ

πEλ

∫ ψ

0

∫ π/2

0
ε′λ cosθ sinθ dθ dψ =

1
π

∫ ψ

0

∫ π/2

0

ε′λ
ελ

cosθ sinθ dθ dψ, (8.37)

or
ψ = ψ(Rψ, x, y, λ). (8.38)

We note from equation (8.37) that ψ does not usually depend on emission location, unless the
emittance changes across the surface. However, ψ does depend on the chosen wavelength,
unless spectral and directional dependence of the emittance are separable. Once the azimuthal
angle ψ is found, the polar angle θ is determined from

Rθ =

∫ θ

0
ε′λ cosθ sinθ dθ

/∫ π/2

0
ε′λ cosθ sinθ dθ, (8.39)

or
θ = θ(Rθ, x, y, λ, ψ). (8.40)

Most surfaces tend to be isotropic so that the directional emittance does not depend on azimuthal

angle ψ. In that case ελ = 2
∫ π/2

0 ε′λ cosθ sinθ dθ, and equation (8.37) reduces to

Rψ =
ψ

2π
, or ψ = 2πRψ, (8.41)
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and the choice of polar angle becomes independent of azimuthal angle. For a diffuse emitter,
equation (8.39) simplifies to

Rθ = sin2θ, or θ = sin−1
√

Rθ. (8.42)

Order of Evaluation
In the foregoing we have chosen to first determine an emission location, followed by an emission
wavelength and, finally, the direction of emission, as is most customary. However, the only
constraint that we need to satisfy in a statistical manner is the total emitted energy from a
surface, given by

E =

∫
A
εσT4 dA =

∫
A

∫
∞

0

∫
2π
ε′λIbλ cosθ dΩ dλ dA. (8.43)

While we have obtained the random number relationships by peeling the integrals in equa-
tion (8.43) in the order shown, integration may be carried out in arbitrary order (e.g., first
evaluating emission wavelength, etc.).

Absorption and Reflection
When radiative energy impinges on a surface, the fraction α′λ will be absorbed, which may
depend on the wavelength of irradiation, the direction of the incoming rays, and, perhaps, the
local temperature. Of many incoming bundles the fraction α′λ will therefore be absorbed while
the rest, 1−α′λ, will be reflected. This can clearly be simulated by picking a random number, Rα,
and comparing it with α′λ: If Rα ≤ α′λ, the bundle is absorbed, while if Rα > α′λ, it is reflected.

The direction of reflection depends on the bidirectional reflection function of the mate-
rial. The fraction of energy reflected into all possible directions is equal to the directional–
hemispherical spectral reflectance, or

ρ′
��
λ (λ, θi, ψi) =

∫
2π
ρ′′λ (λ, θi, ψi, θr, ψr) cosθr dΩr

=

∫ 2π

0

∫ π/2

0
ρ′′λ (λ, θi, ψi, θr, ψr) cosθr sinθr dθr dψr. (8.44)

As before, the direction of reflection may then be determined from

Rψr =
1
ρ′
��
λ

∫ ψr

0

∫ π/2

0
ρ′′λ (λ, θi, ψi, θr, ψr) cosθr sinθr dθr dψr, (8.45)

and

Rθr =

∫ θr

0
ρ′′λ (λ, θi, ψi, θr, ψr) cosθr sinθr dθr∫ π/2

0
ρ′′λ (λ, θi, ψi, θr, ψr) cosθr sinθr dθr

. (8.46)

If the surface is a diffuse reflector, i.e., ρ′′λ (λ, θi, ψi, θr, ψr) = ρ′′λ (λ) = ρ′
��
λ (λ)/π, then equa-

tions (8.45) and (8.46) reduce to

Rψr =
ψr

2π
, or ψr = 2πRψr , (8.47)

and
Rθr = sin2θr, or θr = sin−1

√
Rθr , (8.48)
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FIGURE 8-5
Surface description in terms of a position vector.

which are the same as for diffuse emission. For a purely specular reflector, the reflection direction
follows from the law of optics as

ψr = ψi + π, θr = θi, (8.49)

that is, no random numbers are needed.2

8.5 SURFACE DESCRIPTION

When Monte Carlo simulations are applied to very simple configurations such as flat plates, e.g.,
Toor and Viskanta [30], the surface description, bundle intersection points, intersection angles,
reflection angles, etc. are relatively obvious and straightforward. If more complicated surfaces
are considered, such as the second-order polynomial description by Weiner and coworkers [31]
or the arbitrary-order polynomial description by Modest and Poon [17] and Modest [32], a
systematic way to describe surfaces is preferable. It appears most logical to describe surfaces in
vectorial form, as indicated in Fig. 8-5,

r =

3∑
i=1

xi(v1, v2) êi, v1min ≤ v1 ≤ v1max, v2min(v1) ≤ v2max(v1), (8.50)

that is, r is the vector pointing from the origin to a point on the surface, v1 and v2 are two surface
parameters, the xi are the (x, y, z) coordinates of the surface point, and the êi are unit vectors
(ı̂, ̂, k̂) into the x, y, z directions, respectively. We may define two unit tangents to the surface at
any point as

t̂1 =
∂r
∂v1

/ ∣∣∣∣∣ ∂r
∂v1

∣∣∣∣∣ , t̂2 =
∂r
∂v2

/ ∣∣∣∣∣ ∂r
∂v2

∣∣∣∣∣ . (8.51)

While it is usually a good idea to choose the surface parameters v1 and v2 perpendicular to one
another (making t̂1 and t̂2 perpendicular to each other), this is not necessary. In either case, one
can evaluate the unit surface normal as

n̂ =
t̂1 × t̂2

|t̂1 × t̂2|
, (8.52)

where it has been assumed that v1 and v2 have been ordered such that n̂ is the outward surface
normal.

2Mathematically, equation (8.49) may also be obtained from equations (8.45) and (8.46) by replacing ρ′′λ by an
appropriate Dirac-delta function.
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8.6 RAY TRACING

Points of emission may be found by establishing a relationship such as equation (8.22) for the
general vectorial surface description given by equation (8.50). The infinitesimal area element
on the surface may be described by

dA =

∣∣∣∣∣ ∂r
∂v1
×
∂r
∂v2

∣∣∣∣∣ dv1 dv2 = |t̂1 × t̂2|

∣∣∣∣∣ ∂r
∂v1

∣∣∣∣∣ ∣∣∣∣∣ ∂r
∂v2

∣∣∣∣∣ dv1 dv2. (8.53)

Thus, if we replace x by v1 and y by v2, emission points (v1, v2) are readily found from equa-
tions (8.25) and (8.27).

Example 8.2. Consider the axisymmetric rocket nozzle diffuser shown in Fig. 8-6. Assuming that
the diffuser is gray and isothermal, establish the appropriate random number relationships for the
determination of emission points.

Solution
The diffuser surface is described by the formula

z = a(r2
− r2

0), 0 ≤ z ≤ L, r0 ≤ r ≤ rL, a =
1

2r0
,

where L is the length of the diffuser and r0 and rL are its radius at z = 0 and L, respectively. In vectorial
form, we may write

r = r cosφı̂ + r sinφ̂ + a(r2
− r2

0)k̂,

where φ is the azimuthal angle in the x-y-plane, measured from the x-axis. This suggests the choice
v1 = r and v2 = φ. The two surface tangents are now readily calculated as

t̂1 =
cosφı̂ + sinφ̂ + 2ark̂

√

1 + 4a2r2
,

t̂2 = − sinφı̂ + cosφ̂.

It is seen that t̂1 · t̂2 = 0, i.e., the tangents are perpendicular to one another. The surface normal is then

n̂ = t̂1 × t̂2 =
1

√

1 + 4a2r2

 ı̂ ̂ k̂
cosφ sinφ 2ar
− sinφ cosφ 0

 =
−2ar(cosφı̂ + sinφ̂) + k̂

√

1 + 4a2r2
,

and, finally, an infinitesimal surface area is

dA = | cosφı̂ + sinφ̂ + 2ark̂|| − r sinφı̂ + r cosφ̂| dr dφ =
√

1 + 4a2r2 r dr dφ.
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Since there is no dependence on azimuthal angle φ in either dA or the emissive power, we find imme-
diately

Rφ =
φ

2π
, or φ = 2πRφ,

and for the radial position parameter

Rr =

∫ r

r0

√

1 + 4a2r2 r dr∫ rL

r0

√

1 + 4a2r2 r dr
=

(1 + 4a2r2)3/2
∣∣∣r
r0

(1 + 4a2r2)3/2
∣∣∣rL

r0

=
(1 + 4a2r2)3/2

− (1 + 4a2r2
0)3/2

(1 + 4a2r2
L)3/2 − (1 + 4a2r2

0)3/2
.

The above expression is readily solved to give an explicit expression for r = r(Rr).

Once a point of emission has been found, a wavelength and a direction are calculated from
equations (8.33), (8.37), and (8.39). As shown in Fig. 8-7, the direction may be specified as a unit
direction vector with polar angle θ measured from the surface normal, and azimuthal angle ψ
measured from t̂1, leading to

ŝ =
sinθ
sinα

[
sin(α − ψ)t̂1 + sinψt̂2

]
+ cosθn̂, (8.54)

and
sinα =

∣∣∣t̂1 × t̂2

∣∣∣ , (8.55)

where α is the angle between t̂1 and t̂2. If t̂1 and t̂2 are perpendicular (α = π/2), equation (8.54)
reduces to

ŝ = sinθ
[
cosψt̂1 + sinψt̂2

]
+ cosθn̂. (8.56)

As also indicated in Fig. 8-7, the intersection point of an energy bundle emitted at location re,
traveling into the direction ŝ, with a surface described in vectorial form may be determined as

re + Dŝ = r, (8.57)

where r is the vector describing the intersection point, and D is the distance traveled by the
energy bundle. Equation (8.57) may be written in terms of its x, y, z components and solved for
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D by forming the dot products with unit vectors ı̂, ̂, and k̂:

D =
x(v1, v2) − xe

ŝ · ı̂
=

y(v1, v2) − ye

ŝ · ̂
=

z(v1, v2) − ze

ŝ · k̂
. (8.58)

Equation (8.58) is a set of three equations in the three unknowns v1, v2, and D: First v1 and v2
are calculated, and it is determined whether the intersection occurs within the confines of the
surface under scrutiny. If so, and if more than one intersection is a possibility (in the presence
of convex surfaces, protruding corners, etc.), then the path length D is also determined; if more
than one intersection is found, the correct one is the one after the shortest positive path.

If the bundle is reflected, and if reflection is nonspecular, a reflection direction is chosen from
equations (8.45) and (8.46). This direction is then expressed in vector form using equation (8.54).
If the surface is a specular reflector, the direction of reflection is determined from equation (8.49),
or in vector form as

ŝr = ŝi + 2|ŝi · n̂|n̂. (8.59)

Once the intersection point and the direction of reflection have been determined, a new inter-
section may be found from equation (8.58), etc., until the bundle is absorbed.

Example 8.3. Consider again the geometry of Example 8.2. An energy bundle is emitted from the
origin (x = y = z = 0) into the direction ŝ = 0.8ı̂ + 0.6k̂. Determine the intersection point on the diffuser
and the direction of reflection, assuming the diffuser to be a specular reflector.

Solution
With re = 0 and equations (8.54) and (8.58), we find

D =
r cosφ

0.8
=

r sinφ
0

=
a(r2
− r2

0)

0.6
.

Obviously, φ = 0,3 and solving the quadratic equation for r,

r2
− r2

0 =
3
4

r
a

= 3
2 rr0, or r = 2r0 and z =

1
2r0

(4r2
0 − r2

0) = 3
2 r0.

At that location we form the unit vectors as given in Example 8.2,

t̂1 =
1
√

5
(ı̂ + 2k̂), t̂2 = ̂, and n̂ =

1
√

5
(−2ı̂ + k̂).

Therefore, the direction of reflection is determined from equation (8.59) as

ŝr = 0.8ı̂ + 0.6k̂ + 2

∣∣∣∣∣∣−2 × 0.8 + 0.6
√

5

∣∣∣∣∣∣ −2ı̂ + k̂
√

5
= k̂,

as is easily verified from Fig. 8-6.

8.7 EFFICIENCY CONSIDERATIONS

The accuracy of results for generalized radiation exchange factors or wall heat fluxes, as char-
acterized by the standard deviation, equation (8.8), is determined by the statistical scatter of
the results. The scatter may be expected to be inversely proportional to the number of bundles
absorbed by a subsurface. This number of bundles, on the other hand, is directly proportional
to both total number of bundles and size of subsurface. Thus, in order to achieve good spatial
resolution (small element sizes), very large numbers of bundles—often several million or even
billions—must be emitted and traced. Consequently, even with the availability of today’s fast
digital computers, it is imperative that the Monte Carlo implementation and its ray tracings be
as numerically efficient as possible, if many hours of CPU time for each computer run are to be
avoided. Today’s trend toward massively parallel computing brings new efficiency challenges
with it that—while beyond the scope of this book—have been discussed in some detail by
several investigators [15].

3In computer calculations care must be taken here and elsewhere to avoid division by zero.
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Inversion of Random Number Relations
Many of the random number relationships governing emission location, wavelength, direction,
etc., cannot be inverted explicitly. For example, to determine the wavelength of emission, even
for a simple black surface, for a given random number Rλ requires the solution of the transcen-
dental equation (8.33),

Rλ =
1
σT4

∫ λ

0
Ebλ dλ = f (λT). (8.60)

In principle, this requires guessing a λ, calculating Rλ, etc. until the correct wavelength is found;
this would then be repeated for each emitted photon bundle. It would be much more efficient
to invert equation (8.60) once and for all before the first energy bundle is traced as

λT = f−1(Rλ). (8.61)

This is done by first calculating Rλ, j corresponding to a (λT) j for a sufficient number of points
j = 0, 1, . . . , J. These data points may then be used to obtain a polynomial description

λT = A + BRλ + CR2
λ + · · · , (8.62)

as proposed by Howell [13]. With the math libraries available today on most digital computers
it would, however, be preferable to invert equation (8.61) using a (cubic) spline.

Even more efficient is the method employed by Modest and Poon [17] and Modest [32], who
used a cubic spline to determine values of (λT) j for (J + 1) equally spaced random numbers

(λT) j = f−1

(
Rλ =

j
J

)
, j = 0, 1, 2, . . . , J. (8.63)

If, for example, a random number Rλ = 0.6789 is picked, it is immediately known that (λT) lies
between (λT)m and (λT)m+1, where m is the largest integer less than J × Rλ (= 67 if J = 100). The
actual value for (λT) may then be found by (linear) interpolation.

The quantity to be determined may depend on more than a single random number. For
example, to fix an emission wavelength on a surface with nonseparable emissive power (say a
surface in the x-y-plane with locally varying, nongray emittance) requires the determination of

x = x(Rx), y = y(Ry, x), λ = λ(Rλ, x, y). (8.64)

That is, first the x-location is chosen, requiring the interpolation between and storage of J data
points x j(R j); next the y-location is determined, requiring a double interpolation and storage of
a J × K array for y jk(Rk, x j); and finally λ is found from a triple interpolation from a J × K × L
array for λ jkl(Rl, x j, yk). This may lead to excessive computer storage requirements if J,K,L are
chosen too large: If J = K = L = 100, an array with one million numbers needs to be stored for
the determination of emission wavelengths alone! The problem may be alleviated by choosing
a better interpolation scheme together with smaller values for J,K,L (for example, a choice of
J = K = L = 40 reduces storage requirements to 64,000 numbers).

Energy Partitioning

In the general Monte Carlo method, a ray of fixed energy content is traced until it is absorbed. In
the absence of a participating medium, the decision whether the bundle is absorbed or reflected
is made after every impact on a surface. Thus, on the average it will take 1/α tracings until the
bundle is absorbed. Therefore, it takes 1/α tracings to add one statistical sample to the calculation
of one of the Fi→ j’s. If the configuration has openings, a number of bundles may be reflected a
few times before they escape into space without adding a statistical sample to any of the Fi→ j’s.
Thus, the ordinary Monte Carlo method becomes extremely inefficient for open configurations
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and/or highly reflective surfaces. The former problem may be alleviated by partitioning the
energy of emitted bundles. This was first applied by Sparrow and coworkers [33, 34], who,
before determining a direction of emission, split the energy of the bundle into two parts: the
part leaving the enclosure through the opening (equal to the view factor from the emission point
to the opening) and the rest (which will strike a surface). A direction is then determined, limited
to those that make the bundle hit an enclosure surface. The procedure is repeated after every
reflection. This method guarantees that each bundle will contribute to the statistical sample for
exchange factor evaluation. A somewhat more general and more easily implemented energy
partitioning scheme was applied by Modest and Poon [17, 32]: Rather than drawing a random
number Rα to decide whether a bundle is (fully) absorbed or not, they partition the energy of
a bundle at each reflection into the fraction α, which is absorbed, and the fraction ρ = 1 − α,
which is reflected. The bundle is then traced until it either leaves the enclosure or until its
energy is depleted (below a certain fraction of original energy content). This method adds to
the statistical sample of a Fi→ j after every tracing and thus leads to vastly faster convergence for
highly reflective surfaces.

Data Smoothing
Virtually all Monte Carlo implementation to date have been of 0th order, i.e., all properties within
a given cell are considered constant throughout the cell, without connectivity to surrounding
cells. This makes the estimation of local gradients difficult, if not impossible. Several smoothing
schemes have been proposed for the exchange factors of equation (8.21), the simpler ones without
restrictions on the size of corrections [26, 27], and others that find the smallest corrections that
make the exchange factors satisfy, both, the summation and reciprocity relationships [28, 29].

Other Efficiency Improvements
Other improvements are often connected to the particular geometry under scrutiny. For instance,
large amounts of computer time may be wasted because it is not immediately known, which
of the many subsurfaces the traveling bundle will hit. In general, an intersection between
every surface and the bundle must be calculated. Only then can it be determined whether this
intersection is legitimate, i.e., whether it occurs within the bounds of the surface. Often the
overall enclosure can be broken up into a (relatively small) number of basic surfaces (dictated
by geometry), which in turn are broken up into a number of smaller, isothermal subsurfaces.
Furthermore, a bundle emitted or reflected from some subsurface may not be able to hit some
basic surface by any path. In other cases, if a possible point of impact on some surface has been
determined, it may not be necessary to check the remaining surfaces, etc. There are no fixed
rules for the computational structure of a Monte Carlo code. In these applications the proverbial
“dash of ingenuity” can go a long way in making a computation efficient.
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Problems

Because of the nature of the Monte Carlo technique, most of the following problems require
the development of a small computer code. However, all problem solutions can be outlined by
giving relevant relations, equations, and a detailed flow chart.

8.1 Prepare a little Monte Carlo code that integrates I(z) =
∫ b

a f (z, x) dx. Apply your code to a few simple
integrals, plus

si(z) = −

∫ π/2

0
e−z cos x cos(z sin x) dx = Si(z) −

π
2
.
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Note: Si(1) = 0.94608.

8.2 In a Monte Carlo simulation involving the plate of Problem 3.9 but of finite width w, a photon bundle
is to be emitted from the plate with a wavelength of λ = 2µm. Find the emission point and direction
of this photon bundle in terms of random numbers.

8.3

w

w

A triangular, isothermal surface as shown has the following spectral emit-
tance:

ελ =

 0.1, λ < 2µm; θ ≤ 60◦

0.6, λ > 2µm; θ ≤ 60◦

0.0, all λ; θ > 60◦

For a Monte Carlo simulation
(a) find a point of bundle emission in terms of random numbers,
(b) find a wavelength of bundle emission in terms of random numbers,
(c) find a direction of bundle emission in terms of random numbers.

8.4
r

f
R

A semicircular disk as shown has a temperature distribution given by
T(r) = T0/

(
1 + (r/R)2

)
, and its emittance is gray and nondiffuse with

ε′ = ε′λ(λ, θ, ψ) =

{
0.6, 0 ≤ θ ≤ 30◦,
0, θ > 30◦.

For a Monte Carlo simulation
(a) find a point of emission in terms of random numbers,
(b) find a direction of emission in terms of random numbers. You may leave your answer in

simple implicit form.

8.5 A light pipe with direct solar irradiation is to be investigated via a Monte Carlo method. Such a
device consists of a straight or curved tube covered with a highly-reflective material to pipe light into
a room. At visible wavelengths the reflectance from the pipe wall is ρ′λ(θout) = 1.5ρλ cosθout, with
reflection angle θout measured from the local surface normal, and visible light intensity due to direct
sunshine may be approximated by

Lλ = KλIλ,sun = C exp[−A2(λ − λ0)2], λ0 = 0.56µm, A = 20/µm.

(a) Find the pertinent relationship to determine wavelengths of emission as a function of random
number.

(b) Find an expression for reflection angle vs. random number.

8.6

60 o

20cm

At the Aaronsburg (Pennsylvania) Apple Fest you have won a large piece
of elderberry pie (yumh!) as shown. The wheels in the oven must have
been spinning, because it appears that the number of elderberries per unit
area increases linearly proportional with radius! If there are 1000 elder-
berries otherwise randomly distributed on the slice, make a scatter plot of
elderberries on the pie slice.

8.7 Consider a black disk 0 ≤ r ≤ R with temperature distribution T4(r) = T4
0e−C(r/R)2

. Develop the random
number relations for points of emission; draw random numbers for 1000 emission points and draw
them in a scattergram for the cases of C = 0 and C = 5. Use R = 10 cm.

8.8 A disk of radius R is opposed by a square plate (sides of length R) parallel to it, and a distance R
away. Find the view factor from disk to square plate. Use 100,000 bundles, plotting updated results
after every 5,000 bundles.

8.9 Consider two infinitely long parallel plates of width w spaced a distance h apart. (see Configuration
32 in Appendix D).

(a) Calculate F1−2 via Monte Carlo for the case that the top plate is horizontally displaced by a
distance L. Use L = h = w.
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(b) Calculate Fs
1−2 via Monte Carlo for the case that both plates are specular (with identical re-

flectances ρs
1 = ρs

2 = 0.5), but not horizontally displaced. Use L = 0, h = w.
Prepare a figure similar to Fig. 8-2, also including analytical results for comparison.

8.10

w

w

L
A2

A1

l
b

b

Two directly opposed quadratic plates of width w = 10 cm are spaced
a distance L = 10 cm apart, with a third centered quadratic plate of
dimension b × b (b = 5 cm) in between at a distance l = 5 cm from the
bottom. Determine the view factor F1−2 via Monte Carlo. In order to
verify your code (and to have a more flexible tool) it may be best to allow
for arbitrary and different top and bottom w as well as b.

8.11 Consider two concentric parallel disks of radius R, spaced a distance H apart. Both plates are
isothermal (at T1 and T2, respectively), are gray diffuse emitters with emittance ε, and are gray
reflectors with diffuse reflectance component ρd and purely specular component ρs. Write a computer
code that calculates the generalized exchange factor F1→2 and, taking advantage of the fact that
F1→2 = F2→1, calculate the total heat loss from each plate. Compare with the analytical solution
treating each surface as a single node.

8.12 Repeat Problem 8.11, but calculate heat fluxes directly, i.e., without first calculating exchange factors.

8.13 Determine the view factor for Configuration 39 of Appendix D, for h = w = l. Compare with exact
results.

8.14

5cm

2 cm

4 cm

A2

A3

A1

Consider the conical geometry of Problem 5.9: breaking up the sidewall into
strips (say 4), calculate all relevant view factors (base-to-rings, ring-to-rings)
via Monte Carlo.

8.15 Reconsider Problem 5.30: (a) find the solution by writing a small Monte Carlo program, and (b)
augment this program to allow for nongray, temperature-dependent emittances.

8.16 Repeat Problem 5.33 for T1 = T2 = 1000 K, ε1 = ε2 = 0.5. Use the Monte Carlo method, employing
the energy partitioning of Sparrow and coworkers [33, 34].

8.17 Repeat Problem 5.34. Compare with the exact solutions for several values of ε.

8.18 Repeat Problem 6.3, using the Monte Carlo method. Compare with the solution from Chapter 6 for
a few values of D/L and ε, and T1 = 1000 K, T2 = 2000 K. How can the problem be done by emitting
bundles from only one surface?

8.19 Repeat Problem 6.10 using the Monte Carlo method.

8.20 Repeat Problem 6.23 using the Monte Carlo method.

8.21 Repeat Example 7.3 using the Monte Carlo method.

8.22 Repeat Example 7.4 using the Monte Carlo method.

8.23 Repeat Problem 7.20 using the Monte Carlo method.




