
CHAPTER

6
RADIATIVE EXCHANGE
BETWEEN
PARTIALLY SPECULAR
GRAY SURFACES

6.1 INTRODUCTION

In the previous two chapters it was assumed that all surfaces constituting the enclosure are—
besides being gray—diffuse emitters as well as diffuse reflectors of radiant energy. Diffuse
emission is nearly always an acceptable simplification. The assumption of diffuse reflection,
on the other hand, often leads to considerable error, since many surfaces deviate substantially
from this behavior. Electromagnetic wave theory predicts reflection to be specular for optically
smooth surfaces, i.e., to reflect light like a mirror. All clean metals, many nonmetals such as
glassy materials, and most polished materials display strong specular reflection peaks. Never-
theless, they all, to some extent, reflect somewhat into other directions as a result of their surface
roughness. Surfaces may appear dull (i.e., diffusely reflecting) to the eye, but are rather specu-
lar in the infrared, since the ratio of every surface’s root-mean-square roughness to wavelength
decreases with increasing wavelength.

For a surface with diffuse reflectance the reflected radiation has the same (diffuse) directional
distribution as the emitted energy, as discussed in the beginning of Section 5.3. Therefore, the
radiation field within the enclosure is completely specified in terms of the radiosity, which is a
function of location along the enclosure walls (but not a function of direction as well). If reflection
is nondiffuse, then the radiation intensities leaving any surface are functions of direction as well
as surface location, and the analysis becomes immensely more complicated.1 To make the
analysis tractable, one may make the idealization that the reflectance, while not diffuse, can be
adequately represented by a combination of a diffuse and a specular component, as illustrated in
Fig. 6-1 for oxidized brass [1]. Thus, for the present chapter, we assume the radiative properties
to be of the form

ρ = ρs + ρd = 1 − α = 1 − ε = 1 − ε′λ, (6.1)

where ρs and ρd are the specular and diffuse components of the reflectance, respectively. Since
the surfaces are assumed to be gray, diffuse emitters (ε = ε′λ), it follows that neither α nor ρ

1In addition, if the irradiation is polarized (e.g., owing to irradiation from a laser source), specular reflections will
change the state of polarization (because of the different values for ρ‖ and ρ⊥, as discussed in Chapter 2). We shall only
consider unpolarized radiation.
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FIGURE 6-1
(a) Subdivision of the reflectance of oxidized brass (shown for plane of incidence) into specular (shaded) and diffuse
components (unshaded), from [1]; (b) equivalent idealized reflectance.

may depend on wavelength or on incoming direction (i.e., the magnitude of ρ does not depend
on incoming direction); how ρ is distributed over outgoing directions depends on incoming
direction through ρs. With this approximation, the separate reflection components may be
found analytically by splitting the bidirectional reflection function into two parts,

ρ′′(r, ŝi, ŝr) = ρ′′s(r, ŝ i, ŝr) + ρ′′d(r, ŝ i, ŝr). (6.2)

Substituting this expression into equation (3.43) and equation (3.46) then leads to ρs and ρd.
Values of ρs and ρd may also be determined directly from experiment, as reported by Birke-
bak and coworkers [2], making detailed measurements of the bidirectional reflection function
unnecessary.

Within an enclosure consisting of surfaces with purely diffuse and purely specular reflection
components, the complexity of the problem may be reduced considerably by realizing that
any specularly reflected beam may be traced back to a point on the enclosure surface from
which it emanated diffusely (i.e., any beam was part of an energy stream leaving the surface
after emission or diffuse reflection), as illustrated in Fig. 6-2. Therefore, by redefining the view
factors to include specular reflection paths in addition to direct view, the radiation field may
again be described by a diffuse energy function that is a function of surface location but not of
direction.

6.2 SPECULAR VIEW FACTORS

To accommodate surfaces with reflectances described by equation (6.1), we define a specular
view factor as

dFs
dAi−dA j

≡

diffuse energy leaving dAi intercepted by dA j, by
direct travel or any number of specular reflections

total diffuse energy leaving dAi
. (6.3)

The concept of the specular view factor is illustrated in Figs. 6-2 and 6-3. Diffuse radiation
leaving dAi (by emission or diffuse reflection) can reach dA j either directly or after one or more
reflections. Usually only a finite number of specular reflection paths such as dAi − a − dA j or
dAi − b − c − dA j (and others not indicated in the figure) will be possible. The surface at points
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FIGURE 6-2
Radiative exchange in an enclosure with specular
reflectors.
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FIGURE 6-3
Specular view factor between infinitesimal surface elements; formation of images.

a, b, and c behaves like a perfect mirror as far as the specular part of the reflection is concerned.
Therefore, if an observer stood on top of dA j looking toward c, it would appear as if point b
as well as dAi were situated behind point c as indicated in Fig. 6-3; the point labeled b(c) is the
image of point b as mirrored by the surface at c, and dAi(cb) is the image of dAi as mirrored by the
surfaces at c and b. Therefore, as we examine Figs. 6-2 and 6-3, we may formally evaluate the
specular view factor between two infinitesimal areas as

dFs
dAi−dA j

= dFdAi−dA j + ρs
a dFdAi(a)−dA j + ρs

bρ
s
c dFdAi(cb)−dA j

+ other possible reflection paths. (6.4)

Thus, the specular view factor may be expressed as a sum of diffuse view factors, with one
contribution for each possible direct or reflection path. Note that, for images, the diffuse view
factors must be multiplied by the specular reflectances of the mirroring surfaces, since radiation
traveling from dAi to dA j is attenuated by every reflection.

If all specularly reflecting parts of the enclosure are flat, then all images of dAi have the
same shape and size as dAi itself. However, curved surfaces tend to distort the images (focusing
and defocusing effects). In the case of only flat, specularly reflecting surfaces we may multiply
equation (6.4) by dAi and, invoking the law of reciprocity for diffuse view factors, equation (4.7),
we obtain

dAi dFs
dAi−dA j

= dA j dFdA j−dAi + ρs
a dA j dFdA j−dAi(a) + ρs

bρ
s
c dA j dFdA j−dAi(bc)

= dA j dFdA j−dAi + ρs
a dA j dFdA j(a)−dAi + ρs

bρ
s
c dA j dFdA j(bc)−dAi + . . .

= dA j dFs
dA j−dAi

, (6.5)
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FIGURE 6-4
(a) Geometry for Example 6.1, (b) ray tracing for the evaluation of Fs

1−1 and Fs
1−2.

that is, the law of reciprocity holds for specular view factors as long as all specularly reflecting
surfaces are flat. Although considerably more complicated, it is possible to show that the
law of reciprocity also holds for curved specular reflectors. If we also assume that the diffuse
energy leaving Ai and A j is constant across each respective area, we have the equivalent to
equation (4.15),

dAi dFs
di−dj = dA j dFs

dj−di, (6.6a)

dAi Fs
di− j = A j dFs

j−di, (Jj = const), (6.6b)

Ai Fs
i− j = A j Fs

j−i, (Ji, Jj = const), (6.6c)

where we have adopted the compact notation first introduced in Chapter 4, and Ji is the total
diffuse energy (per unit area) leaving surface Ai (again called the radiosity).

Example 6.1. Evaluate the specular view factors Fs
1−1 and Fs

1−2 for the parallel plate geometry shown in
Fig. 6-4a.

Solution
We note that, because of the one-dimensionality of the problem, Fs

d1−2 must be the same for any dA1

on surface A1. Since Fs
1−2 is nothing but a surface average of Fs

d1−2, we conclude that Fs
d1−2 = Fs

1−2. It is
sufficient to consider energy leaving from an infinitesimal area (rather than all of A1). Examining Fig. 6-
4b we see that every beam (assumed to have unity strength) leaving dA1, regardless of its direction, must
travel to surface A2 (a beam of strength “1” is intercepted). After reflection at A2 a beam of strength ρs

2
returns to A1 specularly, where it is reflected again and a beam of strength ρs

2ρ
s
1 returns to A2 specularly.

After one more reflection a beam of strength (ρs
2ρ

s
1)ρs

2 returns to A1, and so on. Thus, the specular view
factor may be evaluated as

Fs
d1−2 = Fs

1−2 = 1 + ρs
1ρ

s
2 + (ρs

1ρ
s
2)2 + (ρs

1ρ
s
2)3 + . . . . (6.7)

Since ρs
1ρ

s
2 < 1 the sum in this equation is readily evaluated by the methods given in Wylie [3], and

Fs
1−2 =

1
1 − ρs

1ρ
s
2

= Fs
2−1. (6.8)

The last part of this relation is found by switching subscripts or by invoking reciprocity (and A1 = A2).
We notice that specular view factors are not limited to values between zero and one, but are often
greater than unity because much of the radiative energy leaving a surface is accounted for more than
once. All energy from A1 is intercepted by A2 after direct travel, but only the fraction (1−ρs

2) is removed
(by absorption and/or diffuse reflection) from the specular reflection path. The fraction ρs

2 travels on
specularly and is, therefore, counted a second time, etc. Thus, it is (1 − ρs

2)Fs
1−2 that must have a value

between zero and one, and the summation relation, equation (4.18), must be replaced by

N∑
j=1

(1 − ρs
j)F

s
i− j = 1. (6.9)
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FIGURE 6-5
(a) Geometry for Example 6.2, (b) repeated reflections along outer surface.

Equation (6.9), formed here through intuition, will be developed rigorously in the next section.
Fs

1−1 may be found similarly as

Fs
1−1 = ρs

2 + (ρs
1ρ

s
2)ρs

2 + (ρs
1ρ

s
2)2ρs

2 + . . . =
ρs

2

1 − ρs
1ρ

s
2
.

We note in passing that

(1 − ρs
1)Fs

1−1 + (1 − ρs
2)Fs

1−2 =
(1 − ρs

1)ρs
2 + 1 − ρs

2

1 − ρs
1ρ

s
2

= 1,

as postulated by equation (6.9).

Example 6.2. Evaluate all specular view factors for two concentric cylinders or spheres.

Solution
Possible beam paths with specular reflections from inner to outer cylinders (or spheres) and vice versa
are shown in Fig. 6-5a. As in the previous example a beam leaving A1 in any direction must hit surface
A2 (with strength “1”). Because of the circular geometry, after specular reflection the beam (now of
strength ρs

2) must return to A1 (i.e., it cannot hit A2 again before hitting A1). After renewed reflections
the beam keeps bouncing back and forth between A1 and A2. Thus, as for parallel plates,

Fs
1−2 = 1 + ρs

1ρ
s
2 + (ρs

1ρ
s
2)2 + . . . =

1
1 − ρs

1ρ
s
2
.

Similarly, we have

Fs
1−1 = ρs

2 + (ρs
1ρ

s
2)ρs

2 + . . . =
ρs

2

1 − ρs
1ρ

s
2
.

A beam emanating from A2 will first hit either A1, and then keep bouncing back and forth between A1

and A2 (cf. Fig. 6-5a), or A2, and then keep bouncing along A2 without ever hitting A1 (cf. Fig. 6-5b).
Thus, since the fraction F2−1 of the diffuse energy leaving A2 hits A1 after direct travel, we have

Fs
2−1 = F2−1

[
1 + ρs

1ρ
s
2 + (ρs

1ρ
s
2)2 + . . .

]
=

A1/A2

1 − ρs
1ρ

s
2
,

Fs
2−2 = F2−2

[
1 + ρs

2 + (ρs
2)2 + (ρs

2)3 + . . .
]

+ F2−1

[
ρs

1 + ρs
1(ρs

1ρ
s
2) + . . .

]
=

1 − A1/A2

1 − ρs
2

+
ρs

1A1/A2

1 − ρs
1ρ

s
2
,

where the simple diffuse view factors F2−1 and F2−2 have been evaluated in terms of A1 and A2. Of
course, Fs

2−1 could have been found from Fs
1−2 by reciprocity, and Fs

2−2 with the aid of equation (6.9).
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FIGURE 6-6
Energy balance for surfaces with partially specular reflection.

A few more examples of specular view factor determinations will be given once the appro-
priate heat transfer relations have been developed.

6.3 ENCLOSURES WITH PARTIALLY
SPECULAR SURFACES

Consider an enclosure of arbitrary geometry as shown in Fig. 6-2. All surfaces are gray, diffuse
emitters and gray reflectors with purely diffuse and purely specular components, i.e., their
radiative properties obey equation (6.1). Under these conditions the net heat flux at a surface at
location r is, from Fig. 6-6,

q(r) = qemission − qabsorption = ε(r)[Eb(r) −H(r)]

= qout − qin = ε(r)Eb(r) + ρd(r)H(r) + ρs(r)H(r) −H(r). (6.10)

The first two terms on the last right-hand side of equation (6.10), or the part of the outgoing
heat flux that leaves diffusely, we will again call the surface radiosity,

J(r) = ε(r)Eb(r) + ρd(r)H(r), (6.11)
so that

q(r) = J(r) − [1 − ρs(r)]H(r). (6.12)

Eliminating the irradiation H(r) from equations (6.10) and (6.12) leads to

q(r) =
ε(r)
ρd(r)

[
[1 − ρs(r)]Eb(r) − J(r)

]
, (6.13)

which, of course, reduces to equation (5.26) for a diffusely reflecting surface if ρs = 0 and
ρd = 1 − ε. For a purely specular reflecting surface (ρd = 0) equation (6.13) is indeterminate
since the radiosity consists only of emission, or J = εEb.

As in Chapter 5 the irradiation H(r) is found by determining the contribution to H from
a differential area dA′(r′), followed by integration over the entire enclosure surface. A subtle
difference is that we do not track the total energy leaving dA′ (multiplied by a suitable direct-
travel view factor); rather, the contribution from specular reflections is subtracted and attributed
to the surface from which it leaves diffusely. The more complicated path of such energy is then
accounted for by the definition of the specular view factor. Thus, similar to equation (5.21),

H(r) dA =

∫
A

J(r′) dFs
dA′−dA dA′ + Hs

o(r) dA, (6.14)

where Hs
o(r) is any external irradiation arriving at dA (through openings or semitransparent

walls). Similar to the specular view factors, the Hs
o includes external radiation hitting dA directly
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or after any number of specular reflections. Using reciprocity, equation (6.14) becomes

H(r) =

∫
A

J(r′) dFs
dA−dA′ + Hs

o(r), (6.15)

and, after substitution into equation (6.11), an integral equation for the unknown radiosity is
obtained as

J(r) = ε(r)Eb(r) + ρd(r)
[∫

A
J(r′) dFs

dA−dA′ + Hs
o(r)

]
. (6.16)

For surface locations for which heat flux q(r) is given rather than Eb(r), equation (6.12) should be
used rather than equation (6.11). It is usually more desirable to eliminate the radiosity, to obtain
a single relationship between surface blackbody emissive powers and heat fluxes. Solving
equation (6.13) for J gives

J(r) =
[
1 − ρs(r)

]
Eb(r) −

ρd(r)
ε(r)

q(r), (6.17)

and substituting this expression into equation (6.16) leads to

(1 − ρs)Eb −
ρd

ε
q = (1 − ρs

− ρd)Eb + ρd
[∫

A
(1 − ρs)Eb dFs

dA−dA′ −

∫
A

ρd

ε
q dFs

dA−dA′ + Hs
o

]
,

or

Eb(r) −
∫

A

[
1 − ρs(r′)

]
Eb(r′) dFs

dA−dA′ =
q(r)
ε(r)
−

∫
A

ρd(r′)
ε(r′)

q(r′) dFs
dA−dA′ + Hs

o(r). (6.18)

We note that, for diffusely reflecting surfaces with ρs = 0, ρd = 1 − ε, Fs
i− j = Fi− j, and Hs

o = Ho,
equation (6.18) reduces to equation (5.28). If the specular view factors can be calculated (and that
is often a big “if”), then equation (6.18) is not any more difficult to solve than equation (5.28). In-
deed, if part or all of the surface is purely specular (ρd = 0), equation (6.18) becomes considerably
simpler.

As for black and gray-diffuse enclosures, it is customary to simplify the analysis by using
an idealized enclosure, consisting of N relatively simple subsurfaces, over each of which the
radiosity is assumed constant. Then∫

A
J(r′) dFs

dA−dA′ '

N∑
j=1

Jj

∫
A j

dFs
dA−dA j

=

N∑
j=1

Jj Fs
dA−A j

,

and, after averaging over a subsurface Ai on which dA is situated, equation (6.16) simplifies to

Ji = εiEbi + ρd
i

 N∑
j=1

Jj Fs
i− j + Hs

oi

 , i = 1, 2, . . . ,N. (6.19)

Eliminating radiosity through equation (6.17) then simplifies equation (6.18) to

Ebi −

N∑
j=1

(1 − ρs
j)F

s
i− jEbj =

qi

εi
−

N∑
j=1

ρd
j

ε j
Fs

i− jq j + Hs
oi, i = 1, 2, . . . ,N. (6.20)

The summation relation, equation (6.9), is easily obtained from equation (6.20) by considering
a special case: In an isothermal enclosure (Eb1 = Eb2 = · · · = EbN) without external irradiation
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(Hs
o1 = Hs

o2 = · · · = 0), according to the Second Law of Thermodynamics, all heat fluxes must
vanish (q1 = q2 = · · · = 0). Thus, canceling emissive powers,

N∑
j=1

(1 − ρs
j)F

s
i− j = 1, i = 1, 2, . . . ,N. (6.21)

Since the Fs
i− j are geometric factors and do not depend on temperature distribution, equation (6.21)

is valid for arbitrary emissive power values.
Finally, for computer calculations it may be advantageous to write the emissive power and

heat fluxes in matrix form. Introducing Kronecker’s delta equation (6.20) becomes

N∑
j=1

[
δi j − (1 − ρs

j)F
s
i− j

]
Ebj =

N∑
j=1

δi j

ε j
−

ρd
j

ε j
Fs

i− j

 q j + Hs
oi, i = 1, 2, . . . ,N, (6.22)

or2

A · eb = C · q + hs
o, (6.23)

where C and A are matrices with elements

Ai j = δi j − (1 − ρs
j)F

s
i− j,

Ci j =
δi j

ε j
−

ρd
j

ε j
Fs

i− j,

and q, eb, and hs
o are vectors for the surface heat fluxes, emissive powers, and external irradia-

tions, respectively. If all temperatures and external irradiations are known, the unknown heat
fluxes are readily found by matrix inversion as

q = C−1
·
[
A · eb − hs

o
]
. (6.24)

If the emissive power is only known over some of the surfaces, and the heat fluxes are specified
elsewhere, equation (6.23) may be rearranged into a similar equation for the vector containing
all the unknowns. Subroutine graydifspec is provided in Appendix F for the solution of the
simultaneous equations (6.23), requiring surface information and a partial view factor matrix
as input. The solution to a sample problem is also given in the form of a program grspecxch,
which may be used as a starting point for the solution to other problems. Fortran90, C++ as
well as Matlabr versions are provided.

Example 6.3. Two large parallel plates are separated by a nonparticipating medium as shown in Fig. 6-
4a. The bottom surface is isothermal at T1, with emittance ε1 and a partially specular, partially diffuse
reflectance ρ1 = ρd

1 +ρs
1. Similarly, the top surface is isothermal at T2 with ε2 and ρ2 = ρd

2 +ρs
2. Determine

the radiative heat flux between the surfaces.

Solution
From equation (6.20) we have, for i = 1, with Hs

o1 = 0,

Eb1 − (1 − ρs
1)Fs

1−1Eb1 − (1 − ρs
2)Fs

1−2Eb2 =
q1

ε1
−
ρd

1

ε1
Fs

1−1q1 −
ρd

2

ε2
Fs

1−2q2.

While we could apply i = 2 to equation (6.20) to obtain a second equation for q1 and q2, it is simpler here
to use overall conservation of energy, or q2 = −q1. Thus,

q1 =

[
1 − (1 − ρs

1)Fs
1−1

]
Eb1 − (1 − ρs

2)Fs
1−2Eb2

1
ε1
−

1 − ε1 − ρs
1

ε1
Fs

1−1 +
1 − ε2 − ρs

2

ε2
Fs

1−2

.

2Again, for easy readability of matrix manipulations we shall follow here the convention that a two-dimensional
matrix is denoted by a bold capitalized letter, while a vector is written as a bold lowercase letter.
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Using the results from Example 6.1 and dividing both numerator and denominator by Fs
1−2, we obtain

q1 =
(1 − ρs

2)Fs
1−2(Eb1 − Eb2)( 1

ε1
+

1
ε2

)
(1 − ρs

2)Fs
1−2 + Fs

1−1 − Fs
1−2

=
(1 − ρs

2)(1)(Eb1 − Eb2)( 1
ε1

+
1
ε2

)
(1 − ρs

2)(1) + ρs
2 − 1

=
Eb1 − Eb2

1
ε1

+
1
ε2
− 1

, (6.25)

which produces the same result whether we have diffusely or specularly reflecting surfaces. Indeed,
equation (6.25) is valid for the radiative transfer between two isothermal parallel plates, regardless of the
directional behavior of the reflectance (i.e., it is not limited to the idealized reflectances considered in this
chapter). Any beam leaving A1 must hit surface A2 and vice versa, regardless of whether the reflectance is
diffuse, specular, or neither of the two; the surface locations will be different but the directional variation
of reflectance has no influence on the heat transfer rate since the surfaces are isothermal.

Example 6.4. Repeat the previous example for concentric spheres and cylinders.

Solution
Again, from equation (6.20) with i = 1 and Hs

oi = 0, we obtain

Eb1 − (1 − ρs
1)Fs

1−1Eb1 − (1 − ρs
2)Fs

1−2Eb2 =
q1

ε1
−
ρd

1

ε1
Fs

1−1q1 −
ρd

2

ε2
Fs

1−2q2.

In this case conservation of energy demands q2A2 = −q1A1, and

q1 =

[
1 − (1 − ρs

1)Fs
1−1

]
Eb1 − (1 − ρs

2)Fs
1−2Eb2

1
ε1
−

1 − ε1 − ρs
1

ε1
Fs

1−1 +
1 − ε2 − ρs

2

ε2

A1

A2
Fs

1−2

=
(1 − ρs

2)Fs
1−2(Eb1 − Eb2)( 1

ε1
+

1
ε2

A1

A2

)
(1 − ρs

2)Fs
1−2 + Fs

1−1 −
A1

A2
Fs

1−2

.

The specular view factors Fs
1−1 and Fs

1−2 are the same as in the previous example (cf. Example 6.2), leading
to

q1 =
Eb1 − Eb2

1
ε1

+
1
ε2

A1

A2
−

A1/A2 − ρs
2

1 − ρs
2

. (6.26)

We note that equation (6.26) does not depend on ρs
1: Again, any radiation reflected off surface A1

must return to surface A2, regardless of the directional behavior of its reflectance. If surface A2 is
purely specular (ρs

2 = 1 − ε2), all radiation from A1 bounces back and forth between A1 and A2, and
equation (6.26) reduces to equation (6.25), i.e., the heat flux between these concentric spheres or cylinders
is the same as between parallel plates. On the other hand, if A2 is diffuse (ρs

2 = 0) equation (6.26) reduces
to the purely diffuse case since the directional behavior of ρ1 is irrelevant.

Example 6.5. A very long solar collector plate is to collect energy at a temperature of T1 = 350 K. To
improve its performance for off-normal solar incidence, a highly reflective surface is placed next to the
collector as shown in Fig. 6-7. For simplicity you may make the following assumptions: The collector
is isothermal and gray-diffuse with emittance ε1 = 1 − ρd

1 = 0.8; the mirror is gray and specular with
ε2 = 1 − ρs

2 = 0.1, and heat losses from the mirror by convection as well as all losses from the collector
ends may be neglected. How much energy (per unit length) does the collector plate collect for solar
irradiation of qsun = 1000 W/m2 at an incidence angle of 30◦?

Solution
Applying equation (6.22) to the absorber plate (i = 1) as well as the mirror (i = 2) we obtain

[
1 − (1 − ρs

1)Fs
1−1

]
Eb1 − (1 − ρs

2)Fs
1−2Eb2 =

 1
ε1
−
ρd

1

ε1
Fs

1−1

 q1 −
ρd

2

ε2
Fs

1−2q2 + Hs
o1,

−(1 − ρs
1)Fs

2−1Eb1 +
[
1 − (1 − ρs

2)Fs
2−2

]
Eb2 = −

ρd
1

ε1
Fs

2−1q1 +

 1
ε2
−
ρd

2

ε2
Fs

2−2

 q2 + Hs
o2.



206 6 RADIATIVE EXCHANGE BETWEEN PARTIALLY SPECULAR GRAY SURFACES

l 2
 =

 6
0

 c
m

ϕ
M

ir
ro

r

Collector plate

l1 = 80 cm

l2 tan  ϕ

q2 = 0,   2


qsun = 1000 W/m2
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FIGURE 6-7
Geometry for Example 6.5.

Since ρs
1 = 0, it follows that Fs

1−1 = Fs
2−2 = 0 and also Fs

1−2 = F1−2, Fs
2−1 = F2−1. For this configuration

no specular reflections from one surface to another surface are possible (radiation leaving the absorber
plate, after specular reflection from the mirror, always leaves the open enclosure). Thus, with q2 = 0,

Eb1 − ε2F1−2Eb2 =
q1

ε1
+ Hs

o1,

−F2−1Eb1 + Eb2 = −
( 1
ε1
− 1

)
F2−1q1 + Hs

o2.

Eliminating Eb2, by multiplying the second equation by ε2F1−2 and adding, leads to

(1 − ε2F1−2F2−1)Eb1 =
[ 1
ε1
−

( 1
ε1
−1

)
ε2F1−2F2−1

]
q1+Hs

o1+ε2F1−2Hs
o2.

The external fluxes are evaluated as follows: The mirror receives solar flux only directly (no specular
reflection off the absorber plate is possible), i.e., Hs

o2 = qsun sinϕ. The absorber plate receives a direct
contribution, qsun cosϕ, and a second contribution after specular reflection off the mirror. This second
contribution has the strength of ρs

2qsun cosϕ per unit area. However, only part of the collector plate
(l2 tanϕ) receives this secondary contribution, which, for our crude two-node description, must be
averaged over l1. Thus,

Hs
o1 = qsun cosϕ + ρs

2qsun cosϕ
l2 tanϕ

l1
= qsun

[
cosϕ + (1 − ε2)

l2
l1

sinϕ
]
.

Therefore,

q1 =
(1−ε2F1−2F2−1)Eb1−

[
cosϕ+(1−ε2) sinϕ(l2/l1)+ε2F1−2 sinϕ

]
qsun

1
ε1
− ε2

( 1
ε1
− 1

)
F1−2F2−1

.

The view factors are readily evaluated by the crossed-strings method as F1−2 = (80+60−100)/(2×80) = 1
4

and F2−1 = 80 × 1
4 /60 = 1

3 . Substituting numbers, we obtain

q1 =

(
1−0.1× 1

4×
1
3

)
5.670×10−8

×3504
−

(√
3

2 +0.9× 1
2×

60
80 +0.1× 1

4×
1
2

)
1000

1
0.8 − 0.1

(
1

0.8 − 1
)
×

1
4 ×

1
3

= −298 W/m2.

Under these conditions, therefore, the collector is about 30% efficient. This result should be compared
with a collector without a mirror (l2 = 0 and F1−2 = 0), for which we get

q1,no mirror =
Eb1 − qsun cosϕ

1/ε1
= 0.8 ×

(
5.670 × 10−8

× 3504
− 1000 ×

√
3

2

)
= −12 W/m2.

This absorber plate collects hardly any energy at all (indeed, after accounting for convection losses, it
would experience a net energy loss). If the mirror had been a diffuse reflector the heat gain would have
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(b)(a)

A1

FIGURE 6-8
Triangular enclosure with a single specularly reflecting surface, with a few possible beam paths indicated, (a) without
obstructions, (b) with partial obstructions.

been q1,diffuse mirror = −172 W/m2, which is significantly less than for the specular mirror (cf. Problem
5.22).

We conclude from this example that (i) mirrors can significantly improve collector performance, and
(ii) infrared reradiation losses from near-black collectors are very substantial. Of course, reradiation
losses may be significantly reduced by using selective surfaces or glass-covered collectors (cf. Chapter 3).

We shall conclude this section with three more examples designed to clarify certain aspects
of evaluating the specular view factors in enclosures comprised of only simple planar elements.

Example 6.6. Consider the triangular enclosures shown in Figs. 6-8a and b. Surfaces A1 and A2 are
isothermal at T1 and T2, respectively, and are purely diffuse reflectors with ε1 = 1 − ρd

1 and ε2 = 1 − ρd
2 .

Surface A3 is isothermal at T3 and is a purely specular reflector with ε3 = 1 − ρs
3. Set up the system of

equations for the unknown surface heat fluxes.

Solution
Since there is only a single (and flat) specular surface, no multiple specular reflections are possible.
While Fs

1−1 and Fs
2−2 are nonzero, it is clear that Fs

3−3 = 0. Thus, from equation (6.22), with Hs
oi = 0,

(1 − Fs
1−1)Eb1 − Fs

1−2Eb2 − ε3Fs
1−3Eb3 =

[ 1
ε1
−

( 1
ε1
− 1

)
Fs

1−1

]
q1 −

( 1
ε2
− 1

)
Fs

1−2q2,

−Fs
2−1Eb1 + (1 − Fs

2−2)Eb2 − ε3Fs
2−3Eb3 = −

( 1
ε1
− 1

)
Fs

2−1q1 +
[ 1
ε2
−

( 1
ε2
− 1

)
Fs

2−2

]
q2,

−Fs
3−1Eb1 − Fs

3−2Eb2 + Eb3 = −
( 1
ε1
− 1

)
Fs

3−1q1 −

( 1
ε2
− 1

)
Fs

3−2q2 +
q3

ε3
.

We note that q3 only enters the last equation, so we only have two simultaneous equations to solve
(i.e., as many as we have surfaces with diffuse reflection components). We shall need to determine the
specular view factors Fs

1−1, Fs
1−2, and Fs

2−2, while the rest can be evaluated through reciprocity and the
summation rule. Considering the first case of Fig. 6-8a, we find

Fs
1−1 = ρs

3F1(3)−1,

Fs
1−2 = F1−2 + ρs

3F1(3)−2, ε3Fs
1−3 = 1 − Fs

1−1 − Fs
1−2,

Fs
2−1 = A1Fs

1−2/A2,

Fs
2−2 = ρs

3F2(3)−2, ε3Fs
2−3 = 1 − Fs

2−1 − Fs
2−2,

Fs
3−1 = A1Fs

1−3/A3, Fs
3−2 = A2Fs

2−3/A3,

where all view factors on the right-hand sides are readily evaluated through standard diffuse view factor
analysis. The problem becomes slightly more difficult in the configuration shown in Fig. 6-8b, where
the specular surface is attached to another surface with an opening angle of > 90◦. Standing in the left
corner on surface A2, one obviously cannot see all of the image A2(3) from there by looking through
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FIGURE 6-9
Rectangular enclosure with two adjacent specular reflectors, with some possible beam paths indicated: (a) evaluation
of Fs

3−4, (b) evaluation of A3(12) contribution to Fs
3−3, (c) evaluation of A3(21) contribution to Fs

3−3.

“mirror” A3. Care must be taken that these visual obstructions are not overlooked. If the enclosure is
two-dimensional, such partially obstructed view factors are no problem for the crossed-strings method,
but may pose great difficulty for an analytical solution otherwise.

The effects of partial shading become somewhat more obvious when configurations with
two or more adjacent specular surfaces are considered.

Example 6.7. Consider the rectangular enclosure shown in Fig. 6-9. Surfaces A1 and A2 are purely
specular, and surfaces A3 and A4 are purely diffuse reflectors. Top and bottom walls are at T1 = T3 =
1000 K, with ε1 = 1 − ρs

1 = ε3 = 1 − ρd
3 = 0.3; the side walls are at T2 = T4 = 600 K with emittances

ε2 = 1 − ρs
2 = ε4 = 1 − ρd

4 = 0.8. Determine the net radiative heat flux for each surface.

Solution
Looking at Fig. 6-9a, one sees that Fs

1−1 = Fs
2−2 = 0, while all other specular view factors are nonzero.

Again, with Hs
oi = 0, we have from equation (6.22)

Eb1 − ε2Fs
1−2Eb2 − Fs

1−3Eb3 − Fs
1−4Eb4 =

q1

ε1
−

( 1
ε3
− 1

)
Fs

1−3q3 −

( 1
ε4
− 1

)
Fs

1−4q4,

−ε1Fs
2−1Eb1 + Eb2 − Fs

2−3Eb3 − Fs
2−4Eb4 =

q2

ε2
−

( 1
ε3
− 1

)
Fs

2−3q3 −

( 1
ε4
− 1

)
Fs

2−4q4,

−ε1Fs
3−1Eb1 − ε2Fs

3−2Eb2 + (1 − Fs
3−3)Eb3 − Fs

3−4Eb4 =
[ 1
ε3
−

( 1
ε3
− 1

)
Fs

3−3

]
q3 −

( 1
ε4
− 1

)
Fs

3−4q4,

−ε1Fs
4−1Eb1 − ε2Fs

4−2Eb2 − Fs
4−3Eb3 + (1 − Fs

4−4)Eb4 = −
( 1
ε3
− 1

)
Fs

4−3q3 +
[ 1
ε4
−

( 1
ε4
− 1

)
Fs

4−4

]
q4.

Again, we have only two simultaneous equations to solve for the two (diffuse) heat fluxes q3 and q4: The
first two equations are explicit expressions for q1 and q2, respectively (once q3 and q4 have been deter-
mined). Checking the various images in Fig. 6-9a, we find that the specular view factors for surface A1 are

Fs
1−1 = 0,

Fs
1−2 = F1−2,

Fs
1−3 = F1−3 + ρs

2F1(2)−3,

Fs
1−4 = F1−4 + ρs

2F1(2)−4.

Checking the summation rule, we find

(1 − ρs
1)Fs

1−1 + (1 − ρs
2)Fs

1−2 + Fs
1−3 + Fs

1−4 = 0 + F1−2+F1−3+F1−4 − ρ
s
2(F1−2−F1(2)−3−F1(2)−4) = 1

or

F1(2)−3 + F1(2)−4 = F1−2.
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Indeed, by checking Fig. 6-9a, we find

F1(2)−3 + F1(2)−4 = F1(2)−(3+4) = F1(2)−2 = F1−2.

Similarly, we have

Fs
2−2 = 0,

Fs
2−1 = F2−1,

Fs
2−3 = F2−3 + ρs

1F2(1)−3,

Fs
2−4 = F2−4 + ρs

1F2(1)−4.

For surfaces A3 and A4 dual specular reflections are possible:

Fs
3−1 = F3−1 + ρs

2F3(2)−1,

Fs
3−2 = F3−2 + ρs

1F3(1)−2,

Fs
3−3 = ρs

1F3(1)−3 + ρs
1ρ

s
2F3(12)−3 + ρs

2ρ
s
1F3(21)−3,

Fs
3−4 = F3−4 + ρs

1F3(1)−4 + ρs
2F3(2)−4 + ρs

1ρ
s
2F3(12)−4 + ρs

2ρ
s
1F3(21)−4,

Fs
4−1 = F4−1 + ρs

2F4(2)−1,

Fs
4−2 = F4−2 + ρs

1F4(1)−2,

Fs
4−3 = F4−3 + ρs

1F4(1)−3 + ρs
2F4(2)−3 + ρs

1ρ
s
2F4(12)−3 + ρs

2ρ
s
1F4(21)−3,

Fs
4−4 = ρs

2F4(2)−4 + ρs
1ρ

s
2F4(12)−4 + ρs

2ρ
s
1F4(21)−4.

It is tempting to assume that F4(12)−4 = F4(21)−4, etc. Closer inspection of Figs. 6-9b and c reveals, however,
that these view factors are partially obstructed: For example, for F4(21)−4 all rays from A4(21) to A4 must
pass through the image A2(1) as well as A1, i.e., all rays must stay below the corner between A1 and
A2 (center point of Fig. 6-9b). On the other hand, for F4(12)−4 all rays from A4(12) must stay above the
corner between A1 and A2, and both together add up to the unobstructed view factor from the image to A4.
The same is true for F3(12)−3 + F3(21)−3. However, the geometry is such that F4(21)−3 = 0, while F4(12)−3 is
unobstructed (thus, still adding up to the unobstructed view factor). Similarly, F3(12)−4 = 0, while F3(21)−4

is unobstructed.
Simplifications for partially obstructed view factor were found for this particular simple geometry.

Care must be taken before extrapolating these results to other configurations.
Before actually evaluating view factors one should take advantage of the fact that there are only two

different surface temperatures, i.e., Eb3 = Eb1 and Eb4 = Eb2, and only two emittances, ε3 = ε1 and ε4 = ε2:

(1 − Fs
1−3)Eb1 − (ε2Fs

1−2 + Fs
1−4)Eb2 =

q1

ε1
−

( 1
ε1
− 1

)
Fs

1−3q3 −

( 1
ε2
− 1

)
Fs

1−4q4,

−(ε1Fs
2−1 + Fs

2−3)Eb1 + (1 − Fs
2−4)Eb2 =

q2

ε2
−

( 1
ε1
− 1

)
Fs

2−3q3 −

( 1
ε2
− 1

)
Fs

2−4q4,

(1 − ε1Fs
3−1 − Fs

3−3)Eb1 − (ε2Fs
3−2 + Fs

3−4)Eb2 =
[ 1
ε1
−

( 1
ε1
− 1

)
Fs

3−3

]
q3 −

( 1
ε2
− 1

)
Fs

3−4q4,

−(ε1Fs
4−1 + Fs

4−3)Eb1 + (1 − ε2Fs
4−2 − Fs

4−4)Eb2 = −
( 1
ε1
− 1

)
Fs

4−3q3 +
[ 1
ε2
−

( 1
ε2
− 1

)
Fs

4−4

]
q4.

The necessary view factors are readily found from the crossed-strings method [equation (4.50)], reci-
procity, and the summation rule [equation (6.21)], as well as from Example 5.1 for the diffuse view
factors:

Fs
1−2 = F1−2 = 0.25;

F1−3 = 0.5, F1(2)−3 = (
√

64 + 9 + 3 − 2 × 5)/2 × 4 = 0.1930 :

Fs
1−3 = 0.5 + 0.2 × 0.1930 = 0.5386;

F1−4 = 0.25, F1(2)−4 = (5 + 8 − 4 −
√

73)/8 = 0.0570 :

Fs
1−4 = 0.25 + 0.2 × 0.0570 = 0.2614;

Fs
2−1 = F2−1 = 0.3333;
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F2−3 = 0.3333, F2(1)−3 = (5 + 6 −
√

52 − 3)/6 = 0.1315 :

Fs
2−3 = 0.3333 + 0.7 × 0.1315 = 0.4254;

F2−4 = 0.3333, F2(1)−4 = (
√

52 + 4 − 2 × 5)/6 = 0.2019 :

Fs
2−4 = 0.3333 + 0.7 × 0.2019 = 0.4746;

Fs
3−1 = Fs

1−3 = 0.5386;

Fs
3−2 = A2Fs

2−3/A3 = 0.75 × 0.4254 = 0.3191;

F3(1)−3 = (
√

52−6)/4 = 0.3028,

F3(12)−3 + F3(21)−3 = (10+6−2
√

52)/8 = 0.1972 :

Fs
3−3 = 0.7 × 0.3028 + 0.2 × 0.7 × 0.1972 = 0.2396;

Fs
3−4 = 1 − ε1Fs

3−1 − ε2Fs
3−2 − Fs

3−3

= 1 − 0.3 × 0.5386 − 0.8 × 0.3191 − 0.2396 = 0.3436;

Fs
4−1 = A1Fs

1−4/A4 = 0.2614/0.75 = 0.3485;

Fs
4−2 = Fs

2−4 = 0.4746;

Fs
4−3 = A3Fs

3−4/A4 = 0.3436/0.75 = 0.4581;

Fs
4−4 = 1 − ε1Fs

4−1 − ε2Fs
4−2 − Fs

4−3

= 1 − 0.3 × 0.3485 − 0.8 × 0.4746 − 0.4581 = 0.0576.

Substituting these values into the heat flux equations and realizing, from the summation rule, that the
two coefficients in front of Eb1 and Eb2 are the same for each equation, we obtain

(1 − 0.5386)(Eb1−Eb2) =
q1

0.3
−

( 1
0.3
−1

)
0.5386q3−

( 1
0.8
−1

)
0.2614q4,

−(1 − 0.4746)(Eb1−Eb2) =
q2

0.8
−

( 1
0.3
−1

)
0.4254q3−

( 1
0.8
−1

)
0.4746q4,

(0.8× 0.3191+0.3436)(Eb1−Eb2) =
[ 1
0.3
−

( 1
0.3
−1

)
0.2396

]
q3 −

( 1
0.8
−1

)
0.3436q4,

−(0.3× 0.3485+0.4581)(Eb1−Eb2) = −
( 1
0.3
−1

)
0.4581q3 +

[ 1
0.8
−

( 1
0.8
−1

)
0.0576

]
q4.

After a little cleaning up these equations become

2.7743q3 − 0.0859q4 = 0.5989(Eb1 − Eb2),

−1.0689q3 + 1.2356q4 = −0.5627(Eb1 − Eb2),

q1 = 0.3770q3 + 0.0196q4 + 0.1384(Eb1 − Eb2),

q2 = 0.7941q3 + 0.0949q4 − 0.4203(Eb1 − Eb2).

Solving the first two equations leads to

q3 =
0.5989×1.2356−0.5627×0.0859
2.7743×1.2356−1.0689×0.0859

(Eb1−Eb2) = 0.2073(Eb1−Eb2),

q4 =
0.5989×1.0689−0.5627×2.7743
2.7743×1.2356−1.0689×0.0859

(Eb1−Eb2) = −0.2761(Eb1−Eb2),

and

q1 = [0.3770 × 0.2073 + 0.0196 × (−0.2761) + 0.1384](Eb1 − Eb2) = 0.2111(Eb1 − Eb2),

q2 = [0.7941 × 0.2073 + 0.0949 × (−0.2761) − 0.4203](Eb1 − Eb2) = −0.2819(Eb1 − Eb2).

To determine the net surface heat fluxes we evaluate

Eb1 − Eb2 = σ(T4
1 − T4

2 ) = 5.670×10−8(10004
−6004) W/m2 = 4.935 W/cm2
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FIGURE 6-10
Geometry for Example 6.8: (a) V-corrugated surface, (b) images for a single V for the evaluation of Fs

1−1.

and multiply by the respective surface areas. Thus,

Q′1 = 40 cm × 0.2111 × 4.935 W/cm2 = 41.7 W/cm,

Q′2 = 30 cm × (−0.2819) × 4.935 W/cm2 = −41.7 W/cm,

Q′3 = 40 cm × 0.2073 × 4.935 W/cm2 = 40.9 W/cm,

Q′4 = 30 cm × (−0.2761) × 4.935 W/cm2 = −40.9 W/cm.

Checking our results, we note that the four heat fluxes add up to zero as they should.
The results of the present example—an enclosure with two adjacent specular reflectors—should be

compared with those of Example 5.4, dealing with the identical problem except that all four surfaces
were perfectly diffuse reflectors. For Example 5.4, we had found Q′1 = −Q′2 = Q′3 = −Q′4 = 42.3 W/cm.
For the present configuration the heat fluxes of the specular surfaces are reduced by 1%, while the heat
fluxes of the diffuse surfaces are reduced a little more, by approximately 3%. Overall, the effects of
specularity are found to be rather minor.

In the last two examples only two simultaneous equations had to be solved, even though
there were three and four unknown surface heat fluxes, respectively, because for any purely
specular surface with known temperature the radiosity is not unknown, but is given as J = εEb.
Thus, for an enclosure consisting of N surfaces, of which n are purely specular with known
temperature, only N − n simultaneous equations need to be solved. While this fact simplifies
specular enclosure analysis as compared with diffuse enclosures, one should remember that, in
general, specular view factors are considerably more difficult to evaluate.

As a final example for configurations with flat surfaces we shall consider a case where many
specular reflections are possible.

Example 6.8. Since solar energy strikes the absorbing plate of a strategically oriented solar collector
only over a narrow band of incidence directions (varying somewhat during the day, as well as during
the year), the ideal collector material would be directionally selective: The emittance should be high
for directions of solar incidence (to maximize energy collection), and low for all other directions (to
minimize reradiation losses). One such material is a V-corrugated specular surface shown in Fig. 6-
10a. Assuming that the V-corrugated groove, with opening angle 2γ, is coated with a purely specular
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reflecting material, with emittance ε = 1 − ρs, what is the apparent hemispherical emittance of such a
surface (i.e., what is its heat loss compared with a flat black plate at the same temperature)?

Solution
Calling the two surfaces in a single “V” A1 and A2, as indicated in Fig. 6-10b, with Eb1 = Eb2 = Eb,
ε1 = ε2 = ε, and Hs

o1 = Hs
o2 = 0 we obtain from equation (6.22) (for i = 1)[

1 − ε
(
Fs

1−1 + Fs
1−2

)]
Eb =

q
ε
.

Total heat lost from both surfaces of the groove is Q = q × 2L = qd/ sinγ; on the other hand, heat lost
from a black surface covering the opening would be Qb = Ebd. Thus, the apparent emittance is

εa =
Q
Qb

=
q

Eb sinγ
=
ε
[
1 − ε

(
Fs

1−1 + Fs
1−2

)]
sinγ

.

This expression could be further simplified, using summation rule and reciprocity, to εa = εFs
1−3/ sinγ =

2εFs
3−1, where A3 is the open top of the V (and of width d). However, Fs

1−1 and Fs
1−2 are somewhat simpler

to evaluate, and we shall do so here: A beam leaving surface A1 can return to A1 (i) after a single
reflection off surface A2 [appearing to come from the image A1(2), as indicated in Fig. 6-10b], or (ii) after
hitting A2, traveling back to A1, returning one more time to A2, and hitting A1 a second time [i.e., a beam
that appears to come from image A1(212)], and so on. Thus,

Fs
1−1 = ρF1(2)−1 + ρ3F1(212)−1 + ρ5F1(21212)−1 + . . . .

Fs
1−2 may be similarly evaluated. We shall here determine Fs

2−1 = Fs
1−2 instead, since this expression allows

us to employ the images shown in Fig. 6-10b: Energy may travel directly from A2 to A1, or go from A2 to
A1, get reflected back to A2, and reflected back to A1 again [appearing to come from image A2(12)], and
so forth. Therefore,

Fs
1−2 = Fs

2−1 = F2−1 + ρ2F2(12)−1 + ρ4F2(1212)−1 + . . . .

Adding both together and using reciprocity (with all areas being the same), we obtain

Fs
1−1 + Fs

1−2 = F1−2 + ρF1−1(2) + ρ2F1−2(12) + ρ3F1−1(212) + . . . .

Each one of these view factors Fi− j is subject to the restriction that all beams from A1 to the image A j

must pass through all the images between A1 and A j; however, in this geometry no partial obstruction
occurs as seen from Fig. 6-10b. The series above ends as soon as the image can no longer be seen from
A1, i.e., when the opening angle between A1 and the image exceeds 180◦. The view factor for a V-groove
with opening angle 2φ is, from Configuration 34 in Appendix D, F2φ = 1 − sinφ. Thus,

Fs
1−1 + Fs

1−2 = 1 − sinγ + ρ(1 − sin 2γ) + ρ2(1 − sin 3γ) + . . . + ρn−1(1 − sin nγ), nγ < π/2.

Finally, the apparent hemispherical emittance of the V-corrugated surface is

εa =
ε

sinγ

1 − ε n∑
k=1

ρk−1(1 − sin kγ)

 , n < π/2γ.

Figure 6-11 shows the apparent hemispherical emittance of V-corrugated surfaces as a function of
opening angle for a number of flat-surface emittances. Also shown in the figure is the normal emittance
(or absorptance), which may also be calculated from equation (6.22) (left as an exercise). For example,
for ε = 0.5 and a groove opening angle of γ = 30◦, the apparent hemispherical emittance (important
for reradiation losses) is 0.72, and the normal emittance (important for solar energy collection) is 0.88.
While the difference between these two values is not huge, the corrugated groove (i) helps to make the
absorber plate more black, and (ii) substantially reduces the reradiation losses (by ' 20% for the ε = 0.5,
γ = 30◦ surface). More detail about the radiative properties of V-corrugated grooves may be found in
the papers by Eckert and Sparrow [4], Sparrow and Lin [5], and Hollands [6], and the book by Sparrow
and Cess [7].
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FIGURE 6-11
Apparent normal and hemispherical emittances for
specularly reflecting V-corrugated surfaces [6].

Curved Surfaces with Specular Reflection
Components
In all our examples we have only considered idealized enclosures consisting of flat surfaces, for
which the mirror images necessary for specular view factor calculations are relatively easily
determined. If some or all of the reflecting surfaces are curved then equations (6.18) and (6.20)
remain valid, but the specular view factors tend to be much more difficult to obtain. Analytical
solutions can be found only for relatively simple geometries, such as axisymmetric surfaces, but
even then they tend to get very involved. The very simple case of cylindrical cavities (with and
without specularly reflecting end plate) has been studied by Sparrow and coworkers [8–10] and
by Perlmutter and Siegel [11]. The more involved case of conical cavities has been treated by
Sparrow and colleagues [9,10,12] as well as Polgar and Howell [13], while spherical cavities have
been addressed by Tsai and coworkers [14,15] and Sparrow and Jonsson [16,17]. Somewhat more
generalized discussions on the determination of specular view factors for curved surfaces have
been given by Plamondon and Horton [18] and by Burkhard and coworkers [19]. In view of the
complexity involved in these evaluations, specular view factors for curved surfaces are probably
most conveniently calculated by a statistical method, such as the Monte Carlo method, which
will be discussed in detail in Chapter 8. A considerably more detailed discussion of thermal
radiation from and within grooves and cavities is given in the book by Sparrow and Cess [7].
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FIGURE 6-12
Electrical network equivalent for a
four-surface enclosure (A1 = specular,
A2 = diffuse, A3 = partially diffuse and
specular, A4 = insulated, partially spec-
ular).

6.4 ELECTRICAL NETWORK ANALOGY

The electrical network analogy, first introduced in Section 5.4, may be readily extended to
allow for partially specular reflectors. This possibility was first demonstrated by Ziering and
Sarofim [20]. Expressing equations (6.12) and (6.15) for an idealized enclosure [i.e., an enclosure
with finite surfaces of constant radiosity, exactly as was done in equation (6.19)], we can evaluate
the nodal heat fluxes as

qi = Ji − (1 − ρs
i )

 N∑
j=1

JjFs
i− j + Hs

oi

 , i = 1, 2, . . . ,N. (6.27)

Using the summation rule, equation (6.21), this relation may also be written as the sum of net
radiative interchange between any two surfaces,

qi =

N∑
j=1

[
(1 − ρs

j)Ji − (1 − ρs
i )Jj

]
Fs

i− j − (1 − ρs
i )H

s
oi

=

N∑
j=1

 Ji

1 − ρs
i
−

Jj

1 − ρs
j

 (1 − ρs
i )(1 − ρ

s
j)F

s
i− j − (1 − ρs

i )H
s
oi. (6.28)

Similarly, from equation (6.13),

qi =
(1 − ρs

i )εi

ρd
i

(
Ebi −

Ji

1 − ρs
i

)
. (6.29)

After multiplication with Ai these relations may be combined and written in terms of potentials
[Ebi and Ji/(1 − ρs

i )] and resistances as

Qi =

Ebi −
Ji

1 − ρs
i

ρd
i

(1 − ρs
i )εiAi

=

N∑
j=1

Ji

1 − ρs
i
−

Jj

1 − ρs
j

1
(1 − ρs

i )(1 − ρ
s
j )AiFs

i− j

− (1 − ρs
i ) Ai Hs

oi. (6.30)

Of course, this relation reduces to equation (5.46) for the case of purely diffuse surfaces (ρs
i =

0, i = 1, 2, . . . ,N). As an example, Fig. 6-12 shows the equivalent electrical network for an
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enclosure consisting of four surfaces: Surface A1 is a specular reflector (ρd
1 = 0), surface A2

is a diffuse reflector (ρs
2 = 0), surface A3 has specular and diffuse reflectance components, and

surface A4 (also partially specular) is insulated. Note that, unlike diffuse reflectance, the specular
reflectance is not irrelevant for insulated surfaces.

6.5 RADIATION SHIELDS

As noted in Section 5.5 radiation shields tend to be made of specularly reflecting materials, such
as polished metals or dielectric sheets coated with a metallic film. We would like, therefore, to
extend the analysis to partly specular surfaces, i.e., (referring to Fig. 5-13) εk = 1− ρs

k − ρ
d
k for all

surfaces (inside and outside wall, all shield surfaces). Again, the analysis is most easily carried
out using the electrical network analogy, and the resistance between any two layers has already
been evaluated in Example 6.4, equation (6.26), as

R j−k =
1
ε jA j

+
1

εkAk
−

1
1 − ρs

k

(
1

Ak
−
ρs

k

A j

)
. (6.31)

The resistances given in equation (6.31) may be simplified somewhat if surface Ak is either a
purely diffuse reflector (ρs

k = 0), or a purely specular reflector (1 − ρs
k = εk):

Ak diffuse : R j−k =
1
ε jA j

+
( 1
εk
− 1

) 1
Ak
, (6.32a)

Ak specular : R j−k =

(
1
ε j

+
1
εk
− 1

)
1

A j
. (6.32b)

Following the procedure of Section 5.5, equation (5.48) still holds, i.e.,

Q =
Ebi − Ebo

Ri−1i +
∑N−1

n=1 Rno−n+1,i + RNo−o
. (6.33)

Example 6.9. Repeat Example 5.9 for purely specularly reflecting shields. The wall material (steel)
may be diffusely or specularly reflecting.

Solution
As before we note from equation (6.32) that the resistances are inversely proportional to shield area, and
will again assume A1 ' A2 ' . . . ' AN = As = πDsL, with Ds = 11 cm. Evaluating the total resistance
from equations (6.33) and (6.32), we find

AiRtot =
1
εw

+
( 1
εs
− 1

) A∗i
As

+

N−1∑
n=1

( 2
εs
− 1

) Ai

As
+

1
εs

Ai

As
+

( 1
εw
− 1

) Ai

A∗o
,

where, if the steel is specular A∗i = Ai, A∗o = As, and if it is diffuse A∗i = As, A∗o = Ao. We shall investigate
both possibilities to see whether specularity of the steel is an important factor in this arrangement.
Again, we may solve for N as

N =

AiRtot −
1
εw
−

( 1
εw
− 1

) Ai

A∗o
+

( 1
εs
− 1

) (A∗i
As
−

Ai

As

)
( 2
εs
− 1

) Ai

As

=
580.0 − 1

0.3 −
(

1
0.3 − 1

)
10
11 −

(
1

0.05 − 1
) (

1 − 10
11

)(
2

0.05 − 1
)

10
11

= 16.16, steel specular,

=
580.0 − 1

0.3 −
(

1
0.3 − 1

)
10
20 −

(
1

0.05 − 1
) (

10
11 −

10
11

)(
2

0.05 − 1
)

10
11

= 16.23, steel diffuse.



216 6 RADIATIVE EXCHANGE BETWEEN PARTIALLY SPECULAR GRAY SURFACES

Therefore, the same minimum of 17 radiation shields would be required. We note that the specularity
of the shields has no impact whatsoever (because we assumed them to be infinitely close together in
this analysis), while specular inner and outer cylinder walls marginally improve performance. Without
radiation shields we obtain

qi =
|Ebi − Ebo|

1
εw

+
( 1
εw
− 1

)
×

[
1 or

Ai

Ao

] =
5.670 × 10−12

|4.24
− 2984

|

1
0.3

+
( 1

0.3
− 1

)
× [1 or 1

2 ]

=

{
9.94 × 10−3 W/cm2, steel diffuse,
7.89 × 10−3 W/cm2, steel specular,

i.e, without shields the aspect ratio Ai/Ao = 1/2 deviates considerably from unity, making the differences
between specular and diffuse cylinders more apparent.

6.6 SEMITRANSPARENT SHEETS
(WINDOWS)

When we developed the governing relations for radiative heat transfer in an enclosure bounded
by diffusely reflecting surfaces (Chapter 5) or by partially diffuse/partially specular reflectors
(this chapter), we made allowance for external radiation to penetrate into the enclosure through
holes and/or semitransparent surfaces (windows). While we have investigated some examples
with external radiation entering through holes, only one (Example 5.8) has dealt with a simple
semitransparent surface.

Radiative heat transfer in enclosures with semitransparent windows occurs in a number
of important applications, such as solar collectors, externally irradiated specimens kept in a
controlled atmosphere, furnaces with sight windows, and so on. We shall briefly outline in this
section how such enclosures may be analyzed with equation (6.18) or (6.22). To this purpose
we shall assume that properties of the semitransparent window are wavelength-independent
(gray), that equation (6.1) describes the reflectance (facing the inside of the enclosure), and
that the transmittance of the window also has specular (light is transmitted without change of
direction) and diffuse (light leaving the window is perfectly diffuse) components.3 Thus,

ρ + τ + α = ρs + ρd + τs + τd + α = 1, ε = α. (6.34)

Further, we shall assume that radiation hitting the outside of the window has a collimated
component qoc (i.e., parallel rays coming from a single direction, such as sunshine) and a
diffuse component qod (such as sky radiation coming in from all directions with equal intensity).
Making an energy balance for the net radiative heat flux from the semitransparent window into
the enclosure leads to (cf. Fig. 6-13):

q(r) = qem + qtr,in − qabs − qtr,out

= ε(r)Eb(r) + τd(r)qoc(r) + τ(r)qod(r) − α(r)H(r) − τ(r)H(r), (6.35)

where the specularly transmitted fraction of the collimated external radiation, τsqoc, has not
been accounted for since it enters the enclosure in a nondiffuse fashion; it is accounted for in
Hs

o(r′) as part of the irradiation at another enclosure location r′ (traveling there directly, or after
any number of specular reflections). Using equation (6.34), equation (6.35) may also be written
as

q(r) = qout − qin =
(
εEb + τdqoc + τqod + ρdH + ρsH

)
−H, (6.36)

3It is unlikely that a realistic window has both specular and diffuse transmittance components; rather its transmit-
tance will either be specular (clear windows) or diffuse (milky windows, glass blocks, etc.). We simply use the more
general expression to make it valid for all types of windows.
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∋ FIGURE 6-13
Energy balance for a semitransparent window.

where qin is the energy falling onto the inside of the window coming from within the enclosure.
The first four terms of qout are diffuse and may be combined to form the radiosity

J(r) = εEb + τdqoc + τqod + ρdH. (6.37)

Examination of equations (6.34) through (6.37) shows that they may be reduced to equa-
tions (6.10) through (6.12) if we introduce an apparent emittance εa and an apparent blackbody
emissive power Eb,a as

εa(r) = ε + τ = 1 − ρ, (6.38a)
εaEb,a(r) = εEb + τdqoc + τqod. (6.38b)

Thus, the semitransparent window is equivalent to an opaque surface with apparent emittance
εa and apparent emissive power Eb,a (if the radiative properties are gray). Therefore, equa-
tions (6.18) and (6.22) remain valid as long as the emittance and blackbody emissive powers of
semitransparent surfaces are understood to be apparent values.

Example 6.10. A long hallway 3 m wide by 4 m high is lighted with a skylight that covers the entire
ceiling. The skylight is double-glazed with an optical thickness of κd = 0.037 per window plate. The
floor and sides of the hallway may be assumed to be gray and diffuse with ε = 0.2. The outside of the
skylight is exposed to a clear sky, so that diffuse visible light in the amount of qsky = 20,000 lm/m2 is
incident on the skylight. Direct sunshine also falls on the skylight in the amount of qsun = 80,000 lm/m2

(normal to the rays). For simplicity assume that the sun angle is θs = 36.87◦ as indicated in Fig. 6-14.
Determine the amount of light incident on a point in the lower right-hand corner (also indicated in
the figure) if (a) the skylight is clear, (b) the skylight is diffusing (with the same transmittance and
reflectance).

Solution
From Fig. 3-32 for double glazing andκd = 0.037 we find a hemispherical transmittance (i.e., directionally
averaged) of τ ' 0.70, while for solar incidence with θ = 36.87◦ we have τθ ' 0.75. The hemispherical
reflectance of the skylight may be estimated by assuming that the reflectance is the same as the one of a
nonabsorbing glass. Then, from Fig. 3-31 ρ1 = ρs

1 = 1− τ(κd = 0) ' 1− 0.75 = 0.25. From equation (6.38)
we find ε1,a = 1−ρ1 = 0.75 and, for a clear skylight, ε1,aEb1,a = 0 + 0 +τqsky since τd = 0, and since there is
no luminous emission from the window (or from any of the other walls, for that matter). Because of the
special sun angle, direct sunshine falls only onto surface A2, filling the entire wall, i.e., Hs

o2 = τθqsun sinθs.
To determine the illumination at the point in the corner, we need to calculate the local irradiation H

(in terms of lumens). This calculation, in turn, requires knowledge of the radiosity for all the surfaces
of the hallway (for the skylight it is already known as J1 = ε1,aEb1,a = τqsky, since ρd

1 = 0). To this
purpose we shall approximate the hallway as a four-surface enclosure for which we shall calculate the
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FIGURE 6-14
Geometry for a skylit hallway (Example 6.10).

average radiosities. Based on these radiosities we may then calculate the local irradiation for a point
from equation (6.15). While equation (6.22) is most suitable for heat transfer calculations, we shall use
equation (6.19) for this example since radiosities are more useful in lighting calculations.4 Therefore, for
i = 2, 3, and 4,

J2 = ρ2

(
J1Fs

2−1 + J2Fs
2−2 + J3Fs

2−3 + J4Fs
2−4

)
+ Hs

o2,

J3 = ρ3

(
J1Fs

3−1 + J2Fs
3−2 + J3Fs

3−3 + J4Fs
3−4

)
,

J4 = ρ4

(
J1Fs

4−1 + J2Fs
4−2 + J3Fs

4−3 + J4Fs
4−4

)
.

The necessary view factors are readily calculated from the crossed-strings method:

Fs
2−1 = F2−1 =

3 + 4 − 5
2 × 4

= 0.25, Fs
2−2 = 0,

Fs
2−3 = F2−3 + ρ1F2(1)−3 = 0.25 + 0.25 ×

8+5−(4+
√

73)
2 × 4

= 0.25(1+0.05700) = 0.26425,

Fs
2−4 = F2−4 + ρ1F2(1)−4 = 0.5 + 0.25 ×

3+
√

73−2 × 5
2 × 4

= 0.5 + 0.25 × 0.19300 = 0.54825,

Fs
3−1 = F3−1 =

2×5 − 2×4
2 × 3

= 0.33333,

Fs
3−2 =

A2

A3
Fs

2−3 =
4
3
× 0.26425 = 0.35233,

Fs
3−3 = ρ1F3(1)−3 = 0.25 ×

2×
√

73−2×8
2 × 3

= 0.25 × 0.18133 = 0.04533,

Fs
3−4 = Fs

3−2 = 0.35233,

Fs
4−1 = Fs

2−1 = 0.2500, Fs
4−2 = Fs

2−4 = 0.54825,

Fs
4−3 = Fs

2−3 = 0.26425, Fs
4−4 = 0.

4If equation (6.22) is used the resulting heat fluxes are converted to radiosities using equation (6.13), or J = −ρdq/ε
(since Eb = 0).
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Therefore, after normalization with Ji = Ji/J1 and H = Hs
o2/J1, and with ρ2 = ρ3 = ρ4 = 1 − 0.2 = 0.8,

J2 = 0.8(0.25 + 0 + 0.26425 J3 + 0.54825 J4) + H,

J3 = 0.8(0.33333 + 0.35233 J2 + 0.04533 J3 + 0.35233 J4),

J4 = 0.8(0.25 + 0.54825 J2 + 0.26425 J3 + 0),

or
J2 − 0.21140 J3 − 0.43860 J4 = H + 0.2,

−0.28186 J2 + 0.96374 J3 − 0.28186 J4 = 0.26667,

−0.43860 J2 − 0.21140 J3 + J4 = 0.2.

Omitting the details of solving these three simultaneous equations, we find

J2 = 1.48978H + 0.59051,

J3 = 0.66812H + 0.62211,

J4 = 0.79466H + 0.59051.

The irradiation onto the corner point is, from equation (6.15)

Hp =

4∑
j=1

JjFs
p− j = J1

(
Fs

p−1 + J2Fs
p−2 + J3Fs

p−3 + J4Fs
p−4

)
,

where the view factors may be determined from Configurations 10 and 11 in Appendix D (with b→∞,
and multiplying by 2 since the strip tends to infinity in both directions):

Fs
p−1 = Fp−1 =

1
2

a
√

a2 + c2
=

1
2
×

3
5

= 0.3,

Fs
p−2 = Fp−2 + ρ1Fp(1)−2 = Fp−2 + ρ1

[
Fp(1)−2+2(1) − Fp(1)−2(1)

]
,

Fp−2 =
1
2

(
1 −

c
√

a2 + c2

)
=

1
2

(
1 −

3
5

)
= 0.2,

Fp(1)−2(1) = Fp−2 = 0.2, Fp(1)−2+2(1) =
1
2

(
1 −

3
√

73

)
= 0.32444,

Fs
p−2 = 0.2 + 0.25 × (0.32444 − 0.2) = 0.23111,

Fs
p−3 =ρ1Fp(1)−3 = 0.25 ×

1
2
×

3
√

73
= 0.04389, Fs

p−4 = 0.5.

Therefore,

Hp =
Hp

J1
= 0.3+0.23111×(1.48978H+0.59051)

+0.04389×(0.66812H+0.62211)+0.5×(0.79466H+0.59051)

= 0.77096H + 0.75903.

Finally, for a clear window, J1 = τ1qsky = 0.7 × 20,000 = 14,000 lx, and Hs
o2 = τθqsun sin 36.87◦ = 0.75 ×

80,000 × 0.6 = 36,000 lx, and

Hp = 0.77096 × 36,000 + 0.75903 × 14,000 = 38,381 lx.

On the other hand, if the window has a diffusing transmittance τ = τd = 0.7, then Hs
o2 = 0 and, from

equation (6.37), J1 = τ(qsky + qsun cos 36.87◦) = 0.7 × (20,000 + 80,000 × 0.8) = 58,800 lx. This results in

Hp = 0.75903 × 58,800 = 44,631 lx.

For a diffusing window the light is more evenly distributed throughout the hallway, resulting in higher
illumination at point p.
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FIGURE 6-15
Radiative exchange between two long isothermal plates with specular
reflection components.

6.7 SOLUTION OF THE GOVERNING
INTEGRAL EQUATION

As in the case for diffusely reflecting surfaces the methods of the previous sections require the
radiosity to be constant over each subsurface, a condition rarely met in practice. More accurate
results may be obtained by solving the governing integral equation, either equation (6.16) (to
determine radiosity J) or equation (6.18) (to determine the unknown heat flux and/or surface
temperature directly), by any of the methods outlined in Chapter 5. This is best illustrated by
repeating Examples 5.10 to 5.12.

Example 6.11. Consider two long parallel plates of width w as shown in Fig. 6-15. Both plates are
isothermal at the (same) temperature T, and both have a gray, diffuse emittance of ε. The reflectance
of the material is partly diffuse, partly specular, so that ε = 1 − ρs

− ρd. The plates are separated by a
distance h and are placed in a large, cold environment. Determine the local radiative heat fluxes along
the plate using numerical quadrature.

Solution
From equation (6.18) we find, for location x1 on the lower plate,

Eb − (1 − ρs)Eb

[∫ w

0
dFs

dx1−dx′1
+

∫ w

0
dFs

dx1−dx′2

]
=

q(x1)
ε
−
ρd

ε

[∫ w

0
q(x′1) dFs

dx1−dx′1
+

∫ w

0
q(x′2) dFs

dx1−dx′2

]
.

The necessary specular view factors are readily found from

dFs
dx1−dx′1

= ρs dFdx1(2)−dx′1 + (ρs)3 dFdx1(212)−dx′1 + . . . ,

dFs
dx1−dx′2

= dFdx1−dx′2 + (ρs)2 dFdx1(21)−dx′2 + . . . .

The view factor between two infinitely long parallel strips of infinitesimal width and separated by a
distance kh (k = 1, 2, . . .) is given by Example 5.10 as

1
2

(kh)2 dx′

[(kh)2 + (x − x′)2]3/2
.

Thus,

dFs
dx1−dx′1

+ dFs
dx1−dx′2

= dFdx1−dx′2 + ρs dFdx1(2)−dx′1 + (ρs)2 dFdx1(21)−dx′2 + . . .

=
1
2

∞∑
k=1

(ρs)k−1 (kh)2 dx′

[(kh)2 + (x1 − x′)2]3/2
,
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FIGURE 6-16
Local radiative heat flux on isothermal, parallel plates with diffuse and specular reflection components.

where we have made use of x′1 = x′2 = x′. This expression may be substituted into the governing
integral equation. Realizing that, by symmetry, q(x′1) = q(x′2) = q(x′) and nondimensionalizing with
ξ = x/h, W = w/h, and Ψ = q(ξ)/Eb, lead to

1 − (1 − ρs)
∫ W

0

1
2

∞∑
k=1

(ρs)k−1k2 dξ′

[k2 + (ξ − ξ′)2]3/2
=

Ψ(ξ)
ε
−
ρd

ε

∫ W

0
Ψ(ξ′)

1
2

∞∑
k=1

(ρs)k−1k2 dξ′

[k2 + (ξ − ξ′)2]3/2

 .
As in Example 5.11 this equation may be solved by numerical quadrature as

Ψi − ρ
dW

J∑
j=1

c jΨj fi j = ε

1 − (1 − ρs)W
J∑

j=1

c j fi j

 ,
where Ψi is evaluated at J nodal positions ξi, i = 1, 2, . . . , J, and the c j are weight coefficients for the
numerical integration. The fi j are an abbreviation for the integration kernel,

fi j =
1
2

∞∑
k=1

k2(ρs)k−1[
k2 + (ξi − ξ j)2

]3/2
.

They must be evaluated by summing as many terms as necessary (decreasing as (ρs)k−1/k for large k).
Results for the same simple J = 5 quadrature of Example 5.11 are given in Fig. 6-16, together with “exact”
solutions (high-order quadrature). The results show that, for W = w/h = 1, the heat loss from the plates
decreases if reflection is specular: Specular reflection traps emitted radiation somewhat more through
repeated reflections between the plates.

Note that, if both surfaces are purely specular, the heat flux may be calculated directly (i.e.,
no solution of an integral equation is necessary). This calculation was first done for the parallel-
plate case by Eckert and Sparrow [4]. In general, equation (6.18) is actually easier to solve than
its diffuse-reflection counterpart if some or all of the surfaces are purely specular. However,
the necessary specular view factors are generally much more difficult—if not impossible—to
evaluate. Such a case arises, for example, for curved surfaces with multiple specular reflections.
Since the specular view factors for such problems are most easily found from statistical methods,
such as the Monte Carlo method (Chapter 8), it is usually best to solve the entire heat transfer
problem using the Monte Carlo method.
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FIGURE 6-17
Local radiative heat flux from the surface of an
isothermal V-groove for different reflection be-
havior; for all surfaces 2γ = 90◦ and ε = 0.1; σo is
root-mean-square optical roughness, a is a mea-
sure [21] for average distance between rough-
ness peaks [22].

6.8 CONCLUDING REMARKS

Before leaving the topic of specularly reflecting surfaces we want to discuss briefly under what
circumstances the assumption of a partly diffuse, partly specular reflector is appropriate. The
analysis for such surfaces is generally considerably more involved than for diffusely reflecting
surfaces, as a result of the more difficult evaluation of specular view factors. On the other
hand, the analysis is substantially less involved than for surfaces with more irregular reflection
behavior (as will be discussed in the following chapter).

Examples 6.3 and 6.7 have shown that in fully closed configurations (without external
irradiation) the heat fluxes show very little dependence on specularity. This is true for all closed
configurations as long as there are no long and narrow channels separating surfaces of widely
different temperatures (cf. Problems 6.3 and 6.4). Therefore, for most practical enclosures it
should be sufficient to evaluate heat fluxes assuming purely diffuse reflectors—even though a
number of surfaces may be decidedly specular. On the other hand, in open configurations, in
long and narrow channels, in configurations with collimated irradiation—whenever there is a
possibility of beam channeling—the influence of specularity can be very substantial and must be
accounted for.

It is tempting to think of diffuse and specular reflection as not only extreme but also limiting
cases: This leads to the thought that—if heat fluxes have been determined for purely diffuse
reflection, and again for purely specular reflection—the heat flux for a surface with more irreg-
ular reflection behavior must always lie between these two limiting values. This consideration
is true in most cases, in particular since most real surfaces tend to have a reflectance maximum
near the specular direction. However, there are cases when the actual heat flux is not bracketed
by the diffuse and specular reflection models, particularly for directionally selective surfaces.
As an example consider the local radiative heat flux from an isothermal groove, such as the one
given by Fig. 6-10. Toor [22] has investigated this problem for diffuse reflectors, for specular
reflectors, and for three different types of surface roughnesses analyzed with the Monte Carlo
method, and his results are shown in Fig. 6-17. It is quite apparent that, near the vertex of the
groove, diffuse and specular reflectors both seriously overpredict the heat loss. The reason is
that, at grazing angles, rough surfaces tend to reflect strongly back into the direction of incidence.
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Problems

6.1
R

2R
A1

A2

h

An infinitely long, diffusely reflecting cylinder is
opposite a large, infinitely long plate of semiinfinite
width (in plane of paper) as shown in the adjacent
sketch. The plate is specularly reflecting with ρs

2 =
0.5. As the center of the cylinder moves from x =
+∞ to x = −∞ plot Fs

1−1 vs. position h (your plot
should include at least three precise values).

6.2 Consider two identical conical cavities (such as the ones depicted next to Problems 6.7 and 6.8), which
are identical except for their surface treatment, making one surface a diffuse and the other a specular
reflector. If both cones are isothermal, and both lose the same total amount of heat by radiation,
which one has the higher temperature?

6.3

L

D
T2

T1A1  A2∋

Two infinitely long black plates of width D are separated by
a long, narrow channel, as indicated in the adjacent sketch.
One plate is isothermal at T1, the other is isothermal at T2.
The emittance of the insulated channel wall is ε. Determine
the radiative heat flux between the plates if the channel wall
is (a) specular, (b) diffuse. For simplicity you may treat the channel wall as a single node. The
diffuse case approximates the behavior of a light guide, a device used to pipe daylight into interior,
windowless spaces.
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6.4 Two circular black plates of diameter D are separated by a long, narrow tubular channel, as indicated
in the sketch next to Problem 6.3. One disk is isothermal at T1, the other is isothermal at T2. The
channel wall is a perfect reflector, i.e., ε = 0. Determine the radiative heat flux between the disks if
the channel wall is (a) specular, (b) diffuse. For simplicity, you may treat the channel wall as a single
node. If the channel is made of a transparent material, the specular arrangement approximates the
behavior of an optical fiber; if the channel is filled with air, the diffuse case approximates the behavior
of a light guide, a device used to pipe daylight into interior, windowless spaces.

6.5 Two infinitely long parallel plates of width w are spaced h = 2w apart. Surface 1 has ε1 = 0.2 and
T1 = 1000 K, Surface 2 has ε2 = 0.5 and T2 = 2000 K. Calculate the heat transfer on these plates if (a)
the surfaces are diffuse reflectors, (b) the surfaces are specular.

6.6 A long duct has the cross-section of an equilateral triangle with
side lengths L = 1 m. Surface 1 is a diffuse reflector to which
an external heat flux at the rate of Q′1 = 1 kW/m length of duct
is supplied. Surfaces 2 and 3 are isothermal at T2 = 1000 K and
T3 = 500 K, respectively, and are purely specular reflectors with
ε1 = ε2 = ε3 = 0.5.

(a) Determine the average temperature of Surface 1, and the
heat fluxes for Surfaces 2 and 3.

(b) How would the results change if Surfaces 2 and 3 were also
diffusely reflecting?

60°


A3

A2

A160°


L 
= 

1m

6.7 Consider the infinite groove cavity shown. The entire surface
of the groove is isothermal at T and coated with a gray, diffusely
emitting material with emittance ε.

(a) Assuming the coating is a diffuse reflector, what is the
total heat loss (per unit length) of the cavity?

(b) If the coating is a specular reflector, what is the total heat
loss for the cavity?

90o 

T,

L

0K

L

∋

6.8

60o 

T, 

0K

L L

∋

Consider the infinite groove cavity shown in the adjacent sketch. The
entire surface (L = 2 cm) is isothermal at T = 1000 K and is coated with
a gray material whose reflectance may be idealized to consist of purely
diffuse and specular components such that ε = ρd = ρs = 1

3 . What
is the total heat loss from the cavity? What is its apparent emittance,
defined by

εa =
total flux leaving cavity

area of groove opening × Eb
?

6.9

10 cm

10 cm

20 cm

A2

A3

40 cm

A1

Determine the temperature of surface A2 in the axisymmet-
ric configuration shown in the adjacent sketch, with the
following data:

A1 : T1 = 1000 K, q1 = −1 W/cm2,

ε1 = 0.6 (diffuse reflector);

A2 : ε2 = 0.2 (specular reflector);

A3 : q3 = 0.0 (perfectly insulated),

ε3 = 0.3 (diffuse reflector).

All surfaces are gray and emit diffusely.
Note: Some view factors may have to be approximated if integration is to be avoided.
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6.10

w1 =1m

h = 1m

w2 = 2 m

T2,     2 = 1

0 K

1 = 0.1∋

∋

0 KTo calculate the net heat loss from a part of a spacecraft, this
part may be approximated by an infinitely long black plate
at temperature T2 = 600 K, as shown. Parallel to this plate
is an (infinitely long) thin shield that is gray and reflects
specularly with the same emittance ε1 on both sides. You
may assume the surroundings to be black at 0 K. Calculate
the net heat loss from the black plate.

6.11

L

L

A2, black and 

φ T1,     1∋

insulated

A long isothermal plate (at T1) is a gray, diffuse emitter (ε1) and
purely specular reflector, and is used to reject heat into space. To
regulate the heat flux the plate is shielded by another (black) plate,
which is perfectly insulated as illustrated in the adjacent sketch.
Give an expression for heat loss as a function of shield opening
angle (neglect variations along plates). At what opening angle
0 ≤ φ ≤ 180◦ does maximum heat loss occur?

6.12 Reconsider Problem 6.11, but assume the entire configuration to be isothermal at temperature T, and
covered with a partially diffuse, partially specular material, ε = 1− ρs

− ρd. Determine an expression
for the heat lost from the cavity.

6.13

T2,     2

D

T1,     1

2 D

∋

∋An infinitely long cylinder with a gray, diffuse surface (ε1 = 0.8)
at T1 = 2000 K is situated with its axis parallel to an infinite
plane with ε2 = 0.2 at T2 = 1000 K in a vacuum environment
with a background temperature of 0 K. The axis of the cylinder
is two diameters from the plane. Specify the heat loss from the
cylinder when the plate surface is (a) gray and diffuse, or (b)
gray and specular.

6.14 A1   

r

2r

A2   

2r

A pipe carrying hot combustion gases is in radiative contact with a thin plate
as shown. Assuming (a) the pipe to be isothermal at 2000 K and black, (b) the
thin plate to be coated on both sides with a gray, diffusely emitting/specularly
reflecting material (ε = 0.1), determine the radiative heat loss from the pipe. The
surroundings are at 0 K and convection may be neglected.

6.15 Repeat Problem 5.7 for the case that the flat part of the rod (A1) is a purely specular reflector.

6.16

A1

A3

A2

A2

A2

R=1mR

h=0.1m

2w=0.1m

A long furnace may, in a simplified scenario, be considered to
consist of a strip plate (the material to be heated, A1: ε1 = 0.2,
T1 = 500 K, specular reflector), unheated refractory brick (flat sides
and bottom, A2: ε2 = 0.1, diffuse reflector), and a cylindrical dome
of heated refractory brick (A3: ε3 = 1, T3 = 1000 K). Heat release
inside the heated brick is qh (W/m2). The total heat release is
radiated into the furnace cavity and is removed by convection,
such that the convective heat loss is uniform everywhere (at qc

W/m2 on all three surfaces).

(a) Express the net radiative fluxes on all three surfaces in terms of qh.
(b) Determine the qh necessary to maintain the indicated temperatures.
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6.17

α

∋, T

L
∋, T

A typical space radiator may have a shape as shown in the adjacent
sketch, i.e., a small tube to which are attached a number of flat plate
fins, spaced at equal angle intervals. Assume that the central tube is
negligibly small, and that a fixed amount of specularly-reflecting fin
material is available (ε = ρs = 0.5), to give (per unit length of tube) a
total, one-sided fin area of A′ = N×L. Also assume the whole structure
to be isothermal. Develop an expression for the total heat loss from
the radiator as a function of the number of fins (each fin having length
L = A′/N). Does an optimum exist? Qualitatively discuss the more
realistic case of supplying a fixed amount of heat to the bases of the
fins (rather than assuming isothermal fins).

6.18 Repeat Problem 5.15 for the case that the stainless steel, while being a gray and diffuse emitter, is a
purely specular reflector (all four surfaces).

6.19 Repeat Problem 5.16 for the case that both the platinum sphere as well as the aluminum shield, while
being gray and diffuse emitters, are purely specular reflectors.

6.20 Repeat Problem 5.29, but assume steel and silver to be specular reflectors.

6.21

w1 =1m

hb
w2 = 2 m

T2,   2 = 1

0 K

= 0.1∋

∋

0 K

ht = 0.1∋

Reconsider the spacecraft of Problem 6.10. To decrease the
heat loss from Surface 2 a specularly reflecting shield, of the
same dimensions as the black surface and with emittance
ε = 0.1, is placed between the two plates. Determine the net
heat loss from the black plate as a function of shield location.
Where would you place the shield?

6.22 Evaluate the normal emittance for the V-corrugated surface shown in Fig. 6-10a. Hint: This is most
easily calculated by determining the normal absorptance, or the net heat flux on a cold groove
irradiated by parallel light from the normal direction; see Problem 6.8 for the definition of “apparent
emittance.”

6.23 Redo Problem 6.22 for an arbitrary off-normal direction 0 < θ < π/2 in a two-dimensional sense (i.e.,
determine the off-normal absorptance for parallel incoming light whose propagation vector is in the
same plane as all the surface normal, namely the plane of the paper in Fig. 6-10).

6.24

A2
T2,   2

h1 = 3cm

q1,    1 

b = 10 cm

b/2

A1

h2 = 1cm

Wire

∋

∋

A long, thin heating wire, radiating energy in the amount of
S′ = 300 W/cm (per cm length of wire), is located between
two long, parallel plates as shown in the adjacent sketch.
The bottom plate is insulated and specularly reflecting with
ε2 = 1−ρs

2 = 0.2, while the top plate is isothermal at T1 = 300 K
and diffusely reflecting with ε1 = 1 − ρd

1 = 0.5. Determine the
net radiative heat flux on the top plate.

6.25 A long groove has diffuse walls that are insulated. All sur-
faces are gray with ε = 0.5. A parallel beam of radiation,
q0 = 1 W/cm2 enters the open end of the cavity in the center
line direction, flooding the cavity opening completely.

(a) What is the apparent reflectance of the groove (i.e., how
much radiative energy is leaving it), and what is the
temperature of surface A1?

(b) What are these values if surface A1 is a specular reflector
instead of diffuse?

4 cm

q03 cm

A3

A1

A2
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6.26 w

w

w

w

T, ∋

Ś 


An infinitely long corner of characteristic length w = 1 m is a gray,
diffuse emitter and purely specular reflector with ε = ρs = 1

2 . The
entire corner is kept at a constant temperature T = 500 K, and is
irradiated externally by a line source of strength S′ = 20 kW/m,
located a distance w away from both sides of the corner, as shown
in the sketch. What is the total heat flux Q′ (per m length) to be
supplied or extracted from the corner to keep the temperature at
500 K?

6.27

60°


A2

A1

A360°


L = 1 m

ground

qsunA long greenhouse has the cross-section of an equilateral trian-
gle as shown. The side exposed to the sun consists of a thin
sheet of glass (A1) with reflectance ρ1 = 0.1. The glass may
be assumed perfectly transparent to solar radiation, and totally
opaque to radiation emitted inside the greenhouse. The other
side wall (A2) is opaque with emittance ε2 = 0.2, while the floor
(A3) has ε3 = 0.8. Both walls (A1 and A2) are specular reflec-
tors, while the floor reflects diffusely. For simplicity, you may
assume surfaces A1 and A2 to be perfectly insulated, while the
floor loses heat to the ground according to

q3,conduction = U(T3 − T∞)

where T∞ = 280 K is the temperature of the ground, and U =
19.5 W/m2 K is an overall heat transfer coefficient. Determine the temperatures of all three surfaces
for the case that the sun shines onto the greenhouse with strength qsun = 1000 W/m2 in a direction
parallel to surface A2.

6.28

2 (diffuse)

1 (specular)

w

L

θ

∋

∋


A2,

A1,

qsol

= 30o
Two long plates, parallel to each other and of width w, are
spaced a distance L =

√
3w/2 apart, and are facing each other

as shown. The bottom plate is a gray, diffuse emitter and
specularly reflecting with emittance ε1 and temperature T1.
The top plate is a gray, diffuse emitter and diffusely reflecting
with emittance ε2 and temperature T2. The bottom plate is
irradiated by the sun as shown (strength qsol [W/m2], angle
θ). Determine the net heat fluxes on the two plates. How
accurate do you expect your answer to be? What would be
a first step to achieve better accuracy?

6.29

3 = 0.2

1 = 0.9

T1 = 400 K
2 = 0.2

4 m

3 m

α

qsun = 1250 W/m2

Insulated

∋

∋

∋

Consider the solar collector shown. The collector plate is
gray and diffuse, while the insulated guard plates are gray
and specularly reflecting. Sun strikes the cavity at an angle
α (α < 45◦). How much heat is collected? Compare with a
collector without guard plates. For what values of α is your
theory valid?
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6.30

w1 = 4 cm

qsA2

A1

w2 = 3 cm φ

A rectangular cavity as shown is irradiated by a parallel-light
source of strength qs = 1000 W/m2. The entire cavity is held at
constant temperature T = 300 K and is coated with a gray ma-
terial whose reflectance may be idealized to consist of purely
diffuse and specular components, such that ε = ρd = ρs = 1

3 .
How must the cavity be oriented toward the light source (i.e.,
what is φ?) so that there is no net heat flux on surface A1?

6.31

h = 1m

w = 2 m

Tw,    w = 1

0 K

= 0.1∋

∋

0 K

N shields,

Reconsider the spacecraft of Problem 6.10. To decrease the
heat loss from Surface 2 the specularly reflecting shield 1
is replaced by an array of N shields (parallel to each other
and very closely spaced), of the same dimensions as the
black surface and made of the original, specularly reflecting
shield material with emittance ε = 0.1. Determine the net
heat loss from the black plate as a function of shield number
N.

6.32 Repeat Problem 6.26 using subroutine graydifspec of Appendix F (or modifying the sample program
grspecxch). Break up each surface into N subsurfaces of equal width (n = 1, 2, 4, 8).

6.33 Repeat Problem 6.24 using subroutine graydifspec of Appendix F (or modifying the sample program
grspecxch). Break up each surface into N subsurfaces of equal width (n = 1, 2, 4, 8).

6.34

h

w

A2: T2,

A1: T1,

0K

∋

∋

An infinitely long corner piece as shown is coated with a material of
(diffuse and gray) emittance ε, and purely specular reflectance. Calculate
the variation of heat flux along the surfaces per unit area. Both surfaces
are isothermal at T1 and T2, respectively.

6.35

L

L

0 K

1, T1∋

2∋
An infinitely long cavity as shown is coated with gray, specular
materials ε1 and ε2 (but the materials are diffuse emitters). The
vertical surface is insulated, while the horizontal surface is at
constant temperature T1. The surroundings may be assumed to
be black at 0 K. Specify the variation of the temperature along
the vertical plate.

6.36 Consider the corner for Problem 6.30, which is irradiated by sunshine at an angle φ. Both plates are
gray and specularly reflecting (emittance ε = 1 − ρs) and isothermal at T. Develop an expression for
the local heat fluxes as a function of ε, T, x, y, qs, and φ.


