
CHAPTER

5
RADIATIVE EXCHANGE

BETWEEN GRAY,
DIFFUSE SURFACES

5.1 INTRODUCTION

In this chapter we shall begin our analysis of radiative heat transfer rates within enclosures
without a participating medium, making use of the view factors developed in the preceding
chapter. We shall first deal with the simplest case of a black enclosure, that is, an enclosure
where all surfaces are black.

Such simple analysis may often be sufficient, for example, for furnace applications with
soot-covered walls. This will be followed by expanding the analysis to enclosures with gray,
diffuse surfaces, whose radiative properties do not depend on wavelength, and which emit as
well as reflect energy diffusely. Considerable experimental evidence demonstrates that most
surfaces emit (and, therefore, absorb) diffusely except for grazing angles (θ > 60◦), which are
unimportant for heat transfer calculations (for example, Fig. 3-1). Most surfaces tend to be fairly
rough and, therefore, reflect in a relatively diffuse fashion. Finally, if the surface properties vary
little across that part of the spectrum over which the blackbody emissive powers of the surfaces
are appreciable, then the simplification of gray properties may be acceptable.

In both cases—black enclosures as well as enclosures with gray, diffuse surfaces—we shall
first derive the governing integral equation for arbitrary enclosures, which is then reduced to
a set of algebraic equations by applying it to idealized enclosures. At the end of the chapter
solution methods to the general integral equations are briefly discussed.

5.2 RADIATIVE EXCHANGE BETWEEN
BLACK SURFACES

Consider a black-walled enclosure of arbitrary geometry and with arbitrary temperature distri-
bution as shown in Fig. 5-1. An energy balance for dA yields, from equation (4.1),

q(r) = Eb(r) −H(r), (5.1)

where H is the irradiation onto dA. From the definition of the view factor, the rate with which
energy leaves dA′ and is intercepted by dA is (Eb(r′) dA′) dFdA′−dA. Therefore, the total rate of
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FIGURE 5-1
A black enclosure of arbitrary geometry.

incoming heat transfer onto dA from the entire enclosure and from outside (for enclosures with
some semitransparent surfaces and/or holes) is

H(r) dA =

∫
A

Eb(r′) dFdA′−dA dA′ + Ho(r) dA, (5.2)

where Ho(r) is the external contribution to the irradiation, i.e., any part not due to emission from
the enclosure surface. Using reciprocity, this may be stated as

H(r) =

∫
A

Eb(r′) dFdA−dA′ + Ho(r)

=

∫
A

Eb(r′)
cosθ cosθ′

πS2 (r, r′) dA′ + Ho(r), (5.3)

where θ and θ′ are angles at the surface elements dA and dA′, respectively, and S is the distance
between them, as defined in Section 4.2. For an enclosure with known surface temperature
distribution, the local heat flux is readily calculated as1

q(r) = Eb(r) −
∫

A
Eb(r′) dFdA−dA′ −Ho(r). (5.4)

To simplify the problem it is customary to break up the enclosure into N isothermal subsurfaces,
as shown in Fig. 4-2b. Then equation (5.4) becomes

qi(ri) = Ebi −

N∑
j=1

Ebj

∫
A j

dFdAi−dA j −Hoi(ri), (5.5)

or, from equation (4.16),

qi(ri) = Ebi −

N∑
j=1

EbjFdi− j(ri) −Hoi(ri). (5.6)

1When looking at equation (5.4) one is often tempted by intuition to replace dFdA−dA′ by dFdA′−dA. It should always
be remembered that we have used reciprocity, since dFdA′−dA is per unit area at r′, while equation (5.4) is per unit area
at r.
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FIGURE 5-2
Two-dimensional black duct for Example 5.1.

Even though the temperature may be constant across Ai, the heat flux is usually not since (i) the
local view factor Fdi− j nearly always varies across Ai, and (ii) the external irradiation Hoi may
not be uniform. We may calculate an average heat flux by averaging equation (5.6) over Ai. With∫

Ai
Fdi− j dAi = AiFi− j this leads to

qi =
1
Ai

∫
Ai

qi(ri) dAi = Ebi −

N∑
j=1

EbjFi− j −Hoi, i = 1, 2, . . . ,N, (5.7)

where qi and Hoi are now understood to be average values.
Employing equation (4.18) we rewrite Ebi as

∑N
j=1 EbiFi− j, or

qi =

N∑
j=1

Fi− j(Ebi − Ebj) −Hoi, i = 1, 2, . . . ,N. (5.8)

In this equation the heat flux is expressed in terms of the net radiative energy exchange between
surfaces Ai and A j,

Qi− j = qi− jAi = AiFi− j(Ebi − Ebj) = −Q j−i. (5.9)

Example 5.1. Consider a very long duct as shown in Fig. 5-2. The duct is 30 cm×40 cm in cross-section,
and all surfaces are black. The top and bottom walls are at temperature T1 = 1000 K, while the side walls
are at temperature T2 = 600 K. Determine the net radiative heat transfer rate (per unit duct length) on
each surface.

Solution
We may use either equation (5.7) or (5.8). We shall use the latter here since it takes better advantage of
the symmetry of the problem (i.e., it uses the fact that the net radiative exchange between two surfaces
at the same temperature must be zero). Thus, with no external irradiation, and using symmetry (e.g.,
Eb1 = Eb3, F1−2 = F1−4, etc.),

q1 = F1−2(Eb1 − Eb2) + F1−3(Eb1 − Eb3) + F1−4(Eb1 − Eb4)

= 2F1−2(Eb1 − Eb2) = q3,

q2 = q4 = 2F2−1(Eb2 − Eb1).

Only the view factors F1−2 and F2−1 are required, which are readily determined from the crossed-strings
method as

F1−2 =
30 + 40 − (

√

302 + 402 + 0)
2 × 40

=
1
4
,

F2−1 =
A1

A2
F1−2 =

40
30
×

1
4

=
1
3
.
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FIGURE 5-3
Concentric black spheres for Example 5.2.

Therefore (using a prime to indicate “per unit duct length”),

Q′1 = Q′3 = 2A′1F1−2σ(T4
1 − T4

2 )

= 2×0.4 m×0.25×5.670×10−8 W
m2 K4 (10004

−6004) K4 = 9870 W/m

Q′2 = Q′4 = 2A′2F2−1σ(T4
2 − T4

1 ) = −9870 W/m

It is apparent from this example that the sum of all surface heat transfer rates must vanish.
This follows immediately from conservation of energy: The total heat transfer rate into the enclo-
sure (i.e., the heat transfer rates summed over all surfaces) must be equal to the rate of change
of radiative energy within the enclosure. Since radiation travels at the speed of light, steady
state is reached almost instantaneously, so that the rate of change of radiative energy may nearly
always be neglected. Mathematically, we may multiply equation (5.7) by Ai and sum over all
areas:

N∑
i=1

(Qi + AiHoi) =

N∑
i=1

AiEbi −

N∑
i=1

Ai

N∑
j=1

EbjFi− j =

N∑
i=1

AiEbi −

N∑
j=1

A jEbj

N∑
i=1

F j−i = 0. (5.10)

This relationship is most useful to check the correctness of one’s calculations, or their accuracy
(for computer calculations).

Example 5.2. Consider two concentric, isothermal, black spheres with radii R1 and R2, and temperatures
T1 and T2, respectively, as shown in Fig. 5-3. Show how the temperature of the inner sphere can be
deduced, if temperature and heat flux of the outer sphere are measured.

Solution
We have only two surfaces, and equation (5.8) becomes

q1 = F1−2(Eb1 − Eb2); q2 = F2−1(Eb2 − Eb1).

Since all radiation from Sphere 1 travels to 2, we have F1−2 = 1 and, by reciprocity, F2−1 = A1/A2. Thus,

Q1 = −Q2 = A1σ(T4
1 − T4

2 ).

Solving this for T1 we get, with Ai = 4πR2
i ,

T4
1 = T4

2 −

(R2

R1

)2 q2

σ
.

Whenever T1 is larger than T2, q2 is negative, and vice versa.
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FIGURE 5-4
Right-angled groove exposed to solar irradiation, Example 5.3.

Example 5.3. A right-angled groove, consisting of two long black surfaces of width a, is exposed to
solar radiation qsol (Fig. 5-4). The entire groove surface is kept isothermal at temperature T. Determine
the net radiative heat transfer rate from the groove.

Solution
Again, we may employ either equation (5.7) or (5.8). However, this time the enclosure is not closed; and
we must close it artificially. We note that any radiation leaving the cavity will not come back (barring
any reflection from other surfaces nearby). Thus, our artificial surface should be black. We also assume
that, with the exception of the (parallel) solar irradiation, no external radiation enters the cavity. Since
the solar irradiation is best treated separately through the external irradiation term Ho, our artificial
surface is nonemitting. Both criteria are satisfied by covering the groove with a black surface at 0 K.
Even though we now have three surfaces, the last one does not really appear in equation (5.7) (since
Eb3 = 0), but it does appear in equation (5.8). Using equation (5.7) we find

q1 = Eb1 − F1−2Eb2 −Ho1 = σT4(1 − F1−2) − qsol cosα,

q2 = Eb2 − F2−1Eb1 −Ho2 = σT4(1 − F2−1) − qsol sinα.

From Configuration 33 in Appendix D we find, with H = 1,

F1−2 = 1
2

(
2 −
√

2
)

= 0.293 = F2−1,

and
Q′ = a(q1 + q2) = a

[√
2σT4

− qsol(cosα + sinα)
]
.

These examples demonstrate that equation (5.8) is generally more convenient to use for
closed configurations, since it takes advantage of the fact that the net exchange between two
surfaces at the same temperature (or with itself) is zero. Equation (5.7), on the other hand, is
more convenient for open configurations, since the hypothetical surfaces employed to close the
configuration do not contribute (because of their zero emissive power): With this equation the
hypothetical closing surfaces may be completely ignored!

Equation (5.7) may be written in a third form that is most convenient for computer calcula-
tions. Using Kronecker’s delta function, defined as

δi j =
{ 1, i = j,

0, i , j, (5.11)

we find
N∑

j=1

δi j = 1 and
N∑

j=1

Ebjδi j = Ebi. Thus,

qi =

N∑
j=1

(δi j − Fi− j)Ebj −Hoi, i = 1, 2, . . . ,N. (5.12)
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Let us suppose that for surfaces i = 1, 2, . . . ,n the heat fluxes are prescribed (and temperatures
are unknown), while for surfaces i = n + 1, . . . ,N the temperatures are prescribed (heat fluxes
unknown). Unlike for the heat fluxes, no explicit relations for the unknown temperatures exist.
Placing all unknown temperatures on one side of equation (5.12), we may write

n∑
j=1

(δi j − Fi− j)Ebj = qi + Hoi +

N∑
j=n+1

Fi− jEbj, i = 1, 2, . . . ,n, (5.13)

where everything on the right-hand side of the equation is known. In matrix form this is written2

as

A · eb = b, (5.14)

where

A =



1 − F1−1 −F1−2 · · · −F1−n

−F2−1 1 − F2−2 · · · −F2−n

...
. . .

...

−Fn−1 −Fn−2 · · · 1 − Fn−n


, (5.15)

eb =



Eb1

Eb2

...

Ebn


, b =



q1+Ho1 +
∑N

j=n+1 F1− j Ebj

q2+Ho2 +
∑N

j=n+1 F2− j Ebj

...

qn+Hon +
∑N

j=n+1 Fn− j Ebj


. (5.16)

The n×n matrix A is readily inverted on a computer (generally with the aid of a software library
subroutine), and the unknown temperatures are calculated as

eb = A−1
· b. (5.17)

5.3 RADIATIVE EXCHANGE BETWEEN
GRAY, DIFFUSE SURFACES

We shall now assume that all surfaces are gray, that they are diffuse emitters, absorbers, and
reflectors. Under these conditions ε = ε′λ = α′λ = α = 1 − ρ. The total heat flux leaving a surface
at location r is, from Fig. 4-1,

J(r) = ε(r)Eb(r) + ρ(r)H(r), (5.18)

which is called the surface radiosity J at location r. Since both emission and reflection are diffuse,
so is the resulting intensity leaving the surface:

I(r, ŝ) = I(r) = J(r)/π. (5.19)

Therefore, an observer at a different location is unable to distinguish emitted and reflected
2For easy readability of matrix manipulations we shall follow here the convention that a two-dimensional matrix is

denoted by a bold capitalized letter, while a vector is written as a bold lowercase letter.
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FIGURE 5-5
Qualitative spectral behavior of radiosity for irradiation
from an isothermal source.

radiation on the basis of directional behavior. However, the observer may be able to distinguish
the two as a result of their different spectral behavior. Consider Example 5.2 for the case of a
black outer sphere but a gray, diffuse inner sphere. On the inner sphere the emitted radiation
has the spectral distribution of a blackbody at temperature T1, while the reflected radiation—
which was originally emitted at the outer sphere—has the spectral distribution of a blackbody
at temperature T2. Thus, the spectral radiosity will behave as shown qualitatively in Fig. 5-5. An
observer will be able to distinguish between emitted and reflected radiation if he has the ability
to distinguish between radiation at different wavelengths. A gray surface does not have this
ability, since it behaves in the same fashion toward all incoming radiation at any wavelength, i.e.,
it is “color blind.” Consequently, a gray surface does not “know” whether its irradiation comes
from a gray, diffuse surface or from a black surface with an effective emissive power J. This
fact simplifies the analysis considerably since it allows us to calculate radiative heat transfer
rates between surfaces by balancing the net outgoing radiation (i.e., emission and reflection)
traveling directly from surface to surface (as opposed to emitted radiation traveling to another
surface directly or after any number of reflections). For this reason the following analysis is
often referred to as the net radiation method.

Making an energy balance on a surface dA in the enclosure shown in Fig. 5-6 we obtain from
equation (4.2)

q(r) = ε(r)Eb(r) − α(r)H(r) = J(r) −H(r). (5.20)

The irradiation H(r) is again found by determining the contribution from a differential area
dA′(r′), followed by integrating over the entire surface. From the definition of the view factor
the heat transfer rate leaving dA′ intercepted by dA is (J(r′) dA′) dFdA′−dA. Thus, similar to the
black-surfaces case,

H(r) dA =

∫
A

J(r′) dFdA′−dA dA′ + Ho(r) dA, (5.21)

where Ho(r) is again any external radiation arriving at dA. Using reciprocity this equation
reduces to

H(r) =

∫
A

J(r′) dFdA−dA′ + Ho(r). (5.22)

Substitution into equation (5.20) yields

q(r) = ε(r)Eb(r) − α(r)
[∫

A
J(r′) dFdA−dA′ + Ho(r)

]
. (5.23)

Thus, the unknown heat flux (or temperature) could be calculated if the radiosity field had
been known. A governing integral equation for radiosity is readily established by solving
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FIGURE 5-6
Radiative exchange in a gray, diffuse en-
closure.

equation (5.20) for J:

J(r) = ε(r)Eb(r) + ρ(r)
[∫

A
J(r′) dFdA−dA′ + Ho(r)

]
, (5.24)

for those surface locations where the temperature is known, or

J(r) = q(r) +

∫
A

J(r′) dFdA−dA′ + Ho(r), (5.25)

for those parts of the surface where the local heat flux is specified. However, in problems
without participating media there is rarely a need to determine radiosity, and it is usually best
to eliminate radiosity from equation (5.23). Expressing radiosity in terms of local temperature
and heat flux and eliminating irradiation H from equation (5.20) we have

q − αq = (εEb − αH) − α(J −H) = εEb − αJ.

Up to this point we have differentiated between emittance and absorptance, to keep the relations
as general as possible (i.e., to accommodate nongray surface properties if necessary). We shall
now invoke the assumption of gray, diffuse surfaces, or α = ε. Then

q(r) =
ε(r)

1 − ε(r)
[Eb(r) − J(r)]. (5.26)

Solving for radiosity, we get

J(r) = Eb(r) −
(

1
ε(r)
− 1

)
q(r). (5.27)

Substituting this into equation (5.23), we obtain an integral equation relating temperature T and
heat flux q:

q(r)
ε(r)
−

∫
A

(
1
ε(r′)

− 1
)

q(r′) dFdA−dA′ + Ho(r) = Eb(r) −
∫

A
Eb(r′) dFdA−dA′ . (5.28)
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Note that equation (5.28) reduces to equation (5.4) for a black enclosure. However, for a black
enclosure with known temperature field the local heat flux can be determined with a simple
integration over emissive power. For a gray enclosure an integral equation must be solved,
i.e., an equation where the unknown dependent variable q(r) appears inside an integral. This
requirement makes the solution considerably more difficult.

As for a black enclosure it is customary to break up a gray enclosure into N subsurfaces,
over each of which the radiosity is assumed constant. Then equation (5.23) becomes

qi(ri)
εi(ri)

= Ebi(ri) −
N∑

j=1

JjFdi− j(ri) −Hoi(ri), i = 1, 2, . . . ,N, (5.29)

and, taking an average over subsurface Ai,

qi

εi
= Ebi −

N∑
j=1

JjFi− j −Hoi, i = 1, 2, . . . ,N. (5.30)

Taking a similar average for equation (5.26) gives

qi =
εi

1 − εi
[Ebi − Ji] . (5.31)

Solving for J and substituting into equation (5.30) then leads to

qi

εi
−

N∑
j=1

(
1
ε j
− 1

)
Fi− jq j + Hoi = Ebi −

N∑
j=1

Fi− jEbj, i = 1, 2, . . . ,N. (5.32)

This relation also follows directly from equation (5.28) if both (1/ε− 1)q and Eb (the components
of J) are assumed constant across the subsurfaces. Recalling the summation rule,

∑N
j=1 Fi− j = 1,

we may also write equation (5.32) as an interchange between surfaces,

qi

εi
−

N∑
j=1

(
1
ε j
− 1

)
Fi− j q j + Hoi =

N∑
j=1

Fi− j(Ebi − Ebj), i = 1, 2, . . . ,N. (5.33)

Either one of these equations, of course, reduces to equation (5.8) for a black enclosure. Equa-
tion (5.32) is preferred for open configurations, since it allows one to ignore hypothetical closing
surfaces; and equation (5.33) is preferred for closed enclosures, because it eliminates transfer
between surfaces at the same temperature.

Sometimes one wishes to determine the radiosity of a surface, for example, in the field of
pyrometry (relating surface temperature to radiative intensity leaving a surface). Depending
on which of the two is unknown, elimination of qi or Ebi from equation (5.30) with the help of
equation (5.31) leads to

Ji = εi Ebi + (1−εi)

 N∑
j=1

Jj Fi− j + Hoi

 (5.34a)

= qi +

N∑
j=1

Jj Fi− j + Hoi, i = 1, 2, . . . ,N. (5.34b)

These two relations simply repeat the definition of radiosity, the first stating that radiosity
consists of emitted and reflected heat fluxes and the second that radiosity, or outgoing heat flux,
is equal to net heat flux (with negative qin) plus the absolute value of qin.
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FIGURE 5-7
Two-dimensional gray, diffuse duct for Example 5.4.

Example 5.4. Reconsider Example 5.1 for a gray, diffuse surface material. Top and bottom walls are at
T1 = T3 = 1000 K with ε1 = ε3 = 0.3, while the side walls are at T2 = T4 = 600 K with ε2 = ε4 = 0.8 as
shown in Fig. 5-7. Determine the net radiative heat transfer rates for each surface.

Solution
Using equation (5.33) for i = 1 and i = 2, and recalling that F1−2 = F1−4 and F2−1 = F2−3,

i = 1 :
q1

ε1
− 2

( 1
ε2
− 1

)
F1−2 q2 −

( 1
ε1
− 1

)
F1−3 q1 = 2F1−2(Eb1 − Eb2),

i = 2 :
q2

ε2
− 2

( 1
ε1
− 1

)
F2−1 q1 −

( 1
ε2
− 1

)
F2−4 q2 = 2F2−1(Eb2 − Eb1).

We have already evaluated F1−2 = 1
4 and F2−1 = 1

3 in Example 5.1. From the summation rule F1−3 =
1− 2F1−2 = 1

2 and F2−4 = 1− 2F2−1 = 1
3 . Substituting these, as well as emittance values, into the relations

reduces them to the simpler form of[ 1
0.3
−

( 1
0.3
− 1

) 1
2

]
q1 − 2

( 1
0.8
− 1

) 1
4

q2 = 2 × 1
4 (Eb1 − Eb2),

−2
( 1
0.3
− 1

) 1
3

q1 +
[ 1

0.8
−

( 1
0.8
− 1

) 1
3

]
q2 = 2 × 1

3 (Eb2 − Eb1),

or

13
6

q1 −
1
8

q2 =
1
2

(Eb1 − Eb2),

−
14
9

q1 +
7
6

q2 = −
2
3

(Eb1 − Eb2).

Thus, (13
6
×

7
6
−

14
9
×

1
8

)
q1 =

(1
2
×

7
6
−

2
3
×

1
8

)
(Eb1 − Eb2),

q1 =
3
7
×

1
2

(Eb1 − Eb2) =
3
14
σ(T4

1 − T4
2 ),

and (
−

1
8
×

14
9

+
7
6
×

13
6

)
q2 =

(1
2
×

14
9
−

2
3
×

13
6

)
(Eb1 − Eb2),

q2 = −
3
7
×

2
3

(Eb1 − Eb2) = −
2
7
σ(T4

1 − T4
2 ).

Finally, substituting values for temperatures,

Q′1 = 0.4 m× 3
14×5.670×10−8 W

m2 K4 (10004
−6004) K4 = 4230 W/m,

Q′2 = −0.3 m× 2
7×5.670×10−8 W

m2 K4 (10004
−6004) K4 =−4230 W/m.

Of course, both heat transfer rates must again add up to zero. We observe that these rates are less than
half the ones for the black duct.
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FIGURE 5-8
Radiative transfer between (a) two concentric spheres, (b) a convex surface and a large isothermal enclosure.

Example 5.5. Determine the radiative heat flux between two isothermal gray concentric spheres with
radii R1 and R2, temperatures T1 and T2, and emittances ε1 and ε2, respectively, as shown in Fig. 5-8a.

Solution
Again applying equation (5.33) for i = 1 (inner sphere) and i = 2 (outer sphere), we obtain:

i = 1 :
q1

ε1
−

( 1
ε1
− 1

)
F1−1 q1 −

( 1
ε2
− 1

)
F1−2 q2 = F1−2(Eb1 − Eb2),

i = 2 :
q2

ε2
−

( 1
ε1
− 1

)
F2−1 q1 −

( 1
ε2
− 1

)
F2−2 q2 = F2−1(Eb2 − Eb1).

With F1−1 = 0, F1−2 = 1, F2−1 = A1/A2, and F2−2 = 1 − F2−1 = 1 − A1/A2, these two equations reduce to

1
ε1

q1 −

( 1
ε2
− 1

)
q2 = σ(T4

1 − T4
2 ),

( 1
ε1
− 1

) A1

A2
q1 +

[ 1
ε2
−

( 1
ε2
− 1

) (
1 −

A1

A2

)]
q2 = −

A1

A2
σ(T4

1 − T4
2 ).

This may be solved for q1 by eliminating q2 (or using conservation of energy, i.e., A1q1 + A2q2 = 0), or

q1 =
σ(T4

1 − T4
2 )

1
ε1

+
A1

A2

( 1
ε2
− 1

) . (5.35)

We note that equation (5.35) is not just limited to concentric spheres, but holds for any convex
surface A1 (i.e., with F1−1 = 0) that radiates only to A2 (i.e., F1−2 = 1) as indicated in Fig. 5-8b.
This is often convenient for a convex surface Ai placed into a large, isothermal environment
(Aa � Ai) at temperature Ta, leading to

qi = εiσ(T4
i − T4

a ). (5.36)

Surface Ai may also be a hypothetical one, closing an open configuration contained within a
large environment.

Example 5.6. Repeat Example 5.3 for a groove whose surface is gray and diffuse, with emittance ε,
rather than black.
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FIGURE 5-9
Cylindrical cavity with partial cover plate, Ex-
ample 5.7.

Solution
Using equation (5.32) for the open configuration we obtain

i = 1 :
q1

ε
−

(1
ε
− 1

)
F1−2 q2 + Ho1 = σT4(1 − F1−2),

i = 2 :
q2

ε
−

(1
ε
− 1

)
F2−1 q1 + Ho2 = σT4(1 − F2−1),

where we have made use of the fact that Eb1 = Eb2 = σT4 and ε1 = ε2 = ε. As in Example 5.3 we have
F1−2 = F2−1 = 1−

√
2/2 and Ho1 = qsol cosα, Ho2 = qsol sinα. Since we are only interested in the total heat

loss we add the two equations, leading to[1
ε
−

(1
ε
− 1

)
F1−2

]
(q1 + q2) =

√

2σT4
− qsol(cosα + sinα),

and

Q′ = a(q1 + q2) =
a
[√

2σT4
− qsol(cosα + sinα)

]
1 +

(1
ε
− 1

)/ √
2

.

Comparing this result with that of Example 5.3, we see that the heat loss due to emission is decreased
(less emission, but more effective heat loss of emitted energy due to reflection from the opposing surface),
as is the solar heat gain (since some of the irradiation is reflected back out of the cavity).

Example 5.7. Consider the cavity shown in Fig. 5-9, which consists of a cylindrical hole of diameter
D and length L. The top of the cavity is covered with a disk, which has a hole of diameter d. The
entire inside of the cavity is isothermal at temperature T, and is covered with a gray, diffuse material of
emittance ε. Determine the amount of radiation escaping from the cavity.

Solution
For simplicity, since the entire surface is isothermal and has the same emittance, we use a single zone A1,
which comprises the entire groove surface (sides, bottom, and top). Therefore, equation (5.32) reduces
to [ 1

ε1
−

( 1
ε1
− 1

)
F1−1

]
q1 = (1 − F1−1)Eb1.

Since the total radiative energy rate leaving the cavity is Q1 = A1q1, we get

Q1 =
1 − F1−1

1
ε1
−

( 1
ε1
− 1

)
F1−1

A1Eb1.
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The view factor F1−1 is easily determined by recognizing that Fo−1 = 1 (and Ao is the opening at the top)
and, by reciprocity,

F1−1 = 1 − F1−o = 1 −
Ao

A1
Fo−1 = 1 −

Ao

A1
.

Therefore, the radiative heat flux leaving the cavity, per unit area of opening, is

Q1

Ao
=

(
1 − 1 +

Ao

A1

) A1

Ao
Eb1

1
ε1
−

( 1
ε1
− 1

) (
1 −

Ao

A1

) =
Eb1

1 +
( 1
ε1
− 1

) Ao

A1

.

Thus, if Ao/A1 � 1, the opening of the cavity behaves like a blackbody with emissive power Eb1. Such
cavities are commonly used in experimental methods in which blackbodies are needed for comparison.
For example, a cavity with d/D = 1/2 and L/D = 2 has

Ao

A1
=

πd2/4
2πD2/4−πd2/4+πDL

=
d2

2D2−d2+4DL

=
(d/D)2

2−(d/D)2+4(L/D)
=

1/4
2−1/4+4×2

=
1

39
.

For ε1 = 0.5 this results in an apparent emittance of

εa =
Q1

AoEb1
=

1

1+
( 1
ε1
− 1

) Ao

A1

=
1

1+
( 1

0.5
− 1

) 1
39

=
39
40

= 0.975.

For computer calculations the Kronecker delta is introduced into equation (5.32), as was
done for a black enclosure, leading to

N∑
j=1

[
δi j

ε j
−

(
1
ε j
− 1

)
Fi− j

]
q j =

N∑
j=1

[
δi j − Fi− j

]
Ebj −Hoi. (5.37)

If all the temperatures are known and the radiative heat fluxes are to be determined, equa-
tion (5.37) may be cast in matrix form as

C · q = A · eb − ho, (5.38)

where C and A are matrices with elements

Ci j =
δi j

ε j
−

(
1
ε j
− 1

)
Fi− j,

Ai j = δi j − Fi− j,

and q, eb, and ho are vectors of the unknown heat fluxes q j and the known emissive powers Ebj
and external irradiations Hoj. Equation (5.38) is solved by matrix inversion as

q = C−1
· [A · eb − ho] . (5.39)

If the emissive power is known over only some of the surfaces, and the heat fluxes are specified
elsewhere, equation (5.38) may be rearranged into a similar equation for the vector containing
all the unknowns. Subroutine graydiff is provided in Appendix F for the solution of the
simultaneous equations (5.38), requiring surface information and a partial view factor matrix as
input. The solution to a three-dimensional version of Example 5.4 is also given in the form of a
program graydiffxch, which may be used as a starting point for the solution to other problems.
Fortran90, C++ as well as Matlabr versions are provided. Several commercial solvers are also
available, usually including software for view factor evaluation, such as TRASYS [1] and TSS [2].
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FIGURE 5-10
Electrical network analogy for infinite
parallel plates: (a) space resistance, (b)
surface resistance, (c) total resistance.

5.4 ELECTRICAL NETWORK ANALOGY

While equation (5.37) represents the most convenient set of governing equations for numerical
calculations on today’s digital computers, some people prefer to get a physical feeling for
the radiative exchange problem by representing it through an analogous electrical network, a
method more suitable for analog computers—now nearly extinct. For completeness, we shall
briefly present this electrical network method, which was first introduced by Oppenheim [3].

From equation (5.20) we have

qi = Ji −Hi, i = 1, 2, . . . ,N, (5.40)

or, with equations (5.30) and (5.31),

qi = Ji −

N∑
j=1

JjFi− j −Hoi, (5.41)

=

N∑
j=1

(Ji − Jj)Fi− j −Hoi, i = 1, 2, . . . ,N. (5.42)

We shall first consider the simple case of two infinite parallel plates without external irradiation.
Thus, N = 2, Hoi = 0, and

Q1 = A1q1 =
J1 − J2

1
A1F1−2

= −Q2. (5.43)

As written, equation (5.43) may be interpreted as follows: If the radiosities are considered
potentials, 1/A1F1−2 is a radiative resistance between surfaces, or a space resistance, and Q is a
radiative heat flow “current,” then equation (5.43) is identical to the one governing an electrical
current flowing across a resistor due to a voltage potential, as indicated in Fig. 5-10a. The space
resistance is a measure of how easily a radiative heat flux flows from one surface to another:
The larger F1−2, the more easily heat can travel from A1 to A2, resulting in a smaller resistance.
The same heat flux is also given by equation (5.31) as

Q1 =
Eb1 − J1

1 − ε1

A1ε1

=
J2 − Eb2

1 − ε2

A2ε2

= −Q2, (5.44)

where (1 − εi)/Aiεi are radiative surface resistances. This situation is shown in Fig. 5-10b. The
surface resistance describes a surface’s ability to radiate. For the maximum radiator, a black
surface, the resistance is zero. This fact implies that, for a finite heat flux, the potential drop
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FIGURE 5-11
Network representation for radiative heat flux between surface Ai
and all other surfaces.

across a zero resistance must be zero, i.e., Ji = Ebi. Of course, the radiosities may be eliminated
from equations (5.43) and (5.44), and

Q1 =
Eb1 − Eb2

1 − ε1

A1ε1
+

1
A1F1−2

+
1 − ε2

A2ε2

= −Q2, (5.45)

where the denominator is the total radiative resistance between surfaces A1 and A2. Since the
three resistances are in series they simply add up as electrical resistances do; see Fig. 5-10c.

This network analogy is readily extended to more complicated situations by rewriting equa-
tion (5.42) as

Qi =
Ebi − Ji

1 − εi

Aiεi

=

N∑
j=1

Ji − Jj

1
AiFi− j

− AiHoi =

N∑
j=1

Qi− j − AiHoi. (5.46)

Thus, the total heat flux at surface i is the net radiative exchange between Ai and all the other
surfaces in the enclosure. The electrical analog is shown in Fig. 5-11, where the current flowing
from Ebi to Ji is divided into N parallel lines, each with a different potential difference and with
different resistors.

Example 5.8. Consider a solar collector shown in Fig. 5-12a. The collector consists of a glass cover
plate, a collector plate, and side walls. We shall assume that the glass is totally transparent to solar
irradiation, which penetrates through the glass and hits the absorber plate with a strength of 1000 W/m2.
The absorber plate is black and is kept at a constant temperature T1 = 77◦C by heating water flowing
underneath it. The side walls are insulated and made of a material with emittance ε2 = 0.5. The glass
cover may be considered opaque to thermal (i.e., infrared) radiation with an emittance ε3 = 0.9. The
collector is 1 m × 1 m × 10 cm in dimension and is reasonably evacuated to suppress free convection
between absorber plate and glass cover. The convective heat transfer coefficient at the top of the glass
cover is known to be h = 5.0 W/m2 K, and the temperature of the ambient is Ta = 17◦C. Estimate the
collected energy for normal solar incidence.

Solution
We may construct an equivalent network (Fig. 5-12b), leading to

Q1 =
σ(T4

1 − T4
a )

R13 +
1 − ε3

A3ε3
+ R3a

− A1qs,

where R13 is the total resistance between surfaces A1 and A3, and R3a is the resistance, by radiation as
well as free convection, between glass cover and environment. We note that, since A2 is insulated, there
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Schematics for Example 5.8: (a) geometry, (b)
network.

is no heat flux entering/leaving at Eb2 and, from equation (5.44), J2 = Eb2. Thus, the total resistance
between A1 and A3 comes from two parallel circuits, one with resistance 1/(A1F1−3) and the other with
two resistances in series, 1/(A1F1−2) and 1/(A3F3−2), or

1
R13

=
1

1/(A1F1−3)
+

1
1/(A1F1−2) + 1/(A3F3−2)

= A1F1−3 + 1
2 A1F1−2 = A1

(
F1−3 + 1

2 F1−2

)
,

where we have used the fact that A1F1−2 = A3F3−2 by symmetry. From Configuration 38 in Appendix D
we obtain, with X = Y = 10, F1−3 = 0.827 and F1−2 = 1 − F1−3 = 0.173, and

R13 = 1
/ [

1 m2
× (0.827 + 0.5 × 0.173)

]
= 1.095 m−2.

The resistance between glass cover and ambient is a little more complicated. The total heat loss from
the cover plate, by free convection and radiation, is

Q3a = ε3A3σ(T4
3 − T4

a ) + hA3(T3 − Ta),

where we have assumed that the environment (sky) radiates to the collector with the ambient tempera-
ture Ta. To convert this to the correct form we rewrite it as

Q3a = σ(T4
3 − T4

a )A3

ε3 +
h(T3 − Ta)
σ(T4

3 − T4
a )

 ,
or

1
R3a

= A3

ε3 +
h
σ

T3 − Ta

T4
3 − T4

a

 = A3

ε3 +
h
σ

1
T3

3 + T2
3Ta + T3T2

a + T3
a

 .
As a first approximation, if T3 is not too different from Ta,

1
R3a
' A3

(
ε3 +

h
4σT3

a

)
= 1 m2

(
0.9+

5 W/m2 K
4×5.670×10−8 W/m2 K4×(273+17)3 K3

)
=

1
0.554

m2.

Finally, substituting the resistances into the expression for Q1 we get

Q1 =
5.670×10−8 W/m2 K4

[
(273+77)4

−(273+17)4
]

K4

1.095 m−2+
1−0.9
0.9 m2 +0.554 m−2

− 1 m2
× 1000 W/m2

= −744 W.
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FIGURE 5-13
Concentric cylinders (or spheres) with N radiation shields between them.

Since the system could collect a theoretical maximum of −1000 W, the collector efficiency is

ηcollector =
Q1

A1qs
=

744
1000

= 0.744 = 74.4%.

This efficiency should be compared with an uncovered black collector plate, whose net heat flux would
be

Q1 = A1

[
σ(T4

1 − T4
a ) + h(T1 − Ta) − qs

]
= 1 m2

[
5.670×10−8

×(3504
−2904)+5×(350−290) − 1000

]
W/m2

= −250 W.

Thus, an unprotected collector at that temperature would have an efficiency of only 25%.

The electrical network analogy is a very simple and physically appealing approach for
simple two- and three-surface enclosures, such as the one of the previous example. However, in
more complicated enclosures with multiple surfaces the method quickly becomes tedious and
intractable.

5.5 RADIATION SHIELDS

In high-performance insulating materials it is common to suppress conductive and convective
heat transfer by evacuating the space between two surfaces. This leaves thermal radiation
as the dominant heat loss mode even for low-temperature applications such as insulation in
cryogenic storage tanks. The radiation loss may be minimized by placing a multitude of closely
spaced, parallel, highly reflective radiation shields between the surfaces. The radiation shields
are generally made of thin metallic foils or, to reduce conductive losses further, of dielectric foils
coated with metallic films. In either case radiation shields tend to be very specular reflectors.
However, for closely spaced shields the directional behavior of the reflectance tends to be
irrelevant and assuming diffuse reflectances gives excellent accuracy (see also Example 6.9 in
the following chapter).

A typical arrangement for N radiation shields between two concentric cylinders (or con-
centric spheres) is shown in Fig. 5-13. This geometry includes the case of parallel plates for
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large (and nearly equal) radii. Let the inner cylinder have temperature Ti, surface area Ai, and
emittance εi. Similarly, each shield has temperature Tn (unknown), An, εni (on its inner surface),
and εno (on its outer surface). The last shield, AN, faces the outer cylinder with To, Ao and εo.
The net radiative heat rate leaving Ai is, of course, equal to the heat rate going through each
shield and to the one arriving at Ao. This net heat rate may be readily determined from the
electrical network analogy, or by repeated application of the enclosure relations, equation (5.32).
However, this is the type of problem for which the network analogy truly shines and we will
use this method here. The case of concentric surfaces was already evaluated in Example 5.5, so
that the net heat rate between any two of the concentric cylinders is then

Q =
Ebj − Ebk

R j−k
, R j−k =

1
ε jA j

+
1

Ak

( 1
εk
− 1

)
. (5.47)

Therefore, we may write
QRi−1i = Ebi − Eb1,

QR1o−2i = Eb1 − Eb2,

...

QRNo−o = EbN − Ebo.

Adding all these equations eliminates all the unknown shield temperatures, and, after solving
for the heat flux, we obtain

Q =
Ebi − Ebo

Ri−1i +
∑N−1

n=1 Rno−n+1,i + RNo−o
. (5.48)

Example 5.9. A Dewar holding 4 liters of liquid helium at 4.2 K consists essentially of two concentric
stainless steel (ε = 0.3) cylinders of 50 cm length, and inner and outer diameters of Di = 10 cm and
Do = 20 cm, respectively. The space between the cylinders is evacuated to a high vacuum to eliminate
conductive/convective heat losses. Radiation shields are to be placed between the Dewar walls to reduce
radiative losses to the point that it takes 24 hours for the 4-liter filling to evaporate if the Dewar is placed
into an environment at 298 K. For the purpose of this example the following may be assumed: (i) End
losses as well as conduction/convection losses are negligible, (ii) the wall temperatures are at Ti = 4.2 K
and To = 298 K, respectively, and (iii) radiation is one-dimensional. Thin plastic sheets coated on both
sides with aluminum (ε = 0.05) are available as shield material. Estimate the number of shields required.
The heat of evaporation for helium at atmospheric pressure is hfg,He = 20.94 J/g (which is a very low
value compared with other liquids), and the liquid density is ρHe = 0.125 g/cm3 [4].

Solution
The total heat required to evaporate 4 liters of liquid helium is

Q = ρHeVHehfg,He = 0.125
g

cm3 × 4 liters ×
103 cm3

liter
× 20.94

J
g

= 10.47 kJ.

If all of this energy is supplied through radial radiation over a time period of 24 hours, one infers that the
heat flux in equation (5.48) must be held at or belowQ̇ = Q/24 h = 10,470 J/24 h×(1 h/3600 s) = 0.1212 W,
or qi = Q̇/Ai = 0.1212 W/(π × 10 cm × 50 cm) = 7.71 × 10−5 W/cm2. Therefore, the total resistance must,
from equation (5.48), be a minimum of

AiRtot = |Ebi − Ebo|/qi = 5.670 × 10−12
× |4.24

− 2984
|/7.71 × 10−5

= 580.0.

We note from equation (5.47) that the resistances are inversely proportional to shield area. Therefore,
it is best to place the shields as close to the inner cylinder as possible. We will assume that the shields
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can be so closely spaced that Ai ' A2 ' . . . ' AN = As = πDsL, with Ds = 11 cm. Evaluating the total
resistance from equations (5.47) and (5.48), we find

AiRtot =
1
εw

+
( 1
εs
− 1

) Ai

As
+

N−1∑
n=1

( 2
εs
− 1

) Ai

As
+

1
εs

Ai

As
+

( 1
εw
− 1

) Ai

Ao
,

where εw = 0.3 is the emittance of the (stainless steel) walls, and εs = 0.05 is the emittance of the
(aluminized) shields. Since the elements of the series in the last equation do not depend on n, we may
solve for N as

N =

AiRtot −
1
εw
−

( 1
εw
− 1

) Ai

Ao( 2
εs
− 1

) Ai

As

=
580.0 − 1

0.3 −
(

1
0.3 − 1

)
10
20(

2
0.05 − 1

)
10
11

= 16.23.

Therefore, a minimum of 17 radiation shields would be required. Note from equation (5.35) that, without
radiation shields,

qi =
|Ebi − Ebo|

1
εw

+
( 1
εw
− 1

) Ai

Ao

=
5.670 × 10−12

|4.24
− 2984

|

1
0.3

+
( 1

0.3
− 1

)
×

1
2

= 9.94 × 10−3 W/cm2,

that is, the heat loss is approximately 100 times larger!

5.6 SOLUTION METHODS FOR THE
GOVERNING INTEGRAL EQUATIONS

The usefulness of the method described in the previous sections is limited by the fact that
it requires the radiosity to be constant over each subsurface. This is rarely the case if the
subsurfaces of the enclosure are relatively large (as compared with typical distances between
surfaces). Today, with the advent of powerful digital computers, more accurate solutions are
usually obtained by increasing the number of subsurfaces, N, in equation (5.37), which then
become simply a finite-difference solution to the integral equation (5.28). Still, there are times
when more accurate methods for the solution of equation (5.28) are desired (for computational
efficiency), or when exact or approximate solutions are sought in explicit form. Therefore, we
shall give here a very brief outline of such solution methods.

If radiosity J is to be determined, the governing equation that needs to be solved is either
equation (5.24), if the surface temperature is given, or equation (5.25), if surface heat flux is
specified. If unknown temperatures or heat fluxes are to be determined directly, equation (5.28)
must be solved. In all cases the governing equation may be written as a Fredholm integral equation
of the second kind,

φ(r) = f (r) +

∫
A

K(r, r′)φ(r′) dA′, (5.49)

where K(r, r′) is called the kernel of the integral equation, f (r) is a known function, and φ(r)
is the function to be determined (e.g., radiosity or heat flux). Comprehensive discussions for
the treatment of such integral equations are given in mathematical texts such as Courant and
Hilbert [5] or Hildebrand [6]. A number of radiative heat transfer examples have been discussed
by Özişik [7].
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Numerical solutions to equation (5.49) may be found in a number of ways. In the method
of successive approximation a first guess of φ(r) = f (r) is made with which the integral in equa-
tion (5.49) is evaluated (analytically in some simple situations, but more often through numerical
quadrature). This leads to an improved value for φ(r), which is substituted back into the inte-
gral, and so on. This scheme is known to converge for all surface radiation problems. Another
possible solution method is reduction to algebraic equations by using numerical quadrature for
the integral, i.e., replacing it by a series of quadrature coefficients and nodal values. This leads
to a set of equations similar to equation (5.37), but of higher accuracy. This type of solution
method is most easily extended to arbitrary, three-dimensional geometries, for example, as re-
cently demonstrated by Daun and Hollands [8], who employed nonuniform rational B-splines
(NURBS) to express the surfaces. A third method of solution has been given by Sparrow and
Haji-Sheikh [9], who demonstrated that the method of variational calculus may be applied to
general problems governed by a Fredholm integral equation.

Most early numerical solutions in the literature dealt with two very basic systems. The
problem of two-dimensional parallel plates of finite width was studied in some detail by Sparrow
and coworkers [9–11], using the variational method. The majority of studies have concentrated
on radiation from cylindrical holes because of the importance of this geometry for cylindrical
tube flow, as well as for the preparation of a blackbody for calibrating radiative property
measurements. The problem of an infinitely long isothermal hole radiating from its opening was
first studied by Buckley [12] and by Eckert [13]. Buckley’s work appears to be the first employing
the kernel approximation method. Much later, the same problem was solved exactly through the
method of successive approximation (with numerical quadrature) by Sparrow and Albers [14].
A finite hole, but with both ends open, was studied by a number of investigators. Usiskin
and Siegel [15] considered the constant wall heat flux case, using the kernel approximation as
well as a variational approach. The constant wall temperature case was studied by Lin and
Sparrow [16], and combined convection/surface radiation was investigated by Perlmutter and
Siegel [17, 18]. Of greater importance for the manufacture of a blackbody is the isothermal
cylindrical cavity of finite depth, which was studied by Sparrow and coworkers [19, 20] using
successive approximations. If part of the opening is covered by a flat ring with a smaller hole,
such a cavity behaves like a blackbody for very small L/R ratios. This problem was studied
by Alfano [21] and Alfano and Sarno [22]. Because of their importance for the manufacture
of blackbody cavities these results are summarized in Table 5.1. A detector removed from the
cavity will sense a signal proportional to the intensity leaving the bottom center of the cavity in
the normal direction. Thus the effectiveness of the blackbody is measured by how close to unity
the ratio In/Ib(T) is. For perfectly diffuse reflectors, In = J/π, and with Ib = σT4/π an apparent
emittance is defined as

εa = In/Ib(T) = J/σT4. (5.50)

To give an outline of how the different methods may be applied we shall, over the following few
pages, solve the same simple example by three different methods, the first two being “exact,”
and the third being the kernel approximation.

Example 5.10. Consider two long parallel plates of width w as shown in Fig. 5-14. Both plates are
isothermal at the (same) temperature T, and both have a gray, diffuse emittance of ε. The plates are
separated by a distance h and are placed in a large, cold environment. Determine the local radiative
heat fluxes along the plate using the method of successive approximation.

Solution
From equation (5.24) we find, with dFdi−di = 0,

J1(x1) = εσT4 + (1 − ε)
∫ w

0
J2(x2) dFd1−d2,

J2(x2) = εσT4 + (1 − ε)
∫ w

0
J1(x1) dFd2−d1,
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TABLE 5.1
Apparent emittance, εa = J/σT 4, at the bottom center of an isothermal partially covered
cylindrical cavity [21, 22].

εa

ε Ri/R (L/R = 2) (L/R = 4) (L/R = 8)

0.25 0.4 0.916 0.968 0.990
0.6 0.829 0.931 0.981
0.8 0.732 0.888 0.969
1.0 0.640 0.844 0.965

0.50 0.4 0.968 0.990 0.998
0.6 0.932 0.979 0.995
0.8 0.887 0.964 0.992
1.0 0.839 0.946 0.989

0.75 0.4 0.988 0.997 0.999

2Ri

∋

2R

T,
L

0.6 0.975 0.997 0.998
0.8 0.958 0.988 0.997
1.0 0.939 0.982 0.996

w

h

x2, ξ

x1, ξ

dx2

dx1

φ

s12

A2 : T, ∋

A1 : T, ∋

FIGURE 5-14
Radiative exchange between two long isothermal parallel plates.

and, from Configuration 1 in Appendix D, with s12 = h/cosφ, s12 dφ = dx2 cosφ, and cosφ =

h/
√

h2 + (x2 − x1)2,

dx1 dFd1−d2 = dx2 dFd2−d1 =
1
2

cosφ dφ dx1 =
cos3 φ

2h
dx1 dx2 =

1
2

h2 dx1 dx2

[h2 + (x1 − x2)2]3/2
.

Introducing nondimensional variables W = w/h, ξ = x/h, and J(x) = J(x)/σT4, and realizing that, as
a result of symmetry, J1 = J2 (and q1 = q2), we may simplify the governing integral equation to

J(ξ) = ε +
1
2

(1 − ε)
∫ W

0
J(ξ′)

dξ′

[1 + (ξ′ − ξ)2]3/2
. (5.51)

Making a first guess of J (1)
= ε we obtain a second guess by substitution,

J (2)(ξ) = ε

{
1 +

1
2

(1 − ε)
∫ W

0

dξ′

[1 + (ξ′ − ξ)2]3/2

}
= ε

1 +
1
2

(1 − ε)

 W − ξ√
1 + (W − ξ)2

+
ξ√

1 + ξ2


 .
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FIGURE 5-15
Local radiative heat flux on long, isothermal parallel plates, determined by various methods.

Repeating the procedure we get

J (3)(ξ) = ε

1 +
1
2

(1 − ε)

 W − ξ√
1 + (W − ε)2

+
ξ√

1 + ξ2


+

1
4

(1 − ε)2
∫ W

0

 W − ξ′√
1 + (W − ξ′)2

+
ξ′√

1 + ξ′2

 dξ′

[1 + (ξ′ − ξ)2]3/2

 ,
where the last integral becomes quite involved. We shall stop at this point since further successive
integrations would have to be carried out numerically. It is clear from the above expression that the
terms in the series diminish as ε [(1 − ε)W]n, i.e., few successive iterations are necessary for surfaces with
low reflectances and/or w/h ratios. Once the radiosity has been determined the local heat flux follows
from equation (5.26). Limiting ourselves to J (2) (single successive approximation), this yields

Ψ(ξ) =
q(ξ)
σT4 =

ε
1 − ε

[1 −J(ξ)]

= ε −
ε2

2

 W − ξ√
1 + (W − ξ)2

+
ξ√

1 + ξ2

 −O
(
ε2(1 − ε)W2

)
,

where O(z) is shorthand for “order of magnitude z.” Some results are shown in Fig. 5-15 and compared
with other solution methods for the case of W = w/h = 1 and three values of the emittance. Observe that
the heat loss is a minimum at the center of the plate, since this location receives maximum irradiation
from the other plate (i.e., the view factor from this location to the opposing plate is maximum). For
decreasing ε the heat loss increases, of course, since more is emitted; however, this increase is less than
linear since also more energy is coming in, of which a larger fraction is absorbed. The first successive
approximation does very well for small and large ε as expected from the order of magnitude of the
neglected terms.

Example 5.11. Repeat Example 5.10 using numerical quadrature.

Solution
The governing equation is, of course, again equation (5.51). We shall approximate the integral on the
right-hand side by a series obtained through numerical integration, or quadrature. In this method an
integral is approximated by a weighted series of the integrand evaluated at a number of nodal points;
or
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∫ b

a
f (ξ, ξ′) dξ′ ' (b − a)

J∑
j=1

c j f (ξ, ξ j),
J∑

j=1

c j = 1. (5.52)

Here the ξ j represent J locations between a and b, and the c j are weight coefficients. The nodal points ξ j

may be equally spaced for easy presentation of results (Newton–Cotes quadrature), or their location may
be optimized for increased accuracy (Gaussian quadrature); for a detailed treatment of quadrature see,
for example, the book by Fröberg [23].

Using equation (5.52) in equation (5.51) we obtain

Ji = ε + (1 − ε)W
J∑

j=1

c j Jj fi j, i = 1, 2, . . . , J,

where
fi j =

1
2

/ [
1 + (ξ j − ξi)2

]3/2
.

This system of equations may be further simplified by utilizing the symmetry of the problem, i.e.,
J(ξ) = J(W − ξ). Assuming that nodes are placed symmetrically about the centerline, ξJ+1− j = ξ j,
leads to cJ+1− j = c j and JJ+1− j = Jj, or

J odd: Ji = ε + (1 − ε)W


(J−1)/2∑

j=1

c j Jj [ fi j + fi,J+1− j] + c(J+1)/2 J(J+1)/2 fi,(J+1)/2

 , i = 1, 2, . . . ,
J + 1

2
,

J even: Ji = ε + (1 − ε)W
J/2∑
j=1

c j Jj ( fi j + fi,J+1− j), i = 1, 2, . . . ,
J
2
.

The values of the radiosities may be determined by successive approximation, or by direct matrix
inversion. In Fig. 5-15 the simple case of J = 5 (resulting in three simultaneous equations) is included,
using Newton–Cotes quadrature with ξ j = W( j − 1)/4 and c1 = c5 = 7/90, c2 = c4 = 32/90, and
c3 = 12/90 [23].

Exact analytical solutions that yield explicit relations for the unknown radiosity are rare and
limited to a few special geometries. However, approximate analytical solutions may be found
for many geometries through the kernel approximation method. In this method the kernel K(x, x′)
is approximated by a linear series of special functions such as e−ax′ , cos ax′, cosh ax′, and so on
(i.e., functions that, after one or two differentiations with respect to x′, turn back into the original
function except for a constant factor). It is then often possible to convert integral equation (5.49)
into a differential equation that may be solved explicitly. The method is best illustrated through
an example.

Example 5.12. Repeat Example 5.11 using the kernel approximation method.

Solution
We again need to solve equation (5.51), this time by approximating the kernel. For convenience we shall
choose a simple exponential form,

K(ξ, ξ′) =
1

[1 + (ξ′ − ξ)2]3/2
' a e−b|ξ′−ξ|.

We shall determine “optimum” parameters a and b by letting the approximation satisfy the 0th and 1st
moments. This implies multiplying the expression by |ξ′ − ξ| raised to the 0th and 1st powers, followed
by integration over the entire domain for |ξ′ − ξ|, i.e., from 0 to ∞ (since W could be arbitrarily large).3

3Using the actual W at hand will result in a better approximation, but new values for a and b must be determined if
W is changed; in addition, the mathematics become considerably more involved.



5.6 SOLUTION METHODS FOR THE GOVERNING INTEGRAL EQUATIONS 183

Thus,

0th moment:
∫
∞

0

dx
(1 + x2)3/2

= 1 =

∫
∞

0
a e−bx dx =

a
b
,

1st moment:
∫
∞

0

x dx
(1 + x2)3/2

= 1 =

∫ x

0
a e−bxx dx =

a
b2 ,

leading to a = b = 1 and

K(ξ, ξ′) ' e−|ξ
′
−ξ|.

Substituting this expression into equation (5.51) leads to

J(ξ) ' ε +
1
2

(1 − ε)
[∫ ξ

0
J(ξ′) e−(ξ−ξ′) dξ′ +

∫ W

ξ
J(ξ′) e−(ξ′−ξ) dξ′

]
.

We shall now differentiate this expression twice with respect to ξ, for which we need to employ Leibniz’s
rule, equation (3.106). Therefore,

dJ
dξ

=
1
2

(1 − ε)
[
J(ξ) −

∫ ξ

0
J(ξ′) e−(ξ−ξ′) dξ′ −J(ξ) +

∫ W

ξ
J(ξ′) e−(ξ′−ξ) dξ′

]
,

d2J

dξ2 =
1
2

(1 − ε)
[
−J(ξ) +

∫ ξ

0
J(ξ′) e−(ξ−ξ′) dξ′ −J(ξ) +

∫ W

ξ
J(ξ′) e−(ξ′−ξ) dξ′

]
,

or, by comparison with the expression for J(ξ),

d2J

dξ2 = J − ε − (1 − ε) J = ε( J − 1).

Thus, the governing integral equation has been converted into a second-order ordinary differential
equation, which is readily solved as

J(ξ) = 1 + C1 e−
√
εξ + C2 e+

√
εξ.

While an integral equation does not require any boundary conditions, we have converted the governing
equation into a differential equation that requires two boundary conditions in order to determine C1

and C2. The dilemma is overcome by substituting the general solution back into the governing integral
equation (with approximated kernel). This calculation can be done for variable values of ξ by comparing
coefficients of independent functions of ξ, or simply for two arbitrarily selected values for ξ. The first
method gives the engineer proof that his analysis is without mistake, but is usually considerably more
tedious. Often it is also possible to employ symmetry, as is the case here, since J(ξ) = J(W − ξ) or

C1

[
e−
√
εξ
− e−

√
ε(W−ξ)

]
= −C2

[
e
√
εξ
− e
√
ε(W−ξ)

]
= C2 e

√
εW

[
e−
√
εξ
− e−

√
ε(W−ξ)

]
,

or
C1 = C2 e

√
εW .

Consequently,

J(ξ) = 1 + C1

[
e−
√
εξ + e−

√
ε(W−ξ)

]
,

and substituting this expression into the governing equation at ξ = 0 gives

J(0) = 1 + C1

(
1+ e−

√
εW

)
= ε +

1
2

(1−ε)
∫ W

0

{
1+C1

[
e−
√
εξ′+ e−

√
ε(W−ξ′)

]}
e−ξ

′

dξ′

= ε +
1
2

(1−ε)
∫ W

0

{
e−ξ

′

+ C1

[
e−(1+

√
ε)ξ′ + e−ξ

′
−
√
ε(W−ξ′)

]}
dξ′

= ε −
1
2

(1−ε)
{

e−ξ
′

+C1

[
e−(1+

√
ε)ξ′

1+
√
ε

+
e−ξ−

√
ε(W−ξ′)

1 −
√
ε

]}∣∣∣∣∣∣
W

0

= ε +
1
2

(1−ε)
{

1−e−W +C1

[
1− e−(1+

√
ε)W

1 +
√
ε

+
e−
√
εW
− e−W

1 −
√
ε

]}
.
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ϕ dA´


ϕ R
R

dA

qsun

ϕ´ 


, T = const∋
FIGURE 5-16
Isothermal hemispherical cavity irradiated nor-
mally by the sun, Example 5.13.

Solving this for C1 gives

1−ε− 1
2 (1−ε)(1−e−W) = C1

[
1
2

(
1−
√
ε
) (

1−e−(1+
√
ε)W

)
+ 1

2

(
1+
√
ε
) (

e−
√
εW
−e−W

)
−

(
1−e−

√
εW

)]
1
2 (1−ε)

(
1+e−W

)
= C1

{
1
2

(
1−
√
ε
)
+ 1

2

(
1+
√
ε
)

e−
√
εW
−1−e−

√
εW
−

[
1
2

(
1−
√
ε
)

e−
√
εW + 1

2

(
1+
√
ε
)]

e−W
}
,

or

C1 = −
1 − ε

(1 +
√
ε) + (1 −

√
ε) e−

√
εW

and

J(ξ) = 1 − (1 − ε)
e−
√
εξ + e−

√
ε(W−ξ)

(1 +
√
ε) + (1 −

√
ε) e−

√
εW
.

Finally, the nondimensional heat flux follows as

Ψ(ξ) =
ε

1 − ε
[1 −J(ξ)] =

ε
[
e−
√
εξ + e−

√
ε(W−ξ)

]
(1 +

√
ε) + (1 −

√
ε) e−

√
εW
,

which is also included in Fig. 5-15.
Note that e−|ξ′−ξ| is not a particularly good approximation for the kernel, since the actual kernel has

a zero first derivative at ξ′ = ξ. A better approximation can be obtained by using

K(ξ, ξ′) ' a1 e−b1 |ξ′−ξ| + a2 e−b2 |ξ′−ξ|

(with a1 > 1 and a2 < 0). If W is relatively small, say < 1
2 , a good approximation may be obtained using

K(ξ, ξ′) ' cos a(ξ′ − ξ)

(since the kernel has an inflection point at |ξ′ − ξ| = 1
2 ).

We shall conclude this chapter with two examples that demonstrate that exact analytical
solutions are possible for a few simple geometries for which the view factors between area
elements attain certain special forms.

Example 5.13. Consider a hemispherical cavity irradiated by the sun as shown in Fig. 5-16. The surface
of the cavity is kept isothermal at temperature T and is coated with a gray, diffuse material with emittance
ε. Assuming that the cavity is, aside from the solar irradiation, exposed to cold surroundings, determine
the local heat flux rates that are necessary to maintain the cavity surface at constant temperature.
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Solution
From equation (5.24) the local radiosity at position (ϕ,ψ) is determined as

J(ϕ) = εσT4 + (1 − ε)H(ϕ)

= εσT4 + (1 − ε)
[∫

A
J(ϕ′) dFdA−dA′ + Ho(ϕ)

]
,

where we have already stated that radiosity is a function of ϕ only, i.e., there is no dependence on
azimuthal angle ψ. The view factor between infinitesimal areas on a sphere is known from the inside
sphere method, equation (4.33), as

dFdA−dA′ =
dA′

4πR2 =
R2 sinϕ′ dϕ′ dψ′

4πR2 .

The external irradiation at dA is readily determined as Ho(ϕ) = qsun cosϕ, and the expression for radiosity
becomes

J(ϕ) = εσT4 + (1 − ε)
[∫ 2π

0

∫ π/2

0
J(ϕ′)

sinϕ′ dϕ′ dψ′

4π
+ qsun cosϕ

]
= εσT4 +

1 − ε
2

∫ π/2

0
J(ϕ′) sinϕ′ dϕ′ + (1 − ε)qsun cosϕ.

Because of the unique behavior of view factors between sphere surface elements we note that the
irradiation at location ϕ that arrives from other parts of the sphere, Hs, does not depend on ϕ. Thus,

Hs =
1
2

∫ π/2

0
J(ϕ′) sinϕ′ dϕ′ = const,

and
J(ϕ) = εσT4 + (1 − ε)Hs + (1 − ε)qsun cosϕ.

Substituting this equation into the expression for Hs leads to

Hs =
1
2

∫ π/2

0

[
εσT4 + (1 − ε)Hs + (1 − ε)qsun cosϕ′

]
sinϕ′ dϕ′

= 1
2εσT4 + 1

2 (1 − ε)Hs + 1
4 (1 − ε)qsun,

or
Hs =

ε
1 + ε

σT4 +
1 − ε

2(1 + ε)
qsun.

An energy balance at dA gives

q(ϕ) = εσT4
− εH(ϕ) = ε(σT4

−Hs − qsun cosϕ)

or

q(ϕ) = ε

[
σT4

1 + ε
−

(
1 − ε

2(1 + ε)
+ cosϕ

)
qsun

]
.

We observe from this example that in problems where all radiating surfaces are part of a
sphere, none of the view factors involved depend on the location of the originating surface, and
an exact analytical solution can always be found in a similar fashion. Apparently, this was first
recognized by Jensen [24] and reported in the book by Jakob [25].

Exact analytical solutions are also possible for such configurations where all relevant view
factors have repeating derivatives (as in the kernel approximation).

Example 5.14. A long thin radiating wire is to be employed as an infrared light source. To maximize
the output of infrared energy into the desired direction, the wire is fitted with an insulated, highly
reflective sheath as shown in Fig. 5-17. The sheath is cylindrical with radius R (which is much larger
than the diameter of the wire), and has a cutout of half-angle ϕ to let the concentrated infrared light
escape. Assuming that the wire is heated with a power of Q′W/m length of wire, and that the sheath
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FIGURE 5-17
Thin radiating wire with radiating sheath, Ex-
ample 5.14.

can lose heat only by radiation and only from its inside surface, determine the temperature distribution
across the sheath.

Solution
From an energy balance on a surface element dA it follows from equation (5.20) that, with q(θ) = 0,

σT4(θ) = J(θ) = H(θ),

and

H(θ) =

∫
A

J(θ′) dFdA−dA′ + Ho(θ).

We may treat the energy emitted from the wire as external radiation (neglecting absorption by the wire
since it is so small). Since the total released energy will spread equally into all directions, we find

Ho(θ) = Q′/2πR = const.

The view factor dFdA−dA′ between two infinitely long strips on the cylinder surface is given by Configu-
ration 1 in Appendix D as

FdA−dA′ = 1
2 cos β dβ,

where the angle β is indicated in Fig. 5-17 and may be related to θ through

2β + |θ′ − θ| = π.

Differentiating β with respect to θ′ we obtain dβ = ±dθ′/2, depending on whether θ′ is larger or less
than θ. Substituting for β in the view factor, this becomes

FdA−dA′ =
1
2

cos
(
π
2
−

∣∣∣∣∣θ′ − θ2

∣∣∣∣∣) 1
2

dθ′ =
1
4

sin
∣∣∣∣∣θ′ − θ2

∣∣∣∣∣ dθ′,

where the± has been omitted since the view factor is always positive (i.e., |dβ| is to be used). Substituting
this into the above relationship for radiosity we obtain

J(θ) =
1
4

∫ π−ϕ

−π+ϕ
J(θ′) sin

∣∣∣∣∣θ′ − θ2

∣∣∣∣∣ dθ′ + Ho

=
1
4

∫ θ

−π+ϕ
J(θ′) sin

θ − θ′

2
dθ′ +

1
4

∫ π−ϕ

θ
J(θ′) sin

θ′ − θ
2

dθ′ + Ho.

Since the view factor in the integrand has repetitive derivatives we may convert this integral equation into
a second-order differential equation, as was done in the kernel approximation method. Differentiating
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twice, we have

dJ
dθ

=
1
8

∫ θ

−π+ϕ
J(θ′) cos

θ − θ′

2
dθ′ −

1
8

∫ π−ϕ

θ
J(θ′) cos

θ′ − θ
2

dθ′,

d2 J
dθ2 =

1
8

J(θ) −
1
16

∫ θ

−π+ϕ
J(θ′) sin

θ − θ′

2
dθ′ +

1
8

J(θ) −
1
16

∫ π−ϕ

θ
J(θ′) sin

θ′ − θ
2

dθ′.

Comparing this result with the above integral equation for J(θ) we find

d2 J
dθ2 = 1

4 J(θ) − 1
4 [J(θ) −Ho] = 1

4 Ho.

This equation is readily solved as

J(θ) = 1
8 Ho θ2 + C1θ + C2.

The two integration constants must now be determined by substituting the solution back into the
governing integral equation. However, C1 may be determined from symmetry since, for this problem,
J(θ) = J(−θ) and C1 = 0. To determine C2 we evaluate J at θ = 0:

J(0) = C2 =
1
4

∫ 0

−π+ϕ
J(θ′) sin

(
−
θ′

2

)
dθ′ +

1
4

∫ π−ϕ

0
J(θ′) sin

θ′

2
dθ′ + Ho

=
1
2

∫ π−ϕ

0
J(θ′) sin

θ′

2
dθ′ + Ho

=
1
2

∫ π−ϕ

0

(
C2 +

Ho

8
θ′2

)
sin

θ′

2
dθ′ + Ho.

Integrating twice by parts we obtain

C2 = Ho −

(
C2 +

Ho

8
θ′2

)
cos

θ′

2

∣∣∣∣∣π−ϕ
0

+
Ho

4

∫ π−ϕ

0
θ′ cos

θ′

2
dθ′

= Ho −

[
C2 +

Ho

8
(π − ϕ)2

]
cos

(
π
2
−
ϕ

2

)
+ C2 +

Ho

2

(
θ′ sin

θ′

2

∣∣∣∣∣π−ϕ
0
−

∫ π−ϕ

0
sin

θ′

2
dθ′

)
= Ho + C2 −

[
C2 +

Ho

8
(π − ϕ)2

]
sin

ϕ

2
+

Ho

2

(
(π − ϕ) sin

(
π
2
−
ϕ

2

)
+ 2 cos

θ′

2

∣∣∣∣∣π−ϕ
0

)
= Ho + C2 −

[
C2 +

Ho

8
(π − ϕ)2

]
sin

ϕ

2
+

Ho

2
(π − ϕ) cos

ϕ

2
+ Ho sin

ϕ

2
−Ho.

Solving this equation for C2 we get

C2 = Ho

[
1 +

π − ϕ

2
cos

ϕ

2
−

1
8

(π − ϕ)2
]
.

Therefore,

T4(θ) =
J
σ

=
Q′

2πRσ

{
1 +

π − ϕ

2
cos

ϕ

2
−

1
8

[
(π − ϕ)2

− θ2
]}
.

We find that the temperature has a minimum at θ = 0, since around that location the view factor to the
opening is maximum, resulting in a maximum of escaping energy. The temperature level increases as ϕ
decreases (since less energy can escape) and reaches T → ∞ as ϕ = 0 (since this produces an insulated
closed enclosure with internal heat production).

The fact that long cylindrical surfaces lend themselves to exact analysis was apparently first
recognized by Sparrow [26]. The preceding two examples have shown that exact solutions may
be found for a number of special geometries, namely, (i) enclosures whose surfaces all lie on a
single sphere, and (ii) enclosures for which view factors between surface elements have repetitive
derivatives. For other still fairly simple geometries an approximate analytical solution may be
determined from the kernel approximation method. However, the vast majority of radiative heat
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transfer problems in enclosures without a participating medium must be solved by numerical
methods. A large majority of these are solved using the net radiation method described in the first
few sections of this chapter. If greater accuracy or better numerical efficiency is desired, one
of the numerical methods briefly described in this section needs to be used, such as numerical
quadrature leading to a set of linear algebraic equations (as in the net radiation method).
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Problems

5.1 A firefighter (approximated by a two-sided black surface at 310 K 180 cm long and 40 cm wide) is
facing a large fire at a distance of 10 m (approximated by a semi-infinite black surface at 1500 K).
Ground and sky are at 0◦C (and may also be approximated as black). What are the net radiative
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heat fluxes on the front and back of the firefighter? Compare these with heat rates by free convection
(h = 10 W/m2 K, Tamb = 0◦C).

5.2 T3 = 500K

T1 = 1500 K

q2 =  0

A small furnace consists of a cylindrical, black-walled enclosure, 20 cm
long and with a diameter of 10 cm. The bottom surface is electrically
heated to 1500 K, while the cylindrical sidewall is insulated. The top
plate is exposed to the environment, such that its temperature is 500 K.
Estimate the heating requirements for the bottom wall, and the temper-
ature of the cylindrical sidewall, by treating the sidewall as (a) a single
zone, (b) two equal rings of 10 cm height each.

5.3 Repeat Problem 5.2 for a 20 cm high furnace of quadratic (10 cm × 10 cm) cross-section.

5.4 A small star has a radius of 100,000 km. Suppose that the star is originally at a uniform temperature
of 1,000,000 K before it “dies,” i.e., before nuclear fusion stops supplying heat. If it is assumed that the
star has a constant heat capacity of ρcp = 1 kJ/m3 K, and that it remains isothermal during cool-down,
estimate the time required until the star has cooled to 10,000 K. Note: A body of such proportions
radiates like a blackbody (Why?).

5.5 A1

A2

h=10 cm

w=20 cm

q0=10 W/cm2

A collimated light beam of q0 = 10 W/cm2 originating
from a blackbody source at 1250 K is aimed at a small
target A1 = 1 cm2 as shown. The target is coated with
a diffusely reflecting material, whose emittance is

ε′λ =
{ 0.9 cosθ, λ < 4µm,

0.2, λ > 4µm.

Light reflected from A1 travels on to a detector A2 =
1 cm2, coated with the same material as A1. How much
of the collimated energy q0 is absorbed by detector A2?

5.6 Repeat Problem 5.2 for the case that the top surface of the furnace is coated with a gray, diffuse
material with emittance ε3= 0.5 (other surfaces remain black).

5.7

Ri Ro

A2   

A1   

A3   

A long half-cylindrical rod is enclosed by a long diffuse,
gray isothermal cylinder as shown. Both rod and cylinder
may be considered isothermal (T1 = T2, ε1 = ε2,T3, ε3) and
gray, diffuse reflectors. Give an expression for the heat lost
from the rod (per unit length).

5.8

A1 = (2 D)2
   π

D

D

Consider a 90◦ pipe elbow as shown in the figure (pipe diam-
eter = D = 1 m; inner elbow radius = 0, outer elbow radius
= D). The elbow is isothermal at temperature T = 1000 K,
has a gray diffuse emittance ε = 0.4, and is placed in a cool
environment. What is the total heat loss from the isothermal
elbow (inside and outside)?
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5.9

5cm

2 cm

4 cm

A2

A3

A1

For the configuration shown in the figure, determine the temperature of
Surface 2 with the following data:

Surface 1 : T1 = 1000 K,

q1 = −1 W/cm2,

ε1 = 0.6;

Surface 2 : ε2 = 0.2;

Surface 3 : ε3 = 0.3, perfectly insulated.

All configurations are gray and diffuse.

5.10

A1   

r

r

2r

2r

2r

A2   
A3   

Two pipes carrying hot combustion gases are enclosed in a
cylindrical duct as shown. Assuming both pipes to be isother-
mal at 2000 K and diffusely emitting and reflecting (ε = 0.5),
and the duct wall to be isothermal at 500 K and diffusely emit-
ting and reflecting (ε = 0.2), determine the radiative heat loss
from the pipes.

5.11 A cubical enclosure has gray, diffuse walls which interchange energy. Four of the walls are isothermal
at Ts with emittance εs, the other two are isothermal at Tt with emittance εt. Calculate the heat flux
rates per unit time and area.

5.12
a

a a

a
A1

T,

ϕ

ϕ
Panel

Door

∋ A2

During launch the heat rejector radiative panels of the Space Shut-
tle are folded against the inside of the Shuttle doors. During orbit
the doors are opened and the panels are rotated out by an angle ϕ
as shown in the figure. Assuming door and panel can be approx-
imated by infinitely long, isothermal quarter-cylinders of radius a
and emittance ε = 0.8, calculate the necessary rotation angle ϕ so
that half the total energy emitted by panel (2) and door (1) escapes
through the opening. At what opening angle will a maximum
amount of energy be rejected? How much and why?

5.13

1m

1m

1m

A2

A1

(flat or grooved)

(1mm thick, insulated)

1cm

1cm
A1 for case 2


(100 grooves)

Consider two 1 × 1 m2, thin, gray, diffuse plates located a distance h =
1 m apart. The temperature of the top plate is maintained at T1 = 1200 K,
whereas the bottom plate is initially at T2 = 300 K and insulated on the
outside. In case 1, the surface of the top plate is flat, whereas in case 2
grooves, whose dimensions are indicated below, have been machined in
the plate’s surface. In either case the surfaces are gray and diffuse, and
the surroundings may be considered as black and having a temperature
T∞ = 500 K; convective heat transfer effects may be neglected.

(a) Estimate the effect of the surface preparation of the top surface
on the initial temperature change of the bottom plate (dT2/dt at
t = 0).

(b) Justify, then use, a lumped-capacity analysis for the bottom plate
to predict the history of temperature and heating rates of the
bottom plate until steady state is reached.

The following properties are known: top plate: ε1 = 0.6, T1 = 1200 K; bottom plate: T2(t = 0) = 300 K,
ε2 = 0.5, ρ2 = 800 kg/m3(density), cp2 = 440 J/kg K, k2 = 200 W/m K.
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5.14

d

Inner wall

q = 300 kW/m2

 3 = 0.3, q3 = 0Outer wall,

s
2 = 0.6

Silicon carbide rods (s/d = 2)

∋

∋

1 = 0.8∋

A row of equally spaced, cylindrical heating elements (s = 2d)
is used to heat the inside of a furnace as shown. Assuming that
the outer wall is made of firebrick with ε3 = 0.3 and is perfectly
insulated, that the heating rods are made of silicon carbide (ε1 =
0.8), and that the inner wall has an emittance of ε2 = 0.6, what
must the operating temperature of the rods be to supply a net
heat flux of 300 kW/m2 to the furnace, if the inner wall is at a
temperature of 1300 K?

5.15

TC

ss∋
∋ss, ho

∋

∋

vacuum

helium


ss, hi

TC, hTC

TambA thermocouple used to measure the temperature of cold, low-
pressure helium flowing through a long duct shows a tempera-
ture reading of 10 K. To minimize heat losses from the duct to the
surroundings the duct is made of two concentric thin layers of
stainless steel with an evacuated space in between (inner diam-
eter di = 2 cm, outer diameter do = 2.5 cm; stainless layers very
thin and of high conductivity). The emittance of the thermocou-
ple is εTC = 0.6, the convection heat transfer coefficient between
helium and tube wall is hi = 5 W/m2 K, and between thermo-
couple and helium is hTC = 2 W/m2 K, and the emittance of the
stainless steel is εss = 0.2 (gray and diffuse, all four surfaces).
The free convection heat transfer coefficient between the outer
tube and the surroundings at Tamb = 300 K is ho = 5 W/m2 K. To determine the actual temperature of
the helium,

(a) Prepare an energy balance for the thermocouple.
(b) Prepare an energy balance for the heat loss through the duct wall (the only unknowns here

should be THe,Ti, and To).
(c) Outline how to solve for the temperature of the helium (no need to carry out solution).
(d) Do you expect the thermocouple to be accurate? (Hint: Check the magnitudes of the terms in

(a).)

5.16

10 cm

0 K

Al shield

Pt sphere
laser1 cm

During a materials processing experiment on the Space Shut-
tle (under microgravity conditions), a platinum sphere of
3 mm diameter is levitated in a large, cold black vacuum
chamber. A spherical aluminum shield (with a circular
cutout) is placed around the sphere as shown, to reduce
heat loss from the sphere. Initially, the sphere is at 200 K and
is suddenly irradiated with a laser providing an irradiation
of 100 W (normal to beam) to raise its temperature rapidly
to its melting point (2741 K). Determine the time required to
reach the melting point. You may assume the platinum and
aluminum to be gray and diffuse (εPt = 0.25, εAl = 0.1), the
sphere to be essentially isothermal at all times, and the shield
to have zero heat capacity.

5.17

φ

qsun

d

d

A1

A2

Two identical circular disks are connected at one point of their
periphery by a hinge. The configuration is then opened by an
angle φ as shown in the figure. Assuming the opening angle to be
φ = 60◦, d = 1 m, calculate the average equilibrium temperature
for each of the two disks, with solar radiation entering the con-
figuration parallel to Disk 2 with a strength of qsun = 1000 W/m2.
Disk 1 is gray and diffuse with α = ε = 0.5, Disk 2 is black. Both
disks are insulated.
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5.18

60°


A2

A1

A360°


L = 1 m

ground

qsunA long greenhouse has the cross-section of an equilateral triangle
as shown. The side exposed to the sun consists of a thin sheet of
glass (A1) with reflectivity ρ1 = 0.1. The glass may be assumed
perfectly transparent to solar radiation, and totally opaque to ra-
diation emitted inside the greenhouse. The other side wall (A2) is
opaque with emittance ε2 = 0.2, while the floor (A3) has ε3 = 0.8.
All surfaces reflect diffusely. For simplicity, you may assume sur-
faces A1 and A2 to be perfectly insulated, while the floor loses heat
to the ground according to

q3,conduction = U(T3 − T∞)

where T∞ = 280 K is the temperature of the ground, and U =
19.5 W/m2 K is an overall heat transfer coefficient. Determine the temperatures of all three surfaces
for the case that the sun shines onto the greenhouse with strength qsun = 1000 W/m2 in a direction
parallel to surface A2.

5.19

θ

qsol = 1000 W/m2

30°


L

0 K

A long, black V-groove is irradiated by the sun as shown. As-
suming the groove to be perfectly insulated, and radiation to be
the only mode of heat transfer, determine the average groove tem-
perature as a function of solar incidence angle θ (give values for
θ = 0◦, 15◦, 30◦, 60◦, 90◦). For simplicity the V-groove wall may
be taken as a single zone.

5.20
Ho

T, ∋
γ

2Rb2R

Consider the conical cavity shown (radius of opening R, open-
ing angle γ = 30◦), which has a gray, diffusely reflective coating
(ε = 0.6) and is perfectly insulated. The cavity is irradiated by
a collimated beam of strength H0 and radius Rb = 0.5R).

(a) Using a single node analysis, develop an expression re-
lating H0 to the average cavity temperature T.

(b) For a more accurate analysis a two-node analysis is to be performed. What nodes would you
choose? Develop expressions for the necessary view factors in terms of known ones (including
those given in App. D) and surface areas, then relate the two temperatures to H0.

(c) Qualitatively, what happens to the cavity’s overall average temperature, if the beam is turned
away by an angle α?

5.21

Ho
T, ∋γ

A (simplified) radiation heat flux meter consists of a conical
cavity coated with a gray, diffuse material, as shown in the fig-
ure. To measure the radiative heat flux, the cavity is perfectly
insulated.

(a) Develop an expression that relates the flux, Ho, to the
cavity temperature, T.

(b) If the cavity is turned away from the incoming flux by
an angle α, what happens to the cavity temperature?

5.22

l 2
 =

 6
0

cm

R
ef

le
ct

o
r

Collector plate

l1 = 80cm

T1,   1 q2 = 0,   2

qsun = 1000 W/m2

30°


∋ ∋

A very long solar collector plate is to collect energy at a
temperature of T1 = 350 K. To improve its performance
for off-normal solar incidence, a highly reflective surface is
placed next to the collector as shown in the adjacent figure.
How much energy (per unit length) does the collector plate
collect for a solar incidence angle of 30◦? For simplicity
you may make the following assumptions: The collector
is isothermal and gray-diffuse with emittance ε1 = 0.8; the
reflector is gray-diffuse with ε2 = 0.1, and heat losses from
the reflector by convection as well as all losses from the
collector ends may be neglected.
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5.23 A2

A3

A3

TC(A1)

L=10 cm

D=10 cm

A thermocouple (approximated by a 1 mm diameter sphere
with gray-diffuse emittance ε1 = 0.5) is suspended inside a
tube through which a hot, nonparticipating gas at T1 = 2000 K
is flowing. In the vicinity of the thermocouple the tube tem-
perature is known to be T2 = 1000 K (wall emittance ε2 = 0.5).
For the purpose of this problem you may assume both ends of
the tube to be closed with a black surface at the temperature
of the gas, T3 = 2000 K. Again, for the purpose of this prob-
lem, you may assume that the thermocouple gains a heat flux
of 104 W/m2 of thermocouple surface area, which it must reject
again in the form of radiation. Estimate the temperature of the thermocouple.
Hints:

(a) Treat the tube ends together as a single surface A3.
(b) Note that the thermocouple is small, i.e., Fx−1 � 1.

5.24

R = 40 cm R

A
2
:   

2 = 0.1, q
2
 = 0 ∋

r=25 cm

h=30 cm

L=30 cm

A
1
:   

1 = 0.8, Q
1
 = -0.4 kW ∋

Qs=10 kW

A small spherical heat source outputting Qs = 10 kW
power, spreading equally into all directions, is encased in
a reflector as shown, consisting of a hemisphere of radius
R = 40 cm, plus a ring of radius R and height h = 30 cm.
The arrangement is used to heat a disk of radius = 25 cm a
distance of L = 30 cm below the reflector. All surfaces are
gray and diffuse, with emittances of ε1 = 0.8 and ε2 = 0.1.
Reflector A2 is insulated.

(a) Determine (per unit area of receiving surface) the
irradiation from heat source to reflector and to disk;

(b) all relevant view factors; and
(c) the temperature of the disk, if 0.4 kW of power is

extracted from the disk.

5.25

A1: wire

A
3
:   

3 = 0.5, T
3
 = 300K∋

R = 2 cm R

h = 3 cm

A
2
:   

2 = 0.2, q
2
 = 0 ∋

A long thin black heating wire radiates 300 W per cm length
of wire and is used to heat a flat surface by thermal radia-
tion. To increase its efficiency the wire is surrounded by an
insulated half-cylinder as shown in the figure. Both surfaces
are gray and diffuse with emittances ε2 and ε3, respectively.
What is the net heat flux at Surface 3? How does this com-
pare with the case without cylinder?
Hint: You may either treat the heating wire as a thin cylin-
der whose radius you eventually shrink to zero, or treat
radiation from the wire as external radiation (the second
approach being somewhat simpler).

5.26

h

Q
2h

A2

A1

2R

Consider the configuration shown, consisting of a cylindrical
cavity A2, a circular disk A1 at the bottom, and a small spherical
radiation source (blackbody at 4000K) of strength Q = 10, 000 W
as shown (R = 10 cm, h = 10 cm). The cylinder wall A2 is cov-
ered with a gray, diffuse material with ε2 = 0.1, and is perfectly
insulated. Surface A1 is kept at a constant temperature of 400 K.
No other external surfaces or sources affect the heat transfer. As-
suming surface A1 to be gray and diffuse with ε1 = 0.3 determine
the amount of heat that needs to be removed from A1 (Q1).
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5.27

r r

R

qs = 1000W/m2

A2

A1

Determine F1−2 for the rotationally symmetric configuration
shown in the figure (i.e., a big sphere, R = 13 cm, with a
circular hole, r = 5 cm, and a hemispherical cavity, r = 5 cm).
Assuming Surface 2 to be gray and diffuse (ε = 0.5) and
insulated and Surface 1 to be black and also insulated, what
is the average temperature of the black cavity if collimated
irradiation of 1000 W/m2 is penetrating through the hole as
shown?

5.28
Collimated


beam 

Entrance

port

Detector

Sample

MgOAn integrating sphere (a device to measure surface proper-
ties) is 10 cm in radius. It contains on its inside wall a 1 cm2

black detector, a 1 × 2 cm entrance port, and a 1 × 1 cm sam-
ple as shown. The remaining portion of the sphere is smoked
with magnesium oxide having a short-wavelength reflectance
of 0.98, which is almost perfectly diffuse. A collimated beam of
radiant energy (i.e., all energy is contained within a very small
cone of solid angles) enters the sphere through the entrance
port, falls onto the sample, and then is reflected and inter-
reflected, giving rise to a sphere wall radiosity and irradiation.
Radiation emitted from the walls is not detected because the
source radiation is chopped, and the detector–amplifier system
responds only to the chopped radiation. Find the fractions of
the chopped incoming radiation that are

(a) lost out the entrance port,
(b) absorbed by the MgO-smoked wall, and
(c) absorbed by the detector.

[Item (c) is called the “sphere efficiency.”]

5.29

 R2

Liquid

helium

Foil

ho

 R1

 R3

Tamb

 R4

The side wall of a flask holding liquid helium may be approximated
as a long double-walled cylinder as shown in the adjacent sketch.
The container walls are made of 1 mm thick stainless steel (k =
15 W/m K, ε = 0.2), and have outer radii of R2 = 10 cm and R4 =
11 cm. The space between walls is evacuated, and the outside is
exposed to free convection with the ambient at Tamb = 20◦C and a
heat transfer coefficient of ho = 10 W/m2 K (for the combined effects
of free convection and radiation). It is reasonable to assume that
the temperature of the inner wall is at liquid helium temperature,
or T(R2) = 4 K.

(a) Determine the heat gain by the helium, per unit length of flask.
(b) To reduce the heat gain a thin silver foil (ε = 0.02) is placed midway between the two walls.

How does this affect the heat flux?

For the sake of the problem, you may assume both steel and silver to be diffuse reflectors.

5.30 Repeat Problem 5.6, breaking up the sidewall into four equal ring elements. Use the view factors
calculated in Problem 4.25 together with program graydiffxch of Appendix F.

5.31 The inside surfaces of a furnace in the shape of a parallelepiped with dimensions 1 m × 2 m × 4 m are
to be broken up into 28 1 m × 1 m subareas. The gray-diffuse side walls (of dimension 1 m × 2 m and
1 m× 4 m) have emittances of εs = 0.7 and are perfectly insulated, the bottom surface has an emittance
of εb = 0.9 and a temperature Tb = 1600 K, while the top’s emittance is εt = 0.2 and its temperature is
Tt = 500 K. Using the view factors calculated in Problem 4.26 and program graydiffxch of Appendix
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F, calculate the heating/cooling requirements for bottom and top surfaces, as well as the temperature
distribution along the side walls.

5.32 lid

steak

coal rack BBQ base

grill

30 cm
60 cm

For your Memorial Day barbecue you would like to broil a steak
on your backyard BBQ, which consists of a base unit in the shape
of a hemisphere (D= 60 cm), fitted with a disk-shaped coal rack,
and a disk-shaped grill, as shown in the sketch. Hot coal may be
assumed to cover the entire floor of the unit, with uniform tem-
perature Tc = 1200 K, and an emittance of εc = 1. The side wall
is soot-covered and black on the inside, but has an outside emit-
tance of εo = 0.5. The steak (modeled as a ds = 15 cm disk, 1 cm
thick, emittance εs = 0.8, initially at Ts = 280 K) is now placed on
the grill (assumed to be so lightweight as to be totally transparent
and not participating in the heat transfer). The environment is at
300 K, and free convection may be neglected.

(a) Assuming that the lid is not placed on top of the unit, estimate the initial heating rates on the
two surfaces of the steak.

(b) How would the heating rates change, if the lid (also a hemisphere) is put on (εi = εo = 0.5)?
Could one achieve a more even heating rate (top and bottom) if the emittance of the inside
surface is increased or decreased?

Note: Part (b) will be quite tedious, unless program graydiffxch of Appendix F is used (which, in
turn, will require iteration or a little trickery).

5.33 Consider Configuration 33 in Appendix D with h = w. The bottom wall is at constant temperature T1

and has emittance ε1; the side wall is at T2 = const and ε2. Find the exact expression for q1(x) if ε2 = 1.

5.34 An infinitely long half-cylinder is irradiated by the sun as shown in the
figure, with qsun = 1000 W/m2. The inside of the cylinder is gray and
diffuse, the outside is insulated. There is no radiation from the back-
ground. Determine the equilibrium temperature distribution along
the cylinder periphery,

(a) using four isothermal zones of 45◦ each,
(b) using the exact relations.

Hint: Use differentiation as in the kernel approximation method.

qsun
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r
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0 KTo calculate the net heat loss from a part of a spacecraft,
this part may be approximated by an infinitely long black
plate at temperature T2 = 600 K, as shown. Parallel to this
plate is another (infinitely long) thin plate that is gray and
emits/reflects diffusely with the same emittance ε1 on both
sides. You may assume the surroundings to be black at 0 K.
Calculate the net heat loss from the black plate.

5.36
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A large isothermal surface (exposed to vacuum, temperature
Tw, diffuse-gray emittance εw) is irradiated by the sun. To re-
duce the heat gain/loss from the surface, a thin copper shield
(emittance εc and initially at temperature Tc0) is placed be-
tween surface and sun as shown in the figure.

(a) Determine the relationship between Tc and time t (it is
sufficient to leave the answer in implicit form with an
unsolved integral).

(b) Give the steady state temperature for Tc (i.e., for t→∞).
(c) Briefly discuss qualitatively the following effects:
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(i) The shield is replaced by a moderately thick slab of styrofoam coated on both sides with a
very thin layer of copper.

(ii) The surfaces are finite in size.
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Consider two infinitely long, parallel, black plates of width
L as shown. The bottom plate is uniformly heated electri-
cally with a heat flux of q1 = const, while the top plate is
insulated. The entire configuration is placed into a large cold
environment.

(a) Determine the governing equations for the temperature
variation across the plates.

(b) Find the solution by the kernel substitution method. To
avoid tedious algebra, you may leave the final result in
terms of two constants to be determined, as long as you
outline carefully how these constants may be found.

(c) If the plates are gray and diffuse with emittances ε1 and ε2, how can the temperature distribution
be determined, using the solution from part (b)?
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To reduce heat transfer between two infinite concen-
tric cylinders a third cylinder is placed between them
as shown in the figure. The center cylinder has an
opening of half-angle θ. The inner cylinder is black
and at temperature T1 = 1000 K, while the outer cylin-
der is at T4 = 300 K. The outer cylinder and both sides
of the shield are coated with a reflective material, such
that εc = ε2 = ε3 = ε4. Determine the heat loss from
the inner cylinder as function of coating emittance εc,
using

(a) the net radiation method,
(b) the network analogy.

5.39

A1   

A2   

A4   

R 3R

R

2R
A3   

Consider the two long concentric cylinders as shown in the
figure. Between the two cylinders is a long, thin flat plate
as also indicated. The inner cylinder is black and generating
heat on its inside in the amount of Q′1 = 1 kW/m length of
the cylinder, which must be removed by radiation. The plate
is gray and diffuse with emittance ε2 = ε3 = 0.5, while the
outer cylinder is black and cold (T4 = 0 K). Determine the
temperature of the inner cylinder, using

(a) the net radiation method,
(b) the network analogy.
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0 KAn isothermal black disk at T1 = 500K is flush with the outer
surface of a spacecraft and is thus exposed to outer space. To
minimize heat loss from the disk a disk-shaped radiation shield
is placed coaxially and parallel to the disk as shown; the shield
radius is R2 (which may be smaller or larger than R1), and
its distance from the black disk is a variable h. Determine an
expression for the heat loss from the black disk as a function of
shield radius and distance, using

(a) the net radiation method,
(b) the network analogy.


