
CHAPTER

4
VIEW FACTORS

4.1 INTRODUCTION

In many engineering applications the exchange of radiative energy between surfaces is virtually
unaffected by the medium that separates them. Such (radiatively) nonparticipating media include
vacuum as well as monatomic and most diatomic gases (including air) at low to moderate
temperature levels (i.e., before ionization and dissociation occurs). Examples include spacecraft
heat rejection systems, solar collector systems, radiative space heaters, illumination problems,
and so on.

In the following four chapters we shall consider the analysis of surface radiation transport,
i.e., radiative heat transfer in the absence of a participating medium, for different levels of
complexity. It is common practice to simplify the analysis by making the assumption of an
idealized enclosure and/or of ideal surface properties.

The greatest simplification arises if all surfaces are black: for such a situation no reflected
radiation needs to be accounted for, and all emitted radiation is diffuse (i.e., the intensity leaving
a surface does not depend on direction). The next level of difficulty arises if surfaces are assumed
to be gray, diffuse emitters (and, thus, absorbers) as well as gray, diffuse reflectors. The vast
majority of engineering calculations are limited to such ideal surfaces, which are the topic of
Chapter 5.

If the reflective behavior of a surface deviates strongly from a diffuse reflector (e.g., a polished
metal, which reflects almost like a mirror) one may often approximate the reflectance to consist
of a purely diffuse and a purely specular component. This situation is discussed in Chapter
6. However, if greater accuracy is desired, if the reflectance cannot be approximated by purely
diffuse and specular components, or if the assumption of a gray surface is not acceptable, a
more general approach must be taken. A few such methods are briefly outlined in Chapter 7.

As discussed in Chapter 1 thermal radiation is generally a long-range phenomenon. This is
always the case in the absence of a participating medium, since photons will travel unimpeded
from surface to surface. Therefore, performing a thermal radiation analysis for one surface
implies that all surfaces, no matter how far removed, that can exchange radiative energy with
one another must be considered simultaneously. How much energy any two surfaces exchange
depends in part on their size, separation distance, and orientation, leading to geometric functions
known as view factors. In the present chapter these view factors are developed for gray, diffusely
radiating (i.e., emitting and reflecting) surfaces. However, the view factor is a very basic function
that will also be employed in the analysis of specular reflectors as well as for the analysis for
surfaces with arbitrary emission and reflection properties.

Making an energy balance on a surface element, as shown in Fig. 4-1, we find
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FIGURE 4-1
Surface energy balance.

q = qemission − qabsorption = E − αH. (4.1)

In this relation qemission and qabsorption are absolute values with directions as given by Fig. 4-1,
while q is the net heat flux supplied to the surface, as defined in Chapter 1 by equation (1.38).
According to this definition q is positive if the heat is coming from inside the wall material, by
conduction or other means (q > 0), and negative if going from the enclosure into the wall (q < 0).
Alternatively, the heat flux may be expressed as

q = qout − qin = (qemission + qreflection) − qirradiation

= (E + ρH) −H, (4.2)

which is, of course, the same as equation (4.1) since, for opaque surfaces, ρ = 1−α. The irradiation
H depends, in general, on the level of emission from surfaces far removed from the point under
consideration, as schematically indicated in Fig. 4-2a. Thus, in order to make a radiative energy
balance we always need to consider an entire enclosure rather than an infinitesimal control
volume (as is normally done for other modes of heat transfer, i.e., conduction or convection).
The enclosure must be closed so that irradiation from all possible directions can be accounted
for, and the enclosure surfaces must be opaque so that all irradiation is accounted for, for each
direction. In practice, an incomplete enclosure may be closed by introducing artificial surfaces.
An enclosure may be idealized in two ways, as indicated in Fig. 4-2b: by replacing a complex
geometrical shape with a few simple surfaces, and by assuming surfaces to be isothermal
with constant (i.e., average) heat flux values across them. Obviously, the idealized enclosure
approaches the real enclosure for sufficiently small isothermal subsurfaces.
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FIGURE 4-2
(a) Irradiation from different locations in an enclosure, (b) real and ideal enclosures for radiative transfer calculations.
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4.2 DEFINITION OF VIEW FACTORS

To make an energy balance on a surface element, equation (4.1), the irradiation H must be
evaluated. In a general enclosure the irradiation will have contributions from all visible parts
of the enclosure surface. Therefore, we need to determine how much energy leaves an arbitrary
surface element dA′ that travels toward dA. The geometric relations governing this process for
“diffuse” surfaces (for surfaces that absorb and emit diffusely, and also reflect radiative energy
diffusely) are known as view factors. Other names used in the literature are configuration factor,
angle factor, and shape factor, and sometimes the term diffuse view factor is used (to distinguish
from specular view factors for specularly reflecting surfaces; see Chapter 6). The view factor
between two infinitesimal surface elements dAi and dA j, as shown in Fig. 4-3, is defined as

dFdAi−dA j ≡
diffuse energy leaving dAi directly toward and intercepted by dA j

total diffuse energy leaving dAi
, (4.3)

where the word “directly” is meant to imply “on a straight path, without intervening reflections.”
This view factor is infinitesimal since only an infinitesimal fraction can be intercepted by an
infinitesimal area. From the definition of intensity and Fig. 4-3 we may determine the heat
transfer rate from dAi to dA j as

I(ri)(dAi cosθi) dΩ j = I(ri) cosθi cosθj dAi dA j/S2, (4.4)

where θi (or θj) is the angle between the surface normal n̂i (or n̂ j) and the line connecting dAi
and dA j (of length S). The total radiative energy leaving dAi into the hemisphere above it is
J = E + ρH, where J is called the radiosity. Since the surface emits and reflects diffusely both E
and ρH obey equation (1.33), and the outgoing flux may be related to intensity by

J(ri) dAi =
[
E(ri) + ρ(ri) H(ri)

]
dAi = πI(ri) dAi.

Note that the radiative intensity away from dAi, due to emission and/or reflection, does not
depend on direction. Therefore, the view factor between two infinitesimal areas is

dFdAi−dA j =
cosθi cosθj

πS2 dA j. (4.5)

By introducing the abbreviation si j = rj − ri, and noting that cosθi = n̂i · si j/|si j|, the view factor
may be recast in vector form as

dFdAi−dA j =
(n̂i · si j)(n̂ j · s ji)

πS4 dA j. (4.6)

Switching subscripts i and j in equation (4.5) immediately leads to the important law of reciprocity,

dAi dFdAi−dA j = dA j dFdA j−dAi . (4.7)

Often, enclosures are idealized to consist of a number of finite isothermal subsurfaces, as
indicated in Fig. 4-2b. Therefore, we should like to expand the definition of the view factor
to include radiative exchange between one infinitesimal and one finite area, and between two
finite areas. Consider first the exchange between an infinitesimal dAi and a finite A j, as shown
in Fig. 4-4. The total energy leaving dAi toward all of A j is, from equation (4.4),

I(ri) dAi

∫
A j

cosθi cosθj

S2 dA j,
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FIGURE 4-3
Radiative exchange between two in-
finitesimal surface elements.

FIGURE 4-4
Radiative exchange between one infinitesimal and
one finite surface element.

while the total energy leaving the dAi into all directions remains unchanged. Thus, we find

FdAi−A j =

∫
A j

cosθi cosθj

πS2 dA j, (4.8)

which is now finite since the intercepting surface, A j, is finite.
Next we consider the view factor from A j to the infinitesimal dAi. The amount of radiation

leaving all of A j toward dAi is, from equation (4.4) (after switching subscripts i and j),

dAi

∫
A j

I(r j)
cosθi cosθj

S2 dA j,

and the total amount leaving A j into all directions is

π

∫
A j

I(r j) dA j.

Thus, we find the view factor between surfaces A j and dAi is

dFA j−dAi =

∫
A j

I(r j)
cosθi cosθj

S2 dA j dAi

/
π

∫
A j

I(r j) dA j, (4.9)

which is infinitesimal since the intercepting surface, dAi, is infinitesimal. The view factor in
equation (4.9)—unlike equations (4.5) and (4.8)—is not a purely geometric parameter since it
depends on the radiation field I(r j). However, for an ideal enclosure as shown in Fig. 4-2b, it is
usually assumed that the intensity leaving any surface is not only diffuse but also does not vary
across the surface, i.e., I(r j) = I j = const. With this assumption equation (4.9) becomes

dFA j−dAi =
1

A j

∫
A j

cosθi cosθj

πS2 dA j dAi. (4.10)

Comparing this with equation (4.8) we find another law of reciprocity, with

A j dFA j−dAi = dAi FdAi−A j , (4.11)
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FIGURE 4-5
Radiative exchange between two finite surfaces.

subject to the restriction that the intensity leaving A j does not vary across the surface.
Finally, we consider radiative exchange between two finite areas Ai and A j as depicted in

Fig. 4-5. The total energy leaving Ai toward A j is, from equation (4.4),∫
Ai

∫
A j

I(ri)
cosθi cosθj

S2 dA j dAi,

and the view factor follows as

FAi−A j =

∫
Ai

∫
A j

I(ri)
cosθi cosθj

S2 dA j dAi

/
π

∫
Ai

I(ri) dAi. (4.12)

If we assume again that the intensity leaving Ai does not vary across the surface, the view factor
reduces to

FAi−A j =
1
Ai

∫
Ai

∫
A j

cosθi cosθj

πS2 dA j dAi. (4.13)

The law of reciprocity follows readily as

Ai FAi−A j = A j FA j−Ai , (4.14)

which is now subject to the condition that the radiation intensities leaving Ai and A j must both
be constant across their respective surfaces.

In a somewhat more compact notation, the law of reciprocity may be summarized as

dAi dFdi−dj = dA j dFdj−di, (4.15a)
dAi Fdi− j = A j dF j−di, (I j = const), (4.15b)

Ai Fi− j = A j F j−i, (Ii, I j = const). (4.15c)

The different levels of view factors may be related to one another by

Fdi− j =

∫
A j

dFdi−dj, (4.16a)

Fi− j =
1
Ai

∫
Ai

Fdi− j dAi. (4.16b)
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If the receiving surface consists of a number of subsurfaces, we also have

Fi− j =

K∑
k=1

Fi−( j,k), with A j =

K∑
k=1

A( j,k). (4.17)

Finally, an enclosure consisting of N surfaces, each with constant outgoing intensities, obeys the
summation relation,

N∑
j=1

Fdi− j =

N∑
j=1

Fi− j = 1. (4.18)

The last two relations follow directly from the definition of the view factor (i.e., the sum of
all fractions must add up to unity). Note that equation (4.18) includes the view factor Fi−i. If
surface Ai is flat or convex, no radiation leaving it will strike itself directly, and Fi−i simply
vanishes. However, if Ai is concave, part of the radiation leaving it will be intercepted by itself
and Fi−i > 0.

4.3 METHODS FOR THE EVALUATION OF
VIEW FACTORS

The calculation of a radiative view factor between any two finite surfaces requires the solution
to a double area integral, or a fourth-order integration. Such integrals are exceedingly difficult
to evaluate analytically except for very simple geometries. Even numerical quadrature may
often be problematic because of singularities in the integrand, and because of excessive CPU
time requirements. Therefore, considerable effort has been directed toward tabulation and
the development of evaluation methods for view factors. Early tables and charts for simple
configurations were given by Hamilton and Morgan [1], Leuenberger and Pearson [2], and Kreith
[3]. Fairly extensive tabulations were given in the books by Sparrow and Cess [4] and Siegel and
Howell [5]. Siegel and Howell also give an exhaustive listing of sources for more involved view
factors. The most complete tabulation is given in a catalogue by Howell [6,7], the latest version
of which can also be accessed on the Internet via http://www.engr.uky.edu/rtl/Catalog/.
A number of commercial and noncommercial computer programs for their evaluation are also
available [8–18], and a review of available numerical methods has been given by Emery and
coworkers [19]. Some experimental methods have been discussed by Jakob [20] and Liu and
Howell [21]. Within the present book Appendix D gives view factor formulae for an extensive
set of geometries. Self-contained Fortran/C++/Matlabr programs viewfactors are included
in Appendix F for the evaluation of all view factors listed in Appendix D [these programs call a
function view, which may also be used from within other programs].

Radiation view factors may be determined by a variety of methods. One possible grouping
of different approaches could be:

1. Direct integration:
(i) analytical or numerical integration of the relations given in the previous section

(surface integration);
(ii) conversion of the relations to contour integrals, followed by analytical or numerical

integration (contour integration).
2. Statistical determination: View factors may be determined through statistical sampling

with the Monte Carlo method.
3. Special methods: For many simple shapes integration can be avoided by employing one

of the following special methods:
(i) view factor algebra, i.e., repeated application of the rules of reciprocity and the sum-

mation relationship;
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FIGURE 4-6
Unit normal and direction cosines for a surface element.

(ii) crossed-strings method: a simple method for evaluation of view factors in two-
dimensional geometries;

(iii) unit sphere method: a powerful method for view factors between one infinitesimal
and one finite area;

(iv) inside sphere method: a simple method for a few special shapes.

All of the above methods will be discussed in the following pages, except for the Monte Carlo
method, which is treated in considerable detail in Chapter 8.

4.4 AREA INTEGRATION
To evaluate equation (4.5) or to carry out the integrations in equations (4.8) and (4.13) the in-
tegrand (i.e., cosθi, cosθj, and S) must be known in terms of a local coordinate system that
describes the geometry of the two surfaces. While the evaluation of the integrand may be
straightforward for some simple configurations, it is desirable to have a more generally appli-
cable formula at one’s disposal. Using an arbitrary coordinate origin, a vector pointing from
the origin to a point on a surface may be written as

r = xı̂ + ŷ + zk̂, (4.19)

where ı̂, ̂, and k̂ are unit vectors pointing into the x-, y-, and z-directions, respectively. Thus the
vector from dAi going to dA j is determined (see Fig. 4-5) as

si j = −s ji = r j − ri = (x j − xi)ı̂ + (y j − yi)̂ + (z j − zi)k̂. (4.20)

The length of this vector is determined as

|si j|
2 = |s ji|

2 = S2 = (x j − xi)2 + (y j − yi)2 + (z j − zi)2. (4.21)

We will now assume that the local surface normals are also known in terms of the unit vectors
ı̂, ̂, and k̂, or, from Fig. 4-6,

n̂ = l ı̂ + m̂ + nk̂, (4.22)

where l, m, and n are the direction cosines for the unit vector n̂, i.e., l = n̂ · ı̂ = cosθx is the cosine
of the angle θx between n̂ and the x-axis, etc. We may now evaluate cosθi and cosθj as

cosθi =
n̂i · si j

S
=

1
S

[
(x j − xi)li + (y j − yi)mi + (z j − zi)ni

]
, (4.23a)

cosθj =
n̂ j · s ji

S
=

1
S

[
(xi − x j)l j + (yi − y j)m j + (zi − z j)n j

]
. (4.23b)
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FIGURE 4-7
View factor for strips on an infinitely long groove.

Example 4.1. Consider the infinitely long (−∞ < y < +∞) wedge-shaped groove as shown in Fig. 4-7.
The groove has sides of widths a and b and an opening angle α. Determine the view factor between the
narrow strips shown in the figure.

Solution
After placing the coordinate system as shown in the figure, we find z1 = 0, x2 = u2 cosα, and z2 = u2 sinα,
leading to

S2 = (x1 − u2 cosα)2 + (y1 − y2)2 + u2
2 sin2α

= (x2
1 − 2x1u2 cosα + u2

2) + (y1 − y2)2 = S2
0 + (y1 − y2)2,

where S0 is the projection of S in the x-z-plane and is constant in the present problem. The two surface
normals are readily determined as

n̂1 = k̂, or l1 = m1 = 0, n1 = 1,

n̂2 = ı̂ sinα − k̂ cosα, or l2 = sinα, m2 = 0, n2 = − cosα,

leading to
cosθ1 = u2 sinα/S,

cosθ2 = [(x1−u2 cosα) sinα + u2 sinα cosα] /S = x1 sinα/S.

For illustrative purposes we will first calculate dFd1−strip 2 from equation (4.8), and then dFstrip 1−strip 2 from
equation (4.16). Thus

dFd1−strip 2 =

∫
dAstrip 2

cosθ1 cosθ2

πS2 dA2 =
du2

π

∫ +∞

−∞

x1u2 sin2α dy2[
S2

0 + (y1−y2)2
]2

=
x1u2 sin2α du2

π

 y2−y1

2S2
0

[
S2

0+(y1−y2)2
] +

1
2S3

0

tan−1 y2−y1

S0


+∞

−∞

=
x1u2 sin2α du2

2S3
0

=
1
2

u2 sinα
S0

x1 sinα
S0

du2

S0
=

1
2

cosθ10 cosθ20
du2

S0
,

where θ10 and θ20 are the projections of θ1 and θ2 in the x-z-plane. Looking at Fig. 4-8 this may be
rewritten as

dFd1−strip 2 = 1
2 cosφ dφ,
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FIGURE 4-8
Two-dimensional wedge-shaped groove with projected dis-
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where φ = θ10 is the off-normal angle at which dAstrip 2 is oriented from dAstrip 1. We note that dFd1−strip 2

does not depend on y1. No matter where on strip 1 an observer is standing, he sees the same strip 2
extending from−∞ to +∞. It remains to calculate dFstrip 1−strip 2 from equation (4.16). Since equation (4.16)
simply takes an average, and since dFd1−strip 2 does not vary along dAstrip 1, it follows immediately that

dFstrip 1−strip 2 = 1
2 cosφ dφ =

x1 sin2αu2 du2

2S3
0

.

Example 4.2. Determine the view factor F1−2 for the infinitely long groove shown in Fig. 4-8.

Solution
Since we already know the view factor between two infinite strips, we can write

Fstrip 1−2 =

∫ b

0
dFstrip 1−strip 2,

F1−2 =
1
a

∫ a

0
Fstrip 1−2 dx1.

Therefore, from Example 4.1,

Fstrip 1−2 =
x1 sin2α

2

∫ b

0

u2 du2

(x2
1 − 2x1u2 cosα + u2

2)3/2
=

x1 sin2α
2

x1 cosαu2 − x2
1

x2
1 sin2α

√
x2

1 − 2x1u2 cosα + u2
2

∣∣∣∣∣∣∣∣∣
b

0

=
1
2

1 +
b cosα − x1√

x2
1 − 2bx1 cosα + b2

 .
Finally, carrying out the second integration we obtain

F1−2 =
1
a

∫ a

0
Fstrip 1−2 dx1 =

1
2

(
1 −

1
a

√
x2

1 − 2bx1 cosα + b2

∣∣∣∣∣a
0

)
=

1
2

1 +
b
a
−

√
1 − 2

b
a

cosα +

(
b
a

)2
 .

Example 4.3. As a final example for area integration we shall consider the view factor between two
parallel, coaxial disks of radius R1 and R2, respectively, as shown in Fig. 4-9.

Solution
Placing x-, y-, and z-axes as shown in the figure, and making a coordinate transformation to cylindrical
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coordinates, we find

x1 = r1 cosψ1, y1 = r1 sinψ1, z1 = 0; dA1 = r1 dr1 dψ1;

x2 = r2 cosψ2, y2 = r2 sinψ2, z2 = h; dA2 = r2 dr2 dψ2;

S2 = (r1 cosψ1 − r2 cosψ2)2 + (r1 sinψ1 − r2 sinψ2)2 + h2

= h2 + r2
1 + r2

2 − 2r1r2 cos(ψ1 − ψ2).

Since n̂1 = k̂ and n̂2 = −k̂, we also find l1 = l2 = m1 = m2 = 0, n1 = −n2 = 1, and from equation (4.23)
cosθ1 = cosθ2 = h/S. Thus, from equation (4.13)

F1−2 =
1

(πR2
1)π

∫ R1

r1=0

∫ R2

r2=0

∫ 2π

ψ1=0

∫ 2π

ψ2=0

h2r1r2 dψ2 dψ1 dr2 dr1[
h2+r2

1+r2
2−2r1r2 cos(ψ1−ψ2)

]2 .

Changing the dummy variable ψ2 to ψ = ψ1 − ψ2 makes the integrand independent of ψ1(integrating
from ψ1 − 2π to ψ1 is the same as integrating from 0 to 2π, since integration is over a full period), so that
the ψ1-integration may be carried out immediately:

F1−2 =
2h2

πR2
1

∫ R1

r1=0

∫ R2

r2=0

∫ 2π

ψ=0

r1r2 dψ dr2 dr1

(h2+r2
1+r2

2−2r1r2 cosψ)2
.

This result can also be obtained by physical argument, since the view factor from any pie slice of A1

must be the same (and equal to the one from the entire disk). While a second integration (over r1, r2,
or ψ) can be carried out, analytical evaluation of the remaining two integrals appears bleak. We shall
abandon the problem here in the hope of finding another method with which we can evaluate F1−2 more
easily.

4.5 CONTOUR INTEGRATION

According to Stokes’ theorem, as developed in standard mathematics texts such as Wylie [22], a
surface integral may be converted to an equivalent contour integral (see Fig. 4-10) through∮

Γ

f · ds =

∫
A

(∇ × f) · n̂ dA, (4.24)

where f is a vector function defined everywhere on the surface A, including its boundary Γ, n̂ is
the unit surface normal, and s is the position vector for a point on the boundary of A (ds, therefore,
is the vector describing the boundary contour of A). By convention the contour integration in
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equation (4.24) is carried out in the counterclockwise sense for an observer standing atop the
surface (i.e., on the side from which the normal points up).

If a vector function f that makes the integrand of equation (4.24) equivalent to the one
of equation (4.8) can be identified, then the area (or double) integral of equation (4.8) can be
reduced to a contour (or single) integral. Applying Stokes’ theorem twice, the double area
integration of equation (4.13) could be converted to a double line integral. Contour integration
was first applied to radiative view factor calculations (in the field of illumination engineering)
by Moon [23]. The earliest applications to radiative heat transfer appear to have been by de
Bastos [24] and Sparrow [25].

View Factors from Differential Elements to
Finite Areas
For this case the vector function f may be identified as

f =
1

2π
s12 × n̂1

S2 , (4.25)

leading to

Fd1−2 =
1

2π

∮
Γ2

(s12 × n̂1) · ds2

S2 , (4.26)

where s12 is the vector pointing from dA1 to a point on the contour of A2 (described by vector
s2), while ds2 points along the contour of A2.

For the interested reader with some background in vector calculus we shall briefly prove
that equation (4.26) is equivalent to equation (4.8). Using the identity (given, e.g., by Wylie [22]),

∇ × (ϕa) = ϕ∇ × a − a × ∇ϕ, (4.27)
we may write1

2π∇2×f = ∇2×

(s12×n̂1

S2

)
=

1
S2∇2×(s12×n̂1)−(s12×n̂1)×∇2

( 1
S2

)
. (4.28)

From equations (4.20) and (4.21) it follows that

∇2

( 1
S2

)
= −

2
S3∇2S = −

2
S3

s12

S
= −

2s12

S4 .

1We add the subscript 2 to all operators to make clear that differentiation is with respect to position coordinates on
A2, for example, x2, y2, and z2 if a Cartesian coordinate system is employed.
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We also find, using standard vector identities,

(s12 × n̂1) × s12 = n̂1(s12 · s12) − s12(s12 · n̂1) = S2n̂1 − s12(s12 · n̂1), (4.29a)
∇2 × (s12 × n̂1) = n̂1 · ∇2s12 − s12 · ∇2n̂1 + s12∇2 · n̂1 − n̂1∇2 · s12. (4.29b)

In the last expression the terms ∇2n̂1 and ∇2 · n̂1 drop out since n̂1 is independent of surface A2.
Also, from equation (4.20) we find

∇2 · s12 = 3, ∇2s12 = ı̂ı̂ + ̂̂ + k̂k̂ = δ, (4.30)

where δ is the unit tensor whose diagonal elements are unity and whose nondiagonal elements
are zero:

δ =


1 0 0

0 1 0

0 0 1


. (4.31)

With n̂1 · δ = n̂1 equation (4.29b) reduces to

∇2 × (s12 × n̂1) = n̂1 − 3n̂1 = −2n̂1.

Substituting all this into equation (4.28), we obtain

2π∇2 × f = −
2n̂1

S2 +
2
S4

[
S2n̂1 − s12(s12 · n̂1)

]
= −

2
S4 s12(s12 · n̂1),

and

(∇2 × f) · n̂2 = −
(s12 · n̂1)(s12 · n̂2)

πS4 =
cosθ1 cosθ2

πS2 . (4.32)

Together with Stokes’ theorem this completes the proof that equation (4.26) is equivalent to an
area integral over the function given by equation (4.32).

For a Cartesian coordinate system, using equations (4.19) through (4.22), we have

ds2 = dx2 ı̂ + dy2 ̂ + dz2k̂,

and equation (4.26) becomes

Fd1−2 =
l1
2π

∮
Γ2

(z2−z1) dy2 − (y2−y1) dz2

S2 +
m1

2π

∮
Γ2

(x2−x1) dz2 − (z2−z1) dx2

S2

+
n1

2π

∮
Γ2

(y2−y1) dx2 − (x2−x1) dy2

S2 . (4.33)

Example 4.4. Determine the view factor Fd1−2 for the configuration shown in Fig. 4-11.

Solution
With the coordinate system as shown in the figure we have

S =
√

x2 + y2 + c2,

and, with n̂1 = −k̂, or l1 = m1 = 0 and n1 = −1, it follows that equation (4.33) reduces to



4.5 CONTOUR INTEGRATION 141

x

b A2

y

z

S

dA1

c

a

FIGURE 4-11
View factor to a rectangular plate from a parallel infinitesimal
area element located opposite a corner.

Fd1−2 = −
1

2π

∮
Γ2

y dx − x dy
S2

= −
1

2π


[∫ x=b

x=0

y
S2 dx

]
y=0

+

[∫ y=a

y=0

(−x)
S2 dy

]
x=b

+

[∫ x=0

x=b

y
S2 dx

]
y=a

+

[∫ y=0

y=a

(−x)
S2 dy

]
x=0


=

1
2π

(∫ a

y=0

b dy
b2+y2+c2 +

∫ b

x=0

a dx
x2+a2+c2

)

=
1

2π

 b
√

b2+c2
tan−1 y

√

b2+c2

∣∣∣∣∣∣a
0

+
a

√

a2+c2
tan−1 x

√

a2+c2

∣∣∣∣∣∣b
0


Fd1−2 =

1
2π

(
b

√

b2+c2
tan−1 a

√

b2+c2
+

a
√

b2+c2
tan−1 b

√

a2+c2

)
.

View Factors between Finite Areas
To reduce the order of integration for the determination of the view factor between two finite
surfaces A1 and A2, Stokes’ theorem may be applied twice, leading to

A1F1−2 =
1

2π

∮
Γ1

∮
Γ2

ln S ds2 · ds1, (4.34)

where the contours of the two surfaces are described by the two vectors s1 and s2. To prove
that equation (4.34) is equivalent to equation (4.13) we get, comparing with equation (4.24) (for
surface A1),

f =
1

2π

∮
Γ2

ln S ds2. (4.35)

Taking the curl leads, by means of equation (4.27), to

2π∇1 × f =

∮
Γ2

∇1 × (ln S ds2) =

∮
Γ2

∇1(ln S) × ds2

=

∮
Γ2

1
S
∇1S × ds2, (4.36)
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where differentiation is with respect to the coordinates of surface A1 (for which Stokes’ theorem
has been applied). Forming the dot product with n̂1 then results in

n̂1 · (∇1 × f) =

∮
Γ2

1
2πS

n̂1 · (∇1S × ds2) =

∮
Γ2

n̂1 × ∇1S
2πS

· ds2, (4.37)

where use has been made of the vector relationship

u · (v ×w) = (u × v) ·w. (4.38)

Again, from equations (4.20) and (4.21) it follows that ∇1S = −s12/S, so that

n̂1 · (∇1 × f) = −

∮
Γ2

n̂1 × s12

2πS2 · ds2 =

∮
Γ2

s12 × n̂1

2πS2 · ds2

= Fd1−2 =

∫
A2

cosθ1 cosθ2

πS2 dA2,

where equation (4.26) has been employed. Finally,

A1F1−2 =

∫
A1

n̂1 · (∇1 × f) dA1 =

∫
A1

∫
A2

cosθ1 cosθ2

πS2 dA2 dA1, (4.39)

which is, of course, identical to equation (4.13).
For Cartesian coordinates, with s1 and s2 from equation (4.19), equation (4.34) becomes

A1F1−2 =
1

2π

∮
Γ1

∮
Γ2

ln S (dx2 dx1 + dy2 dy1 + dz2 dz1). (4.40)

Example 4.5. Determine the view factor between two parallel, coaxial disks, Example 4.3, by contour
integration.

Solution
With ds = dx ı̂ + dy ̂ + dz k̂ it follows immediately from the coordinates given in Example 4.3 that

ds1 = R1 dψ1(− sinψ1 ı̂ + cosψ1 ̂),

ds2 = R2 dψ2(− sinψ2 ı̂ + cosψ2 ̂),

ds1 · ds2 = R1R2 dψ1 dψ2(sinψ1 sinψ2 + cosψ1 cosψ2)

= R1R2 cos(ψ1 − ψ2) dψ1 dψ2,

where, it should be remembered, ds is along the periphery of a disk, i.e., at r = R. Substituting the last
expression into equation (4.34) leads to

F1−2 =
R1R2

2π(πR2
1)

∫ 2π

ψ1=0

∫
−2π

ψ2=0
ln

[
h2+R2

1+R2
2−2R1R2 cos(ψ1−ψ2)

]1/2
cos(ψ1−ψ2) dψ2 dψ1,

where the integration for ψ2 is from 0 to −2π since, for an observer standing on top of A2, the integration
must be in a counterclockwise sense. Just like in Example 4.3, we can eliminate one of the integrations
immediately since the angles appear only as differences, i.e., ψ1 − ψ2:

F1−2 = −
1
π

R2

R1

∫ 2π

0
ln

(
h2+R2

1+R2
2−2R1R2 cosψ

)1/2
cosψ dψ.

Integrating by parts we obtain:

F1−2 = −
1
π

R2

R1

 sinψ ln
(
h2+R2

1+R2
2−2R1R2 cosψ

)1/2
∣∣∣∣∣∣
2π

0

− R1R2

∫ 2π

0

sin2ψ dψ
h2+R2

1+R2
2−2R1R2 cosψ


=

R2/R1

2π

∫ 2π

0

sin2ψ dψ
X − cosψ

,
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View factor configuration for Example 4.6.

where we have introduced the abbreviation

X =
h2 + R2

1 + R2
2

2R1R2
.

The integral can be found in better integral tables, or may be converted to a simpler form through
trigonometric relations, leading to

F1−2 =
R2/R1

2π
2π

(
X −
√

X2 − 1
)

=
R2

R1

(
X −
√

X2 − 1
)
.

4.6 VIEW FACTOR ALGEBRA

Many view factors for fairly complex configurations may be calculated without any integration
by simply using the rules of reciprocity and summation, and perhaps the known view factor for
a more basic geometry. That is, besides one (or more) known view factor we will only use the
following three basic equations:

Reciprocity Rule: Ai Fi− j = A j F j−i, (4.15c)

Summation Relation:
N∑

j=1

Fi− j = 1, (4.18)

Subsurface Summation A j =

K∑
k=1

A( j,k): Fi− j =

K∑
k=1

Fi−( j,k) (4.17)

We shall illustrate the usefulness of this view factor algebra through a few simple examples.

Example 4.6. Suppose we have been given the view factor for the configuration shown in Fig. 4-11, that
is, Fd1−2 = F(a, b, c) as determined in Example 4.4. Determine the view factor Fd1−3 for the configuration
shown in Fig. 4-12.

Solution
To express Fd1−3 in terms of known view factors F(a, b, c) (with the differential area opposite one of the
corners of the large plate), we fill the plane of A3 with hypothetical surfaces A4,A5, and A6 as indicated
in Fig. 4-12. From the definition of view factors, or equation (4.13), it follows that

Fd1−(3+4+5+6) = Fd1−3 + Fd1−4 + Fd1−(5+6),

Fd1−4 = Fd1−(4+6) − Fd1−6.

Thus,

Fd1−3 = Fd1−(3+4+5+6) − Fd1−(4+6) + Fd1−6 − Fd1−(5+6).
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FIGURE 4-13
Configuration for Example 4.7: (a) full corner piece, (b) strips on a corner piece.

All four of these are of the type discussed in Example 4.4. Therefore,

Fd1−3 = F(a+b, c+d, e) − F(a, c+d, e) + F(a, c, e) − F(a+b, c, e).

We have successfully converted the present complex view factor to a summation of four known, more
basic ones.

Example 4.7. Assuming the view factor for a finite corner, as shown in Fig. 4-13a, is known as
F1−2 = f (a, b, c), where f is a known function of the dimensions of the corner pieces (as given in
Appendix D), determine the view factor F3−4, between the two perpendicular strips as shown in Fig. 4-
13b.

Solution
From the definition of the view factor, and since the energy traveling to A4 is the energy going to A2

plus A4 minus the energy going to A2, it follows that

F3−4 = F3−(2+4) − F3−2,

and, using reciprocity,

F3−4 =
1

A3

[
(A2 + A4)F(2+4)−3 − A2F2−3

]
.

Similarly, we find

F3−4 =
A2 + A4

A3

(
F(2+4)−(1+3) − F(2+4)−1

)
−

A2

A3

(
F2−(1+3) − F2−1

)
.

All view factors on the right-hand side are corner pieces and are, thus, known by evaluating the function
f with appropriate dimensions.

Example 4.8. Again, assuming the view factor is known for the configuration in Fig. 4-13a, determine
F1−6 as shown in Fig. 4-14.

Solution
Examining Fig. 4-14, and employing reciprocity, we find

(A5 + A6)F(5+6)−(1+2) = (A5 + A6)
(
F(5+6)−1 + F(5+6)−2

)
= A1(F1−5 + F1−6) + A2(F2−5 + F2−6)

= A1

(
F1−(3+5) − F1−3

)
+ A2

(
F2−(4+6) − F2−4

)
+ A1F1−6 + A2F2−5.

On the other hand, we also have

(A5 + A6) F(5+6)−(1+2) = (A1 + A2)
(
F(1+2)−(3+4+5+6) − F(1+2)−(3+4)

)
.
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FIGURE 4-14
Configuration for Example 4.8.

In both expressions all view factors, with the exceptions of F1−6 and F2−5, are of the type given in
Fig. 4-13a.

These last two view factors may be related to one another, as is easily seen from their integral forms.
From equation (4.13) we have

A2F2−5 =

∫
A2

∫
A5

cosθ2 cosθ5

πS2 dA5 dA2.

With a coordinate system as shown in Fig. 4-14, we get from equations (4.21) and (4.23) S2 = x2
2 + (y2−

y5)2 + z2
5, cosθ2 = z5/S, cosθ5 = x2/S, or

A2F2−5 =

∫ e

x2=0

∫ b

y2=a

∫ a

y5=0

∫ d

z5=c

x2z5 dz5 dy5 dy2 dx2

π
[
x2

2+(y2−y5)2+z2
5

]2 .

Similarly, we obtain for F1−6

A1F1−6 =

∫ e

x1=0

∫ a

y1=0

∫ b

y6=a

∫ d

z6=c

x1z6 dz6 dy6 dy1 dx1

π
[
x2

1+(y1−y6)2+z2
6

]2 .

Switching the names for dummy integration variables, it is obvious that

A2F2−5 = A1F1−6,

which may be called the law of reciprocity for diagonally opposed pairs of perpendicular rectangular plates.
Finally, solving for F1−6 we obtain

F1−6 =
A1 + A2

2A1

(
F(1+2)−(3+4+5+6) − F(1+2)−(3+4)

)
−

1
2

(
F1−(3+5) − F1−3

)
−

A2

2A1

(
F2−(4+6) − F2−4

)
.

Using similar arguments, one may also determine the view factor between two arbitrarily
orientated rectangular plates lying in perpendicular planes (Fig. 4-15a) or in parallel planes
(Fig. 4-15b). After considerable algebra, one finds [1]:

Perpendicular plates (Fig. 4-15a):

2A1F1−2 = f (x2, y2, z3) − f (x2, y1, z3) − f (x1, y2, z3) + f (x1, y1, z3)
+ f (x1, y2, z2) − f (x1, y1, z2) − f (x2, y2, z2) + f (x2, y1, z2)
− f (x2, y2, z3−z1) + f (x2, y1, z3−z1) + f (x1, y2, z3−z1) − f (x1, y1, z3−z1)
+ f (x2, y2, z2−z1) − f (x2, y1, z2−z1) − f (x1, y2, z2−z1) + f (x1, y1, z2−z1), (4.41)
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FIGURE 4-15
View factors between generalized rectangles: (a) surfaces are on perpendicular planes, (b) surfaces are on parallel
planes.

where f (w, h, l) = A1F1−2 is the product of area and view factor between two perpendicular
rectangles with a common edge as given by Configuration 39 in Appendix D.

Parallel plates (Fig. 4-15b):

4A1F1−2 = f (x3, y3) − f (x3, y2) − f (x3, y3−y1) + f (x3, y2−y1)
−

[
f (x2, y3) − f (x2, y2) − f (x2, y3−y1) + f (x2, y2−y1)

]
−

[
f (x3−x1, y3) − f (x3−x1, y2) − f (x3−x1, y3−y1) + f (x3−x1, y2−y1)

]
+ f (x2−x1, y3) − f (x2−x1, y2) − f (x2−x1, y3−y1) + f (x2−x1, y2−y1), (4.42)

where f (a, b) = A1F1−2 is the product of area and view factor between two directly opposed,
parallel rectangles, as given by Configuration 38 in Appendix D.

Equations (4.41) and (4.42) are not restricted to x3 > x2 > x1, and so on, but hold for
arbitrary values, for example, they are valid for partially overlapping surfaces. Fortran functions
perpplates and parlplates are included in Appendix F for the evaluation of these view factors,
based on calls to Fortran function view (i.e., calls to function view to evaluate the various view
factors for Configurations 39 and 38, respectively).

Example 4.9. Show that equation (4.42) reduces to the correct expression for directly opposing rectan-
gles.

Solution
For directly opposing rectangles, we have x1 = x3 = a, y1 = y3 = b, and x2 = y2 = 0. We note that the for-
mula for A1F1−2 for Configuration 38 in Appendix D is such that f (a, b) = f (−a, b) = f (a,−b) = f (−a,−b),
i.e., the view factor and area are both “negative” for a single negative dimension, making their product
positive, and similarly if both a and b are negative. Also, if either a or b is zero (zero area), then f (a, b) = 0.
Thus,

4A1F1−2 = f (a, b) − 0 − 0 + f (a,−b) − [0 − 0 − 0 + 0]

− [0 − 0 − 0 + 0] + f (−a, b) − 0 − 0 + f (−a,−b)

=4 f (a, b).

Many other view factors for a multitude of configurations may be obtained through view
factor algebra. A few more examples will be given in this and the following chapters (when
radiative exchange between black, gray-diffuse, and gray-specular surfaces is discussed).



4.7 THE CROSSED-STRINGS METHOD 147

dc

A1

a bA2

FIGURE 4-16
The crossed-strings method for arbitrary two-dimensional configura-
tions.

4.7 THE CROSSED-STRINGS METHOD

View factor algebra may be used to determine all view factors in long enclosures with constant
cross-section. The method is credited to Hottel [26],∗ and is called the crossed-strings method
since the view factors can be determined experimentally by a person armed with four pins, a roll
of string, and a yardstick. Consider the configuration in Fig. 4-16, which shows the cross-section
of an infinitely long enclosure, continuing into and out of the plane of the figure: We would
like to determine F1−2. Obviously, the surfaces shown are rather irregular (partly convex, partly
concave), and the view between them may be obstructed. We shudder at the thought of having
to carry out the view factor determination by integration, and plant our four pins at the two
ends of each surface, as indicated by the labels a, b, c, and d. We now connect points a and c
and b and d with tight strings, making sure that no visual obstruction remains between the two
strings. Similarly, we place tight strings ab and cd across the surfaces, and ad and bc diagonally
between them, as shown in Fig. 4-16. Now assuming the strings to be imaginary surfaces Aab,
Aac, and Abc, we apply the summation rule to the “triangle” abc:

AabFab−ac + AabFab−bc = Aab, (4.43a)
AacFac−ab + AacFac−bc = Aac, (4.43b)
AbcFbc−ac + AbcFbc−ab = Abc, (4.43c)

where Fab−ab = Fac−ac = Fbc−bc = 0 since a tightened string will always form a convex surface.
Equations (4.43) are three equations in six unknown view factors, which may be solved by
applying reciprocity to three of them:

AabFab−ac + AabFab−bc = Aab, (4.44a)
AabFab−ac + AacFac−bc = Aac, (4.44b)
AacFac−bc + AabFab−bc = Abc. (4.44c)

∗ Hoyte Clark Hottel (1903–1998)
American engineer. Obtained his M.S. from the Massachusetts Institute of Technology in
1924, and was on the Chemical Engineering faculty at M.I.T. from 1927 until his death. While
Hottel is credited with the method’s discovery, he has stated that he found it in a publication
while in the M.I.T. library; but, by the time he first published it, he was unable to rediscover
its source. Hottel’s major contributions have been his pioneering work on radiative heat
transfer in furnaces, particularly his study of the radiative properties of molecular gases
(Chapter 11) and his development of the zonal method (Chapter 18).
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Adding the first two equations and subtracting the last leads to the view factor for an arbitrarily
shaped triangle with convex surfaces,

Fab−ac =
Aab + Aac − Abc

2Aab
, (4.45)

which states that the view factor between two surfaces in an arbitrary “triangle” is equal to the
area of the originating surface, plus the area of the receiving surface, minus the area of the third
surface, divided by twice the originating surface.

Applying equation (4.45) to triangle abd we find immediately

Fab−bd =
Aab + Abd − Aad

2Aab
. (4.46)

But, from the summation rule,

Fab−ac + Fab−bd + Fab−cd = 1. (4.47)
Thus

Fab−cd = 1 −
Aab + Aac − Abc

2Aab
−

Aab + Abd − Aad

2Aab

=
(Abc + Aad) − (Aac + Abd)

2Aab
. (4.48)

Inspection of Fig. 4-16 shows that all radiation leaving Aab traveling to Acd will hit surface A1.
At the same time all radiation from Aab going to A1 must pass through Acd. Therefore,

Fab−cd = Fab−1.

Using reciprocity and repeating the argument for surfaces Aab and A2, we find

Fab−cd = Fab−1 =
A1

Aab
F1−ab =

A1

Aab
F1−2,

and, finally,

F1−2 =
(Abc + Aad) − (Aac + Abd)

2A1
. (4.49)

This formula is easily memorized by looking at the configuration between any two surfaces as
a generalized “rectangle,” consisting of A1, A2, and the two sides Aac and Abd. Then

F1−2 =
diagonals − sides

2 × originating area
. (4.50)

Example 4.10. Calculate F1−2 for the configuration shown in Fig. 4-17.

Solution
From the figure it is obvious that

s2
1 = (c − d cosα)2 + d2 sin2α = c2 + d2

− 2cd cosα.

Similarly, we have

s2
2 = (a + c)2 + (b + d)2

− 2(a + c)(b + d) cosα,

d2
1 = (a + c)2 + d2

− 2(a + c)d cosα,

d2
2 = c2 + (b + d)2

− 2c(b + d) cosα,

and

F1−2 =
d1 + d2 − (s1 + s2)

2a
.
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FIGURE 4-17
Infinitely long wedge-shaped groove for Examples 4.10 and 4.11.

For c = d = 0, this reduces to the result of Example 4.2, or

F1−2 =
a + b −

√

a2 + b2 − 2ab cosα
2a

.

Example 4.11. Find the view factor Fd1−2 of Fig. 4-17 for the case that A1 is an infinitesimal strip of
width dx. Use the crossed-strings method.

Solution
We can obtain the result right away by replacing a by dx in the previous example. Throwing out
differentials of second and higher order, we find that s1 and d2 remain unchanged, and

d1 =
√

(c + dx)2 + d2 − 2(c + dx) d cosα

'

√
c2 + d2 − 2cd cosα + 2(c − d cosα) dx

'

√

c2+d2−2cd cosα
[
1+

(c − d cosα) dx
c2+ d2−2cd cosα

]
=s1+

dx
s1

(c−d cosα)

s2 =
√

(c + dx)2 + (b + d)2 − 2(c + dx)(b + d) cosα

' d2 +
dx
d2

[c − (b + d) cosα] .

Substituting this into equation (4.50), we obtain

Fd1−2 =
s1 + (c−d cosα) dx/s1 + d2 − s1 − d2 − [c−(b+d) cosα] dx/d2

2 dx

=
1
2

 c − d cosα
√

c2 + d2 − 2cd cosα
−

c − (b+d) cosα√
c2 + (b+d)2 − 2c(b+d) cosα

.
The same result could also have been obtained by letting

Fd1−2 = lim
a→0

F1−2,

where F1−2 is the view factor from the previous example. Using de l’Hopital’s rule to determine the
value of the resulting expression leads to

Fd1−2 =
1
2

(
∂d1

∂a
−
∂s2

∂a

)∣∣∣∣∣∣
a=0

,

and the above result.

Thus, the crossed-strings method may also be applied to strips. Example 4.1 could also have
been solved this way; since the result is infinitesimal this computation would require retaining
differentials up to second order. However, integration becomes simpler for strips of differential
widths, while application of the crossed-strings method becomes more involved.
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FIGURE 4-18
Configuration for view factor calculation of Example 4.12; string placement (a) for Fl

1−2, (b) for Fr
1−2.

We shall present one final example to show how view factors for curved surfaces and for
configurations with floating obstructions can be determined by the crossed-strings method.

Example 4.12. Determine the view factor F1−2 for the configuration shown in Fig. 4-18.

Solution
In the figure the end points of A1 and A2 (pin points) have been labeled a, b, c, and d, and other strategic
points have been labeled with capital letters. A closed-contour surface such as a cylinder may be
modeled by placing two pins right next to each other, with surface A2 being a strongly bulging convex
surface between the pins. While the location of the two pins on the cylinder is arbitrary, it is usually more
convenient to pick a location out of sight of A1. Since A1 can see A2 from both sides of the obstruction,
F1−2 cannot be determined with a single set of strings. Using view factor algebra, we can state that

F1−2 = Fl
1−2 + Fr

1−2,

where Fl
1−2 and Fr

1−2 are the view factors between A1 and A2 when considering only light paths on the
left or right of the obstruction, respectively. The placement of strings for Fl

1−2 is given in Fig. 4-18a, and
for Fr

1−2 in Fig. 4-18b.
Considering first Fl

1−2, the diagonals and sides may be determined from

d1 = aD + DE + Ed, d2 = bA + AB + BC + Cc,

s1 = aC + Cc, s2 = bA + AE + Ed.

Substituting these expressions into equation (4.50) and canceling those terms that appear in a diagonal
as well as in a side (Ed, bA, and Cc), we obtain

Fl
1−2 =

aD + DE + AB + BC − (aC+AE)
2ab

.

Looking at Fig. 4-18a we also notice that aC = aD and AB = AE, so that

Fl
1−2 =

BC + DE
2ab

=
αR + (π−2β−α)R

2 × 2R
=

1
2

(
π
2
− β

)
.
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FIGURE 4-19
The inside sphere method.

But cot β = tan
(
π/2 − β

)
= R/(h + H). Thus,

Fl
1−2 =

1
2

tan−1 R
h + H

.

Similarly, we find from Fig. 4-18b for Fr
1−2,

d1 = aF + FI + IJ + Jd, d2 = bG + GH + Hc,

s1 = aF + FH + Hc, s2 = bJ + Jd,

Fr
1−2 =

FI + IJ + bG + GH − (FH+bJ)
2ab

.

By inspection bG = bJ and FI = FH, leading to

Fr
1−2 =

IJ + GH
2ab

=

(
π
2 −δ−γ

)
R +

(
π−2β+δ− π

2 −γ
)

R

2 × 2R

=
1
2

(
π
2
−β−γ

)
=

1
2

(
tan−1 R

h + H
− tan−1 l

h

)
.

Note that this formula only holds as long as GH > 0 (i.e., as long as the cylinder is seen without
obstruction from point b). Finally, adding the left and right contributions to the view factor,

F1−2 = tan−1 R
h + H

−
1
2

tan−1 l
h
.

4.8 THE INSIDE SPHERE METHOD

Consider two surfaces A1 and A2 that are both parts of the surface of one and the same sphere,
as shown in Fig. 4-19. We note that, for this type of configuration, θ1 = θ2 = θ and S = 2R cosθ.
Therefore,

Fd1−2 =

∫
A2

cosθ1 cosθ2

πS2 dA2 =

∫
A2

cos2θ

π(2R cosθ)2 dA2 =
1

4πR2

∫
A2

dA2 =
A2

As
, (4.51)
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FIGURE 4-20
View factor between coaxial parallel disks.

where As = 4πR2 is the surface area of the entire sphere. Similarly, from equation (4.16),

F1−2 = Fd1−2 =
A2

As
, (4.52)

since Fd1−2 does not depend on the position of dA1. Therefore, because of the unique geometry
of a sphere, the view factor between two surfaces on the same sphere only depends on the size
of the receiving surface, and not on the location of either one.

The inside sphere method is primarily used in conjunction with view factor algebra, to
determine the view factor between two surfaces that may not necessarily lie on a sphere.

Example 4.13. Find the view factor between two parallel, coaxial disks of radius R1 and R2 using the
inside sphere method.

Solution
Inspecting Fig. 4-20 we see that it is possible to place the parallel disks inside a sphere of radius R in
such a way that the entire peripheries of both disks lie on the surface of the sphere.

Since all radiation from A1 to A2 travels on to the spherical cap A2′ (in the absence of A2), and since
all radiation from A1 to A2′ must pass through A2, we have

F1−2 = F1−2′ .

Using reciprocity and applying a similar argument for A1 and spherical cap A1′ , we find

F1−2 = F1−2′ =
A2′

A1
F2′−1 =

A2′

A1
F2′−1′ =

A1′A2′

A1As
.

The areas of the spherical caps are readily calculated as

Ai′ = 2πR2
∫ βi

0
sin β dβ = 2πR2(1 − cos βi), i = 1, 2.

Thus, with A1 = πR2
1 and As = 4πR2, this results in

F1−2 =
(2πR2)2(1 − cos β1)(1 − cos β2)

πR2
1 4πR2

.

From Fig. 4-20 one finds (assuming βi ≤ π/2) cos βi =
√

R2 − R2
i /R, and

F1−2 =
1

R2
1

(
R −

√
R2 − R2

1

) (
R −

√
R2 − R2

2

)
.
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FIGURE 4-21
Surface projection for the unit sphere method.

It remains to find the radius of the sphere R, since only the distance between disks, h, is known. From
Fig. 4-20

h =
√

R2 − R2
1 +

√
R2 − R2

2,

which may be solved (by squaring twice), to give

R2 = (X2
− 1)

(R1R2

h

)2

, X =
h2 + R2

1 + R2
2

2R1R2
.

This result is, of course, identical to the one given in Example 4.5, although it is not trivial to show this.

4.9 THE UNIT SPHERE METHOD

The unit sphere method is a powerful tool to calculate view factors between one infinitesimal
and one finite area. It is particularly useful for the experimental determination of such view
factors, as first stated by Nusselt [27]. An experimental implementation of the method through
optical projection has been discussed by Farrell [28].

To determine the view factor Fd1−2 between dA1 and A2 we place a hemisphere2 of radius R
on top of A1, centered over dA1, as shown in Fig. 4-21. From equations (4.4) and (4.8) we may
write

Fd1−2 =

∫
A2

cosθ1 cosθ2

πS2 dA2 =

∫
Ω2

cosθ1

π
dΩ2. (4.53)

The solid angle dΩ2 may also be expressed in terms of area dA′2 (dA2 projected onto the hemi-
sphere) as dΩ2 = dA′2/R

2. Further, the area dA′2 may be projected along the z-axis onto the plane
of A1 as dA′′2 = cosθ1 dA′2. Thus,

Fd1−2 =

∫
A′2

cosθ1

π

dA′2
R2 =

∫
A′′2

dA′′2
πR2 =

A′′2
πR2 , (4.54)

that is, Fd1−2 is the fraction of the disk πR2 that is occupied by the double projection of A2.
Experimentally this can be measured, for example, by placing an opaque area A2 within a

2The name unit sphere method originated with Nusselt, who used a sphere of unit radius; however, a sphere of
arbitrary radius may be used.
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R
d

a

dA1
FIGURE 4-22
Geometry for the view factor in Example 4.14.

hemisphere, made of a translucent material, and which has a light source at the center (at dA1).
Looking down onto the translucent hemisphere in the negative z-direction, A2′ will appear as a
shadow. A photograph of the shadow (and the bright disk) can be taken, showing the double
projection of A2, and Fd1−2 can be measured.

Example 4.14. Determine the view factor for Fd1−2 between an infinitesimal area and a parallel disk as
shown in Fig. 4-22.

Solution
While a hemisphere of arbitrary radius could be employed, we shall choose here for convenience a
radius of R =

√

a2 + d2, i.e., a hemisphere that includes the periphery of the disk on its surface. Then
A′′2 = A2 = πa2, and the view factor follows as

Fd1−2 =
πa2

πR2 =
a2

a2 + d2 .

Obviously, only a few configurations will allow such simple calculation of view factors. For
a more general case it would be desirable to have some “cookbook formula” for the application
of the method. This is readily achieved by looking at the vector representation of the surfaces.
Any point on the periphery of A2 may be expressed as a vector

s12 = xı̂ + ŷ + zk̂. (4.55)

The corresponding point on A′2 may be expressed as

s′12 = x′ ı̂ + y′ ̂ + z′k̂ =
R√

x2 + y2 + z2
s12, (4.56)

and on A′′2 as

s′′12 = x′′ ı̂ + y′′ ̂ = x′ ı̂ + y′ ̂. (4.57)

Thus, any point (x, y, z) on A2 is double-projected onto A′′2 as

x′′2 =
x√

x2 + y2 + z2
R, y′′2 =

y√
x2 + y2 + z2

R. (4.58)

Only the area formed by the projection of the periphery of A2 through equation (4.58) needs to
be found. This integration is generally considerably less involved than the one in equation (4.8).
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Problems

4.1 For Configuration 11 in Appendix D, find Fd1−2 by (a) area integration, and (b) contour integration.
Compare the effort involved.

4.2 Using the results of Problem 4.1, find F1−2 for Configuration 33 in Appendix D.

4.3 Find F1−2 for Configuration 32 in Appendix D, by area integration.

4.4 Evaluate Fd1−2 for Configuration 13 in Appendix D by (a) area integration, and (b) contour integration.
Compare the effort involved.
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4.5 Using the result from Problem 4.4, calculate F1−2 for Configuration 40 in Appendix D.

4.6 Find the view factor Fd1−2 for Configuration 11 in Appendix D, with dA1 tilted toward A2 by an angle
φ.

4.7

a

b

c

d

e

dA1

A2

Find Fd1−2 for the surfaces shown in the figure, using (a) area integration, (b) view
factor algebra, and Configuration 11 in Appendix D.

4.8
r1

r2

R

A2

A1

For the infinite half-cylinder depicted in the figure, find
F1−2.

4.9 a

c

d

e

dA1

A2
b

Find Fd1−2 for the surfaces shown in the figure.

4.10

R
α
α

A1

Find the view factor of the spherical ring shown
in the figure to itself, F1−1, using the inside sphere
method.

4.11 Determine the view factor for Configuration 51 in Appendix D, using (a) other, more basic view
factors given in Appendix D, (b) the crossed-strings rule.
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4.12

2  

A1

r2 = r3 r4r1

A2

A3

A4

   θ

To reduce heat transfer between two infinite concen-
tric cylinders a third cylinder is placed between them
as shown in the figure. The center cylinder has an
opening of half-angle θ. Calculate F4−2.

4.13

A1   

A2   

A4   

R 3R

R

2R
A3   

Consider the two long concentric cylinders as shown in the
figure. Between the two cylinders is a long, thin flat plate as
also indicated. Determine F4−2.

4.14

a

A2

b

A1

ϕ

Calculate the view factor F1−2 for surfaces on a cone as
shown in the figure.

4.15 D

A2

h =2D
A1

Determine the view factor F1−2 for the configuration shown in the figure, if
(a) the bodies are two-dimensional (i.e., infinitely long perpendicular to the
paper);
(b) the bodies are axisymmetric (cones).
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4.16

2d

2d

A
2

A
1

2d

d/2 d/2

Consider the configuration shown; determine the view factor F1−2 assuming
the configuration is
a) axisymmetric (1 is conical, 2 is a disk with a hole), or
b) two-dimensional Cartesian (1 is a V-groove, 2 is comprised of two infinitely
long strips).

4.17

r

r

A1 

r/2

r
r/2

A2

r

rr

Find F1−2 for the configuration shown in the figure (infinitely long
perpendicular to paper).

4.18

R

R

R

L

l

Calculate the view factor between two infinitely long
cylinders as shown in the figure. If a radiation shield
is placed between them to obstruct partially the view
(dashed line), how does the view factor change?

4.19

H

R1 A1 R2
a1 a2

Find the view factor between spherical caps as shown
in the figure, for the case of

H ≥
R2

1√
R2

1 − a2
1

+
R2

2√
R2

2 − a2
2

,

where H = distance between sphere centers, R =
sphere radius, and a = radius of cap base. Why is
this restriction necessary?

4.20 Determine the view factor for Configuration 18 in Appendix D, using the unit sphere method.
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4.21 4cm

5cm

1cm

A3

A2A2

A1

Consider the axisymmetric configuration shown in the figure. Calculate
the view factor F1−3.

4.22

r

β

dA1

A2

h
n

Find Fd1−2 from the infinitesimal area to the disk as shown in the figure,
with 0 ≤ β ≤ π.

4.23

2r

2R



A1b

A1t

A2

A3



Consider the configuration shown (this could be a long cylindrical BBQ
with a center shelf/hole; or an integrating sphere). Determine the view
factors F2−2 and F2−3 assuming the configuration is
(a) axisymmetric (sphere),
(b) two-dimensional Cartesian (cylinder), using view factor algebra,
(c) two-dimensional Cartesian (cylinder), using the string rule (F2−3 only).

4.24 pR

4R

6R

R

concentrator

oil

tube

In the solar energy laboratory at UC Merced parabolic concen-
trators are employed to enhance the absorption of tubular solar
collectors as shown in the sketch. Calculate the view factor from
the parabolic concentrator A1 to collecting cylinder A2, using
(a) view factor algebra,
(b) Hottel’s string rule.

4.25 The interior of a right-circular cylinder of length L = 4R, where R is its radius, is to be broken up into
4 ring elements of equal width. Determine the view factors between all the ring elements, using
(a) view factor algebra and the view factors of Configuration 40,
(b) Configuration 9 with the assumption that this formula can be used for rings of finite widths.
Assess the accuracy of the approximate view factors. What would be the maximum allowable value
for ∆X to ensure that all view factors within a distance of 4R are accurate to at least 5%? (Exclude the
view factor from a ring to itself, which is best evaluated last, applying the summation rule.) Use the
program viewfactors or the function view in your calculations.

4.26 The inside surfaces of a furnace in the shape of a parallelepiped with dimensions 1 m × 2 m × 4 m are
to be broken up into 28 1 m × 1 m subareas. Determine all necessary view factors using the functions
parlplates and perpplates in Appendix F.


