
CHAPTER

24
NANOSCALE
RADIATIVE TRANSFER

24.1 INTRODUCTION

In the last chapter of this book we will provide a brief introduction to radiative heat transfer
in geometries where the pertinent dimensions are measured in nanometers (nm). Research
in the field of nanoscale energy transfer has exploded during the past few years, leading to
fascinating new problems and devices in microelectronics and microfabrication technology,
such as quantum structures, optoelectronics, molecular- and atomic-level imaging techniques,
etc. Most radiation is incoherent (multispectral, as well as random in polarization and direction)
in the “far field” (a distance of a wavelength or so away from the source), and the radiative
transfer equation (RTE) and its solution methods described over the previous chapters are only
valid for such incoherent radiation. We noticed in Chapters 2 and 3 (optically smooth surfaces)
and Chapter 12 (small particles) that, when distances of the order of the wavelength λ are
relevant, radiative transfer must be calculated from the full Maxwell’s equations presented in
Chapter 2. However, Maxwell’s equations do not include any radiative emission sources, which
must be modeled via what is known as fluctuational electrodynamics, pioneered by Rytov [1, 2].

In the following we will give very brief accounts of some interesting radiative phenomena
that are observed at the nanoscale, culminating in the prediction of radiative flux between two
plates, spaced a tiny distance apart. The reader interested in detailed knowledge of the subject
area should consult the books by Chen [3], Novotny and Hecht [4], and Zhang [5], review
articles by Basu and coworkers [6] and Zhang and Park [7], as well as the large number of recent
research papers in the field.

24.2 COHERENCE OF LIGHT

No radiation source is perfectly coherent, i.e., perfectly monochromatic and unidirectional, not
even lasers or emission from single atoms. On the other hand, no source is truly incoherent: even
the most chaotic blackbody radiation has a small coherence length, which is related to the distance
the wave travels within a coherence time [5]. If the wave nature of light is completely preserved,
we speak of coherent light. If light travels longer than the coherence time, or a distance larger
than the coherence length, fluctuations in the waves will diminish wave interference effects (see
Fig. 2-13 and the discussion of reflection from a thin layer). The coherence of light in space
and time (or, equivalently, frequency) is measured by the mutual coherence function of any two
waves, defined as 〈E(r1, t)E∗(r2, t)〉, where the angular brackets denote time-averaging, and the
r1 and r2 are two different locations; the electric field can be expressed in either the frequency
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FIGURE 24-1
Total internal reflection and evanescent waves: (a) propagation of waves at critical angle of incidence, (b) evanescent
wave propagating along x-direction and exponentially decaying in −z-direction.

domain, or time domain [5]. For our purposes we simply note that the coherence length of
random blackbody radiation is about λ/2 [4, 8], and longer for more coherent sources.

24.3 EVANESCENT WAVES

We observed in Section 2.5, equation (2.100), that at an interface between two dielectrics total
reflection takes place if light attempts to enter a less dense material (n2 < n1) at an incidence
angle θ1 larger than the critical angle

sinθ1 > sinθc =
n2

n1
, (24.1)

with no energy penetrating into Medium 2 (see Fig. 24-1a). This is true as far as far-field radiation
is concerned, and also for net (time- and space-averaged) energy. However, if one carefully
inspects the electromagnetic wave theory relationships, one observes that a wave traveling
parallel to the interface enters Medium 2, with its strength decreasing exponentially away from
the interface, known as an evanescent wave (from Latin for “vanishing”). To simplify the analysis
we will, without loss of generality, consider here only the case of a parallel polarized (TM) wave
(E⊥ = 0), and only concern ourselves with the electric field. Then, from equations (2.73) and
(2.75), we have

E c1 = E‖iê‖i e−2πi(wi·r−νt) + E‖rê‖r e−2πi(wr·r−νt), (24.2a)

E c2 = E‖tê‖t e−2πi(wt·r−νt), (24.2b)

and the wave vector w, as defined1 by equation (2.31) has x- and z-components

w = η0nŝ = wx ı̂ + wzk̂. (24.3)

Since the tangential components of the electrical field must be conserved, equation (2.67), we
have wxi = wxr = wxt = wx, and

wx = η0n1 sinθ1 = η0n2 sinθ2, (24.4)

1Recall that this book’s definition of the wave vector differs by a factor of 2π and in name from the definition k = 2πw
in most optics texts in order to conform with our definition of wavenumber.
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FIGURE 24-2
Photon tunneling through a layer of lesser refractive
index, adjacent to two optically denser materials.

which is Snell’s law. If θ1 exceeds the critical angle, then

n1 sinθ1 > n1 sinθc > n2, (24.5)

and the z-component of the transmitted wave becomes

wzt =

√(
η0n2

)2
− w2

x = iη0

√
(n1 sinθ1)2

− n2
2 = i|wzt| = iη0n2| cosθ2|, (24.6)

i.e., wzt and cosθ2 are purely imaginary (and |wzt| and | cosθ2| are their magnitudes). Substituting
this into equation (24.2b) we have

E c2 = E‖tk̂ e−2π|wzt |+2πiνt, (24.7)

with the magnitude of |wzt| = O{η0 = 1/λ0}, i.e., we have a wave inside Medium 2 traveling
along the interface, exponentially decaying in strength over the distance of one wavelength or so
(depending on θ1). This is depicted in Fig. 24-1b. Performing the same analysis for the magnetic
field (with H‖ = 0), it is easy to show that the z-component of the time-averaged Poynting
vector, see equation (2.42), is zero, i.e., no net energy crosses the interface [3]. However, if the
instantaneous Poynting vector is examined, one finds that there is periodic in- and outflow of
energy carried by the evanescent field.

24.4 RADIATION TUNNELING

We have seen in the previous section that, if a radiative wave train is reflected at the interface to
an optically less dense medium, an evanescent wave exists within the optically rarer medium
with exponentially decaying strength away from the interface. Furthermore, the evanescent
wave does not carry any net (time-averaged) energy into the direction normal to the surface.
However, if a second denser medium is brought into close proximity to the first, net energy can
be transported across the gap or intermediate layer. This phenomenon is known as radiation
tunneling (or sometimes as photon tunneling, or frustrated total internal reflection [5]), and is very
important for heat transfer between two media a distance of a wavelength or less apart, as
schematically shown in Fig. 24-2. While this phenomenon has been known since Newton’s
time, in the heat transfer area it was probably first discovered by Cravalho and coworkers
[9], who investigated closely spaced cryogenic insulation. Today’s important applications
range from thermophotovoltaic devices to nanothermal processing and nanoelectronics thermal
management [5].
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If a second optically dense material is close to the first, the evanescent wave in the layer in
between is reflected back toward the first interface. Interference between the two waves cause
the Poynting vector to have a nonzero net component in the z-direction. However, if the gap is
too wide (i.e., well more than one wavelength away), the evanescent wave reaching the second
interface is too weak and net energy transfer becomes negligible. To calculate the transmissivity
of the gap or intermediate film for above-critical angles of incidence we may use the thin
film relations developed in Chapter 2, keeping in mind that cosθ2 may become imaginary
for large incidence angles. Limiting ourselves here to three dielectrics with n1 = n3 > n2,
equations (2.131b) and (2.133) may be rewritten as

t =
t12t21eiβ

1 − r2
21e2iβ

, T = tt∗, β = 2πw2zd = 2πn2 cosθ2
d
λ
, (24.8)

with r21, t12, and t21 determined from equations (2.89) through (2.92). For θ1 < θc the interface
reflection and transmission coefficients are real, and

Tλ =
(t12t21)2

1 − 2r2
21 cos 2β + r4

21

=
(1 − r2

21)2

1 − 2r2
21 cos 2β + r4

21

, θ1 < θc = sin
(n2

n1

)
. (24.9)

If θ1 exceeds the critical angle an evanescent wave enters Medium 2 and w2z and cosθ2 become
purely imaginary. From equation (24.6) we find that the phase shift β now becomes imaginary
(the exponential decay of the evanescent wave),

β = i (2πn2| cosθ2|)
d
λ

= i|β|, (24.10)

and the r21, t12, and t21 become complex [i.e., replacing cosθ2 by i| cosθ2| in equations (24.8) and
(24.9)]. Therefore,

t =
t12t21e−|β|

1 + r2
21e−2|β|

, (24.11)

and

Tλ = tt∗ =
(t12t21)(t∗12t∗21)e−2|β|

1 +
(
r2

21 + r∗221

)
e−2|β| + r2

21r∗221e−4|β|
, (24.12)

which, after some algebra (left as an exercise), may be reduced to

Tλ =
sin2 2α

sin2 2α + sinh2
|β|
, where tanα =


n1| cosθ2|

n2 cosθ1
, parallel (TM) polarization,

n2| cosθ2|

n1 cosθ1
, perpendicular (TE) polarization.

(24.13)
Again, equation (24.13) is valid for, both, parallel- and perpendicular-polarized light, except for
the different definition of tanα (due to the different structure of r‖ and r⊥).

Example 24.1. Consider a vacuum gap surrounded by a dielectric medium with refractive index
n1 = n3 =

√
2 = 1.4142. Determine the transmissivity for parallel-polarized light for all angles of

incidence and as a function of gap width.

Solution
With n2 = 1 we have sinθc = 1/√2, or θc = 45◦. Writing a small computer code, using equation (24.9) for
θ1 < 45◦, and equation (24.13) for θ1 > 45◦, and with

tanα =
n1| cosθ2|

n2 cosθ1
,
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FIGURE 24-3
Transmissivity of a vacuum gap surrounded by identical dielectrics (n1 = n3 = 1.4142), for parallel-polarized light.

we obtain the gap transmissivity shown in Fig. 24-3. It is observed that for small θ1 we have noticeable
interference effects, but the transmissivity remains high for all gap widths (Tλ > 0.9). Wavelength of
interference and magnitude increase with θ1 until, reaching Brewster’s angle (≈ 35◦), we have total
transmission of a parallel-polarized wave (see also Fig. 2-9). Beyond Brewster’s angle ρ‖ increases
rapidly, with decreasing transmissivity (but still increasing wavelength of interference). At θ1 = 45◦

we have r‖ = −1, and an evanescent wave forms, and the larger the incident angle, the faster the
strength of the evanescent wave decays across the gap. It is straightforward to verify that, at 45◦, both
equations (24.9) and (24.13), go to the same limit, i.e.,

Tλ(θ1 = 45◦) =
1

1 +

(
π
2

d
λ

) .

24.5 SURFACE WAVES (POLARITONS)

The interaction between electromagnetic waves and the oscillatory movement of free charges
(electrons) near the surface of metallic materials is known as surface plasmons or surface plasmon
polaritons. Surface plasmons are usually found in the visible to near-infrared part of the spectrum
in highly conductive metals, such as gold, silver, and aluminum. They are of importance in
near-field microscopy and nanophotonics [5, 10–12]. In some polar dielectrics lattice vibrations
(phonons) and/or oscillations of bound charges can also interact with electromagnetic waves in
the mid-infrared; these are known as surface phonon polaritons, and are of interest in the tuning of
emission properties [13] and nanoscale imaging [14]. In either case they result in the generation
of an electromagnetic wave traveling along, and only in the immediate vicinity of both sides
of an interface, i.e., a surface wave. In our brief discussion here we will mostly follow the
presentation of Zhang [5].

One requirement of a surface wave, i.e., a wave decaying in both directions normal to
the surface, is that there are evanescent waves on both sides of the interface. Consider the
arrangement shown in Fig. 24-4, consisting of a thin layer and a thick substrate, with the
thin layer bound at the top by a third medium. The thin layer may be air with a metallic
substrate (Otto configuration), or a metal layer bounded by air at the bottom (Kretschmann
configuration) [15]. If light is incident from the top medium, it is possible for evanescent waves
to occur simultaneously in both the underlying air and metal layers, as also indicated in Fig. 24-
4. A second requirement for polaritons is that the polariton dispersion relations must be satisfied,
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Typical configuration for the generation of surface polaritons,
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which are the poles of the Fresnel reflection coefficients, since infinite reflection coefficients
are an indication of resonance. If one writes the reflection coefficients in terms of wave-vector
components [4, 5] as

r‖ =
(w1z

ε1
−

w2z

ε2

) /(w1z

ε1
+

w2z

ε2

)
, (24.14a)

r⊥ =

(
w1z

µ1
−

w2z

µ2

) /(
w1z

µ1
+

w2z

µ2

)
, (24.14b)

the polariton dispersion relations are defined by

w1z

ε1
+

w2z

ε2
= 0, for parallel-polarized light, (24.15a)

w1z

µ1
+

w2z

µ2
= 0, for perpendicular-polarized light. (24.15b)

The nature of the dispersion relations is more easily understood by first looking at the case
of two dielectric media: in order to have evanescent waves we must have both w1z and w2z
purely imaginary, with w1z = −i|w1z| and w2z = −i|w2z|, i.e., both with a negative sign in order
to have e−2πiwr·r = e−2πi(w1xx−w1zz) = e−2πiw1xx+2π|w1z |z (reflected wave) decay toward negative z, and
e−2πiwt·r = e−2πi(w2xx+w2zz) = e−2πiw2xx−2π|w2z |z (transmitted wave) toward positive z (see Fig. 24-4).
This implies that in order to produce a surface wave with parallel-polarized incident light, the
electrical permittivities of the two materials must have opposite signs. Since metals display
negative permittivities over large parts of the spectrum, this condition is easily fulfilled. To
produce a surface polariton with perpendicular-polarized light, on the other hand, requires a
medium with negative magnetic permeability. While so-called negative index materials (NIM)
exhibit both negative permittivity and permeabilty [16], most materials are nonmagnetic, for
which surface polaritons cannot be generated with perpendicular-polarized light. Employing
equation (2.31) together with m2 = ε, we may write for a general nonmagnetic medium

w2
1 = w2

x + w2
1z = η2

0ε1, (24.16a)

w2
2 = w2

x + w2
2z = η2

0ε2, (24.16b)

where we have made use of the fact that the tangential component of the wave vector must be
continuous across the interface, w1x = w2x = wx. Using these relations the z-components may be
eliminated from equation (24.15a), leading to

wx = η0

√
ε1ε2

ε1 + ε2
. (24.17)
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FIGURE 24-5
Dispersion relation for aluminum and air; top left solid
line: propagating waves; dashed line: light line; bottom
right solid line: evanescent waves.

This equation relates the tangential component of the wave vector to wavenumber (or fre-
quency), and is a popular alternative statement of the polariton dispersion relation. If one
of the media is vacuum or air (ε = 1), an evanescent wave exists if wx > η0 (i.e., wz has an
imaginary component). Note that equation (24.17) also gives the roots to the numerator of
equation (24.14a): for wx < η0 equation (24.17) describes propagating waves.

Example 24.2. Determine the dispersion relation between aluminum and air, assuming that the dielec-
tric function of Al obeys the Drude theory.

Solution
The Drude equation has been given by equation (3.64), when written in complex form, as

εAl = 1 −
ν2

p

ν(ν + iγ)
; νp = 3.07 × 1015 Hz, γ = 3.12 × 1013 Hz,

with plasma frequency νp and damping factor γ from Fig. 3-7. With εair = 1 the tangential wave vector
component may be calculated from equation (24.17). Since εAl is complex, so is wx = w′x + iw′′x . It is
common to show a dispersion relationship by plotting the real part of wx vs. frequency or wavenumber,
which has been done in Fig. 24-5. The dashed line w′x = η0 is called the light line. On its left wz is real in
air, and a propagating wave exists. On its right, w′x > η0 and the wz in air becomes imaginary, and only
evanescent waves are found. It is seen that, for the evanescent waves, w′x increases rapidly, reaching an
asymptote at ν = νp/

√
2, when the real part of the dielectric function of Al approaches −1. For ν > νp

metal becomes transparent and the real part of the dielectric function becomes positive. The solution to
equation (24.17) for ν > νp corresponds to r‖ = 0 in equation (24.14a) and shows, therefore, propagating
waves.

24.6 FLUCTUATIONAL
ELECTRODYNAMICS

As indicated earlier, Maxwell’s equations do not contain a thermal radiation emission term.
Such a source must be added by considering radiative transitions by elementary energy carriers
(such as electrons, lattice vibrations called phonons, etc.) from a higher energy state to a lower
one, accompanied by the release of a photon. Such a quantum-mechanical process, similar to
emission from gas molecules covered in Chapter 11, must be linked to the equations describing
the electromagnetic waves. This is achieved through the concept of fluctuational electrodynamics,
originally developed by Rytov [1, 2]. At any finite temperature above absolute zero, chaotic
thermal motions takes place inside any material. Charged particles of opposite sign pair up
(known as dipoles), and the random motion of the dipoles induce a fluctuating electromagnetic
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field. Thus, in this fluctuational electrodynamics model the random thermal fluctuations gener-
ate a space- and time-dependent (but random) electric current density j′(r, t) inside the medium,
whose time average is zero [5]. To include the stochastic current density in the electromagnetic
wave equations, several approaches are possible. The most common technique is to employ a
dyadic Green’s function Ge(r, r′, ν) (a 3 × 3 matrix). The induced electric and magnetic fields in
the frequency domain can then be determined from

E(r, ν) = 2πiµ0

∫
V

Ge(r, r′, ν) · j(r′, ν)dr′, (24.18a)

H(r, ν) =

∫
V

Gh(r, r′, ν) · j(r′, ν)dr′, (24.18b)

where the integral is over the volume, which contains the fluctuating dipoles, j(r′, ν) is the
Fourier transform of the electric current density source j′(r, t) into frequency space, and µ0 is
the magnetic permeability of vacuum. The dyadic Green’s function for the magnetic field is, by
equation (2.13), directly related to Ge through Gh = −∇ ×Ge. Physically, Ge may be interpreted
as a transfer function relating the electric field at location r and frequency ν to a vector source
located at r’. Mathematically, the dyadic Green’s function is found as the solution to a vector
Helmholtz equation, which may be reduced to a scalar one as [4]

Ge(r, r′, ν) =

(
δ +

1

(2πw)2∇∇

)
G0(r, r′, ν), (24.19)

with G0 the solution to (
(2πw)2 + ∇2

)
G0(r, r′, ν) = −δ(r − r′), (24.20)

where δ(r − r′) is a 3D Dirac-delta function as defined on p. 610, and w is the magnitude of the
wave vector w. The time-averaged emitted energy flux may be calculated from the average
Poynting vector, equation (2.41),

〈S(r, ν)〉 = 1
2 〈<{E c ×H ∗

c}〉, (24.21)

where the angle brackets denote the ensemble average over the random fluctuations. Sticking
equations (24.18) into equation (24.21) requires a two-point ensemble average of the random
current density, which must be a function of local temperature. This is achieved through the
fluctuation–dissipation theorem pioneered by Rytov [1], leading to〈

jm(r, ν) jn(r′, ν)
〉

= 8νε0ε
′′Θ(ν,T)δmnδ(r − r′), (24.22)

where ε0 is the electrical permittivity of vacuum, ε′′ is the imaginary part of the medium’s
dielectric function, and subscripts m and n denote the x-, y- and z-components of j. The function
Θ(ν,T) is the mean energy of a Planck oscillator given by [4]

Θ(ν,T) =
hν

ehν/kT − 1
. (24.23)

A multiplicative factor of 4 is included on the right-hand side of equation (24.22), since only
positive frequencies are considered in the Fourier transform for the electric current density [17].
Sticking equations (24.18) and (24.22) into equation (24.21) yields for the individual terms arising
in the Poynting vector, after some manipulation,

1
2

〈
Ei(r, ν)H∗j(r, ν)

〉
= 8π

(
ν
c0

)2
Θ(ν,T)<

iε
∫

V

∑
m

Ge,im(r, r′, ν)Ge, jm(r, r′, ν)dr′
 , (24.24)
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Closely spaced parallel plates separated by a vacuum gap.

where the subscripts again denote the various x-, y- and z-components. For example, the
z-component of the Poynting vector becomes

〈Sz(r, ν)〉 = 1
2

〈
ExH∗y − EyH∗x

〉
= 8π

(
ν
c0

)2
Θ(ν,T)<

iε
∫

V

∑
m

(
Ge,xmG∗h,ym − Ge,ymG∗h,xm

)
(r, r′, ν)dr′

 . (24.25)

As given, the time-averaged Poynting vector constitutes the local radiative flux caused by the
surrounding electromagnetic field.

24.7 HEAT TRANSFER BETWEEN
PARALLEL PLATES

Consider Medium 1 separated from Medium 2 by a small, perfectly parallel vacuum gap of width
d, as shown in Fig. 24-6. To calculate the radiative flux between them we need to determine
the normal component of the Poynting vector for the energy transmitted from Medium 1 across
the gap, as well as the counter-flow from Medium 2 to 1. Since the problem is one-dimensional
in the z-direction, it has no azimuthal (or x- and y-) dependence, making the analysis a little
simpler if cylindrical coordinates are employed, i.e., we define position and wave vectors as

r = rêr + zk̂, w = wrêr + wzk̂. (24.26)

The dyadic Green’s function for two semi-infinite media separated by a parallel gap may be
determined from [4, 5, 18, 19]

Ge(r, r′, z, z′; ν) = i
∫
∞

0

wx

2w1z

(
ŝt⊥ŝ + p̂1t‖p̂2

)
e−2πi(w2zz−w1zz′)e−2πiwx(r−r′)dwx, (24.27a)

where
ŝ = êr × k̂, p̂i = (wxk̂ − wizêr)/wi, i = 1, 2. (24.27b)

Here t⊥ and t‖ are the transmission coefficients from Medium 1 to Medium 2, as evaluated from
Airy’s formula, equation (2.131b), and the interrelationship between wx, wiz, and wi is given by
equation (24.16). Sticking this into equation (24.25) one obtains, after considerable algebra, for
the spectral radiative flux from Medium 1 to Medium 2

qν,1→2 = 8πΘ(ν,T1)
∫
∞

0
Z12(ν,wx)wxdwx (24.28a)
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where

Z12(ν,wx) =
4<{w1z}< {w2z}

∣∣∣w2
0e−2iw0d

∣∣∣∣∣∣(w0z + w1z)(w0z + w1z)
(
1 − r⊥01r⊥02e−2iw0d)∣∣∣2

+
4<

{
ε1w∗1z

}
<

{
ε2w∗2z

} ∣∣∣w2
0e−2iw0d

∣∣∣∣∣∣(ε1w0z + w1z)(ε2w0z + w1z)
(
1 − r‖01r‖02e−2iw0d)∣∣∣2 . (24.28b)

The Z12(ν,wx) may be interpreted as an exchange function, identifying the contribution of a
given tangential wave vector component, wx (related to incidence angle), to the spectral flux.
Observing that Z12 = Z21, the net heat exchange between the two surfaces is readily found, after
integration over all frequencies, as

qnet =

∫
∞

0

(
qν,1→2 − qν,2→1

)
dν =

∫
∞

0
(Θ(ν,T1) −Θ(ν,T2))

∫
∞

0
Z12(ν,wx)wxdwx dν. (24.29)

Equations (24.28) and (24.29) include contributions from both propagating and evanescent
waves. We observed in Section 24.3 that we have propagating waves for wx < w0 = η0 = ν/c0
(real w0z in the vacuum layer), and evanescent waves for wx > ν/c0 (imaginary w0z). Using the
expressions for transmission coefficients developed in Section 24.4, we find

Zprop(ν,wx) =
(1 − r2

⊥01)(1 − r2
⊥02)

4
∣∣∣1 − r⊥01r⊥02e−2iw0d

∣∣∣2 +
(1 − r2

‖01)(1 − r2
‖02)

4
∣∣∣1 − r‖01r‖02e−2iw0d

∣∣∣2 , wx < η0. (24.30a)

For the evanescent waves the exchange function reduces to

Zevan(ν,wx) =
= {r⊥01} = {r⊥02} e−2|w0 |d∣∣∣1 − r⊥01r⊥02e−2|w0 |d

∣∣∣2 +
=

{
r‖01

}
=

{
r‖02

}
e−2|w0 |d∣∣∣1 − r‖01r‖02e−2|w0 |d

∣∣∣2 , wx > η0. (24.30b)

Clearly, similar to the evanescent transmissivity of Section 24.3, the contribution from Zevan to
the flux decreases exponentially with distance between the plates.

Far Field Heat Flux. As discussed in Section 2.5, as d becomes large, d � λ0, the radiation
will lose coherence, and the gap transmissivity will obey equation (2.133) (with κ = 0 for the
vacuum gap). Then the exchange function reduces to, with |r|2 = ρ,

Zprop,ff(ν,wx) =
(1 − ρ⊥01)(1 − ρ⊥02)

4
(
1 − ρ⊥01ρ⊥02

) +
(1 − ρ‖01)(1 − ρ‖02)

4
(
1 − ρ‖01ρ‖02

) . (24.31)

Integration over wx may be replaced by wx = (ν/c0) sinθ, where θ is the polar angle in vacuum,
and equation (24.29) becomes, with Zevan = 0 and 1 − ρ = ε,

qnet,far =
2π
c2

0

∫
∞

0
[Θ(ν,T1) −Θ(ν,T2)]

∫ π/2

0

 1
1
ε⊥01

+
1
ε⊥02

− 1
+

1
1
ε‖01

+
1
ε‖02
− 1

 cosθ sinθ dθ ν2dν.

(24.32)
Comparison with equation (5.35) shows that these results are identical if the emissivities are
assumed to be gray and diffuse.

Example 24.3. Determine the total radiative flux between two plates of aluminum, separated by a
vacuum gap, assuming that the dielectric function of Al obeys the Drude theory as in the previous
example. The plates are isothermal and maintained at 400 K and 300 K, respectively. Determine the
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Total radiative heat fluxes between aluminum plates separated by a vacuum microgap of varying width (dashed =
evanescent waves; dash-dot = propagating waves; triangles = parallel/TM polarization; squares = perpendicular/TE
polarization; thick lines = both polarizations).

total radiative flux as a function of gap thickness. Distinguish contributions from propagating and
evanescent waves, and compare the influence of parallel and perpendicular polarizations.

Solution
With the dielectric function of Al given in the previous example, and with the wiz related to wx and εi by
equation (24.16), the reflection coefficients in equations (24.30) may be calculated from equations (24.14).
Integrating over all frequencies ν and all tangential wave vectors wx, separately 0 ≤ wx < η0 for
propagating waves, and η0 < wx < ∞ for evanescent waves, yields the desired total radiative flux
between the two aluminum plates, as shown in Fig. 24-7 for gap widths ranging from 1 nm to 10µm. For
the far-field solution equation (24.30a) is replaced by equation (24.31) and Zevan = 0. Integration may
again be over tangential wave vectors 0 ≤ wx < η0 or, alternatively, over polar angle θ. It is seen that, for
gap sizes of less than about 2µm, the heat flux is dominated by the evanescent waves, in particular its TE
component. For small gap widths the propagating component approaches an asymptotic limit, which
is about an order of magnitude larger than the far-field solution, but still considerably smaller than the
blackbody limit of σ(T4

1 − T4
2) ' 992 W/m2 (due to the small emissivity of aluminum, see Fig. 3-7).

The plasma frequency of aluminum corresponds to a wavelength slightly less than 0.1µm,
while heat transfer at the example’s temperatures occurs at wavelengths between roughly 2.5
and 60µm. Therefore, the spectral variations in heat flux essentially follow a Planck function
pattern. Silicon carbide, on the other hand, has a band around 12µm (see Fig. 3-13), giving rise
to interesting spectral variations.

Example 24.4. Determine the spectral radiative flux between two plates of silicon carbide, separated
by a 10 nm vacuum gap, assuming that the dielectric function of SiC obeys the Lorentz model with
parameters given by Fig. 3-13. The plates are again isothermal and maintained at 400 K and 300 K,
respectively. Distinguish contributions from propagating and evanescent waves, as well as the influence
of parallel and perpendicular polarizations, and compare with the far-field solution.

Solution
As noted in Chapter 3, the dielectric function of SiC is well-described by the single oscillator Lorentz
model of equation (3.63), with ε0 = 6.7, νpi = 4.327 × 1013 Hz, νi = 2.380 × 1013 Hz (corresponding
to a wavenumber of 793 cm−1), and γi = 1.428 × 1011 Hz. Aside from the different dielectric function
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FIGURE 24-8
Spectral radiative heat fluxes between silicon carbide plates separated by a 10 nm vacuum microgap.

and the fixed gap width, the solution proceeds as in the previous example, but without carrying out
the actual integration over frequency. Results are shown in Fig. 24-8 for the spectral region between
600 cm−1 and 2,000 cm−1 surrounding the resonance band of SiC. It is seen that the TE evanescent wave
has a maximum at the resonance frequency of 793 cm−1, before dropping by several orders of magnitude
similar to the propagating waves. On the other hand, the TM evanescent wave has a maximum at
969 cm−1 (corresponding to the wavelength with near-zero reflectivity in Fig. 3-13). The far-field flux
follows the behavior given in Fig. 3-13, i.e., flux decreases over wavelengths with large reflectivities.

A number of researchers have investigated near-field radiative transfer theoretically, primar-
ily looking at different aspects of the heat flow across plane-parallel gaps [17, 20–26]. Other ge-
ometries that have also received attention are spheres in close contact with flat plates [18,19,27],
and with another sphere [28–31].

24.8 EXPERIMENTS ON NANOSCALE
RADIATION

It has been recognized for some time that radiative heat transfer can exceed blackbody limits at
the nanoscale, and thus plays an important role in a number of applications, such as near-field
microscopy, nanoelectronics thermal management, photovoltaics, etc. Correspondingly, the
problem of heat transfer between closely spaced objects has been studied theoretically in some
detail, as outlined in the previous sections. On the other hand, experimental verification has
been limited, mostly because of the difficulties of maintaining a precise nanoscale gap between
the emitter and receiver. The earliest experiments were carried out in the field of cryogenic
insulation by Domoto and coworkers [32] (accompanied by some theoretical attempts [20, 21]),
and by Hargreaves [33, 34]. At cryogenic temperatures, say below 10 K, according to Wien’s
displacement law, equation (1.16), heat transfer is maximized around a wavelength of 300µm,
i.e., even plates tens of µm apart should display tunneling effects. Domoto and coworkers
measured heat flow between two copper plates as close as 10µm together, and at temperatures
between 5 K and 15 K. While the measured heat transfer was only about 3% of that between
blackbodies (because of copper’s small emittance), and agreement with their model was only
fair, they were able to show that—contrary to far-field analysis—the heat transfer increased
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by a factor of 2.3 between the far field and their closest spacing of 10µm. Hargreaves carried
out similar experiments, using chromium plates with vacuum gaps down to 1.5µm. He was
able to demonstrate a factor of five heat transfer increase from far field to near field (but still
considerably less than the blackbody limit).

Small gaps are more easily achieved by moving a small tip close to a surface. For example,
Xu et al. [35] tried to measure near-field radiative transfer by moving a 100µm diameter indium
probe of a scanning thermal microscope as close as 12 nm to a thermocouple probe, but could
not detect any substantial increase in heat transfer. Kittel and colleagues [36] used a scanning
tunneling microscope (STM) to measure near-field radiation between the thermocouple tip and
a plate, observing the expected 1/d3 increase in heat transfer down to a gap width of 10 nm. Be-
low that distance, there was disagreement between theory and experiment. Narayanaswamy et
al. [27] measured near-field radiation with a bimetallic atomic force microscope (AFM) cantilever
with a silica microsphere at its tip. The plate was heated to maintain a temperature difference
with the sphere, leading to near-field radiative transfer rates in the order of nW, which was mea-
sured by monitoring the deflection of the bimetallic cantilever. Their measurements confirmed
that the near-field radiation between the flat surface and the microsphere was more than two
orders of magnitude larger than between blackbodies, with a 1/d-dependence.

Successful measurements between parallel plates have been carried out by Hu and cowork-
ers [27]. They employed two precise optical glass flats spaced a fixed 1.6µm apart by using
polystyrene spacer beads. Applying various temperature differences they measured heat trans-
fer rates approximately 35% higher than the blackbody limit, and observed good agreement with
theoretical predictions. Very recently, Ottens et al. [37] carried out high-precision heat transfer
measurements between two sapphire plates spaced a variable distance as little as 2µm apart.
They also used cryogenic temperatures to emphasize near-field effects. Figure 24-9 shows the
pertinent results of their experiments, compared with theoretical results from equation (24.29),
displayed in the form of a heat transfer coefficient, i.e., hr = qnet/(T1 − T2). Agreement between
theory and experiment is good, except for a slight systematic error, which may be due to imper-
fect flatness of the plates, as demonstrated by the dashed lines, which correspond to near-field
radiative heat transfer between two convex plates, each having a radius of curvature of ' 1 km.
Note that the highest heat transfer coefficient measured, 8.5 W/m2K for the ∆T = 6.8 K case,
exceeds the blackbody limit of σ(T4

1 − T4
2)/(T1 − T2) ' 6.7 W/m2K.



816 24 NANOSCALE RADIATIVE TRANSFER

References
1. Rytov, S. M.: “Correlation theory of thermal fluctuations in an isotropic medium,” Soviet Physics JETP, vol. 6,

no. 1, pp. 130–140, 1958.
2. Rytov, S. M., Y. A. Kravtsov, and V. I. Tatarskii: Principles of Statistical Radiophysics III: Elements of Random Fields,

Springer Verlag, Berlin, 1987.
3. Chen, G.: Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and

Photons, Oxford University Press, New York, 2005.
4. Novotny, L., and B. Hecht: Principles of Nano-Optics, Cambridge University Press, New York, 2006.
5. Zhang, Z. M.: Nano/Microscale Heat Transfer, McGraw-Hill, New York, 2007.
6. Basu, S., Z. H. Zhang, and C. J. Fu: “Review of near-field thermal radiation and its application to energy

conversion,” International Journal of Energy Research, vol. 33, pp. 1203–1232, 2009.
7. Zhang, Z. H., and K. Park: “Fundamentals and applications of near-field radiative energy transfer,” in Thermal-

FluidsPedia, Thermal-Fluids Central, 2012, https://www.thermalfluidscentral.org/encyclopedia/index.php/Near-
field thermal radiation.

8. Carminati, R., and J.-J. Greffet: “Near-field effect in spatial coherence of thermal sources,” Physics Review Letters,
vol. 82, no. 8, pp. 1660–1663, 1999.

9. Cravalho, E. G., C. L. Tien, and R. P. Caren: “Effect of small spacings on radiative transfer between two dielectrics,”
ASME Journal of Heat Transfer, vol. 89, pp. 351–358, 1967.

10. Kawata, S. (ed.): Near-Field Optics and Surface Plasmon Polaritons, Springer, Berlin, 2001.
11. Tominaga, J., and D. P. Tsai (eds.): Optical Nanotechnologies — The Manipulation of Surface and Local Plasmons,

Springer, Berlin, 2003.
12. Homola, J., S. S. Yee, and G. Gauglitz: “Surface plasmon resonance sensors: Review,” Sensors and Actuators B,

vol. 54, pp. 3–15, 1999.
13. Greffet, J.-J., R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen: “Coherent emission of light by thermal

sources,” Nature, vol. 416, pp. 61–64, 2002.
14. Hillenbrand, R., T. Taubner, and F. Kellmann: “Phonon-enhanced light–matter interaction at the nanometer

scale,” Nature, vol. 418, pp. 159–162, 2002.
15. Raether, H. (ed.): Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin, 1988.
16. Rupin, R.: “Surface polaritons of a left-handed medium,” Physics Letters A, vol. 277, pp. 61–64, 2000.
17. Fu, C. J., and Z. H. Zhang: “Nanoscale radiation heat transfer for silicon at different doping levels,” International

Journal of Heat and Mass Transfer, vol. 49, pp. 1703–1718, 2006.
18. Mulet, J. P., K. Joulain, R. Carminati, and J.-J. Greffet: “Nanoscale radiative heat transfer between a small particle

and a plane surface,” Applied Physics Letters, vol. 78, pp. 2931–2933, 2001.
19. Mulet, J. P., K. Joulain, R. Carminati, and J.-J. Greffet: “Enhanced radiative heat transfer at nanometric distances,”

Microscale Thermophysical Engineering, vol. 6, pp. 209–222, 2002.
20. Cravalho, E. G., C. L. Tien, and R. P. Caren: “Effect of small spacings on radiative transfer between two dielectrics,”

ASME Journal of Heat Transfer, vol. 89, pp. 351–358, 1967.
21. Boehm, R. F., and C. L. Tien: “Small spacing analysis of radiative transfer between parallel metallic surfaces,”

ASME Journal of Heat Transfer, vol. 92, pp. 412–417, 1970.
22. Narayanaswamy, A., and G. Chen: “Thermal radiation in 1D photonic crystals,” Journal of Quantitative Spec-

troscopy and Radiative Transfer, vol. 93(1-3), pp. 175–183, 2005.
23. Hu, L., A. Narayanaswamy, X. Chen, and G. Chen: “Near-field thermal radiation between two closely spaced

glass plates exceeding Planck’s blackbody radiation law,” Applied Physics Letters, vol. 92, p. 133106, 2008.
24. Narayanaswamy, A., S. Shen, L. Hu, X. Chen, and G. Chen: “Breakdown of the Planck blackbody radiation law

at nanoscale gaps,” Applied Physics A, vol. 96, pp. 357–362, 2009.
25. Basu, S., B. J. Lee, and Z. M. Zhang: “Near-field radiation calculated with an improved dielectric function model

for doped silicon,” ASME Journal of Heat Transfer, vol. 132, no. 2, p. 023302, 2010.
26. Rousseau, E., M. Laroche, and J.-J. Greffet: “Radiative heat transfer at nanoscale: Closed-form expression for

silicon at different doping levels,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no. 7-8, pp.
1005–1014, 2010.

27. Narayanaswamy, A., S. Shen, and G. Chen: “Near-field radiative heat transfer between a sphere and a substrate,”
Physical Review B, vol. 72, p. 115303, 2008.

28. Volokitin, A. I., and B. N. J. Persson: “Radiative heat transfer between nanostructures,” Physical Review B, vol. 63,
p. 205404, 2001.

29. Volokitin, A. I., and B. N. J. Persson: “Resonant photon tunneling enhancement of the radiative heat transfer,”
Physical Review B, vol. 69, p. 045417, 2004.

30. Domingues, G., S. Volz, K. Joulain, and J.-J. Greffet: “Heat transfer between two nanoparticles through near field
interaction,” Physical Review Letters, vol. 94, p. 085901, 2005.

31. Narayanaswamy, A., and G. Chen: “Thermal near-field radiative transfer between two spheres,” Physical Review
B, vol. 77, p. 075125, 2005.

32. Domoto, G. A., R. F. Boehm, and C. L. Tien: “Experimental investigation of radiative transfer between metallic
surfaces at cryogenic temperatures,” ASME Journal of Heat Transfer, vol. 92, pp. 405–411, 1970.

33. Hargreaves, C. M.: “Anomalous radiative transfer between closely-spaced bodies,” Physics Letters A, vol. 30, pp.
491–492, 1969.



PROBLEMS 817

34. Hargreaves, C. M.: “Radiative transfer between closely spaced bodies,” Technical Report 5, Philips Research
Report, 1973.

35. Xu, J. B., K. Lauger, R. Moller, K. Dransfeld, and I. H. Wilson: “Heat transfer between two metallic surfaces at
small distances,” Journal of Applied Physics, vol. 76, pp. 7209–7216, 1994.

36. Kittel, A., W. Müller-Hirsch, J. Parisi, S. Biehs, D. Reddig, and M. Holthaus: “Near-field heat transfer in a scanning
thermal microscope,” Physical Review Letters, vol. 95, p. 224301, 2005.

37. Ottens, R. S., V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and
B. F. Whiting: “Near-field radiative heat transfer between macroscopic planar surfaces,” Physical Review Letters,
vol. 107, no. 1, p. 014301, 2011.

Problems

24.1 Show that the transmissivity of a thin dielectric film, surrounded by two identical, but different
dielectrics, is described by equation (24.13) for incidence angles θ1 > θc. Solve the problem separately
for both TM and TE waves.

24.2 Consider an interface in the x-y-plane at z = 0 between two dielectrics (n1, z < 0 and n2 < n1, z > 0),
and determine the z-component of the Poynting vector in Medium 2 for incidence in Medium 1 at
angles exceeding the critical angle. Show that the time average of the Poynting vector is zero.


