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23
INVERSE RADIATIVE
HEAT TRANSFER

23.1 INTRODUCTION

Up to this point we have concerned ourselves with radiative heat transfer problems, where the
necessary geometry, temperatures, and radiative properties are known, enabling us to calculate
the radiative intensity and radiative heat fluxes in such enclosures. Such cases are sometimes
called “direct” heat transfer problems. However, there are many important engineering applica-
tions where knowledge of one or more input parameters is desired that cause a certain radiative
intensity field. For example, it may be desired to control the temperatures of heating elements
in a furnace, in order to achieve a specified temperature distribution or radiative heat load on
an object being heated. Or the aim may be to deduce difficult to measure parameters (such
as radiative properties, temperature fields inside a furnace, etc.) based on measurements of
radiative intensity or radiative flux. Such calculations are known as inverse heat transfer analyses.

One of the difficulties associated with inverse heat transfer analyses is the fact that they tend
to be ill-posed (unlike direct heat transfer problems, which are nearly always well-posed). The
conditions for a problem to be well-posed were first postulated by Hadamard [1] as
• the solution to the problem must exist,
• the solution must be unique, and
• the solution must be stable (i.e., small changes of problem parameters cause only small

changes in the solution).
Only in rare instances can the solution to an inverse problem be proven to be unique. For

example, while a given parameter field will produce, say, a unique radiative flux at a given
location (direct problem), the measured radiative flux at a certain location, on the other hand,
can be caused by various parameter fields governing the system (inverse problem). Moreover,
inverse problems tend to be very sensitive to disturbances in the parameter field, such as random
errors attached to experimental data. This generally necessitates special solution techniques to
satisfy stability requirements, by adding additional information to the analysis based on prior
knowledge of the true (or desired, in the case of design) solution attributes.

While rudimentary attempts at inverse heat transfer solutions have been around for many
years, formal methods to convert unstable inverse problems into approximate, well-posed
problems through different types of regularization or stabilization techniques are only 40 to 50
years old, notably Tikhonov’s regularization procedure [2], and Beck’s function estimation
technique [3]. The earliest works on inverse heat transfer problems date back to about 1960
[4–8], all on inverse heat conduction. The first investigations on inverse radiative heat transfer
appeared in the early 1990s, mostly by Özişik and coworkers [9–16]. Interestingly, almost all
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780 23 INVERSE RADIATIVE HEAT TRANSFER

of these papers concerned themselves with radiative transfer within participating media, and
there were only a few treatments dealing with inverse surface radiation before the turn of the
century [17, 18].

The last decade has seen a veritable explosion in research on inverse radiation, which
will be summarized after a brief outline is given of the nature of inverse radiation problems,
and after some of the more basic and popular solution methods are explained. The reader
interested in conducting serious research in this field should consult the various books on
inverse heat transfer [19–24] and solution methods for ill-posed problems [2,3,25–32]. Reviews
of inverse radiation tools and research have been given by França and coworkers [33] and Daun
and Howell [34, 35] (inverse surface radiation problems), and by Charette et al. [36] (optical
tomography).

23.2 SOLUTION METHODS
The solution to an inverse problem is usually found by minimizing an objective function, F, using
a stabilization technique in the minimization procedure. We will here briefly discuss a few of
the most popular methods, such the truncated singular value decomposition (TSVD), Tikhonov
regularization, Newton’s method, and the Levenberg–Marquardt and conjugate gradient tech-
niques. Others can be found in the books cited above, as well as in the various research papers
in the field.

Suppose the radiative intensity or radiative flux, etc., is known for a number of directions,
and/or wavelengths. These measured data values (for deducing parameters inside or on the
surface of the radiative enclosure) or desired values (for control of parameters) will be denoted
by the data vector y (with elements Y1, Y2, . . . ,YI). These data need to be compared with cor-
responding values estimated from a direct analysis, based on an optimized set of the unknown
parameters to be determined, denoted by the vector i (with elements I1, I2, . . . , II).

If J different parameters are chosen for the inverse problem, these values form a parameter
vector p (with elements p1, p2, . . . , pJ), and the estimated solutions Ii are a function of this vector.
For example, if it is desired to estimate the Planck function (or temperature) distribution within
a participating medium, one may postulate the Planck function field to be approximated by

Ibη(r, η) '
J∑

j=1

p j fj
(
r, η

)
, (23.1)

where the fj are known specified basis functions (polynomials, splines, etc.), and the best values
for the p j are to be found.

If all the data points have statistically equal error values, or if all desired values have equal
importance, then the objective function to be minimized is the ordinary least squares norm:1

F =

I∑
i=1

(Ii − Yi)2 = (i − y) · (i − y) =
∥∥∥i − y

∥∥∥2
. (23.2)

If the data points are very close together then the summation in equation (23.2) may be replaced
by an integral.

In many applications the statistical uncertainty of data points, or their variance, σ2
i , may be

known and may be different for individual data points. In that case it is preferable to define the
objective function as a weighted least squares norm

F =

I∑
i=1

( Ii − Yi

σi

)2

= (i − y) ·W·(i − y), (23.3)

1We will follow here again the matrix notation introduced in Chapter 18, i.e., vectors are written as bold lowercase
letters, two-dimensional tensors as bold uppercase letters, and dot products imply summation over the closest indices
on both sides of the dot. See also footnotes on p. 588.
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where W is a diagonal weighting matrix,

W =


1/σ2

1 0 · · · 0
0 1/σ2

2 · · · 0
...

...
. . .

...
0 0 1/σ2

I

 . (23.4)

In control applications, where y is the desired effect, rather than a vector of measured data,
the factors 1/σi function as importance factors attached to individual control values Yi. Equa-
tion (23.3) reduces to equation (23.2) if W is equal to the unity tensor δ (with Kronecker’s delta
function δi j as elements, i.e., a diagonal matrix with all nondiagonal elements zero, and all
diagonal elements Wii = 1).

Minimization of the objective function in terms of the parameter vector p requires that the
derivatives of F with respect to each of the parameters p j be zero, i.e.,

∂F
∂p1

=
∂F
∂p2

= · · · =
∂F
∂pJ

= 0, or ∇pF(p) = 0, (23.5)

where the ∇pF(p) represents the gradient of F(p) with respect to the vector of parameters.
Carrying out the differentiation of equation (23.3) with respect to p leads to

∂F
∂p j

= 2
I∑

i=1

Ii − Yi

σ2
i

∂Ii

∂p j
= 0, j = 1, 2, . . . , J, (23.6)

or, in matrix notation,
∇pF(p) = 2(i − y) ·W · X = 0, (23.7)

where X is known as the sensitivity matrix, or Jacobian, with elements

X = ∇pi =



∂I1

∂p1

∂I1

∂p2
· · ·

∂I1

∂pJ

∂I2

∂p1

∂I2

∂p2
· · ·

∂I2

∂pJ
...

...
. . .

...
∂II

∂p1

∂II

∂p2
· · ·

∂II

∂pJ


, (23.8)

for J unknown parameters and I measured (or defined) data points. If the sensitivity matrix
is independent of p the problem is called linear. For example, if the general radiative transfer
equation (10.21) is to be solved with the temperature field given by equation (23.1) (and there
are no other unknown parameters), differentiation of the intensity field with respect to any
parameter p j makes ∂I/∂p j independent of all parameters p. For such a case

i = X · p (23.9)

and equation (23.7) may be restated in standard matrix form as

A · p = b, with A = XT
·W · X, b = XT

·W · y, (23.10)

which are known as the normal equations, and are solved after matrix inversion as

p = A−1
· b = (XT

·W · X)−1
· XT
·W · y. (23.11)
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FIGURE 23-1
Plot of the residual norm for (a) a well-conditioned and (b) an ill-conditioned matrix equation.

If the problem is nonlinear, i.e., the sensitivity coefficients Xi j are functions of p, then the problem
must be linearized and solved iteratively. This is usually done by expanding i(p) into a truncated
Taylor series around the current solution pk at iteration k, or

i(p) ' i(pk) + Xk
· (p − pk), (23.12)

where i(pk) and Xk are the values for estimated intensity and the sensitivity matrix after the
kth iteration. Sticking this into equation (23.7) leads to an iterative procedure with updated
parameter vector as

pk+1 = pk + (XTk
·W · Xk)−1

· XTk
·W · (y − ik), (23.13)

which is known as the Gauss (or Gauss-Newton) method.
The linear solution, equation (23.11), and the linearized iterative procedure, equation (23.13),

both require the matrix XT
·W · X to be nonsingular, i.e., its determinant may not be zero, or∣∣∣XT

·W · X
∣∣∣ , 0. If the value of this determinant is close to zero the problem is called ill-

conditioned and, unfortunately, inverse heat transfer problems tend to be very ill-conditioned.
This is best understood by visually comparing the solutions to two very simple well-conditioned
and ill-conditioned matrix equations, such as

well-conditioned: A · p =

(
2 3
3 3

)
·

(
p1
p2

)
=

(
1
1

)
= b, (23.14a)

ill-conditioned: A · p =

(
2 2.1
2 2

)
·

(
p1
p2

)
=

(
1
1

)
= b. (23.14b)

The well-conditioned matrix equation has a well-defined solution (p1 = p2 = 1
5 in the present

case), which minimizes the square residual

||A · p − b||2 =

2∑
i=1

 2∑
j=1

Ai jp j − bi


2

, (23.15)

as shown in a contour plot in Fig. 23-1a. Equation (23.14b) also has a single, unique solution
(as is guaranteed for all nonsingular linear problems, with p1 = 1

2 , p2 = 0 in this particular
case), but, as seen from the contour plot in Fig. 23-1b, there is also a range of locations along
the valley floor that makes the residual very small. In control problems this leads to many
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FIGURE 23-2
Geometry for Example 23.1.

possible solutions, which almost satisfy the design criteria (but may require undesirable control
parameters). Similarly, when trying to deduce a property field, many solutions exist that nearly
satisfy the experimental data (but may yield property fields with wide fluctuations). In addition,
ill-conditionedness makes the solution highly susceptible to small perturbations in experimental
data as well as to numerical artifacts, such as roundoff error.

Before discussing methods to solve ill-conditioned problems it is instructive to investigate
the matrices that need to be inverted in the analysis, such as X in equation (23.9) or XT

·W ·X in
equation (23.10). The properties of an arbitrary matrix A with M×N elements may be diagnosed
through Singular Value Decomposition (SVD) [30,37], by decomposing it into a product of an M×N
column-orthogonal matrix U, an N×N diagonal matrix S with only positive or zero elements (its
singular values, usually placed in descending order), and the transpose of an N ×N orthogonal
matrix VT, i.e., A = U · S ·VT. The beauty of orthogonal matrices is that its inverse is simply its
transpose, while the inverse of a diagonal matrix (i.e., a matrix where only the diagonal terms
are nonzero) is another diagonal matrix whose elements are the reciprocals of Skk. Therefore,
the inverse of A follows as

A−1 = V · S−1
·UT, (23.16a)

which has elements

(A−1)i j =

N∑
k=1

Vik
1

Skk
U jk. (23.16b)

Inspection of equation (23.16b) shows that the only thing that can go wrong with the inversion
of (a nonsingular) A is that the inversion gets greatly impacted by roundoff error caused by
very small singular values. The condition number of a matrix is the ratio of the largest over the
smallest Skk; the matrix is singular if the condition number is infinite, and is ill-conditioned if its
condition number is too large.

Example 23.1. Consider two long parallel plates of width w as shown in Fig. 23-2. Both plates have a
gray, diffuse emittance of ε; they are separated by a distance h and are placed in a large, cold environment.
The bottom plate is insulated, and it is desired to keep this plate at an isothermal temperature T∗ across its
width through radiative heating from the top plate. Determine the necessary temperature distribution
T2(x2) to achieve this result.

Solution
Direct Solution. From equation (5.27) we find that J1(x1) = σT4

1(x1) for an insulated surface. Thus, from
equation (5.24), with dFdi−di = 0, we obtain

σT4
1(x1) =

∫ w

0
J2(x2) dFd1−d2,

J2(x2) = εσT4
2(x2) + (1 − ε)

∫ w

0
σT4

1 dFd2−d1.

The necessary view factors have already been obtained in Example 5.10. Also, using similar nondimen-
sionalization as in that example, i.e., W = w/h, ξ = x/h, Θ(x) = [T(x)/T∗]4, and J(ξ2) = J2(x2)/σT∗4,
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these equations become

Θ1(ξ1) =

∫ W

0
J(ξ2) f (ξ1 − ξ2) dξ2,

J(ξ2) = εΘ2(ξ2) + (1 − ε)
∫ W

0
Θ1(ξ1) f (ξ1 − ξ2) dξ1,

f (ξ1 − ξ2) = 1
2

[
1 + (ξ1 − ξ2)2

]−3/2
.

The desired result is Θ1(ξ1) = 1 = const, for which the necessary Θ2(ξ2) needs to be found. We will
approximate both plates by N constant temperature (and radiosity) strips of width ∆ξ = W/N that have
nondimensional temperatures Θ1i,Θ2i, i = 1, 2, . . . ,N, with optimum values of the parameters Θ2i to be
determined (and, for illustrative purposes, without taking advantage of the obvious symmetry across
x = w/2). Thus, approximating the integrals by summation over the strips, and assuming view factors
to be constant across the width of a strip [evaluated between ξ1i = (i− 1

2 )∆ξ and ξ2 j = ( j− 1
2 )∆ξ], we obtain

Θ1i = ∆ξ
N∑

j=1

Jj fi j, i = 1, 2, . . . ,N,

Jj = εΘ2 j + (1 − ε)∆ξ
N∑

k=1

Θ1k fjk, j = 1, 2, . . . ,N,

or

Θ1i =

N∑
j=1

Θ2 j yi j +

N∑
k=1

Θ1kzik, i = 1, 2, . . . ,N, (23.17)

yi j = ε∆ξ fi j,

zik = (1 − ε)∆ξ2
N∑

j=1

fi j f jk.

Inverse Problem. Since we have chosen equal numbers of strips on the bottom surface (design points)
and top heater (parameter vector p), equation (23.17) constitutes a set of linear equations (with given
desired Θ1i) that can be solved directly for the N unknown Θ2 j, i.e., by direct solution of equation (23.9).
In general, however, the number of strips may be different for each plate and we prefer to minimize
the objective function. Since we want each design point to achieve T1 = T∗ (or Θ1 = 1), the objective
function becomes, assuming constant weights (σi = 1),

F = ‖Θ1 − 1‖2 =

N∑
i=1

(Θ1i − 1)2,

where 1 is a unity vector (all elements equal 1). The sensitivity matrix is obtained by differentiating
equation (23.17) with respect to (p j =) Θ2 j, or

Xi j = yi j +

J∑
k=1

zikXkj,

which is solved by successive approximation. We note that the sensitivity matrix is independent of Θ2 j.
Thus, the problem is linear (as we noticed already). For a direct solution, and to diagnose the problem’s
ill-posedness, we perform an SVD on the matrix A = XT

· X. Once the U, S, and V matrices have been
determined the solution for p (with elements pi = Θ2i) is found from equations (23.10) and (23.16b) as

Θ2i =

N∑
j=1

(A)−1
i j b j =

N∑
k=1

Vik

Skk

N∑
j=1

U jkb j, (23.18a)

with

b = XT
· y = XT

· 1, or b j =

N∑
l=1

Xl j yl =

N∑
l=1

Xl j. (23.18b)
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FIGURE 23-3
Singular values for the matrix in Example 23.1.

The singular values for the present problem, with w/h = 5, ε = 0.5, and N =20 (as calculated with the
Numerical Recipes routine svdcmp [37]) are shown in Fig. 23-3. It can be seen that the singular values decay
rapidly from a maximum value of 0.44 down to 3×10−10, with a condition number exceeding 109, making
the problem very ill-conditioned. The solution to equation (23.18a), when calculated in single precision
(with about six digits of accuracy) yields oscillatory (and meaningless) values for nondimensional heater
emissive power Θ2 varying between approximately −300 and +300 (not shown here).

The matrix A in equation (23.10) contains the square of the sensitivity matrix X, and thus
also the square of its condition number, making the solution even more susceptible to round-off
error. An alternative, and often preferred, technique involves solving a truncated version of
equation (23.7), by setting

i − y = 0, or X · p = y, (23.19)

which also finds a (different) least-squares minimum [37]. However, equation (23.19) is overde-
terminate if there are more data points than parameters (I > J).

From the above example it can be seen that it is generally necessary to apply stabilizing
methods even to the solution of linear inverse problems, such as the techniques discussed
below. The various techniques to solve ill-conditioned problems may be loosely collected under
the titles regularization, gradient-based optimization, and metaheuristics, and some of the most
common methods will be briefly discussed below. More detail can be found in books on the
subject, e.g., Hansen [30], as well as several review articles [33, 34]

23.3 REGULARIZATION

We saw in the previous section that an ill-conditioned matrix has a large condition number, i.e.,
some of the singular values are very small, causing the solution to become unstable. Decreasing
the condition number of a matrix A by modifying it (or its inverse) is known as regularization.
We will briefly describe here the simple truncated singular value decomposition and the perhaps
most popular Tikhonov regularization methods.

Truncated Singular Value Decomposition
(TSVD)
The simplest form of regularization consists of simply omitting parts of the inverse of A corre-
sponding to the (offending) smallest singular values. This is justified by the fact that the higher
terms in the series correspond to “high frequency” components, and often have less physical
significance. Our prior knowledge (or desire) of a smooth solution is used as justification for
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Predicted top surface temperatures and recovery of desired bottom surface temperatures for Example 23.2.

truncation [30]. The matrix A, as given in the normal equation set (23.10), is first singular value
decomposed as given by equation (23.16b). The full solution to equation (23.10) would then be
obtained from equation (23.18a). Eliminating the largest values of 1/Skk is achieved by keeping
only the first K terms in equation (23.18a) (i.e., dropping terms with k > K, thereby decreasing
the condition number)

p∗i =

K∑
k=1

Vik

Skk

N∑
j=1

U jkb j, i = 1, . . . ,N, (23.20)

where p∗ is the regularized solution. The proper value for K must be determined through
external, often subjective criteria. Large values of K force the result vector i (e.g., the achieved
nondimensional temperature of the bottom plate in Example 23.1) to more closely follow the
prescribed data vector y (desired temperature), but may result in strongly oscillatory and/or
unphysical parameter vectors p (power setting on heater plate). Small values of K, on the other
hand, lead to a smooth variation for p, but the result vector i may depart substantially from the
desired value y.

Example 23.2. Repeat the control problem Example 23.1 using truncated singular value decomposition
(TSVD).

Solution
The solution proceeds exactly as in Example 23.1, but the series in equation (23.18a) is truncated to give
nondimensional heater temperatures as

Θ2i =

K∑
k=1

Vik

Skk

N∑
j=1

U jkb j,

and the resulting design surface temperatures are found from equation (23.9)

Θ1i =

N∑
j=1

Xi jΘ2 j.

Figure 23-4 shows the results, again for w/h = 5, ε = 0.5, and N = 20 strips on each plate, for several odd
values of K (even values produce essentially identical results as the next lower K because of symmetry).
It is observed that retaining a single singular value (K = 1) results in a very smooth heater setting, and
also a smooth design surface temperature (but departing substantially from the desired value of “1”).
Larger values of K bring the design plate temperatures closer to the desired value (albeit with slight
oscillations), but at a cost of oscillatory heater settings. Values of K > 7 result in some strips having
negative emissive power (cooling), which would be undesirable at best.
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Tikhonov Regularization
Most regularization methods transform an ill-posed inverse problem into a well-behaved one
by adding auxiliary information based on desired or assumed solution characteristics [34, 38]:

F = (i − y) ·W·(i − y) + λ2Ω(p), (23.21)

where Ω(p) is an arbitrary (positive) function and λ is the (positive) regularization parameter.
One of the earliest and most popular examples is Tikhonov regularization [2], employing Ω =
p · L · p, where L is an operator. In the simplest 0th order discrete Tikhonov regularization we
have L = δ and Ω = p · p. Thus, equation (23.10) is changed to

(A + λδ) · p = b, with A = XT
·W · X, b = XT

·W · y, (23.22)

where δ is again an Nth order unity tensor. Many different and higher order versions of
Tikhonov’s regularization exist, and the reader is referred to [32,38]. The regularization param-
eter determines the smoothness of the solution: a small value of λ implies little regularization,
while a large λ prioritizes some presumed information, which in the case of standard Tikhonov
forces the solution vector toward zero. Several schemes exist to find an optimal value of λ.
Numerical Recipes [37] suggests a starting value for λ of

λ ' Tr(A)/N, (23.23)

where Tr is the trace of the matrix (sum of the N diagonal elements), giving both parts in
the minimization equal weights. An optimum value for λ is then found by trial and error.
More sophisticated schemes include construction of a so-called L-curve, which leads to a semi-
quantitative determination of λ [30, 39].

Example 23.3. Repeat Example 23.1 using 0th order discrete Tikhonov regularization.

Solution
As in the previous example we calculate A = XT

· X and b = X · 1. Before inverting A we modify the
matrix to

A∗ = A + λδ, or A∗i j = Ai j + λδi j,

i.e., all diagonal elements are incremented by λ, which is evaluated as

λ = C
1
N

N∑
i−1

Aii,

where C is a constant whose optimal value is to be found by trial and error. Heater emissive powers Θ2

and design surface emissive powers Θ1 are then determined from

Θ2i =

N∑
j=1

(
A∗−1

)
i j

b j, b j =

N∑
k=1

Xkj,

Θ1i =

N∑
j=1

Xi jΘ2 j.

Results for Tikhonov regularization are shown in Fig. 23-5, again for w/h = 5, ε = 0.5, and N = 20 strips
on each plate, for five fractional values of C = 2−(5−k), with larger C implying more regularization. It
is seen from the figure that the Numerical Recipes’ suggested value (C = 1) gives a reasonable (perhaps
slightly over-regularized) solution with smoothly varying heater values, but with design surface tem-
peratures dropping near the edges of the plate. Smaller values of the regularization parameter lead
to somewhat better design surface temperatures, at the cost of stronger heater surface variations. In
general, it appears that Tikhonov regularization gives better results than TSVD, at least for the present
problem.
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23.4 GRADIENT-BASED OPTIMIZATION

In optimization the objective function F, most often using least square norms as given by
equations (23.2) or (23.3), is minimized in an iterative process. Iteration is always necessary
for nonlinear problems, but may also be employed for linear ones to overcome ill-conditioning,
which in optimization manifests itself in the form of a difficult objective function topography
having a minimum (or several minima in nonlinear problems) surrounded by a long, shallow
valley, as shown in Fig. 23-1b. Many different optimization schemes have been developed to
minimize F. When F is continuously differentiable over the feasible region of p, it is generally
best to use analytically defined search directions, with gradient-based methods being used
most often [40]. In all schemes, during each iteration a step of appropriate size is taken along
a direction of descent, which is based on the local curvature of the objective function at the
previous iteration. Thus, after the kth iteration a new solution vector is found from

pk+1 = pk + βkdk, (23.24)

where βk is the search step size, and dk is the direction of descent. The main difference between
gradient minimization techniques is how the search direction is chosen, which usually is how
they got their name. As indicated by Daun and coworkers [40], whose development we will
follow here, nearly all of the methods require first-order curvature information as contained in
the gradient vector,

g(p) = ∇pF(p) =

(
∂F
∂p1

,
∂F
∂p2

, · · · ,
∂F
∂pJ

)T

= 2(i − y) ·W · X, (23.25)

where equation (23.7) has been invoked. Some methods also use second-order curvature infor-
mation contained in the Hessian matrix

H(p) = ∇p∇pF(p) =



∂2F
∂p2

1

∂2F
∂p1∂p2

· · ·
∂2F
∂p1∂pJ

∂2F
∂p2∂p1

∂2F
∂p2

2

· · ·
∂2F
∂p2∂pJ

...
...

. . .
...

∂2F
∂pJ∂p1

∂2F
∂pJ∂p2

· · ·
∂2F
∂p2

J


. (23.26)
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Some of the more common gradient minimization techniques are steepest descent, Newton and
quasi-Newton methods, the Levenberg–Marquardt method, and conjugate gradient methods. Steep-
est descent is the simplest, but has a linear or even slower convergence rate and is, therefore,
not recommended. The other four are briefly described below.

Newton’s Method
In Newton’s method the direction of descent is calculated using both first- and second-order
curvature information, by expanding the objective function into a second-order Taylor series.
Assuming the desired parameter vector p∗ is a distance sk away from the latest approximation
for pk, i.e., p∗ = pk + sk, the gradient vector of the objective function can be written as a two-term
Taylor expansion

g(p∗) = g(pk + sk) ' g(pk) + skT
·H(pk), (23.27)

which is exact with constant Hessian if the objective function is quadratic (which tends to be
approximately true, if p∗ is reasonably close to pk). Since F has a global minimum at p∗ all
elements of the gradient vector g(p∗) are equal to zero, and sk is determined from

sk
' −H(pk)−1

· g(pk). (23.28)

In Newton’s method, dk is set equal to sk, which is called Newton’s direction (with an implied
step size βk = 1). While the Hessian matrix is generally not constant near the minimum, using
Newton’s direction results in much better convergence (typically quadratic), compared with the
steepest descent method. However, calculating the Hessian matrix at each iteration tends to
require significant extra CPU time, which can make Newton’s method actually less efficient than
the steepest descent method. Thus, Newton’s method should only be used when the second
derivatives can be calculated easily.

The Quasi-Newton Method
The quasi-Newton method avoids calculating the Hessian matrix by approximating it using
only first-order curvature data collected at previous iterations. At each iteration, the search
direction dk = sk is calculated from equation (23.28) with an approximate Hessian B as

dk = −(Bk)−1
· g(pk). (23.29)

Initially, (Bk)−1 is set equal to the identity matrix δ (which makes it the search direction for the
steepest descent method) times an appropriate step size β0 [usually found from a single-value
minimization of F(p0

− β0g0)]. At each subsequent iteration, the approximation of the Hessian
matrix is improved upon by adding an update matrix, Uk,

Bk = Bk−1 + Uk, (23.30)

and Uk is determined using only values of the objective function and gradient vectors from
previous iterations. The most common quasi-Newton scheme is the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) scheme [31]; in this method, the update matrix is calculated from

Uk =
zk
· zk

zk · dk−1
−

Bk−1
· dk−1

· dk−1
· Bk−1

dk−1 · Bk−1 · dk−1
, where dk−1 = pk

− pk−1, zk = g(pk) − g(pk−1), (23.31a)

or, in expanded notation

Uk
i j =

zk
i zk

j∑
m zk

mdk−1
m
−

∑
l Bk−1

il dk−1
l

∑
p dk−1

p Bk−1
pj∑

q
∑

p dk−1
q Bk−1

qp dk−1
p

(23.31b)
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Since it takes a few iterations for B to accurately approximate the Hessian matrix, the
convergence rate of the quasi-Newton scheme is less than the Newton’s method, requiring a
few more iterations to find the global minimum for F. However, since no second derivatives are
needed, the quasi-Newton scheme is usually computationally more efficient.

We will here illustrate the method by presenting a very simple example, this time a problem to
infer radiative properties of a participating medium through intensity measurements. Extension
to more complicated geometries and/or radiative property fields affects only the direct-solution
part of the problem, which has been discussed extensively in previous chapters.

Example 23.4. Consider a one-dimensional, absorbing–emitting (but not scattering) slab of width L,
bounded by two cold, black walls. The temperature distribution within the slab is unknown, and is to
be estimated with the quasi-Newton method, by measuring exit intensities on both bounding walls for
various angles. The absorption coefficient of the medium at the detector wavelength, κ, is known and
constant.

Solution
Direct Problem. The direct solution for this simple problem is immediately found from equation (14.20)
as

I(x, µ) = −

∫ L

x
Ib(x′) eκ(x′−x)/µ κ

dx′

µ
, µ < 0,

=

∫ x

0
Ib(x′) e−κ(x−x′)/µ κ

dx′

µ
, µ > 0,

with I1 = I2 = 0 (cold walls) and S = Ib (no scattering). Letting τL = κL, ξ = x/L, and evaluating only the
necessary intensities exiting from the faces at ξ = 0, 1, leads to

I(0, µ) = −
τL

µ

∫ 1

0
Ib(ξ) eτLξ/µ dξ, µ < 0,

I(1, µ) =
τL

µ

∫ 1

0
Ib(ξ) e−τL(1−ξ)/µ dξ, µ > 0.

Inverse Problem. We will assume that the unknown Planck function field Ib(ξ) can be approximated by
a simple Nth order polynomial, or

Ib(ξ) =

N∑
n=0

pnξ
n.

(Power series, while simple and adequate for the present example, are generally not a good practice
because the coefficients will vary over a wide range of magnitudes [24]). Substituting this into the direct
solution for exiting intensity gives

I(0, µ) = −

N∑
n=0

pn fn

(
τL

µ

)
, µ < 0, (23.32a)

I(1, µ) = e−τL/µ
N∑

n=0

pn fn

(
τL

µ

)
, µ > 0, (23.32b)

fn(τ) = τ

∫ 1

0
ξn eτξdξ = eτ−

n
τ

fn−1(τ).

Since the temperature (or Planck function) is to be found by measuring I(0, µ) and I(1, µ) for a set of I
exit angles −1 < µi < +1, and assuming constant weights, the objective function becomes

F =

I∑
i=1

(Ii − Yi)2,

where the Ii are evaluated from equation (23.32a) or (23.32b), depending on whether µi is negative or
positive, and the Yi are the corresponding experimental data.
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The sensitivity matrix is readily found by differentiating equations (23.32a) and (23.32b) with respect
to pn, leading to

Xin =


− fn

(
τL

µi

)
, µi < 0,

e−τL/µi fn

(
τL

µi

)
, µi > 0,

and

Ii =

N∑
n=0

pnXin, (23.33)

since the problem is linear.
In order to use the quasi-Newton method, we first need to calculate the gradient vector from

equation (23.25), or, assuming unity weights W = δ,

1k
n = 2

I∑
i=1

(
Ik
i − Yi

) ∂Ik
i

∂pn
= 2

I∑
i=1

(
Ik
i − Yi

)
Xin. (23.34)

In the first iteration we set B−1 = δ, and p1 = p0
− β0g0, using a first guess for p of pn = δn0 (constant

temperature slab). The proper step size β0 is found by minimizing F with respect to β0, i.e., by setting

∂F
∂β0 = 2

I∑
i=1

(Ii − Yi)
∂Ii

∂β0 = 0,

or

2
I∑

i=1

 N∑
n=0

(
p0

n − β
010

n

)
Xin − Yi


− N∑

n=0

10
nXin

 = 0

I∑
i=1

 N∑
n=0

p0
nXin − Yi


 N∑

n=0

10
nXin

 − β0
I∑

i=1

 N∑
n=0

10
nXin


2

= 0

and, finally

β0 =

I∑
i=1

(Xi0 − Yi)
(

N∑
n=0
10

nXin

)
I∑

i=1

(
N∑

n=0
10

nXin

)2 .

For all following iterations we need to update Bk according to equations (23.30) and (23.31a). Since
we are only interested in the inverse of Bk, it is usually more efficient to calculate it directly from the
Sherman–Morrison formula [31]:

(
Bk

)−1
=

(
Bk−1

)−1
+

(
dk−1
·zk + zk

·

(
Bk−1

)−1
·zk

)
dk−1dk−1(

dk−1 ·zk)2 −

(
Bk−1

)−1
·zkdk−1 + dk−1zk

·

(
Bk−1

)−1

dk−1 ·zk
, (23.35a)

or, in expanded notation,

(
Bk

)−1

i j
=

(
Bk−1

)−1

i j
+

(∑
l dk−1

l zk
l +

∑
l
∑

m zk
l (Bk−1)−1

lm zk
m

)
dk−1

i dk−1
j(∑

l dk−1
l zk

l

)2 −

∑
l (Bk−1)−1

il zk
l dk−1

j +dk−1
i

∑
l zk

l (Bk−1)−1
l j∑

l dk−1
l zk

l

. (23.35b)

After each iteration the objective function is recalculated, and the procedure is stopped when F no longer
decreases (substantially).

Figure 23-6 shows the simulation results for a Planck function field of

Ib(ξ) = 1 + 3ξ2
− 4ξ4

for various optical thicknesses, and using 20 equally spaced measurement directions. For errorless
measurements Yi, the exact result is recovered for all optical thicknesses. Figure 23-6 shows the estimated
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FIGURE 23-6
Planck function distribution for Example 23.4 pre-
dicted by the quasi-Newton method.

Planck function field for measurements that have been given a random Gaussian error, with a relative
variance of 3%. It is seen that the Planck function field recovery is rather poor for optically thin slabs,
getting more and more accurate as the optical thickness increases (up to a point: at very large τL the
exiting intensities become independent of the internal temperature field and, thus, the temperature field
cannot be recovered).

The Levenberg–Marquardt Method
The Levenberg–Marquardt method was originally devised for nonlinear parameter estimation
problems, but has also proved useful for the solution of ill-conditioned linear problems [3, 25,
41,42]. In this method the problem of inverting a near-singular matrix is avoided by increasing
the value of each diagonal term in the matrix, i.e., by regularizing the Gauss-Newton method
of equation (23.13) to

pk+1 = pk + (XTk
·W · Xk + µkΩ k)−1

· XTk
·W · (y − ik), (23.36)

where µk is a positive scalar called the damping parameter, and Ω k is a diagonal matrix. In
this equation the inverse is an approximation of the Hessian matrix, and the remainder is the
negative of the gradient vector, as given by equation (23.7). Levenberg suggested several choices
for the diagonal matrix Ω k, among them Ω k = δ (each diagonal term is increased by a fixed
amount µk) and Ωk

ii = (XTk
·W ·Xk)ii (each diagonal term is increased by a fixed percentage). As

with regularization, large values for µk dampen out oscillations in the ill-conditioned system,
but also change the solution. Thus, after starting the iteration with a relatively large value
of µk, its value is gradually decreased as the iteration approaches convergence. Comparison
with equation (23.21) shows that the method is related to Tikhonov regularization, but using a
gradually decreasing regularization parameter.

Different versions of the Levenberg–Marquardt method have been incorporated into various
numerical libraries, such as the Numerical Recipes [37] and IMSL routines [43].

The Conjugate Gradient Method
The conjugate gradient method is another simple and powerful iterative technique to solve linear
and nonlinear minimization problems. The method is explained in detail in a number of books,
such as [21, 24, 44–46]. In this method the direction of descent is found as a conjugate of the
gradient direction and the previous direction of descent, or

dk = −g(pk−1) + γkdk−1, (23.37)
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with γk being the conjugation coefficient and g(pk−1) = ∇pF(pk−1) evaluated from equation (23.25).
The search step size βk is taken as the value that minimizes the objective function at the

next iteration, F(pk+1): using equations (23.3) and (23.24) together with the Taylor expansion,
equation (23.12), leads to

F(pk+1) =
(
i(pk + βkdk) − y

)
·W ·

(
i(pk + βkdk) − y

)
'

(
i(pk) − y + βkXk

· dk
)
·W ·

(
i(pk) − y + βkXk

· dk
)
. (23.38)

Differentiating with respect to βk, setting ∂Fk+1/∂βk = 0, and solving for βk results in

βk =
(Xk
· dk) ·W · (y − ik)

(Xk · dk) ·W · (Xk · dk)
, (23.39a)

or, in expanded notation,

βk =

I∑
i=1

Yi − Ik
i

σ2
i

J∑
j=1

Xk
i j dk

j

I∑
i=1

1
σ2

i

 J∑
j=1

Xk
i j dk

j

2 . (23.39b)

Several different expressions are in use for the conjugation coefficient γk. We mention here only
the simple Fletcher–Reeves expression

γk =

∥∥∥gk
∥∥∥2∥∥∥gk−1
∥∥∥2 , k = 1, 2, . . . , (23.40a)

= 0, k = 0. (23.40b)

In expanded notation
∥∥∥gk

∥∥∥2
becomes, from equation (23.25),

∥∥∥gk
∥∥∥2

= 4
J∑

j=1

 I∑
i=1

Ik
i − Yi

σ2
i

Xk
i j


2

. (23.41)

Example 23.5. Repeat Example 23.4 using the conjugate gradient method.

Solution
The solution proceeds exactly as in the previous example up to and including the evaluation of the
gradient vector. But, in order to use the conjugate gradient method the γk and βk coefficients need to be
calculated from equations (23.39) through (23.41), i.e.,

∥∥∥gk
∥∥∥2

=

N∑
n=0

(
1k

n

)2
= 4

N∑
n=0

 I∑
i=1

(
Ik
i − Yi

)
Xk

in


2

, (23.42)

βk =

I∑
i=1

(
Yi − Ik

i

) N∑
n=0

Xk
in dk

n

/ I∑
i=1

 N∑
n=0

Xk
in dk

n


2

. (23.43)

The calculation proceeds as follows:

1. Since the problem is linear, the sensitivity matrix is precalculated once and for all.

2. An initial guess is made for the parameter vector (such as pn = 0, all n), and the iteration counter is
set to k = 0.

3. The direct solution Ik
i is found from equation (23.33), and the objective function F k is calculated; if it

meets certain stopping criteria, the iteration is terminated.
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TABLE 23.1
Recovery of slab temperature distribution using various inversion techniques.

Quasi-Newton with BFGS Conjugate Gradient Steepest Descent Tikhonov
without line search with line search

τL iterations time (ms) iterations time (ms) iterations time (ms) iterations time (ms) time (ms)

0.1 17 0.88 17 1.02 6 0.45 4,446 280 0.34
0.5 18 0.91 20 1.13 5 0.47 51,914 4,330 0.44
1.0 22 1.00 20 1.12 5 0.47 28,286 1,800 0.47
2.0 10 0.75 19 1.14 5 0.46 40,779 2,750 0.48
4.0 11 0.77 19 1.11 5 0.48 30,282 1,990 0.48

4. The gradient of F k is found from equation (23.34); γk is calculated by division with the previous value

of
∥∥∥gk

∥∥∥2
(for the first iteration, the “old” value is set to a very large number to force γ0 = 0). A new

search direction dk is set from equation (23.37).

5. The search step size is determined from equation (23.39), and the parameter vector is updated with
equation (23.24). The calculation returns then to step 3 above (alternatively, the step size βk, or the
change in the parameter vector can also be used as stopping criteria).

The simulation results for the same field as in Example 23.4, again using 20 equally spaced measurement
directions, give essentially identical results when using the conjugate gradient approach, i.e., for errorless
measurements the exact result is recovered for all optical thicknesses, and for random Gaussian error
are similar to those of Fig. 23-6.

The problem was also solved using various other inversion techniques, viz., quasi-Newton BFGS
with line search (i.e., BFGS with βk , 1 found from the relation for β0 in Example 23.4, with 10

n replaced
by −dk

n), Tikhonov regularization, and the method of steepest descent.. All methods return very similar
temperature profiles. The number of iterations and CPU times required for the different methods is
compared in Table 23.1. Tikhonov regularization does not require any iteration (for this linear problem)
and is, together with the conjugate gradient method, the fastest. Of the iterative methods conjugate
gradients requires the fewest iterations and is thus the fastest, while BFGS with line search does not
appreciably increase convergence, thus taking a little longer than BFGS without it. Not surprisingly, the
method of steepest descent requires many more iterations.

23.5 METAHEURISTICS

Metaheuristics also belong to the family of optimization. They received their name because they
are not based on a mathematically rigorous minimization formulation—in contrast to gradient-
based methods, which usually approximate the objective function as locally quadratic, and then
find the minimum via a Taylor series expansion. The algorithms of many metaheuristics are in-
spired by physics or biology (genetic algorithms and swarm algorithms are important examples
of biomimicry). One popular algorithm is simulated annealing, which is based on the changing
arrangement of atoms in metals. The simulated annealing algorithm is analogous to nature,
where the objective function is the lattice energy, and the design parameters specify the lattice
arrangement. The Second Law of Thermodynamics drives a system toward a lower energy
state, so the atoms in a metal will preferentially move into lower energy configurations, but can
spontaneously move into a high energy configuration. The same idea applies in metaheuristics,
and the nomenclature “annealing schedule,” “temperature,” etc. carries over. At each iteration
a candidate step is proposed, analogous to atoms randomly moving. A new candidate objective
function is generated and compared to the present one. If the new objective function is lower,
the candidate step is always accepted (probability of unity). If the new objective function is
larger, the candidate step is accepted with a probability proportional to exp(−∆F/T), where the
“annealing ”temperature” is defined in terms of the iteration number k. Thus, higher T make
uphill steps more likely (smaller k) and, as temperature decreases (cooling the metal), accepting
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an uphill step becomes increasingly improbable (large k). As in actual metal annealing, the
underlying idea behind simulated annealing is that the method allows the design parameters to
transition through a temporary higher energy state (a crest in the objective function topography)
in their quest for the lowest energy level (global minimum).

By their nature metaheuristics are inevitably less efficient than gradient-based methods at
finding local minima. Therefore, they should only be used when gradient-based methods are
unreliable or impractical, or if the objective function topography is suspected to have multiple
local minima.

23.6 SUMMARY OF INVERSE RADIATION
RESEARCH

Inverse Surface Radiation
While inverse radiation problems involving a participating medium received the earliest atten-
tion, more recently a number of researchers have concerned themselves with inverse surface
radiation problems. Harutunian et al. [47], Fedorov et al. [48], Jones [17], Ertürk et al. [49] and
França et al. [50], were the first to recognize the potential of inverse radiation analysis for con-
trol: they investigated the needed energy input into a heating element, in order to achieve a
prespecified result at a design surface. This was followed with considerable more work by the
group around Howell [35, 40, 51–54] and a few others [55]. That inverse analysis can also be
used to deduce surface reflectances was demonstrated by Wu and Wu [18].

Various solution techniques were employed. For example, TSVD was used by França et al.
[50,53] to predict heater performance in the presence of convection, and by Daun and coworkers
[35] for 3D surface heating; the latter also used Tikhonov regularization, quasi-Newton and
conjugate gradient techniques (optimization), and simulated annealing (metaheuristics). The
conjugate gradient method was also used by Ertürk et al. [51], who optimized transient heating
control of a furnace, while Porter and Howell [52] used metaheuristic methods (simulated
annealing and tabu search) to control a surface heater. Daun and coworkers [40, 56] and Leduc
et al. [55] performed geometric optimization of radiant enclosures using Tikhonov regularization
[55], the quasi-Newton method [40], and Kiefer-Wolfowitz stochastic programming (a variation
on the steepest descent scheme) [56]. The only work reporting experimental verification seems
to be the one by Ertürk et al. [54], who investigated radiative heating control of silicon wafers.
They found that accurate knowledge of radiative properties is crucial, and obtained wafer
temperatures to within 3% of the target value.

Inverse Radiation in Participating Media
Most research to date on inverse radiation within a participating medium has centered around
the retrieval of temperature distributions, with some also deducing various radiative properties,
such as surface reflectances, scattering albedos, and phase functions. Much of the work dealt
with pure radiation in mostly gray [9–16, 57–68], and a few nongray [69, 70], constant-property,
one-dimensional media. Others have dealt with multidimensional geometries [71–85], and
interactions between conduction and radiation have also received growing attention [76,77,86–
89], along with, to a lesser extent, inverse radiation combined with convection [90]. Most of these
investigations have concentrated on developing an inverse method using artificial data. Only
a few experiments have been combined with inverse analysis to measure particle distributions
and scattering properties of pulverized coal [91,92], and to infer temperature and concentration
distributions in axisymmetric flames [93–99]. Most of these determined spatial averages [93]
or used Abel’s transformation [94–98] (reconstruction from spatial scans). However, it has
been shown that these profiles can also be determined from a single transmission measurement
through spectrometry (reconstruction from spectral scan) [70, 98–100].
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More recently, there has been growing interest in optical tomography, the reconstruction of
property fields based on radiative field measurements. Two areas of interest have been iden-
tified. One is the detection of internal tumors in biomedical applications, generally using
ultrafast lasers with transient radiation effects (see also Chapter 19) [101–106]. A recent re-
view with many references has been given by Charette and colleagues [36]. Secondly, optical
tomography is increasingly applied to the diagnosis of combustion systems [39, 107–109].

As for surface radiation problems, several different inverse methodologies have been em-
ployed, such as TSVD [69], Tikhonov regularization [39, 108], Tikhonov regularization plus
Kalman filtering (to connect information from transient signals) [109], conjugate gradient
methods [68, 81, 101–106, 110, 111], and metaheuristics [67, 70, 80, 81, 84].

Comparison of Inverse Solution Methods
A few studies used several inversion techniques to allow for comparison. Daun and coworkers
[35], in order to investigate surface heater control in a 3D furnace, used five different inversion
techniques, viz., TSVD and Tikhonov regularization, two optimizations (the quasi-Newton and
conjugate gradient methods), and one metaheuristic scheme (simulated annealing). They found
that all techniques predicted solutions within acceptable accuracy, but the methods in some cases
provided widely different distributions that achieve the same final result. The regularization,
conjugate gradient, and simulated annealing methods provided smooth distributions of heater
inputs across the heater surface, whereas the quasi-Newton technique tended to give uneven
distributions. In another study Deiveegan et al. [67] retrieved surface emittances and gas
properties in gray participating media, using the Levenberg–Marquardt method, and several
metaheuristics schemes, i.e., genetic algorithms, artificial neural networks, and Bayesian statistics.
They also found that all methods gave acceptable results, with Bayesian statistics being least
susceptible to random noise, and genetic algorithms being considerably more computationally
expensive.

We conclude our discussion of solution methods with one simple, nonlinear example.

Example 23.6. Repeat Example 23.5 for the case that the absorption coefficient is also unknown and,
thus, must be estimated, as well. Compare performance and effort of the quasi-Newton, Levenberg–
Marquardt, and conjugate gradient methods.

Solution
The solution is identical to the previous example, only now the parameter vector p has one additional
member, κ, or equivalently, τL. The sensitivity matrix is identical to the one of Example 23.4, except that
it has one additional row, namely

Xi,N+1 =
∂Ii

∂τL

= −

N∑
n=0

an

[
1
τL

fn

(
τL

µi

)
+

1
µi

fn+1

(
τL

µi

)]
, µi < 0,

= e−τL/µi

N∑
n=0

an

[(
1
τL

−
1
µi

)
fn

(
τL

µi

)
+

1
µi

fn+1

(
τL

µi

)]
, µi > 0.

The problem is now nonlinear, since all Xin contain the unknown parameter τL, and Xi,N+1 also contains
the an. This causes no problem in the conjugate gradient method, except that the sensitivity matrix now
has to be evaluated anew after each iteration (i.e., in the calculation procedure of Example 23.5 steps 1
and 2 are interchanged, and the iteration always repeats from step 2).

Results for the conjugate gradient method are shown in Fig. 23-7. Again, the exact relations are
recovered for undisturbed measurements, and the cases shown are for measurements with a random
Gaussian error with 3% relative variance. Results are very similar to Example 23.3, perhaps just a
little worse, and recovery of the absorption coefficient is well within the variance of the data, except
for Levenberg–Marquardt, which incurs errors up to 5% for small and large τL. On the other hand,
Levenberg–Marquardt also is the fastest of the different methods for this problem, as seen in Table 23.2,
which shows the time requirements for the different methods.
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FIGURE 23-7
Absorption coefficient and Planck function distri-
bution for Example 23.6 as predicted by the conju-
gate gradient method.

TABLE 23.2
Recovery of slab temperature distribution and absorption coefficient using various inversion
techniques.

Quasi-Newton with BFGS Conjugate Gradient Steepest Descent Levenberg–Marquardt
without line search with line search

τL iterations time (ms) iterations time (ms) iterations time (ms) iterations time (ms) iterations time (ms)

0.1 – —- 9 5.69 2334 6.94 57,118 33,200 13 0.97
0.5 24 2.03 22 4.36 716 2.30 130,001 61,080 4 0.52
1.0 20 1.80 19 3.13 235 0.96 34,101 16,350 3 0.45
2.0 21 1.88 20 2.94 350 1.31 13,512 5,760 3 0.59
4.0 23 1.98 24 3.57 752 2.61 19,435 8,770 6 0.69
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12. Li, H. Y., and M. N. Özişik: “Identification of temperature profile in an absorbing, emitting and isotropically

scattering medium by inverse analysis,” ASME Journal of Heat Transfer, vol. 114, pp. 1060–1063, 1992.
13. Sacadura, J.-F., and V. P. Nicolau: “Spectral radiative properties identification of semi-transparent porous

media,” in 3rd UK National & 1st European Conference Thermal Sciences, Birmingham, UK, pp. 717–723, 1992.
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16. Bokar, J., and M. N. Özişik: “An inverse problem for estimation of radiation temperature source term in a
sphere,” Inverse Problems in Engineering, vol. 1, pp. 191–205, 1995.

17. Jones, M. R.: “Inverse analysis of radiative heat transfer systems,” ASME Journal of Heat Transfer, vol. 121, pp.
481–484, 1999.

18. Wu, C. Y., and S. H. Wu: “A new application of successive approximation to radiative exchange among surfaces:
direct and inverse problems,” International Journal of Heat and Mass Transfer, vol. 42, pp. 2255–2267, 1999.

19. Beck, J. V., B. Blackwell, and C. R. St. Clair: Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, 1985.
20. Beck, J. V., and B. Blackwell: “Inverse problems,” in Handbook of Numerical Heat Transfer, eds. W. J. Minkowycz,

E. M. Sparrow, G. E. Schneider, and R. H. Pletcher, Wiley Interscience, New York, 1988.
21. Alifanov, O. M.: Inverse Heat Transfer Problems, Springer Verlag, 1994.
22. Kurpisz, K., and A. J. Nowak: Inverse Thermal Problems, WIT Press, Southampton, UK, 1995.
23. Alifanov, O. M., E. Artyukhin, and A. Rumyantsev: Extreme Methods for Solving Ill-Posed Problems with Applica-

tions to Inverse Heat Transfer Problems, Begell House, 1995.
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92. Mengüç, M. P., S. Manickavasagam, and D. A. Dsa: “Determination of radiative properties of pulverized coal
particles from experiments,” Fuel, vol. 73, no. 4, pp. 613–625, 1994.

93. Solomon, P. R., P. E. Best, R. M. Carangelo, J. R. Markham, P. L. Chien, R. J. Santoro, and H. G. Semerjian:
“FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” in Twenty-First Symposium
(International) on Combustion, pp. 1763–1771, 1986.

94. Zhang, J. Q., and J. S. Cheng: “Determination of the temperature profile of axisymmetric combustion-gas flow
from infrared spectral measurements,” Combustion and Flame, vol. 65, pp. 163–176, 1986.

95. Hall, R. J., and P. A. Bonczyk: “Sooting flame thermometry using emission/absorption tomography,” Applied
Optics, vol. 29, no. 31, pp. 4590–4598, 1990.

96. Sakami, M., and M. Lallemand: “Retrieval of absorption and temperature profiles in axisymmetric and non-
axisymmetric emitting–absorbing media by inverse radiative methods, inverse problems in engineering, theory
and practice,” in The First Conference in a Series on Inverse Problems in Engineering, Palm Coast, FL, pp. 259–266,
1993.

97. Sakami, M., and M. Lallemand: “Retrieval of absorption and temperature profiles in a premixed flame by
inverse radiative methods,” in First International Symposium Radiative Heat Transfer, ed. M. P. Mengüç, Begell
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Problems

23.1 Repeat Example 23.2, but determine the necessary heat flux distribution, q2(x2), along the plate.

23.2

A2

w = 20 cm

w/2

w

Ś Ś 

w/2

w/2

A black plate of width w is irradiated by two line sources as
shown. The plate is insulated at the bottom, while the top
loses heat by radiation to the (cold) environment. Ideally, the
plate should be at a uniform temperature of 500 K. Breaking
up the plate into four equally wide segments, determine the
optimal heater powers (without exploiting the symmetry):

a) using TSVD on the direct equations (23.19),
b) using TSVD and the normal equations (23.10),
c) using Tikhonov regularization and the normal equa-

tions.

23.3 Soot volume fraction and temperature are to be determined by measuring the transmissivity of a
gas–soot layer for several wavelengths. Consider a homogeneous layer of thickness L = 0.2 m, whose
absorption coefficient obeys equation (12.123), where C0 is a known function of wavelength and
temperature, such that

C0(λ,T) = 5[1 + aλ(T − T0)], T0 = 300 K, a = 0.01 (µmK)−1.

Transmissivity measurements are conducted at four wavelengths as shown in the table: one set of
data has been taken with high precision (i.e., zero error), and the other has some noise in the data.

Wavelength λ 1µm 2µm 3µm 4µm
High-fidelity data 0.6065 0.7788 0.8465 0.8825

Noisy data 0.617 0.763 0.826 0.891

Determine soot volume fraction and temperature using Tikhonov regularization.

23.4 Repeat Problem 23.3 using the quasi-Newton method.

23.5 Consider a one-dimensional, absorbing–emitting (but not scattering) slab of width L, bounded by two
cold, black walls. The temperature distribution within the slab is unknown, and is to be estimated by
measuring spectral exit heat fluxes on both bounding walls for various wavenumbers in a range over
which the absorption coefficient of the medium, κ, is known, is linearly proportional to wavenumber,
and is spatially constant. Use the P1-approximation and Tikhonov regularization.
Hint: Set up a 1D finite difference solution for the P1-approximation by breaking up the slab into N
isothermal layers; then determine M > N wall fluxes in terms of the Ibη(Ti).
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23.6 Repeat Problem 23.5 for a medium that also scatters radiation isentropically, with a gray scattering
coefficient.

23.7 Repeat Problem 23.5 for the case of an unknown absorption coefficient (except for the fact that it is
linearly proportional to wavenumber). Use the P1-approximation together with the quasi-Newton
algorithm.

23.8 In laser absorption tomography, the concentration of a target species
(e.g., gas or soot) is inferred from the transmittance of multiple
lasers passing through the flow field. If the domain is split into
n regions in each of which the concentration is assumed uniform,
the Beer-Lambert law along the ith beam becomes

ln(I0i/Ii) =

n∑
j=1

Ai jκ j,

where Ai j is the chord length of the ith beam subtended by the jth
element. Writing this equation for m beams results in an m× n ma-
trix equation, A ·p = b, which relates the beam transmittance data,
b, to the unknown species concentration (through the absorption
coefficient, p = κ), equivalent to equation (23.19). However, even
if n = m the matrix is ill-conditioned, and its inversion must be
regularized to suppress measurement noise amplification.
Consider the axisymmetric problem shown to the right. Laser
transmittance measurements made along the center of each annu-
lar element are summarized in the table below. It is known that
each data point is contaminated by normally-distributed error having a standard deviation of 0.025.

y (cm) 0 0.3158 0.6316 0.9474 1.2632 1.5789 1.8947 2.2105 2.5263 2.8421
ln(I0i/Ii) 0.6258 0.5494 0.4652 0.2883 0.1183 0.0831 0.0171 0.0259 –0.0179 –0.0056

(a) Derive the A matrix and perform a singular value decomposition. What do the singular values
imply about this problem?

(b) Attempt to recover p using no regularization, and plot the values as a function of y. Comment
on the solution.

(c) Use first-order Tikhonov regularization to recover the solution. The truncated equation (23.19)
for first-order Tikhonov becomes

(A + λL′) · p = b, where L′ =
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 .
Attempt to recover the solution using different values of λ. What is the optimal level of
regularization?


