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21.1 INTRODUCTION

In Chapter 8 we first introduced the Monte Carlo method for the evaluation of radiative ex-
change between surfaces. While statistical in nature, in this method we are tracing physically
meaningful photons from their point of emission to their point of absorption, or their exit from
the enclosure (albeit only a tiny, but statistically relevant sample). Therefore, the method is
immediately applicable to participating media: we simply need to add statistical algorithms
for the emission of photons from a gas, particles, or a semitransparent medium, as well as
rules for the interaction of streaming photons with the medium, i.e., volumetric absorption and
scattering.

We have observed in the previous chapters that the radiative transfer equation (RTE) is a
five-dimensional integro-differential equation, which is extremely difficult and expensive to
solve. In fact, while the spherical harmonics and discrete ordinates methods and, to a lesser
extent, the zonal method each enjoy a certain popularity and can be applied to fairly general
problems, to this day no truly satisfactory RTE solution method has emerged. The problem is
exacerbated by strong spectral variations of radiative properties (gases as well as particulates),
so that up to one million RTE evaluations are needed to achieve acceptable accuracy. These
challenges, combined with the fact that Monte Carlo methods, unlike conventional RTE solvers,
are ideal candidates for parallel computing, have led to their rapidly increasing popularity
during the past few years.

21.2 HEAT TRANSFER RELATIONS FOR
PARTICIPATING MEDIA

If the enclosure is filled with an absorbing, emitting, and/or scattering medium, equations (8.14)
through (8.21) for the evaluation of surface heat fluxes must be augmented by a term to account
for emission from within the medium, and the definition for the generalized radiation exchange
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factor must be altered to allow for absorption and/or scattering. Again assuming a refractive
index of unity, from equation (10.54) the total emission per unit volume is 4κPσT4 and, therefore,

q(r) = ε(r)σT4(r) −
∫

A
ε(r′) σT4(r′)

dFdA′→dA

dA
dA′ −

∫
V

4κP(r′′)σT4(r′′)
dFdV′′→dA

dA
dV′′, (21.1)

where
κP(r′′) = local Planck-mean absorption coefficient of the medium at r′′,

dFdV′′→dA = generalized radiation exchange factor between volume elements dV′′

and surface element dA.
Equation (8.15) still applies to all exchange factors, including dFdV′′→dA, with the added stipu-
lation that energy bundles may be attenuated by absorption and/or redirected by scattering.

A similar equation is needed to describe the net amount of radiative energy deposited (or
withdrawn) per unit volume of the medium, i.e., the divergence of the radiative heat flux. From
equations (10.59) and (11.182), it follows that

∇ · q = 4κPσT4
−

∫
∞

0
κλGλ dλ, (21.2)

where Gλ is the spectral incident radiation. The first term in equation (21.2) describes emission
from within the volume, and the second term gives the absorbed fraction per unit volume of all
radiation incident on the element. For Monte Carlo calculations this term may be replaced by
an expression similar to the one in equation (21.1), i.e.,

∇ · q = 4κPσT4
−

∫
A
ε(r′)σT4(r′)

dFdA′→dV

dV
dA′ −

∫
V

4κP(r′′)σT4(r′′)
dFdV′′→dV

dV
dV′′. (21.3)

For numerical calculations it is again necessary to break up the enclosure into a number J finite
subsurfaces and K finite subvolumes, transforming equations (21.1) and (21.3) to

Qi = εiσT4
i Ai −

J∑
j=1

εjσT4
j A jFj→i − qextAsFs→i −

K∑
k=1

4κPkσT4
k VkFk→i, i = 1, 2, . . . , J, (21.4)

∫
Vl

∇ · q dV = 4κPlσT4
l Vl −

J∑
j=1

εjσT4
j A jFj→l − qextAsFs→l

−

K∑
k=1

4κPkσT4
k VkFk→l, l = 1, 2, . . . ,K, (21.5)

where the Tk are suitably defined average temperatures within the medium

κPkσT4
k =

1
Vk

∫
Vk

κPσT4 dV. (21.6)

Using this formulation, all generalized exchange factors may then be evaluated through equa-
tion (8.21).

21.3 RANDOM NUMBER RELATIONS FOR
PARTICIPATING MEDIA

Besides the random number relations established in the last section we need to find additional
expressions for emission from within the volume, for absorption by the medium, and for
scattering.
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Points of Emission within Medium
The total emission from a subvolume Vk is given by

Ek =

∫
Vk

4κPσT4 dV. (21.7)

Using Cartesian coordinates with dV = dx dy dz, equation (21.7) may be rewritten as

Ek =

∫ X

0

(∫ Y

0

∫ Z

0
4κPσT4dz dy

)
dx =

∫ X

0
E′k(x) dx. (21.8)

Then, following the development of equations (8.22) through (8.27), points of emission may be
related to random numbers through

Rx =
1
Ek

∫ x

0
E′k dx =

∫ x

0

∫ Y

0

∫ Z

0
κPσT4 dz dy dx

/∫ X

0

∫ Y

0

∫ Z

0
κPσT4 dz dy dx, (21.9a)

Ry =

∫ y

0

∫ Z

0
κPσT4 dz dy

/∫ Y

0

∫ Z

0
κPσT4 dz dy, (21.9b)

Rz =

∫ z

0
κPσT4dz

/∫ Z

0
κPσT4dz, (21.9c)

or
x = x(Rx), y = y(Ry, x), z = z(Rz, x, y). (21.10)

Again, choices for x, y, and z become independent of one another if the emission term is
separable, e.g., for an isothermal medium with uniform absorption coefficient.

Wavelengths for Emission from within
Medium
As for surface emission, the choice of emission wavelength (or wavenumber),1 in general,
depends on emission location (x, y, z), unless the volume is isothermal with constant absorption
coefficient. From equation (10.54) and the definition of the Planck-mean absorption coefficient
it follows immediately that

Rλ =
π

κPσT4

∫ λ

0
κλIbλ dλ, (21.11)

and, after inversion,
λ = λ(Rλ, x, y, z). (21.12)

Directions for Emission from within Medium
Under local thermodynamic equilibrium conditions emission within a participating medium
is isotropic, i.e., all possible directions are equally likely for the emission of a photon. All
possible directions from a point within the medium are contained within the solid angle of 4π =∫ 2π

0

∫ π

0 sinθ dθ dψ, where polar angle θ and azimuthal angle ψ are measured from arbitrary
reference axes. Thus, since the integrand is separable,

Rψ =
ψ

2π
, or ψ = 2πRψ, (21.13a)

1In previous chapters we noted that for participating gases wavenumber η is generally the preferred spectral
variable, while wavelength λ is more popular for particulate media. For consistency we will stay with λ: conversion
to wavenumber simply requires replacing subscript λ by η everywhere for the remainder of this chapter.
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Rθ =
1
2

∫ θ

0
sinθ dθ =

1
2

(1 − cosθ), (21.13b)

or
θ = cos−1 (1 − 2Rθ) . (21.13c)

If the polar angle is measured from the z-axis and ψ from the x-axis, then the unit direction
vector for emission may be expressed as

ŝ = sinθ(cosψı̂ + sinψ̂) + cosθk̂. (21.14)

Absorption within Medium
When radiative energy travels through a participating medium, the energy is attenuated by
absorption and scattered. Equation (10.5) gives the absorptivity for a photon path of length lκ
as

αλ = 1 − exp
(
−

∫ lκ
0 κλ ds

)
. (21.15)

Therefore, the fraction of energy penetrating through a layer of thickness lκ is

Rκ = exp
(
−

∫ lκ
0 κλ ds

)
. (21.16)

Note that lκ does not have to be a straight path, i.e., the number of photons absorbed from
a photon bundle depends only on the number of absorbing molecules encountered along its
path. This implies that, if the total radiative energy is divided into bundles of equal energy
content, the fraction Rκ will be transmitted over a distance lκ or farther, either along a straight
path or a zigzagging one (i.e., after being scattered and/or reflected one or more times). Thus,
we may relate the distance that any one bundle travels before absorption to a random number
by inverting equation (21.16).

This inversion is readily obtained if the absorption coefficient does not vary throughout the
medium (κλ = const). Under these conditions

lκ =
1
κλ

ln
1

Rκ
, (21.17)

and the bundle is allowed to travel a total distance lκ through the medium before being absorbed
(unless it is absorbed by a surface before traveling this far).

If the absorption coefficient is not uniform (because of temperature dependence or because
of a nonisotropic medium), inversion of equation (21.16) is considerably more difficult. Usually,
the optical path is evaluated by breaking the volume up into K subvolumes with constant
absorption coefficient. Then ∫ s

0
κλ ds '

∑
k

κλk sk, (21.18)

where the summation is over those subvolumes (k) through which the bundle has traveled, and
sk is the geometric distance the bundle travels through these elements. As long as∫ s

0
κλ ds <

∫ lκ

0
κλ ds = ln

1
Rκ
, (21.19)

the bundle is not absorbed and is allowed to travel on.
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Scattering within Medium
Attenuation by scattering obeys the same relationships as for absorption, with the absorption
coefficient replaced by the scattering coefficient. Thus,

lσ =
1
σsλ

ln
1

Rσ
(21.20)

is the distance a bundle travels in a medium with uniform scattering coefficient before being
scattered, or ∫ s

0
σsλ ds <

∫ lσ

0
σsλ ds = ln

1
Rσ

(21.21)

for a medium with variable scattering coefficient.
Alternatively, the combined event of absorption and scattering can be modeled by deter-

mining an extinction distance,

lβ =
1
βλ

ln
1

Rβ
. (21.22)

When the location lβ is reached, a second random number Rω is required to decide whether the
bundle is absorbed (Rω > ω) or scattered (Rω < ω), with ω being the single scattering albedo.

Once a photon bundle is scattered, it will travel on into a new direction. The probability that
the scattered bundle will travel within a cone of solid angle dΩ′ around the direction ŝ′, after
originally traveling in the direction ŝ, is

P(ŝ′) dΩ′ = Φ(ŝ · ŝ′) dΩ′,

where Φ is the scattering phase function. Therefore, we may establish polar and azimuthal
angles for scattering as

Rψ =

∫ ψ′

0

∫ π

0
Φ(ŝ · ŝ′) sinθ′ dθ′ dψ′

/∫ 2π

0

∫ π

0
Φ(ŝ · ŝ′) sinθ′ dθ′ dψ′, (21.23a)

and

Rθ =

∫ θ′

0
Φ(ŝ · ŝ′) sinθ′ dθ′

/∫ π

0
Φ(ŝ · ŝ′) sinθ′ dθ′. (21.23b)

For linear anisotropic scattering, from equation (12.99),

Φ(ŝ · ŝ′) = 1 + A1ŝ · ŝ′ = 1 + A1 cosθ′, (21.24)

where it is assumed that the polar angleθ′ is measured from an axis pointing into the ŝ-direction,
and the azimuthal angle ψ′ is measured in a plane normal to ŝ. Equations (21.23a) and (21.23b),
then, reduce for linear anisotropic scattering to

Rψ =
ψ′

2π
, or ψ′ = 2πRψ, (21.25a)

Rθ =
1
2

(
1 − cosθ′ +

A1

2
sin2θ′

)
. (21.25b)

For isotropic scattering (A1 ≡ 0) these relations are identical to those for (by nature isotropic)
emission, equations (21.13).

The new direction vector, ŝ′, must then be found by introducing a local coordinate system
at the point of scattering, with ŝ pointing into its z-direction (i.e., from where the polar angle
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FIGURE 21-1
Local coordinate system for scattering direction.

θ′ is measured), as shown in Fig. 21-1. The local x-direction (from where ψ′ is measured) and
y-direction are given by

ê1 = a × ŝ/ |a × ŝ|, ê2 = ŝ × ê1, (21.26)

where a is any arbitrary vector. The first of equations (21.26) ensures that the local x-axis
is perpendicular to ŝ, and the second makes the coordinate system right-handed. Similar to
equation (21.14), the new direction vector may now be expressed as

ŝ′ = sinθ′(cosψ′ê1 + sinψ′ê2) + cosθ′ŝ. (21.27)

If scattering is isotropic the scattering direction does not depend on the original path ŝ (all
directions are equally likely). In that case, the choice of a local coordinate is totally arbitrary,
and equation (21.14) may be used directly.

Example 21.1. Consider again the geometry of Example 8.2. The medium within the diffuser is gray
with absorption and scattering coefficients of κr0 = 1 and σsr0 = 2, respectively, and an anisotropy factor
of A1 = 1 (strong forward scattering). How far will the energy bundle of Example 8.3 travel before being
absorbed and/or scattered, if random numbers Rκ = 0.200 and Rσ = 0.082 are drawn? If scattering occurs,
determine the energy bundle’s new direction after the scattering event, for Rψ = 0.25 and Rθ = 0.13.

Solution
From equations (21.17) and (21.20) lκ = r0 ln(1/0.20) = 1.61r0, and lσ = (r0/2) × ln(1/0.082) = 1.25r0.
From Example 8.3 we know that the bundle must travel a distance of D = (2r0) cos 0/0.8 = 2.5r0 before
hitting the diffuser. Since lσ < lκ < D, this implies that the bundle will scatter before hitting the diffuser,
after which it will travel another distance of lκ − lσ = 0.36r0 before being absorbed (over which distance
it may be scattered again or hit a diffuser wall). The location at which the scattering occurs is, from
equation (8.57),

x = xe+lσŝ· ı̂ = 1.25r0×0.8 = 1.0r0, y = 0, z = 1.25r0×0.6 = 0.75r0.

From equations (21.25) we findψ′ = 2π×0.25 = π/2 and cosθ′ = 2
√

1 − Rθ−1 = 2
√

1 − 0.13−1 = 0.8655,
or θ′ = 30◦. Here the polar angle θ′ is measured from the direction of ŝ = 0.8ı̂ + 0.6k̂ and ψ′ in the plane
normal to it. At the scattering point we may introduce a local coordinate system with, say, a = ̂, or

ê1 = ̂ × ŝ
/
|̂ × ŝ| = 0.6ı̂ − 0.8k̂, ê2 = ŝ × ê1 = ̂,

and, from equation (21.27),

ŝ′ = 1
2 (0 + 1 × ̂) + 1

2

√
3(0.8ı̂ − 0.6k̂) = 0.4

√
3ı̂ + 0.5̂ − 0.3

√
3k̂.
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21.4 TREATMENT OF SPECTRAL LINE
STRUCTURE EFFECTS

If the participating medium contains an absorbing/emitting molecular gas, the gas will have a
number of vibration–rotation bands, which in turn consist of thousands of overlapping spectral
lines (cf. the discussion on gas properties in Chapter 11). The absorption coefficient becomes
a strongly gyrating function of wavelength (cf. Fig. 11-11), making the use of equation (21.11)
(emission wavelength) and equation (21.16) (absorption location, requiring the determination
of spectral absorption coefficients along the path) difficult, if not impractical: (i) many digits of
accuracy are required in the evaluation of λ to ascertain whether emission occurs near a line
center (with large κλ) or between lines (small κλ), and (ii) accurate knowledge of the spectral
variation of κλ was not known until recently. A first attempt to include line structure effects
was made by Modest [1], employing the narrow band models described in Chapter 11. With
the advent of high-power computers as well as high-resolution spectroscopic databases line-
by-line accurate Monte Carlo solutions have recently become reality. And, finally, with modern
k-distributions rapidly replacing band models, the Monte Carlo method may also be used in
conjunction with them.

Narrow Band Model Monte Carlo
In order to find statistically meaningful emission wavelengths using the statistical narrow band
models of Chapter 11, the absorption coefficient is first split into two components,

κλ = κpλ + κ1λ, (21.28)

where κpλ is the (spectrally smooth) absorption coefficient of other participating material (such
as particles or ions), and κ1λ is the rapidly varying gas absorption coefficient. Taking a narrow
band average over the Planck function-weighted absorption coefficient leads to∫ λ

0
κ1λIbλ dλ =

∫ λ

0

(
1
δλ

∫
δλ
κ1λIbλ dλ′

)
dλ '

∫ λ

0
κ1λIbλ dλ,

where κ1λ = (S/d)λ is the narrow band average of the gas absorption coefficient. The wavelength
of emission is determined with equation (21.11) from

Rλ =
π(

κpP +κ1P

)
σT4

∫ λ

0

(
κpλ + κ1λ

)
Ibλ dλ, (21.29)

and again, after inversion,
λ = λ(Rλ, x, y, z). (21.30)

Application of the narrow band model to find the location of absorption within the partic-
ipating medium is somewhat more complicated. The random number relations are different
for photon bundles emitted from a surface (with spectrally smooth emittance ελ), as opposed
to bundles emitted from within the medium (with strongly varying absorption coefficient κλ).
Bundles emitted from a wall are equally likely to have wavelengths close to the center of a
line or the gap between two lines, causing them to travel a certain distance before absorption.
Bundles emitted from within the medium are likely to have wavelengths for which κλ is large
[as easily seen by looking at equations (10.54) or (21.7) on a spectral basis], making them much
more likely to be absorbed near the point of emission. We will limit our discussion here to the
case of a spatially constant absorption coefficient, i.e., κλ = κλ(λ). The more general case of
a spatially varying (i.e., temperature- and/or concentration-dependent) absorption coefficient
may be found in the original paper of Modest [1].
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The amount of energy emitted by a surface element dA over a wavelength range dλ into a
pencil of rays dΩ is

ελIbλ dAp dλ dΩ,

where dAp = dA|n̂ · ŝ| is the projected area normal to the pencil of rays. Of this, the amount

ελIbλ dAp dλ dΩ e−κλl

penetrates a distance l into the medium. Taking a narrow band average of both expressions
leaves the first one untouched while the second becomes

ελIbλ dAp dλ dΩ
1
δλ

∫
δλ

e−κλl dλ = ελIbλ dAp dλ dΩ (1 − αλ) ,

whereαλ is the narrow band average of the spectral absorptivity. The ratio of the two expressions
gives the fraction of energy traveling a distance l. Thus, using one of the narrow band models
summarized in Table 11.1, we find

Rκ = 1 − αλ ' exp
(
−κpλl −

W
d

)
, (21.31)

with W/d from equation (11.68) (Elsasser model) or equations (11.77) through (11.79) (statistical
models), for which τ = κ1λl and β is the line overlap parameter. In the high-pressure limit
(strong line overlap with β → ∞) equation (21.31) reduces to equation (21.16) for all narrow
band models. Explicit inversion of equation (21.31) is possible only for the Malkmus model
(unless κpλ = 0).

If emission is from a volume element, we have for a volume dV, a wavelength range dλ, and
a pencil of rays dΩ, the total emitted energy

κλIbλ dV dλ dΩ,

of which the amount
κλIbλ dV dλ dΩ e−κλl

is transmitted over a distance of l. Taking the narrow band average of both expressions and
dividing the second by the first gives the transmitted fraction as

Rκ =
1
δλ

∫
δλ
κλ e−κλl dλ

/
1
δλ

∫
δλ
κλ dλ

= −
1

κpλ + κ1λ

d
dl

(
1
δλ

∫
δλ

e−κλl dλ
)

=
1

κpλ + κ1λ

dαλ
dl

=

κpλ +
d
dl

(
W
d

)
κpλ + κ1λ

αλ. (21.32)

Again, equation (21.32) reduces to equation (21.16) for β→∞.
All other random number relations, since they do not involve the spectral absorption coef-

ficient, are unaffected by spectral line effects.

Example 21.2. Consider a photon bundle traveling through a molecular gas. The wavelength of the
bundle is such that κ1λ = 1 cm−1 and β = 0.1. Drawing a random number of Rκ = 0.200, how far will the
bundle travel before absorption, if it was emitted (a) by a gray wall, (b) from within the gas? Use the
Goody statistical model.

Solution
(a) If the bundle originates from a wall, we have from equation (21.31)

Rκ = 0.200 = exp
(
−

W
d

)
= exp

− τ√
1 + τ/β

 = exp
(
−

τ
√

1 + 10τ

)
.
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By trial and error (or solution of a quadratic equation), it follows that τ = 25.9 and l = τ/κ1λ = 25.9 cm.
(b) For medium emission, equation (21.32) is applicable, and

Rκ = 0.200 =
1
κ1λ

d
dl

(
W
d

)
=

d
dτ

(
W
d

)
=

1√
1+τ/β

β+τ/2

β+τ
exp

− τ√
1+τ/β


=

1
√

1+10τ

1+5τ
1+10τ

e−τ/
√

1+10τ,

or τ ' 0.48 and l = 0.48 cm.
Therefore, as expected, the bundle travels much farther if emitted from a wall. For comparison, in a

gray medium the bundle would have traveled

l =
1
κ

ln
1

Rκ
=

1
1 cm−1 ln

1
0.200

= 1.61 cm

for both cases.

Some Monte Carlo results for gas–particulate mixtures with line structure effects are shown
in Chapter 20, in Fig. 20-3.

Line-by-Line Monte Carlo
As indicated in the beginning of this chapter, Monte Carlo methods tend to be CPU time
intensive, but they can be applied to very advanced problems without drastically increasing
computational effort. Therefore, unlike line-by-line (LBL) accurate conventional RTE solutions
(requiring upwards of 1 million spectral RTE solutions), LBL-accurate Monte Carlo calculations
can essentially be had for the price of a gray simulation, provided (i) emission wavelengths
and spectral absorption coefficients can be determined efficiently, and (ii) the data storage
requirements do not become excessive. The first LBL Monte Carlo scheme was implemented
by Wang and Modest [2], who considered mixtures of CO2 and H2O at combustion conditions.
Considering that the absorption coefficients of individual species in a mixture are additive,

κλ =
∑

i

κλ,i =
∑

i

κpλ,ipi and κpλ = κλ/p =
∑

i

xiκpλ,i, (21.33)

where κpλ is the pressure-based absorption coefficient, xi = pi/p is the mole fraction of species
i, and p is the total pressure of the mixture, one can obtain the random-number relation for the
gas mixture as

Rλ =
π

κpσT4

∫ λ

0
κpλIbλ dλ =

π

σT4
∑
i

xiκp,i

∫ λ

0

∑
i

xiκpλ,iIbλ dλ (21.34)

=
π

σT4
∑
i

xiκp,i

∑
i

xi

∫ λ

0
κpλ,iIbλ dλ =

∑
i

xiκp,iRλ,i
/∑

i

xiκp,i, (21.35)

where

Rλ,i =

∫ λ

0 κλ,iIbλ dλ∫
∞

0 κλ,iIbλ dλ
=

∫ λ

0 κpλ,iIbλ dλ∫
∞

0 κpλ,iIbλ dλ
=

π

κp,iσT4

∫ λ

0
κpλ,iIbλ dλ, (21.36)

is the emission wavelength random number for species i, and κp,i is the pressure-based Planck-
mean absorption coefficient. Equation (21.34) establishes a direct relation between the mixture
random number Rλ and species random numbers {Rλ,i}. Since the relation between the mixture
random number Rλ and the corresponding wavelength λ is a complicated implicit expression,
the emission wavelength is found by trial-and-error. First an emission wavelength is guessed,
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FIGURE 21-2
Random number and absorption coefficient
distributions in a small spectral interval [2].

and then the species random numbers {Rλ,i} are determined, followed by the calculation of Rλ
through equation (21.34). Figure 21-2 (given in terms of wavenumber, rather than wavelength)
shows the random number and corresponding absorption coefficient distributions of a gas
mixture in a small spectral interval. Although the random number is a monotonically increasing
function, it has strongly varying gradients even in such a small interval. A small error in random
number may result in a significant deviation in absorption coefficient. Therefore, common root-
finding techniques relying on smooth gradients, such as the Newton-Raphson method, cannot
be used here to invert random numbers; instead, a bisectional search algorithm was employed.

For absorption calculations, the desired mixture absorption coefficient κλ at a given wave-
length can be directly calculated from species pressure-based absorption coefficients {κpλ,i}

through equation (21.33). Therefore, a database tabulating both Rλ,i–λ and κpλ,i–λ relations
of each species can be utilized to determine emission wavelengths and absorption coefficients
for the mixture, and such a database can be constructed once and for all. If the total pressure
is fixed, both the species random number, as in equation (21.36), and the pressure-based ab-
sorption coefficient are functions of wavelength, temperature, and species concentration only,
i.e.,

Rλ,i = fR,i(λ,T, xi), κpλ,i = fκ,i(λ,T, xi), i = 1, 2, ..., I, (21.37)

where I is the number of species. Rλ,i and κpλ,i are functions of temperature and wavelength
only, and a 3D interpolation scheme is sufficient for the database and the computational effort
increases only linearly with increasing number of species. Several 2D axisymmetric example
problems were calculated using the mocacyl.f code of Appendix F, leading to two important
conclusions:

1. Very respectable LBL accuracy can be obtained with very few photon bundles; e.g., as few
as 30,000 bundles produced relative standard deviations of < 2% (vs. the need of 1 million
or so conventional RTE solutions). Apparently (in optically thin to intermediate media),
spectral regions with large absorption coefficients contribute most to the heat transfer, and
such wavelengths are chosen preferentially by the Monte Carlo method.

2. Computer time was dominated by spectral property calculations (primarily determination
of emission wavelengths), indicating the need to make these evaluations as efficient as
possible.
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Ozawa et al. [3] generated an LBL-accurate Monte Carlo scheme for nonequilibrium plasmas
found in hypersonic atmospheric entry of space vehicles. They realized that overlap between
species is of no consequence for emission, i.e., equation (21.11) may be rescaled in terms of
emitting species as

Rλ =
1

I∑
i=1

ji


k−1∑
i=1

ji +

λ∫
0

jkλ dλ

 , (21.38)

where jkλ is the emission coefficient of species k [= κkλIbλ for equilibrium conditions; cf. equa-
tion (11.22)]. Separating, for emission, first the emitting species before finding an emission
wavelength results in the same total emission as direct application of equation (21.34). Thus,
based on a given emission wavelength random number, they first determined the emitting
species k from

k−1∑
i=1

ji

I∑
i=1

ji

< Rλ ≤

k∑
i=1

ji

I∑
i=1

ji

. (21.39)

The random number is then rescaled to

0 < Rkλ =

Rλ
I∑

i=1
ji −

k−1∑
i=1

ji

jk
≤ 1, (21.40)

and an emission wavelength is found from

Rkλ =
1
jk

λ∫
0

jkλdλ. (21.41)

In equilibrium applications (such as combustion) jkλ = κkλIbλ is a function of only (λ,T, xk) and
λ = λ(Rkλ,T, xk) is readily databased and λ found by simple interpolation; no costly trial-and-
error solution is required. In nonequilibrium applications jkλ can depend on many parameters
(four temperatures, electronic level populations, number densities of ions, electrons, and neu-
trals), and a trial-and-error procedure was used by Ozawa et al. [3] to solve equation (21.41).
In very recent work by Feldick and Modest [4] it was recognized that, within a given species,
emission from individual lines is also independent of overlap, and the scaling process of equa-
tion (21.40) can be repeated by choosing an individual electronic transition, then a vibrational
one, and finally an individual line, for which equation (21.41) can be inverted analytically (for
Lorentz and Doppler line shapes).

FSCK Monte Carlo
The Monte Carlo method may also be combined with the full-spectrum k-distribution (FSCK)
model of Chapter 20, as was first done by Wang et al. [5], while the related ADF method was em-
ployed by Maurente and coworkers [6]. If one compares the general RTE, e.g., equation (10.21),
with the transformed FSCK RTE, equation (20.128), it is apparent that the emission term κλIbλ
is replaced by k∗(T0, φ, 10)a(T,T0, 10)Ib(T), 10 is the new spectral variable, and the absorption co-
efficient becomes k∗(T0, φ, 10). Thus, a Monte Carlo simulation can be done by simply replacing
actual spectral data by reordered emission and absorption as a function of the new spectral
variable. Proper emission rescaled “wavelengths” 10 are then found from equation (21.11) as

R1 =

∫ 1
0 k(T0, φ, 1)a(T,T0, 1)Ib(T) d1∫ 1

0 k(T0, φ, 1)a(T,T0, 1)Ib(T) d1
=

∫ 1
0 k(T0, φ, 1)a(T,T0, 1) d1∫ 1

0 k(T0, φ, 1)a(T,T0, 1) d1
, (21.42)
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since Ib does not depend on 10. The denominator is the local Planck-mean absorption coefficient.
In contrast to the oscillatory variation of the spectral absorption coefficient, e.g., Fig. 11-11, the
variations of k∗ and a with 10 are much smoother as shown, e.g., in Fig. 20-13. A number of
data points on the order of 100 is sufficient to represent these smooth k- and a-distributions.
Memory requirements are thus no longer an issue if the FSCK method is used in the Monte Carlo
simulation. In addition, the number of photons needed to resolve the spectral variation during
one Monte Carlo trial is somewhat reduced. On the negative side, mixture k-distributions must
be preassembled from databases for all possible states, as described in Chapter 20, which is no
trivial task (although it needs to be done only once, provided the reference state of the mixture
remains fairly constant in a transient or iterative solution environment). However, absorption
coefficients of different species can no longer be separated, and 10(R1, φ) and k∗(10, φ) must be
found from I+2-order interpolation in a mixture with I radiating species. Wang and Modest [2]
found FSCK Monte Carlo to speed up calculations by about a factor of 4 for similar amounts of
photon bundles, while also reducing standard deviations by 10–20%. Much greater speed-ups
of up to a factor of 20 can be obtained in nonequilibrium applications, where radiative property
evaluations are exceedingly exspensive.

21.5 OVERALL ENERGY CONSERVATION

The temperature field within the medium is determined from overall conservation of energy,
as given by equation (10.72). In the absence of conduction and convection, i.e., if radiative
equilibrium prevails, this equation reduces to the simple form of ∇ · qR = 0, where qR is the
radiative heat flux. Whether an analytical technique or a Monte Carlo method is used, the
solution is simplest for a gray medium at radiative equilibrium, followed by the case of radiative
equilibrium in a nongray medium and, finally, the gray and nongray medium in the presence
of conduction and/or convection.

Gray Medium at Radiative Equilibrium
Radiative equilibrium implies that anywhere within the medium the material absorbs precisely
as much radiative energy as it emits. Therefore, for every photon bundle absorbed at location
r, another photon bundle of the same strength must be emitted at the same location. The direc-
tion of the new photon is determined from equations (21.13). We note that these relations are
identical to those for isotropic scattering, equations (21.25), since emission is always isotropic.
The wavelength of the newly emitted energy bundle may be determined from equation (21.11)
and depends on the local temperature. However, if the medium and the walls are gray, then the
wavelength of the bundle is irrelevant (indeed, does not have to be determined). Thus, if absorp-
tion and scattering coefficients are independent of temperature, knowledge of the temperature
field is not required to find the solution: Energy bundles are emitted from the bounding walls
(according to their temperatures) and are followed until they are absorbed by a wall (after per-
haps numerous scattering and absorption–reemission events inside the medium). Numerically,
the process is identical to a purely scattering medium, with the extinction coefficient β = κ + σs
replaced by an effective scattering coefficient σ′s = β. The temperature field inside the medium
is determined by keeping track of the total reemitted energy from a control volume Vi:

Qabs,i =

Ni∑
j=1

Qi j = Qem,i = 4σκiT4
i Vi, (21.43)

or

Ti =

 Ni∑
j=1

Qi j

/
4σκiVi


1/4

, (21.44)
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where the Qi j are the amounts of energy carried by the Ni photon bundles that have been ab-
sorbed within Vi (after emission from a wall and, possibly, reemission from within the medium).

This solution is limited to the case of constant properties, since absorption and scattering
locations depend on local values of absorption and scattering coefficients. If these properties
depend on temperature, a temperature field must be guessed to determine them, and an iteration
becomes necessary.

Nongray Medium at Radiative Equilibrium
If the medium is nongray, the wavelength of each reemitted bundle must be determined from
equation (21.11), requiring knowledge of the temperature field. Therefore, the solution becomes
an iterative process: First a temperature field is guessed, and employing this guess, the solution
proceeds similar to the one described above for a gray medium, after which local temperatures
are recalculated from equation (21.44), etc., until the solution converges.

There is another way to obtain a solution. Based on the guess of the temperature field we
“know” how much energy is emitted from each subvolume. We may therefore separate the
emission and absorption processes: Photon bundles are emitted not only by the walls, but also
by the medium, and they are then traced until they are absorbed by either wall or medium
(i.e., there is no reemission in this method). This leads to different values for Qabs,i and Qem,i in
equation (21.43), which may be used to update the temperature field. This method of solution
is usually inferior since emission depends very strongly on the (unknown) temperature field,
while nongray behavior is only implicitly influenced by the temperature.

Coupling with Conduction and/or Convection
If conduction and/or convection are of importance the radiation problem must be solved si-
multaneously with overall conservation of energy, equation (10.72). Since the energy equation
is usually solved by conventional numerical methods (although a Monte Carlo solution is, in
principle, possible; see, e.g., Haji-Sheikh [7]), an iteration in the temperature field is necessary:
Similar to radiative equilibrium in a nongray medium a temperature field is guessed and used
to solve the radiation problem, leading to volume emission rates, Qem,i, and absorption rates,
Qabs,i, for each subvolume. The net radiative source is then(

∇ · qR

)
i =

1
Vi

(
Qem,i −Qabs,i

)
, (21.45)

which is substituted into the solution for equation (10.72) to predict an updated temperature
field. Because of the statistical uncertainties in the Monte Carlo calculations, this may lead
to instabilities. The tight convergence standards normally applied to finite difference/volume
iterations must be loosened considerably. If quasi-steady turbulence is treated through stochastic
particle fields (i.e., by a Monte Carlo method applied to the flow), radiation Monte Carlo
schemes blend naturally with the turbulence model and can be very efficient [8,9] (see following
section). Tight coupling with a quasi-steady fully finite-volume flow code can also be achieved
through time-blending (limited sampling during a given iteration blended with the solution
from previous iterations) [10].

21.6 DISCRETE PARTICLE FIELDS

In modern combustion simulations it is becoming common to represent pulverized coal and fuel
sprays through Lagrangian discrete particle fields, e.g., [11, 12]. Turbulent combustion models
use stochastic probability density function (PDF) models to resolve the nonlinear turbulence–
chemistry interaction term, in which the fluid is represented by a large number of notional point
masses (see discussion in Chapter 22). To simulate the radiative transfer process by ray tracing
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FIGURE 21-3
Discrete particle field representations of a 2D medium: (a) PPM representation; (b) SPM/CDS representation of a
sub-region in (a); (c) Cone–PPM scheme

in a discrete particle field, the interaction between infinitesimal point-masses and infinitesimally
thin photon rays needs to be modeled. This can be done by assigning effective volumes to the
point-masses, by assigning an influence volume to the ray’s trajectory, or a combination of
both. In this section, several particle models and ray models are developed, as well as photon
emission and absorption algorithms based on these models. More detail can be found in the
original papers of Wang and Modest [13, 14]. Their work dealt with stochastic particles used
in turbulence modeling, and we will describe the method in this context. However, with very
minor modifications the model is also directly applicable to physical particle fields.

Particle and Photon Ray Models
Point Particle Model (PPM) In this model, particles are treated as point-masses, i.e., they carry
an amount of mass without a specific shape at a certain spatial location as shown in Fig. 21-3a,
which is a 2D particle field. The only geometric information known about the particles is their
position vector ri. However, particles do have a nominal volume, which may be calculated from
their thermophysical properties such as pressure and temperature. For example, for stochastic
fluid particles, if the ideal gas assumption is adopted, the nominal volume may be computed as

Vi =
miRTi

pi
, (21.46)

where mi is the mass carried by particle i, Ti is its temperature, pi is its total pressure, and R is
the gas constant. To enforce consistency in the discrete particle representation of the medium,
the overall nominal volume of all particles should be the same as the actual geometric expanse
of the medium. As a consequence, one may regard the nominal volume of a particle as its real
volume.

The Point Particle Model only contains the particle information that the original discrete
particle field contains. It does not employ any other assumption and, therefore, it will not
induce any inconsistency. The disadvantage of this model is that it is difficult to determine the
interaction of a photon ray with a volume without shape.

Spherical Particle Model (SPM) In this method, each point-mass mi has a spherical influence
region Ωi, surrounding it as shown in Fig. 21-3b. The mass is distributed to its influence region
according to a density profile ρ̂, Ri is its influence radius, and ρi is the nominal density calculated
by

ρi =
mi

Vi
=

pi

RTi
, (21.47)
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so that the total mass in the influence region is equal to the point-mass. In this method, particles
are assigned a spherical volume (influence region) with varying density, and overlapping other
particles in the domain. Here we consider only the case of constant density spheres with a
radius determined by their nominal volumes,

Ri =
(3Vi

4π

)1/3

, (21.48)

termed the Constant Density Sphere (CDS) model. The overall density at an arbitrary position is
the sum of density contributions from all nearby particles. Some locations may be influenced
by more than one particle, while some other locations may not be in the influence region of any
particle, i.e., there is a void in these places. Therefore, this model cannot recover a continuous
density medium as shown in Fig. 21-3b, which is a small portion of the CDS representation of the
2D field given in Fig. 21-3a (if variable density were employed, the Ri would be larger, resulting
in substantial overlap, even in this region of few particles). A location with lots of void space
was chosen for better readability. In order to show particle locations in a plane, a 2D rather than
3D particle field is depicted.

Line Ray Model In this model, a ray is simply treated as a volume-less line and energy
propagates one-dimensionally along the line. This is the standard model for ray tracing in
continuous media. Since such rays are not designed to have a specific volume, they are not
able to interact with point-masses. Therefore, this model requires volumetric particle models
for radiative transfer simulations.

Cone Ray Model Physically, a photon bundle consists of many millions of individual pho-
tons, occupying a small solid angle. Thus, to model the volume of a ray, one may assign a small
solid angle to the ray and treat it as a cone. Energy is assumed to propagate axisymmetrically
along the cone, with its strength decaying in the radial direction normal to the cone axis, similar
to the varying particle density in the spherical particle model. For a ray emitted at ro into a
direction given by a unit direction vector ŝ, the intensity at location r within the ray’s cone can
then be modeled as

I(s, r) = Io(s)wc(r/Rc(s)), (21.49)

where s = (r − ro) · ŝ is the distance from the emission location to a point on the ray axis, r is the
distance from a point to the ray axis on a plane normal to the axis, Io(s) is the intensity at the ray
center, Rc(S) is the local influence radius of the cross-section as depicted in Fig. 21-3c, and wc is
a normalized two-dimensional center-symmetric profile, which satisfies

2
R2

c

∫ Rc

0
wc(r)r dr = 1. (21.50)

Again, many weight functions are possible, ranging from wc = 1 to Gaussian decay. A popular
Gaussian-like weight function is given by [15]. Physically, the distribution of energy emitted
from a point is isotropic in all directions. Different rays from the same point may overlap if rays
have a volume. The Gaussian decay of energy along the radial direction provides a smoother
overlap than a uniform energy distribution across the cone cross-section. Since in this model the
ray has a specific volume, volume-less particles can be intercepted by the ray, and this model
can work together with the Point Particle Model.

Emission from a Particle
A small gas volume emits energy uniformly into all directions. In Monte Carlo simulations,
the total energy is divided into a number of photon bundles (rays) which are released into
random directions. In a physical gas volume, the emitted energy comes from every point in the
volume. If the medium is represented by discrete particles, emission takes place inside these
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particles. Thus, depending on the optical thickness of the particle, and the point and direction of
emission, some of the emitted energy may not escape from the particle due to self-absorption. If
the particle is optically thin, the self-absorption of emission is negligible and the total emission
from particle i is calculated from equation (10.54):

Qem,i = 4κρ,imiσT4
i , (21.51)

where κρ,i is the density-based Planck-mean absorption coefficient at particle temperature Ti. If
self-absorption is considered and the particle is assumed to be a constant density sphere, the
total emission from a sphere is obtained from Example 10.3 as

Qem,i = 4πR2
i σT4

i

1 −
1

2τ2
i

[
1 − (1 + 2τi)e−2τi

] , (21.52)

where τi = ρiκρ,iRi is the optical thickness of the spherical volume based on the nominal radius.
In the Point Particle Model, the shape of a particle is arbitrary, but equation (21.52) is still a
good approximation of total emission from such a particle. If more than one ray is emitted
from a particle, the sum of initial energy carried by all rays must be equal to the total emission
calculated from equation (21.51) or equation (21.52), depending on whether self-absorption is
neglected.

The number of rays emitted by a specific particle should be determined by the total emission
of the particle, guided by the average value of energy that the rays carry, i.e.,

Qavg =

Np∑
i=1

Qem,i

/
Nr, (21.53)

where Np is the total number of particles in the computational domain and Nr is the prescribed
total number of rays to trace. The range of ray energy [Qmin, Qmax] can be chosen around the
average ray energy,

Qmin < Qavg < Qmax, (21.54)

since the total emission from a particle cannot be expected to be an integer multiple of the
average ray energy. If the total emission of a particle is in the range defined in equation (21.54),
its total energy will be lumped into one ray. However, particles in hot zones of the medium tend
to emit more energy, and if the total emission of particle i exceeds the maximum ray energy, it
needs to emit more than one ray in order for each ray to obey equation (21.54). The number of
rays emitted by particle i can be determined from

Nr,i = bQem,i/Qavg + 0.5c, (21.55)

with bxc being the largest integer ≤ x. The individual bundles’ strengths leaving particle i as ray
j is then

Qi, j = Qem,i/Nr,i. (21.56)

Because the energy of each ray should also satisfy equation (21.54), a requirement of choosing
the ray energy range is obtained as

Qmax ≥ 2Qmin. (21.57)

One convenient choice is

Qmin =
2
3

Qavg and Qmax =
4
3

Qavg. (21.58)

In cold zones particles emit little energy and, for increased efficiency, it is advantageous
to combine the emission of several particles into one ray. To be meaningful, a low-emission
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particle should be combined with particles in its close proximity. In modeling of combustion
flows a finite-volume mesh is often used to control the particle number density and resolve
different levels of gradients. Particle size and other properties tend to be relatively uniform in
a single finite-volume cell, which means that a low-emission particle tends to be surrounded
by other low-emission particles. Therefore, the finite-volume mesh can be utilized to search
low-emission particles and combine their emission. The emission point of the resultant ray is
then determined as

r =
∑

c

Qem,crc

/∑
c

Qem,c, (21.59)

where the subscript c denotes those particles combined together. Equation (21.57) also guaran-
tees that the resultant ray energy falls into the prescribed ray energy range during the particle
emission combination process.

Absorption Models
The basic task of simulating the absorption of a photon bundle in a medium described by a point
particle field is the evaluation of the optical thickness that a ray traverses along its path. This is
achieved by modeling the interaction between the ray and the particles that it encounters. Based
on different models employed for rays and particles, several schemes for absorption simulation
may be obtained.

Line–SPM Scheme In this scheme, the ray is treated as a line and the Spherical Particle
Model (SPM) is employed for the particles as shown in Fig. 21-3b. If the Constant Density
Sphere (CDS) model is employed, the mass of the particle is distributed uniformly across its
influence region and the optical thickness that ray j passes through is computed as

∆τi j = 2ρiκρ,i
√

R2
i − r2

i j, (21.60)

where ri j is the distance from the center of particle i to ray j, as indicated in Fig. 21-3b.
The total optical thickness that ray j passes through is simply the summation of the contri-

butions from the individual particles it interacts with,

τ j =
∑
i∈Ij

∆τi j, (21.61)

where Ij denotes all the particles intersected by ray j.
Cone–PPM Scheme If the ray is modeled as a cone, it is possible to let it interact with point

particles. The energy change of a conical ray when it traverses over a small distance ds in a
continuous medium is

dE(s) = −

∫ Rc

0
κ dsI(r)2πr dr = −κ ds

∫ Rc

0
I(r)2πr dr = −E(s)κ ds, (21.62)

where E(s) is the plane-integrated energy over the cone cross-section at axial location s, κ(s) is
the local absorption coefficient, κ(s) is the plane-averaged absorption coefficient, and Rc(s) is
the local radius of the cone’s cross-section. The plane-averaged absorption coefficient can be
derived as

κ =

∫ Rc

0 κIr dr∫ Rc

0 Ir dr
=

∫ Rc

0 κwcr dr∫ Rc

0 wcr dr
=

2
R2

c

∫ Rc

0
κwcr dr. (21.63)

Limiting ourselves again to constant weights (wc = 1),

κ =
2

R2
c

∫ 1

0
κr dr. (21.64)
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Therefore, the total optical thickness that ray j passes through along S is

τ = − ln
E(S)
E(0)

= −

∫
S

dE
E

=

∫
S
κ ds =

∫
S

∫ Rc

0

κ

πR2
c

2πr dr ds =

∫
Vj

κ

πR2
c

dV, (21.65)

where Vj is the volume that the ray covers in its path.
In discrete particle fields as shown in Fig. 21-3c, the absorption coefficient is represented by

a set of Dirac delta functions,2

κ =
∑

i

κiViδ(r − ri). (21.66)

Integration over Vj yields

τ =
∑
i∈I

κiVi

πR2
c,i

=
∑
i∈I

κρ,imi

πR2
c,i

, (21.67)

where I denotes all the particles enclosed by the cone.
Cone–SPM Scheme In the most advanced scheme, the ray is treated as a cone, and the

particle is given a specific shape and a density distribution may exist across its volume, as
described in [13]. All three absorption models were found to be roughly equally accurate, with
the Cone–SPM scheme slightly better, but somewhat more involved and expensive.

Implementation Considerations
In order to evaluate and compare the performance of the different schemes for Monte Carlo
ray tracing in media represented by statistical (or physical) particles, one-dimensional radiative
heat transfer problems in a nonscattering gray gaseous medium were studied. Two media were
considered: a 1D gas slab bounded by two infinitely large, parallel, cold, black walls and a gas
sphere surrounded by a cold black wall. The thickness of the slab and the radius of the sphere
were fixed, while temperature and density (or absorption coefficient) were varied across the slab
thickness or along the sphere radial direction. The resulting radiative heat flux at the boundary
were compared with exact values found through numerical integration.

In the slab problem, the 1D medium was simulated by repeating a gas cube, each with equal
side lengths in the two infinite dimensions. A single gas cube is then taken as the computational
domain in the Monte Carlo simulation. In the sphere problem, the computational domain is the
gas sphere itself. The continuous gas medium in both problems is represented by a number of
discrete gas particles randomly placed inside the computational domain. The mass of particles
can be equally sized or have a distribution function. For computational efficiency, a mesh of
cubic cells is laid on top of the computational domain because the ray-tracing algorithm on
smaller cubic cells is simpler and more efficient. The same cubic-cell mesh is used for the sphere
problem as well. In the slab problem each of the cells contains a number of gas particles, while
in the sphere problem some cells at the corners of the mesh may contain no particles, because
they may be outside the spherical computational domain. If the Point Particle Model (PPM) is
employed, it can be assumed that each particle is completely enclosed by a single cell, since the
shape of particles is not specified. However, if the Spherical Particle Model (SPM) is employed,
the cells contain not only the particles with their center in it, but also parts of particles from
neighboring cells. Thus, a scheme must be developed to avoid having the ray interact with a
single particle more than once, since a single particle may belong to multiple cells.

When the Cone Ray Model is adopted for ray tracing, the opening angle (the angle between
the cone axis and its lateral surface) needs to be chosen. Larger opening angles result in more
particles caught by the ray, requiring more CPU time per ray. At the same time, larger opening
angles reduce the statistical scatter (i.e., reduce the number of required photon bundles for
a given desired standard deviation), while also smoothing out gradients that may exist in

2For a definition of one- and multidimensional Dirac-delta functions see equations (11.99) and (19.1).
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FIGURE 21-4
Figure of merit (FoM) of Cone Ray Models at differ-
ent cone opening angles; 50×10, 000 equally-sized
particles; 1 ray/particle; homogeneous medium.

the solution. For example, in turbulent flow fields large opening angles may smooth out the
turbulence. The “figure of merit” (FoM) of a Monte Carlo simulation is defined as [16]

FoM =
1
ε2t
, ε =

 1
S

S∑
s=1

(qs/q0
− 1)2


1/2

(21.68)

where ε is the root-mean-square (RMS) relative error of the simulation and t is the simulation
time. Here, the error of 50 simulations was employed for ε (S = 50). qs is the simulation result
of radiative flux at the boundary and q0 is the exact solution. A good Monte Carlo simulation
should have a high FoM score. Figure 21-4 shows FoM scores for different opening angles.
The gas slab or sphere was represented by 10,000 randomly distributed, equally sized particles,
each of which emits all its energy into a single random direction. Temperature and absorption
coefficient are uniform and, thus, the smoothing effect of larger cone angles is not an issue. The
mesh in use contains 5× 5× 5 = 125 cubic cells. As seen from Fig. 21-4, for this one-dimensional
problem 1◦ is the optimal opening angle, which can achieve high accuracy as well as high CPU
efficiency. Although smaller opening angles required less computational time, their errors were
larger, because they could not interact with enough particles. Similar results were also obtained
for other temperature and absorption coefficient profiles.

Another factor that can affect the simulation speed is the number of particles per cell. When
a ray is traced, the cells that it travels through are identified first. Then all particles in those cells
are checked for interaction with the ray. For a finer mesh, the number of particles per cell is
smaller and, thus, a smaller number of particles are checked during ray tracing. However, more
cells must be searched. Thus, finer meshes tend to reduce the time spent on checking particles
for their interaction with a ray, but increase the overhead related to cell searching and recording.
It was found that no optimal cell size exists for the Line–CDS scheme; the computational time
decreases consistently with decrease of cell size. For Cone schemes, however, an optimal value
was found to be around 50 particles/cell in both the slab and the sphere problems.

21.7 EFFICIENCY CONSIDERATIONS

Monte Carlo calculations in the presence of a participating medium are generally even more
computationally intensive than those for surface exchange, making efficiency considerations all
the more important. All efficiency improvements introduced in Chapter 8 continue to hold in
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participating media, such as inversion of random number relations in terms of look-up tables
and interpolation from precalculated databases, energy partitioning, etc.

In optically thick media, bundles emitted in the interior rarely travel far enough (before
absorption) to hit a bounding surface, although it is usually the surface heat fluxes that are of
primary interest. Modest [17] extended the partitioning concept by depleting the energy content
of a bundle along its path: No random number is drawn to determine the distance traveled until
absorption, equation (21.17); rather, the energy content is depleted due to gradual absorption.
The depleted amount is added to the absorption rates of the subvolumes through which the
bundle travels. Again, the bundle is traced until it leaves the enclosure or until its energy
is depleted. An illustration of this method is included with Example 21.4 for the backward
Monte Carlo method in the following section. A similar method is also described by Walters
and Buckius [18], who called it “absorption suppression,” and by Farmer and Howell [19], who
named it “pathlength method.” Both references also discuss several variations to the method.

If an optically thin medium is externally irradiated, it is the lack of substantial absorption that
causes the method to become inefficient. Energy partitioning can also be used to increase the
efficiency for such problems, either in the way described in the previous paragraph, or through
a variation called “forced collisions” by Walters and Buckius [18]. Wong and Mengüç [20]
systematically compared the efficiency of different tracing schemes for irradiated slabs and
found energy partitioning to be more efficient for large optical thicknesses and for strong
scatterers (ω > 0.5); however, they did not investigate near-transparent media, for which energy
partitioning should also improve convergence.

Energy partitioning can result in tremendous computer time savings for optically thick and
thin media. However, the method is limited to media with known (or iterated) temperature
field (i.e., it cannot be applied to the standard method for radiative equilibrium, where photon
bundles are absorbed and reemitted at selected locations).

Smoothing algorithms similar to those presented in Chapter 8 can be also be applied to
exchange areas for participating media, as used in the zonal method of Chapter 18 [21, 22]. A
simple, yet very effective smoothing scheme for energy deposition into volumetric cells has
been proposed by Fippel and Nüsslin [23], by minimizing local second derivatives. Wu and
coworkers [24] developed the perhaps only higher-order Monte Carlo scheme, evaluating local
emission via Lagrangian interpolation of varying order, and similarly distributing absorbed
energies across adjacent nodal points.

There are many other ways to make a particular Monte Carlo simulation computationally
more efficient. For example, Farmer and Howell [25, 26] overcame the standard method’s
inefficiency in optically thick media by using hybrid approaches, employing the diffusion ap-
proximation of Chapter 15 for optically thick volume elements, and a regular Monte Carlo
simulation for the rest. A similar hybrid, separating near-opaque wavelengths, for which they
used the P1-method of Chapter 16, was proposed by Feldick and coworkers [27]. The dilemma of
optically thick regions can also be addressed by importance sampling: photon bundles emitted
in near-opaque regions are given larger weights (and, thus, are chosen less often) [28, 29].

21.8 BACKWARD MONTE CARLO

The Monte Carlo scheme, as presented so far, is a “forward” method, i.e., a photon bundle is
emitted and we then follow its progress until it is absorbed or until it leaves the system. The
method can easily simulate problems of great complexity and, for the majority of problems
where overall knowledge of the radiation field is desired, the method is reasonably efficient.
However, if only the radiative intensity hitting a small spot and/or over a small range of solid
angles is required, the method can become terribly inefficient. Consider, for example, a small
detector (maybe 1 mm × 1 mm in size) with a small field of view (capturing only photons hitting
it from within a small cone of solid angles) monitoring the radiation from a large furnace filled
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with an absorbing, emitting, and scattering medium. In a standard Monte Carlo simulation, we
would emit many photon bundles within the furnace and would trace the path of each of these
photons, even though only the tiniest of fractions will hit the detector. It may take many billion
bundles before a statistically meaningful result is achieved—at the same time the intensity field
is being calculated everywhere (without need); clearly a very wasteful procedure. Obviously, it
would be much more desirable if one could just trace those photon bundles that eventually hit
the detector.

This idea of a backward tracing solution, sometimes also called reverse Monte Carlo, has been
applied by several investigators [30–41], all based on the principle of reciprocity described by
Case [42]. This principle states that, if Iλ1 and Iλ2 are two different solutions to the radiative
transfer equation for a specific medium,

ŝ · ∇Iλ j(r, ŝ) = Sλ j(r, ŝ) − βλ(r)Iλ j(r, ŝ) +
σsλ(r)

4π

∫
4π

Iλ j(r, ŝ′)Φλ(r, ŝ′, ŝ) dΩ, j = 1, 2, (21.69)

subject to the boundary condition

Iλ j(rw, ŝ) = Iwλ j(rw, ŝ), j = 1, 2, (21.70)

then these two solutions are related by the following identity:

∫
A

∫
n̂·ŝ>0

[Iwλ2(rw, ŝ)Iλ1(rw,−ŝ) − Iwλ1(rw, ŝ)Iλ2(rw,−ŝ)] (n̂ · ŝ) δΩ dA

=

∫
V

∫
4π

[Iλ2(r,−ŝ)Sλ1(r, ŝ) − Iλ1(r, ŝ)Sλ2(r,−ŝ)] dΩ dV, (21.71)

where A and V denote integration over enclosure surface area and enclosure volume, respec-
tively, and n̂ · ŝ > 0 indicates that the integration is over the hemisphere on a point on the surface
pointing into the medium.

In the backward Monte Carlo scheme, the solution to Iλ1(r, ŝ) [with specified Sλ1(r, ŝ) and
Iwλ1(rλ1, ŝ)] is found from the solution to a much simpler problem Iλ2(r, ŝ). In particular, if we
desire the solution to Iλ1 at location ri (say, a detector at the wall) into direction −ŝi (pointing out
of the medium into the surface), we choose Iλ2 to be the solution to a collimated point source
of unit strength located also at ri, but pointing into the opposite direction, +ŝi. Mathematically,
this can be expressed as

Iwλ2(rw, ŝ) = 0, (21.72a)
Sλ2(r, ŝ) = δ(r − ri) δ(ŝ − ŝi), (21.72b)

where the δ are Dirac-delta functions for volume and solid angles.3 If the infinitesimal cross-
section of the source, normal to ŝi, is dAi, then this results in an Iλ2 intensity at ri of

Iλ2(ri, ŝ) =
δ(ŝ − ŝi)

dAi
. (21.73)

As the Iλ2 light beam travels through the absorbing and/or scattering medium, it will be atten-
uated accordingly.

Sticking equations (21.72) into equation (21.71) yields the desired intensity as

Iλ1(ri,−ŝi) =

∫
A

∫
n̂·ŝ>0

Iwλ1(rw, ŝ)Iλ2(rw,−ŝ)(n̂ · ŝ) dΩ dA

+

∫
V

∫
4π

Sλ1(r, ŝ)Iλ2(r,−ŝ) dΩ dV. (21.74)

3For a definition of one- and multidimensional Dirac-delta functions see equations (11.99) and (19.1).
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Typical ray path in a backward Monte
Carlo simulation.

While the Iλ2 problem is much simpler to solve than the Iλ1 problem, it remains quite difficult
if the medium scatters radiation, making a Monte Carlo solution desirable. Therefore, we will
approximate Iλ1 as the statistical average over N distinct paths that a photon bundle emitted at
ri into direction ŝi traverses, as schematically shown in Fig. 21-5, or

Iλ1(ri,−ŝi) =
1
N

N∑
n=1

Iλ1n(ri,−ŝi), (21.75)

where the solution for each Iλ1n is found for its distinct statistical path (with absorption and
scattering occurrences chosen exactly as in the forward Monte Carlo method). Along such a
zigzag path of total length l from ri to rw, consisting of several straight segments pointing along a
local direction ŝ′(r′), Iλ2 is nonzero only over an infinitesimal volume along the path, dV = dAil,
and an infinitesimal solid angle centered around the local direction vector −ŝ = ŝ′(r′).At its final
destination on the enclosure surface, the beam of cross-section dAi illuminates an area of only
dA = dAi/

(
−ŝ′(rw)·n̂

)
, so that equation (21.74) simplifies to

Iλ1n(ri,−ŝi) = Iwλ1

(
rw,−ŝ′(rw)

)
exp

[
−

∫ l

0
κλ(r′) dl′

]
+

∫ l

0
Sλ1

(
r′,−ŝ′(r′)

)
exp

[
−

∫ l′

0
κλ(r′′) dl′′

]
dl′, (21.76)

where
∫ l′

0 dl′′ indicates integration along the piecewise straight path, starting at ri. It is seen
that Iλ1n(ri,−ŝi) consists of intensity emitted at the wall into the direction of ŝ′(r′w) (i.e., along the
path toward ri), attenuated by absorption along the path, and by emission along the path due
to the source Sλ1, in the direction of −ŝ′(r′) (also along the path toward ri), and attenuated by
absorption along the path, between the point of emission, r′, and ri. This result is intuitively
obvious since it is the same as equation (10.28), except that we here have a zigzag path due to
scattering and/or wall reflection events.

If we trace a photon bundle back toward its point of emission, allowing for intermediate
reflections from the enclosure wall (as indicated in Fig. 21-5), then, at the emission point rw,
Iwλ1 = ελIbλ(rw). And, if the internal source of radiation is due to isotropic emission, then,
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comparing equations (10.21) and (21.69) we find Sλ1(r′,−ŝ′) = κλ(r′)Ibλ(r′). Thus,

Iλn(ri,−ŝi) = ελ(rw)Ibλ(rw) exp
[
−

∫ l

0
κλ(r′) dl′

]
+

∫ l

0
κλ(r′)Ibλ(r′) exp

[
−

∫ l′

0
κλ(r′′) dl′′

]
dl′, (21.77)

where the subscript “1” has been dropped since it is no longer needed. Equation (21.77) may be
solved via a standard Monte Carlo simulation or using the energy partitioning scheme of the
previous section. For the standard method scattering lengths lσ are chosen from equation (21.21)
as well as an absorption length lκ from equation (21.19). The bundle is then traced backward
from ri unattenuated [i.e., the exponential decay terms in equation (21.77) are dropped], until
the total path length equals lκ or until emission location rw is reached (whichever comes first).
Thus,

Iλn (ri,−ŝi) =


∫ lκ

0
κλ(r′)Ibλ(r′) dl′, lκ < l,

ελ(rw)Ibλ(rw) +

∫ l

0
κλ(r′)Ibλ(r′) dl′, lκ ≥ l.

(21.78)

If energy partitioning is used only scattering lengths are chosen from equation (21.21) and Iλn is
found directly from equation (21.77).

Radiative Fluxes If radiative flux onto a surface at location ri over a finite range of solid
angles is desired, the absorbed incoming flux needs to be computed as in equation (3.17), using
the statistical data obtained for Iλn(ri,−ŝi). This is best done by the method described in Section
8.2, equation (8.10). For example, for a detector located at ri with opening angle θmax one obtains

qdet =

∫ 2π

0

∫ θmax

0
ε′λ(θ,ψ)Iλ(π − θ,ψ) cosθ sinθ dθ dψ

=
1
2

∫ 2π

0

∫ 1

cos2θmax

ε′λ(θ,ψ)Iλ(π − θ,ψ) d(cos2θ) dψ

' π(1 − cos2θmax)
N∑

n=1

ε′λ(ŝin)Iλn(−ŝin), (21.79)

where the directions ŝin need to be picked uniformly from the interval 0 ≤ ψ ≤ 2π, cos2θmax ≤

cos2 θ ≤ 1. The azimuthal angle ψn is found from equation (8.41), while θn is found from

Rθ =

∫ 1

cos2θn
dζ∫ 1

cos2θmax
dζ

=
1 − cos2θn

1 − cos2θmax
=

sin2θn

sin2θmax
, or θn = sin−1

(√
Rθ sinθmax

)
. (21.80)

If the detector is of finite dimension, points distributed across the surface are chosen like in a
forward Monte Carlo simulation.

Collimated Irradiation Backward Monte Carlo is extremely efficient if radiative fluxes onto
a small surface and/or over a small solid angle range are needed. Conversely, forward Monte
Carlo is most efficient if the radiation source is confined to a small volume and/or solid angle
range. Both methods become extremely inefficient, or fail, if radiation from a small source
intercepted by a small detector is needed. For collimated irradiation (and similar problems)
backward Monte Carlo can be made efficient by separating intensity into a direct (collimated)
and a scattered part, as outlined in Chapter 19. Thus, comparing equations (21.69) and (19.12)
we find, assuming volumetric emission to be negligible,

Sλ1(r, ŝ) = σs(r)
qcoll(rw)

4π
exp

[
−

∫ lc

0
(κλ + σsλ) dl′c

]
Φ(r, ŝ0, ŝ), (21.81)
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where qcoll is the collimated flux entering the medium at rw, traveling a distance of lc toward r
in the direction of ŝ0, and Φ(r, ŝ0, ŝ) indicates the amount of collimated flux arriving at r from ŝ0,
being scattered into the direction of ŝ. Therefore, the diffuse component of the intensity at ri is
found immediately from equation (21.76) as

Iλn(ri,−ŝi) =

∫ l

0
Sλ1(r′,−ŝ′) exp

[
−

∫ l′

0
κλ dl′′

]
dl′, (21.82)

with Sλ1 from equation (21.81). As before, equation (21.82) may be solved using standard tracing
[picking absorption length lκ, and dropping the exponential attenuation term in equation (21.82)]
or energy partitioning [using equation (21.82) as given].

21.9 DIRECT EXCHANGE MONTE CARLO

As noted in Section 21.7, standard Monte Carlo implementations become inefficient in optically
thick media, but that can be mitigated by using the energy partitioning approach. Another
difficulty arises in near-isothermal enclosures: while emission from and absorption by a hot cell
can be substantial, the net heat transfer between two cells may be very small, i.e., emission is
nearly balanced by absorption of incoming radiation. Thus, a small percentage of uncertainty
in emitted and absorbed energies may lead to huge uncertainty in the radiative source ∇ ·q, the
difference between emission and absorption. In the Direct Exchange Monte Carlo scheme the
energy exchange between any two cells is formulated in terms of volume integrals (and also a
spectral integral if the medium is nongray). Rather than tracing statistically meaningful photon
bundles, these exchange integrals are solved stochastically, using the methods of Section 8.2.

For example, the net energy exchange between two homogeneous cells Vi and Vj, in the
absence of scattering and wall reflections, is, from Section 18.3

Qi→ j = −Q j→i =

∞∫
0

(
Ibλ,i − Ibλ, j

) ∫
Vi

∫
V j

e−
∫
κλdS κλ,iκλ, j

S2 dV j dVi dλ, (21.83)

where S is the distance between any two points within Vi and Vj, and
∫
κλ dS is the absorption

coefficient integrated over that path. Assigning probability density functions for points within
Vi and Vj (such as pi = 1/Vi for uniform probability) and for wavelength, equation (21.83) can
be solved stochastically using equation (8.13). This method was first introduced by Cherkaoui
et al. for a one-dimensional slab of a nonscattering medium contained between black [43]
and reflecting [44] plates. They noted that CPU requirements for an isothermal slab were
orders of magnitude lower than for standard Monte Carlo. Tessé [45, 46] and coworkers have
conceptually extended the method to nonscattering media in three-dimensional enclosures, but
only 1D results were reported. A 2D axisymmetric solution for a sooty flame (i.e., without
surface reflections) was also reported [47].

21.10 EXAMPLE PROBLEMS

We will conclude this chapter on Monte Carlo methods with a couple of worked example
problems designed to show the structure of a typical Monte Carlo code, and to highlight the
salient features, as well as strengths and weaknesses, of different approaches. All problems deal
with energy reaching a (relatively) small detector, in order to investigate the conditions under
which backward Monte Carlo can potentially outperform forward Monte Carlo. Problems, in
which radiative flux or source is to be determined everywhere, have the same structure, but
backward Monte Carlo can, at best, perform equally well as the standard forward approach.
The Fortran90 computer codes for all these examples have been included in Appendix F.
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FIGURE 21-6
Geometry for Example 21.3.

Example 21.3. Consider a one-dimensional slab 0 ≤ z ≤ L = 1 m of a gray, purely isotropically scattering
medium (σs = 1 m−1 = const), bounded at the top (z = 0) by vacuum and at the bottom (z = L) by a cold,
black surface. Collimated irradiation of strength Q = 100 W is normally incident on this nonreflecting
layer, equally distributed over the disk 0 ≤ r ≤ R = 0.1 m, as shown in Fig. 21-6. A small detector 2 cm
× 2 cm in size, with an acceptance angle of θmax is located on the black surface at x = x0 = 0.2 m, y = 0.
Determine the flux incident on the detector for varying acceptance angles, comparing forward and
backward Monte Carlo implementations.

Solution
Forward Monte Carlo Emission points across the irradiation disk for N bundles are chosen as in Example
8.1,

r = R
√

Rr, φ = 2πRφ, and x = r cosφ, y = r sinφ.

Emission is always into the ŝ = k̂ or z-direction. Each bundle carries an amount of energy of Q/N and
travels a distance of

lσ =
1
σs

ln
1

Rσ
,

from equation (21.20), before being scattered into a new direction found from equations (21.25). For
isotropic scattering the incident direction is irrelevant and one may set the new direction to that given
for isotropic emission, equations (21.13). The bundle is then traced along as many scattering paths as
needed, until it leaves the layer (z < 0, or z > L). If the bundle strikes the bottom surface (z = L),
incidence angle (ŝ · k̂ > cosθmax?) and location (x, y on detector?) are checked and a detector hit is
recorded, if appropriate. Results are shown in Fig. 21-7. As the detector’s acceptance angle increases,
more photon bundles are captured. Obviously, this results in a larger detector-absorbed flux. However,
it also increases the fraction of statistically meaningful samples, decreasing the variance of the results
or the number of required photon bundles to achieve a given variance. All calculations were carried
out until the variance fell below 2% of the calculated flux, and the necessary number of bundles is also
included in the figure. For the chosen variance about 4 × 106 bundles are required for large acceptance
angles, rising to 512 × 106 for θmax = 10◦. Results are difficult to obtain for θmax < 10◦. Similar remarks
can be made for detector area: as the detector area decreases, the necessary number of bundles increases.
Modeling a more typical detector 1 mm × 1 mm in size would almost be impossible.
Backward Monte Carlo In this case no direct radiation hits the detector (x0 > R), and the scattered
irradiation is calculated from equations (21.82) and (21.81) with qcoll = Q/πR2 as

In(ri,−ŝi) =

∫ l

0

σsQ
4π2R2 e−σsz H

(
R − r(l′)

)
dl′,

where l consists of a number of straight-line segments, for which dl′ = dz′/cosθ, and H is Heaviside’s
unit step function.4 Therefore,

In(ri,−ŝi) =
σsQ

4π2R2

∑
j

∫ z2 j

z1 j

e−σsz dz
szj

=
Q

4π2R2

∑
j

e−σsz1 j − eσsz2 j

szj
, (21.84)

where szj = cosθj is the z-component of the direction vector for the jth segment, and z1 j and z2 j are
the z-locations between which the segment lies within the cylindrical column r ≤ R (note that some
segments may lie totally inside this column, some partially, and some not at all).

4For its definition see equation (11.103) in Section 11.9.
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FIGURE 21-7
Detector fluxes and required number of photon bundles for Example 21.3.

As in forward Monte Carlo a starting point on the detector is chosen from equation (8.32), and a
direction for the backward trace is picked from equations (21.80) and (8.41). Again, a scattering distance
is found from equation (21.20), after which the bundle is scattered into a new direction found from
equations (21.25). However, rather than having fixed energy, the backward-traveling bundles accumu-
late energy according to equation (21.84) as they travel through regions with a radiative source. The
total flux hitting the detector is calculated by adding up bundle energies according to equation (21.79).
Results are included in Fig. 21-7, and are seen to coincide with forward Monte Carlo results to about one
variance or better (discrepancy being larger at large θmax, since the absolute variance increases). How-
ever, the number of required bundles remains essentially independent of opening angle at about 20,000
(and, similarly independent of detector area). Since the tracing of a photon bundle requires essentially
the same CPU time for forward and backward tracing, for the problem given here the backward Monte
Carlo scheme is up to 25,000 times more efficient than forward Monte Carlo.

Fortran90 codes used for this example are included in Appendix F as RevMCcs and FwdMCcs.

Example 21.4. Repeat the previous example, for an acceptance angle of θmax=10◦, assuming that the
medium absorbs as well as scatters radiation, using absorption coefficients of κλ = 1 m−1 and κλ = 5 m−1.
Use forward as well as backward Monte Carlo, and also both standard ray tracing as well as energy
partitioning.

Solution
Forward Monte Carlo—standard ray tracing The solution proceeds as in the previous example, except
that also an absorption length lκ is chosen, from equation (21.17). If the sum of all scattering paths
exceeds lκ, the bundle is terminated.
Forward Monte Carlo—energy partitioning The solution proceeds as in the previous example, except
the energy of each bundle hitting the detector is attenuated by a factor of exp(−κl), where l is the total
(scattered) path that the bundle travels through the layer before hitting the detector.
Backward Monte Carlo—standard ray tracing The solution proceeds as in the previous example, except
for two changes. First, the local scattering source must be attenuated by absorption of the direct beam,
and equation (21.84) becomes

In(ri,−ŝi) =
σsQ

4π2R2

∑
j

∫ z2 j

z1 j

e−(κ+σs)z dz
szj

=
ωQ

4π2R2

∑
j

e−βz1 j − e−βz2 j

szj
, (21.85)

whereω and β are scattering albedo and extinction coefficient, as usual. And again, an absorption length
lκ is chosen, and the addition in equation (21.85) is stopped as soon as the total path reaches lκ or the
bundle leaves the layer (whichever comes first).
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TABLE 21.1
Comparison between four different Monte Carlo implementations to calculate irradiation
onto a detector from a collimated source.

Forward MC— Forward MC— Backward MC— Backward MC—
κ Standard Energy partitioning Standard Energy partitioning

(m−1) Qdet N×10−6 Qdet N×10−6 Qdet N×10−6 Qdet N×10−6

0 9.22×10−4 512 9.22×10−4 512 9.17×10−4 0.02 9.17×10−4 0.02
1 2.66×10−4 512 2.70×10−4 512 2.56×10−4 0.08 2.59×10−4 0.02
5 2.54×10−6 16,384∗ 2.93×10−6 512 2.77×10−6 5.12 2.79×10−6 0.02

∗Variance of 5% (all other data have variance of 2%)

Backward Monte Carlo—energy partitioning Again, the scattering source must be attenuated as in
equation (21.85), but the exponential attenuation term in equation (21.82) must also be retained. Thus,

In(ri,−ŝi) =
σsQ

4π2R2

∫ l

0
e−βz(l′)−κl′H

(
R − r(l′)

)
dl′,

where the integrand contributes only where the source is active (r ≤ R), but attenuation of the bundle
takes place everywhere (l′ = total distance along path from ri to r′). With l′ = l1 j +(z−z1 j)/szj, dl′ = dz/szj,
and l2 j = l1 j + (z2 j − z1 j)/szj, where l1 j and l2 j are total path lengths of the bundle until the beginning and
end of segment j, respectively, this becomes

In(ri,−ŝi) =
σsQ

4π2R2

∑
j

e−κl1 j

∫ z2 j

z1 j

e−βz−κ(z−z1 j)/szj
dz
szj

=
σsQ

4π2R2

∑
j

e−κl1 j
e−βz1 j − e−βz2 j−κ(z2 j−z1 j)/szj

β + κ/szj

=
Q

4π2R2

∑
j

σs

β + κ/szj

[
e−βz1 j−κl1 j − e−βz2 j−κl2 j

]
.

The rest of the simulation remains as in the previous example. Results are summarized in Table 21.1. As
expected, if standard ray tracing is employed, the number of required bundles grows astronomically if
the absorption coefficient becomes large, both for forward and backward Monte Carlo. While backward
Monte Carlo retains its advantage (indeed, the forward Monte Carlo simulation for κλ = 5 m−1 could
only be carried out to a variance of 5%), the relative growth of required bundles appears to be worse for
backward Monte Carlo. If energy partitioning is employed, the number of bundles remains unaffected
by the absorption coefficient for both, forward and backward Monte Carlo. All four Fortran90 codes
used for this example have also been included in Appendix F.

It was demonstrated in the last two examples that in media with large optical thickness
based on absorption coefficient, energy partitioning is vastly more efficient than the standard
method. And in problems to find irradiation onto small surfaces and/or small solid angles,
backward Monte Carlo strongly outperforms forward Monte Carlo. As seen in the last example,
employing backward Monte Carlo with energy partitioning may reduce CPU time by a factor
of 1,000,000 or more!
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Problems

Because of the nature of the Monte Carlo technique, most of the following problems require
the development of a small computer code. However, all problem solutions can be outlined by
giving relevant relations, equations, and a detailed flow chart.

21.1 Consider the (highly artificial) absorption coefficient of Problem 11.22. Find narrow band averages
for the absorption coefficient and the transmissivity using Monte Carlo integration (use mcint.f90
or write your own code). Compare with answers from Problem 11.22.

21.2 Consider radiative equilibrium in a plane-parallel medium between two isothermal, diffusely emitting
and reflecting gray plates (T1 = 300 K, ε1 = 0.5, T2 = 2000 K, ε2 = 0.8) spaced L = 1 m apart. The
medium has constant absorption and scattering coefficients (κ = 0.01 cm−1, σs = 0.04 cm−1), and
scattering is linear-anisotropic with A1 = 0.5. Calculate the radiative heat flux and the temperature
distribution within the medium by the Monte Carlo method. Compare with results from the P1-
approximation.

21.3 Consider an isothermal plane-parallel slab (T = 1000 K) between two cold, gray, diffuse surfaces
(ε = 0.5). The medium absorbs and emits but does not scatter. Prepare a standard Monte Carlo
solution to obtain the radiative heat loss from the medium for optical thickness κL = 0.2, 1, 5, 10.
Compare with the exact solution.
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21.4 Repeat Problem 21.3 using energy partitioning. Compare the efficiency of the two methods.

21.5 A molecular gas is confined between two parallel, black plates, spaced 1 m apart, that are kept
isothermal at T1 = 1200 K and T2 = 800 K, respectively. The (hypothetical) gas has a single vibration–
rotation band in the infrared, with an average absorption coefficient of

κ̄1η =
(S

d

)
η

=
α
ω

e−2|η−η0 |/ω, η0 = 3000 cm−1, ω = 200 cm−1

and a line overlap parameter of β (see the discussion of narrow band and wide band models in
Chapter 11). Assuming convection and conduction to be negligible, determine the radiative heat flux
between the two plates, using the Monte Carlo method. Carry out the analysis for variable values of
(α/ω) and β, and plot nondimensional radiative heat flux vs. (S/d)0L with β as a parameter.

21.6 Consider a sphere of very hot molecular gas of radius 50 cm. The gas has a single vibration–
rotation band at η0 = 3000 cm−1, is suspended magnetically in a vacuum within a large, cold con-
tainer, and is initially at a uniform temperature T1 = 3000 K. For this gas, ρaα(T) = 500 cm−2, ω =

100
√

T/100 K cm−1, β� 1. This implies that the absorption coefficient may be determined from

κη = κ0 e−2|η−η0 |/ω, κ0 =
ρaα

ω
and the band absorptance from

A(s) = ωA∗ = ω[E1(κ0s) + ln(κ0s) + γE].

Find the total heat loss from the sphere and its temperature distribution by the Monte Carlo method
(including t > 0).

21.7 Consider a sphere of very hot dissociated gas of radius 5 cm. The gas may be approximated as a gray,
isotropically scattering medium with κ = 0.1 cm−1, σs = 0.2 cm−1. The gas is suspended magnetically
in a vacuum within a large, cold container and is initially at a uniform temperature T1 = 10,000 K.
Using the Monte Carlo method and neglecting conduction and convection, specify the total heat loss
per unit time from the entire sphere at t = 0. Outline the solution for times t > 0.

21.8 Consider an absorbing–scattering slab irradiated by a short-pulsed laser, as described in Example
19.3. Prepare a transient Monte Carlo code to predict the flux exiting the slab as a function of time
into either direction (transmissivity and reflectivity).


