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20.1 INTRODUCTION

In the preceding chapters on solution methods for the radiative equation of transfer within
participating media we have exclusively dealt with gray media, that is, media whose radiative
properties (absorption coefficient κ, scattering coefficient σs, and phase function Φ, as well as
emittance of boundary surfaces ε) do not vary across the electromagnetic spectrum. We noted
that most relationships also hold true for a nongray medium on a spectral basis (i.e., as long
as the simplification of radiative equilibrium is not invoked). While the assumption of gray
surfaces made in the net radiation method of Chapters 5 (diffusely reflecting surfaces) and 6
(partly specular reflecting surfaces) is often a good one over the relatively small relevant part
of the spectrum, this is nearly never the case for participating media. Molecular gases below
ionization temperatures (discussed in detail in Chapter 11) absorb and emit over a multitude
of very narrow spectral lines, which may overlap and form vibration–rotation bands. The
result is an absorption coefficient that oscillates wildly within each band, and is zero between
bands. Similarly, the discussion of radiative properties of suspended particles (Chapter 12)
has shown that their absorption and scattering properties may also oscillate strongly across the
spectrum (see, for example, Fig. 12-3). However, if particles of varying sizes are present, as is
usually the case, the spectral oscillations tend to be damped out so that the assumption of a gray
medium becomes a reasonable one. Like molecular gases, semitransparent solids and liquids
often display strong absorption bands in the infrared due to photon–phonon coupling, with
weak absorption coefficients between bands. Therefore, we conclude that the simplification
of a gray participating medium is, except for particle suspensions with variable sizes, a poor
assumption that may lead to very significant errors in the analysis. It behooves the engineer to
realize that accurate solutions to the equation of transfer (such as exact solutions in two or three
dimensions), as opposed to simple approximate ones (such as the P1-approximation in one or
two dimensions), may be meaningless unless the spectral variation of radiation properties is
taken into account.

Unfortunately, consideration of spectral variations of radiation properties tends to consid-
erably increase the difficulty of an already extremely difficult problem, or at least make their
numerical solution many times more computer-time intensive. All solution methods discussed
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thus far, whether exact or approximate, are poorly suited for the consideration of nongray prop-
erties. In general, radiative heat flux, divergence of heat flux, and/or incident radiation must be
evaluated for many, many spectral locations, followed by numerical quadrature of the spectral
results. This process will always involve the guessing of a temperature field, followed by an
iterative procedure. This statement is true even for the case of radiative equilibrium, since the
condition ∇ · q = 0 holds only for total heat flux, but not for spectral heat flux: While it is true
that each volume element must emit as much radiative energy as it absorbs, the re-emission of
energy must not occur at the same wavelength; the wavelengths of absorption are determined
by the local absorption coefficient and by the wavelengths of the incoming radiation (and, thus,
depend on the temperature of the surrounding medium), while the wavelengths of emission are
determined by the local absorption coefficient and the local temperature.

In principle, if detailed information is given for the spectral extinction coefficient of the
participating medium, such as contained in the high-resolution HITRAN [1] and HITEMP [2]
databases for molecular gases, accurate determination of radiative fluxes and sources can be
made. In practice, the rapid spectral variation of the gas absorption coefficient requires ap-
proximately one million spectral evaluations for such “line-by-line” (LBL) calculations, making
them impractical for all applications except as benchmarks for the evaluation of more approx-
imate models. In the field of combustion, the earliest full-spectrum heat transfer line-by-line
calculations were perhaps carried out by Denison and Webb [3–5], looking at one-dimensional
slabs of water vapor–nitrogen mixtures with prescribed simple temperature profiles and con-
stant water vapor concentration, using the HITRAN92 database. Rivière et al. [6] investigated
a one-dimensional layer of air at T > 10000 K, and Pierrot and coworkers [7, 8] considered one-
dimensional layers of mixtures containing H2O and/or CO2 with various simple temperature
and concentration profiles (steps, linear, parabolic), using the French database [9, 10]. Simi-
larly, Marin and Buckius [11] used the HITRAN92 database, while the later papers of Solovjov
and Webb [12] and Modest and Zhang [13–16] used the HITEMP 1995 database [17]. A one-
dimensional homogeneous slab containing CO was considered by Solovjov and Webb [18]. All
these line-by-line calculations were generated as benchmarks for approximate global models,
which will be discussed later in this chapter. Somewhat different line-by-line calculations were
carried out by Tang and Brewster, looking at Elsasser-model lines superimposed on the expo-
nential wide band model [19], and Monte Carlo-generated line-by-line results for a CO2 mixture
with linear-anisotropically scattering particles [20], both again for a one-dimensional slab. In
nonequilibrium aerospace applications virtually all calculations to date have been line-by-line,
one-dimensional, and decoupled, since no spectral models were available until very recently.
The earliest calculations were done by Park using NEQAIR [21]. Most planetary entry calcu-
lations have used this database in uncoupled fashion, e.g., Olynick and coworkers evaluated
radiative fluxes for the FIRE II [22] and Stardust [23] missions, Olejniczak [24] considered radia-
tive heating during aerocapture on Titan (one of Jupiter’s moons), etc. Optimized LBL schemes
have recently been reported by da Silva [25] and Feldick and coworkers [26], the latter closely
coupled to a hypersonic flow code. The only two-dimensional line-by-line heat transfer calcula-
tions to date appear to have been carried out by Modest and Zhang [13,14,16], who considered
an axisymmetric combustion chamber with strong spatial variations in temperature and con-
centration of methane, water vapor, and carbon dioxide, and by Hartung and Hassan [27], who
applied the modified differential approximation of Section 16.8 to hypersonic entry problems.

The complexity and time consumption of nongray property treatment may be decreased
considerably if one considers limiting situations, or if some simple approximations are made
for the spectral dependence of the absorption and/or scattering coefficients. In the following
we shall first consider the simplest method, known as the mean beam length method, in which the
entire participating medium is assumed to be a single isothermal zone that exchanges heat with
finite surface areas, much like the net radiation method of Chapter 5, followed by the semigray
approximation, which is a gray model, but uses different spectrally weighted property values
for emission and absorption. Next the box model is discussed, in which the absorption coefficient
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FIGURE 20-1
Isothermal gas volume radiating to surface element: (a) arbitrary gas volume, (b) equivalent hemisphere radiating to
center of its base.

is assumed to attain a finite number of values that remain constant over finite wavenumber
regions. This is followed by several sections that deal much more rigorously with the band
nature of molecular gases, but are more or less limited to one-dimensional, plane-parallel,
nonscattering media confined between black plates, culminating with the weighted-sum-of-
gray-gases model, which is a very simple, accurate, and powerful method. Finally, global
models based on high-resolution databases and on the k-distributions described in Chapter 11
will be described, which allow very accurate determination of radiative heat transfer in arbitrary
geometries, including reflecting walls and/or scattering media.

20.2 THE MEAN BEAM LENGTH METHOD

The idea of a mean beam length was first advanced by Hottel [28] for the determination of
radiative heat fluxes from an isothermal volume of hot combustion gases to cold black furnace
walls. With some difficulty the method may be extended to include the effects of hot and gray
walls. We include here only a brief discussion of the method, primarily for historical reasons
and since the notion of a mean beam length is sometimes employed by other methods (see,
for example, the box model in the next section). A somewhat more detailed account has been
given by Hottel [28] and Hottel and Sarofim [29]. Today, with the availability of fast digital
computers the method is somewhat outdated and is commonly replaced by the related zonal
method, discussed in detail in Chapter 18, which allows not only for hot and gray walls, but
also for a number of isothermal subvolumes within the enclosure.

Definition of Mean Beam Lengths
Consider a hot, isothermal, nonscattering gas volume radiating toward a black area element
dA on its surface, as shown in Fig. 20-1a. The spectral heat flux arriving at and absorbed by
dA from a volume element is equal to the spectral emission by dV into all (4π) directions × the
fraction intercepted by dA × the fraction transmitted along the path from dV to dA. Thus, from
equation (10.51) the spectral heat flux arriving at dA from all volume elements may be written
as

qη dA(rw) =

∫
V

(4πκηIbη dV) ×
(

dA cosθ
4πS2

)
× e−κηS,

or

qη(rw) = Ibη

∫
V

e−κηS κη cosθ dV
S2 , (20.1)
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where we have chosen wavenumber η as the spectral variable. We notice that, in general, the
heat flux from a hot gas volume arriving at a surface element dA is proportional to the blackbody
intensity Ibη and a factor which depends on the spectral absorption coefficient as well as on the
geometry of the medium. While the integral factor will not be trivial to evaluate for most
geometries, it is readily determined for a hemispherical volume radiating to the center of its
base, dA, as shown in Fig. 20-1b. For this case S = r and dV = r2 sinθ dr dθ dψ, leading to

qη = Ibη

∫ 2π

ψ=0

∫ π/2

θ=0

∫ R

r=0
e−κηrκη cosθ sinθ dr dθ dψ = πIbη(1 − e−κηR) = πIbηεη, (20.2)

where we have employed the definition for the spectral emissivity of an isothermal layer,
equation (10.13). It is clear that the radiative heat fluxes arriving at dA, either from an arbitrary
volume V or from a hemisphere of radius R, may be made equal if an appropriate value for
the radius of the hemisphere is chosen. Thus, as far as the spectral, hemispherical irradiation
onto dA is concerned, there is no difference whether the emission originated from an arbitrary
volume or from an equivalent hemisphere of the correct radius R = Le, where Le is known as the
mean beam length. Therefore, the definition of the mean beam length for an arbitrary volume
irradiating an infinitesimal surface element dA is, from equations (20.1) and (20.2),

qη
πIbη

= 1 − e−κηLe =

∫
V

e−κηS κη cosθ dV
πS2 . (20.3)

Note that the magnitude of the mean beam length depends on absorption coefficient as well as
on geometry.

It is also common to define a mean beam length for an arbitrary volume irradiating a finite
surface, by replacing the local heat flux qη in equation (20.1) by a surface-averaged value, or

qη,av

πIbη
= 1 − e−κηLe =

1
A

∫
A

∫
V

e−κηS κη cosθ dV
πS2 dA. (20.4)

Example 20.1. Determine the mean beam length for an isothermal gas layer of thickness L radiating to
(a) an infinitesimal surface element, (b) an entire bounding surface.

Solution
The mean beam length may be evaluated by first finding from equation (14.40) the radiative heat flux
hitting a surface element, or by integrating equation (20.3) directly. Choosing the latter for illustrative
purposes, we express V in terms of a cylindrical coordinate system with its origin at dA. Thus, dV =

2πr dr dz, S =
√

r2 + z2, and cosθ = z/S, leading to

qη
Ebη

=
1
π

∫ L

z=0

∫
∞

r=0
e−κηS κηz 2πr dr dz

S3 .

By replacing the integration variable r by S, this expression becomes, with r dr = SdS,

qη
Ebη

= 2
∫ L

z=0

∫
∞

S=z
e−κηS κηz dSdz

S2 = 2κη

∫ L

z=0
E2(κηz) dz,

where the definition for the exponential integral has been employed [see equation (14.31) or Appendix
E]. Integrating, we obtain

qη
Ebη

= −2E3(κηz)

∣∣∣∣∣∣L
0

= 1 − 2E3(κηL),

which, of course, would also have followed immediately from equation (14.40), if only emission from
the medium had been considered (T1 = T2 = 0).



630 20 SOLUTION METHODS FOR NONGRAY EXTINCTION COEFFICIENTS

Thus, from equation (20.3), the mean beam length from the gas layer to a surface element dA is

Le =
1
κη

ln
1

2E3(κηL)
.

The mean beam length for the entire surface, equation (20.4), is the same since, for this one-dimensional
problem, local and average heat flux are identical.

Mean Beam Lengths for Optically Thin Media
Equations (20.3) and (20.4) are generally not trivial to evaluate and, for nongray media, the
integrations need to be carried out for different absorption coefficients if total rather than
spectral heat fluxes are desired (as is usually the case). However, the relationships become
much simpler if optically thin media are considered, i.e., if κηL � 1, where L is a characteristic
dimension of the medium. If we expand the exponents in equations (20.3) and (20.4), and
drop terms of order κ2

η and higher, we find the mean beam length for an optically thin volume
radiating to a point on its surface, L0, is

1 − (1 − κηL0) =
1
π

∫
V

1 ×
κη cosθ dV

S2 ,

or

L0 =
1
π

∫
V

cosθ dV
S2 . (20.5)

If we express the volume in terms of a spherical coordinate system centered at dA, with S as the
radius, we may write dV = S2 dS sinθ dθ dψ = S2 dSdΩ, and equation (20.5) becomes

L0 =
1
π

∫ 2π

ψ=0

∫ π/2

θ=0

∫ Smax(θ,ψ)

S=0
cosθ sinθ dSdθ dψ

=
1
π

∫
2π

Smax(ŝ) cosθ dΩ. (20.6)

Similarly, from equation (20.4), the mean beam length for an optically thin volume radiating to
a finite surface is

L0 =
1
πA

∫
A

∫
2π

Smax(rw, ŝ) cosθ dΩ dA. (20.7)

By employing physical arguments, one finds that the solution of equation (20.7) is trivial for the
case that A is the entire area bounding the volume V: The total emission from the entire volume
is, from equation (10.54), 4πκηIbηV. Since, for an optically thin medium, no self-absorption
occurs, all of this energy must be absorbed by the (black) bounding surface. Therefore, the
average heat flux onto the surface is

qη = 4πκηIbηV/A

and, from equation (20.3) (with κηL0 � 1),

qη
πIbη

= κηL0 = 4κηV/A

or
L0 = 4

V
A
. (20.8)

The mean beam lengths for optically thin media, L0, are often called geometric mean beam lengths,
based on the work by Dunkle [30].
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Example 20.2. Determine the mean beam lengths of Example 20.1 for an optically thin gas layer.

Solution
From the last example we have

qη
Ebη

= 1 − e−κηLe = 1 − 2E3(κηL),

which, for κηL� 1, becomes

qη
Ebη

= 1 − 1 + κηL0 = 1 − 2
(

1
2 − κηL

)
= 2κηL,

or
L0 = 2L.

The mean beam length for the entire surface is, of course, again the same. This could also have been
found immediately from equation (20.8) as

L0 = 4
V
A

= 4
Aplate × L

2Aplate
= 2L.

Equation (20.8) is trivial to evaluate for any geometry, but even equations (20.7) (mean
beam length to a part of the bounding surface) and (20.5) (mean beam length to a point on the
bounding surface) are readily integrated for many configurations.

The geometric mean beam lengths between a gas volume and a bounding surface for a
number of configurations, as collected by Hottel and Sarofim [29], with values for concentric
cylinders and spheres added from Andersen and coworkers [31, 32], have been summarized in
Table 20.1.

Spectrally Averaged Mean Beam Lengths
The spectral heat flux, generated by emission from an isothermal volume, that is absorbed by
an element of the black bounding surface (or the average heat flux onto a finite area) is given by
equation (20.2) as

qη = εη(Le)πIbη = (1 − e−κηLe )πIbη, (20.9)

where the mean beam length Le depends on the spectral absorption coefficient as well as the
geometry of the volume. However, Hottel noticed that the spectral heat flux qη is not very
sensitive to the spectral fluctuations of Le, and that replacing the spectrally varying Le by an
average mean beam length Lm (independent of κη) predicts spectral heat fluxes with acceptable
accuracy. This fact is demonstrated in Fig. 20-2, which shows the ratio of exact and approximate
spectral heat fluxes, that is,

qη
(
κη,Le = Le(κη)

)
qη(κη,Le = Lm = const)

=
1 − e−κηLe

1 − e−κηLm
. (20.10)

Two different geometries have been considered in Fig. 20-2, namely, an infinite slab radiating to
a point on its boundary (or to an entire face), as given by Example 20.1, and a spherical volume
radiating to a point on its surface (or to its entire surface). Inspection of Fig. 20-2 shows that
the error in the evaluation of the spectral heat flux, if the average mean beam length is used, is
never more than ∼ 5% (if a suitable Lm is chosen). This statement may be generalized to other
geometries. Values for the average mean beam lengths have also been included in Table 20.1.
Inspection of the ratio between average and optically thin mean beam lengths, Lm/L0, shows
that their value is generally in the vicinity of 0.9. Therefore, a value of

Lm ' 0.9L0 = 3.6
V
A

(20.11)
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TABLE 20.1
Mean beam lengths for radiation from a gas volume to a surface on its boundary.

Geometry of Characterizing Geometric mean Average mean
gas volume dimension beam length beam length

L L0/L Lm/L Lm/L0

Sphere radiating Diameter,
to its surface L = D 0.67 0.65 0.97

Concentric spheres to [32]: Outer radius,
inner surface (R1) L = R2 φs1(R1/R2)
outer surface (R2) L = R2 φs2(R1/R2)

Infinite circular cylinder Diameter,
to bounding surface L = D 1.00 0.94 0.94

Concentric cylinders to [31]: Outer radius,
inner surface (R1) L = R2 φc1(R1/R2)
outer surface (R2) L = R2 φc2(R1/R2)

Semi-infinite circular Diameter,
cylinder to: L = D

Element at center of base 1.00 0.90 0.90
Entire base 0.81 0.65 0.80

Circular cylinder Diameter,
(height/diameter = 1) to: L = D

Element at center of base 0.76 0.71 0.92
Entire surface 0.67 0.60 0.90

Circular cylinder Diameter,
(height/diameter = 2) to: L = D

Plane base 0.73 0.60 0.82
Concave surface 0.82 0.76 0.93
Entire surface 0.80 0.73 0.91

Circular cylinder Diameter,
(height/diameter = 0.5) to: L = D

Plane base 0.48 0.43 0.90
Concave surface 0.53 0.46 0.88
Entire surface 0.50 0.45 0.90

Infinite semicircular Radius,
cylinder to center of L = R
plane rectangular face 1.26
Infinite slab to Slab thickness,
its surface L 2.00 1.76 0.88
Cube to a face Edge, L 0.67 0.6 0.90
Rectangular 1×1×4 Shortest edge,
parallelepipeds to: L

1×4 face 0.90 0.82 0.91
1×1 face 0.86 0.71 0.83
all faces 0.89 0.81 0.91

φs1(x) =
2

3x2

[
1 − x3

− (1 − x2)3/2
]
, φs2(x) = 2

3

[
1 − x3 + (1 − x2)3/2

]
φc1(x) = 1 − x2 +

2
π

[
cos−1 x − x

√

1 − x2
]
, φc2(x) =

2
π

(√
1 − x2 +

1
x

sin−1 x
)
− x
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FIGURE 20-2
Ratio of the exact spectral heat flux from
an isothermal gas volume to a surface, with
that evaluated using the average mean beam
length.

is recommended for geometries for which values for Le are not available.
Besides saving computational effort for the evaluation of Le, employing an average value

Lm has the tremendous advantage that it allows the straightforward spectral integration of
equation (20.9), resulting in a total heat flux of

q =

∫
∞

0
qη dη =

∫
∞

0

(
1 − e−κηLm

)
πIbη(T) dη = ε(Lm,T)πIb(T) = ε(Lm,T)n2σT4, (20.12)

where ε(Lm,T) is the total emissivity of an isothermal gas layer of thickness Lm.

Example 20.3. Combustion products at p = 5 bar, T = 1000 K, consisting of 70% N2, 10% CO2, and 20%
H2O are contained within a spherical container of radius R = 75 cm. Assuming that the container wall
is cold and black, estimate the radiative heat flux to the wall.

Solution
The radiative heat flux to the container walls is readily found from equation (20.12), once the total
emissivity for the gas mixture has been determined for an average mean beam length of Lm = 0.65D '
100 cm, as indicated by Table 20.1. Total emissivities for carbon dioxide–steam mixtures have been
discussed in Chapter 11, and the total emissivity for this particular gas mixture for a 100 cm thick layer
has already been evaluated in Example 11.13 (surprise!) as ε = 0.593. Therefore,

q = 0.593 × 5.670 × 10−12
× 10004 W/cm2 = 3.36 W/cm2.

Example 20.4. A 1 m thick isothermal layer of pure CO2 at a pressure of 1 bar and a temperature of
1700 K is confined between two parallel, cold, black plates. Estimate the total heat loss from the gas
using the mean beam length approach.

Solution
Again, the heat flux to the walls is readily determined from equation (20.12) if the total emissivity for
the mean beam length is known, which in this case is Lm = 1.76L = 176 cm. The total emissivity for the
CO2 may be determined from Fig. 11-30 or equation (11.177). Using Fig. 11-30, we find ε0 (176 bar cm,
1 bar, 1700 K)' 0.17. The correction factor ε/ε0 is determined from equation (11.178) with the correlation
constants given in Table 11.4, which leads to ε/ε0 ' 1.00 and, therefore, ε ' 0.17. Substituting this value
into equation (20.12), we obtain

−q(0) = q(L) = 0.17 × 5.670 × 10−12 17004 W/cm2 = 8.05 W/cm2,

and the total heat lost from both sides is 2 × 8.05 = 16.1 W/cm2. Had we used Leckner’s correlation by
calling subroutine totemiss in Appendix F, this would have returned ε = 0.153, for a total heat loss of
2 × 7.25 = 14.5 W/cm2.
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20.3 SEMIGRAY APPROXIMATIONS

It is common practice in engineering to treat properties as “constants,” that is, as being indepen-
dent of one or more dependent variables, primarily to linearize the problem. For example, in
heat conduction it is generally assumed that the thermal conductivity is independent of temper-
ature. Very accurate results can be obtained with such an analysis if (i) the temperature variation
of the material’s conductivity is not too strong, and (ii) an appropriate, constant “effective con-
ductivity” can be found. It is tempting to use such simplifying assumptions in the calculation
of radiative heat fluxes, in particular as far as spectral variations are concerned. A number
of researchers, such as Viskanta [33], Finkleman and coworkers [34–36], and Traugott [37, 38],
have introduced several different “effective” absorption coefficients and incorporated them into
“semigray” schemes, all with limited success.

Consider the volume of a participating medium at a uniform temperature T. If the medium
is optically thin (i.e., it emits but does not absorb any of the emitted radiation), the total heat
loss from the volume is, according to equation (10.54),

Q = 4V
∫
∞

0
κηEbη dη, (20.13)

or, with the definition of the Planck-mean absorption coefficient, equation (11.182),

Q = 4VκPn2σT4. (20.14)

This expression is equivalent to taking the direction-integrated equation of transfer (or con-
servation of radiative energy), equation (10.60), and integrating it over the entire volume after
dropping the self-absorption term. Therefore, for optically thin media, it is reasonable to set

∇ · q =

∫
∞

0
κη(4πIbη − Gη) dη ' κP(4πIb − G). (20.15)

On the other hand, for optically thick media radiative heat flux obeys the diffusion limit or, from
equation (15.19) for an isotropically scattering medium,

qη ' −
1

3βη
∇Ebη; (20.16)

and, using the definition of the Rosseland-mean extinction coefficient, equation (11.188),

q = −

∫
∞

0

1
3βη
∇Ebη dη = −

1
3βR

∇Eb. (20.17)

Apparently, to make accurate calculations using a gray model, the effective absorption coefficient
must be close to the Planck-mean for optically thin situations and close to the Rosseland-mean
for optically thick cases. A simple (i.e., not dependent on geometry and, through it, optical
thickness) average value should only be expected to give accurate results if the Planck-mean and
Rosseland-mean are of similar value (while in real life they frequently are orders of magnitude
apart, in particular for molecular gases).

Replacing Eb in equation (20.17) by incident radiation G gives, together with equation (20.15),
a semigray P1-approximation,

∇ · q = κP(4πIb − G), (20.18a)
∇G = −3βRq. (20.18b)

Eliminating q leads to a single equation for G,

∇
2G − 3βRκP(G − 4πIb) = 0, (20.19)
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where we have assumed κP and βR to be constant (spatially) for simplicity. Thus, compar-
ing equation (20.19) with (16.39) (setting A1 = 0 for isotropic scattering) leads to an effective
absorption coefficient of

κeff '
√
κPκR, (20.20)

which is quite commonly employed in gray analyses. However, equation (20.20) should only be
used with great caution, (i) since accurate answers can be expected only if κP/κR is close to unity,
and (ii) since use of the Rosseland-mean absorption coefficient is problematic for pure molecular
gases. In the second instance the diffusion limit applies only to optically thick situations, while
all molecular gases have transparent regions over large parts of the spectrum.

Consider a gas–particulate mixture, whose absorption coefficient may be written as

κη = κpη + κ1η = κpη +

N∑
n=1

κnη. (20.21)

Here κpη is the spectral absorption coefficient of the particles and κ1η that of the gas, which
is composed of N individual vibration–rotation bands, each with its own spectral absorption
coefficient κnη. We shall also assume that the bands are relatively narrow, do not overlap, and
may be described by the wide band model of Chapter 11. Then the Planck-mean absorption
coefficient may be evaluated as

κP =
1
Eb

∫
∞

0
κηEbη dη = κp,P +

N∑
n=1

1
Eb

∫
band n

κnηEbη dη

' κp,P +

N∑
n=1

Ebηn

Eb

∫
band n

κnη dη = κp,P +

N∑
n=1

Ebηn

Eb
αn, (20.22)

where αn is the band strength parameter and Ebηn is the spectral, blackbody emissive power at
the band center, both for band n. The Rosseland-mean absorption coefficient may be evaluated
similarly as

1
κR

=

∫
∞

0

1
κη

dEbη

dEb
dη =

1
κp,R
−

∫
∞

0

(
1
κpη
−

1
κη

)
dEbη

dEb
dη

'
1
κp,R
−

N∑
n=1

(
dEbη

dEb

)
ηn

∫
band n

(
1
κpηn

−
1

κpηn + κnη

)
dη, (20.23)

where κpηn is a constant average value, assuming that κpη does not vary greatly across each
band. We shall also assume that, inside the integral, κnη may be replaced by the narrow band
average, (S/d)η, for which the wide band model stipulates [cf. equation (11.142)](S

d

)
η
'
αn

ωn
e−t|η−ηn |/ωn , (20.24)

whereωn is the band width parameter and t = 1 for a band with head, and t = 2 for a symmetric
band. Substituting this expression into equation (20.23) leads to∫

band n

(
1
κpηn

−
1

κpηn + κnη

)
dη =

1
κpηn

∫
∞

0

(S/d)η
κpηn + (S/d)η

dη

=
αn

κpηn

∫
∞

0

e−x dx
κpηn + (αn/ωn) e−x =

ωn

κpηn

ln
(
1 +

αn

ωn κpηn

)
, (20.25)

regardless of the value of t (cf. the development of Example 11.3). Thus,

1
κR

=
1
κp,R
−

N∑
n=1

ωn

κpηn

(
dEbη

dEb

)
ηn

ln
(
1 +

αn

ωn κpηn

)
. (20.26)
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It is evident from equation (20.26) that for a pure molecular gas, κR → 0. This statement is also
true if the assumption of a narrow band is relaxed: It is readily observed that 1/κnη tends toward
infinity faster than Ebη tends to zero for both η → 0 and η → ∞. Clearly, for a pure molecular
gas κP/κR → ∞, so that (i) κR and equation (20.20) are not suitable for the determination of κeff ,
and (ii) accurate predictions should not be expected from the semigray approach.

Example 20.5. A molecular gas is confined between two parallel, black plates, spaced 1 m apart, which
are kept isothermal at T1 = 1200 K and T2 = 800 K, respectively. The (hypothetical) gas has a single
vibration–rotation band in the infrared, with an average absorption coefficient of(S

d

)
η

=
α
ω

e−2|η−η0 |/ω, η0 = 3000 cm−1, ω = 200 cm−1,

and an overlap parameter of β (see the discussion of narrow band and wide band models in Chapter
11). Assuming convection and conduction to be negligible, estimate the radiative heat flux between the
two plates using the semigray model. Carry out the analysis for variable values of (α/ω) and β. Repeat
the calculations for the same gas mixed with nonscattering particles whose absorption coefficient is
κp = 0.1 m−1 (gray).

Solution
To make an “equivalent” gray analysis, a suitable gray absorption coefficient must be found. Since for
a pure molecular gas the Rosseland-mean is inappropriate, and for want of any better value, we choose
the Planck-mean absorption coefficient, which leads to

τP = κPL = α
Ebη0

σT4 L = τL

ωEbη0 (T)

σT4 , τL =
(
α
ω

)
L.

Consequently, τP depends on the local temperature of the gas, even if (α/ω) = const. To simplify the
analysis we use a constant Planck-mean absorption coefficient evaluated at some average temperature,
say Tav = 1000 K. Thus, η0/Tav = 3 cm−1/K and, from Appendix C,

τP =
200 × 1.36576 × 10−8

5.670 × 10−8 × 1000
× τL = 0.0482 τL.

For a gray medium the radiative heat flux between the two plates is determined from Example 15.5 for
the P1-approximation as

Ψgray =
1

1 + 3
4τP

=
1

1 + 0.0362 τL

.

If a particle background is present, it is better to utilize κeff from equation (20.20). Thus, with
τp = κpL = 0.1 × 1 = 0.1,

τP = 0.1 + 0.0482 τL,

1
τR

=
1
τp
−

1
τp

(
ω

dEbη

dEb

)
ηn

ln
(
1 +

τL

τp

)
.

From equation (1.14) it follows that

ω
dEbη

dEb
=

ω

4σT3

dEbη

dT
=

ω

4σT3

d
dT

[
C1η3

exp
(
C2η/T

)
− 1

]
=
ωC1η3

4σT3

exp
(
C2η/T

)
C2η/T2[

exp
(
C2η/T

)
− 1

]2 =
1
4
ωEbη

Eb

(
C2η/T

)
exp

(
C2η/T

)
exp

(
C2η/T

)
− 1

,

(
ω

dEbη

dEb

)
ηn

=
1
4
× 0.0482 ×

4.3164 e4.3164

e4.3164 − 1
= 0.0527,

τR =
0.1

1 − 0.0527 ln(1 + 10 τL)
.

τP and τR may be calculated for any τL, and the heat flux becomes

Ψ =
1

1 + 3
4
√
τP τR

.
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FIGURE 20-3
Nondimensional radiative heat flux for radiative equilibrium across a molecular gas–particulate layer bounded by
parallel, black walls, calculated by the semigray method.

Representative results are shown in Fig. 20-3, together with exact results found by the Monte Carlo
method [39,40], and results from the weighted-sum-of-gray-gases method (discussed later in this chap-
ter). Clearly, for a pure molecular gas the semigray approximation fails miserably, since the Planck-mean
is much too large to be a good effective absorption coefficient for optically thick bands. With a particle
background the method performs considerably better, with κP/κR ranging in value between 1 (for τL = 0)
and 31 (τL = 100). The semigray approach cannot account for spectral windows, nor for line structure
(line overlap parameter β): If there is little line overlap (small β) radiation can travel unimpeded through
“mini-windows” between strong spectral lines. For a gray gas the heat flux must always tend to zero
for optically thick gases.

20.4 THE STEPWISE-GRAY MODEL (BOX
MODEL)

Another simple way to incorporate the effects of absorption–emission bands of molecular gases
in radiative heat transfer calculations is to approximate the band absorptances through the
box model described in Section 11.10. In this model the spectral absorption coefficient for a
molecular gas with N vibration–rotation bands is approximated (see Fig. 20-4) as

κη '
N∑

n=1

κn

[
H(η−ηn+ 1

2 ∆ηn) −H(η−ηn−
1
2 ∆ηn)

]
, (20.27)

where ηn is the wavenumber at the band center, ∆ηn is the band width and κn is the absorption
coefficient of the nth band (assumed constant for each band). Finally, the function H(x) is
Heaviside’s unit step function.1 If the molecular gas is accompanied by absorbing and/or scattering
particles (e.g., soot or ash particles), the absorption coefficient of equation (20.27) must be
augmented by the extinction coefficient of the background. If the background material can be
approximated as gray, the mixture extinction coefficient may be expressed as

βη = βp +

N∑
n=1

κn

[
H(η−ηn+ 1

2 ∆ηn) −H(η−ηn−
1
2 ∆ηn)

]
. (20.28)

1For its definition see equation (11.103) in Section 11.9.
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FIGURE 20-4
Box model approximation of molec-
ular gas bands.

A number of researchers have used various forms of the box model to solve nongray radiation
problems. Originally proposed by Chandrasekhar [41], the model has primarily been applied to
one-dimensional plane media at radiative equilibrium, for example by Siewert and Zweifel [42],
Kung and Sibulkin [43], and Reith, Siewert, and Özişik [44]. Greif [45] applied the method to
combined conduction/radiation in a plane layer. Modest [46] showed that, for gases with a
single band strength, the box model approach can be incorporated into the P1-approximation,
making multidimensional calculations possible. This was extended to the general box model by
Modest and Sikka [39], and a consistent method for the determination of box model parameters
was given. The combination of box model and P1-approximation was also used by Thynell
[47] to predict radiation in a one-dimensional cylindrical medium with carbon dioxide, water
vapor, soot, and larger particles; similarly, Kaminski and coworkers [48,49] investigated laminar
cross flow over a cylinder and turbulent flow through a tube, respectively, for mixtures of
combustion products. The method was also employed by Mazumder and Modest to determine
the importance of interaction between turbulence and radiation in reacting [50] and nonreacting
[51] flows.

Comparing the box model with the mean beam length method, we see that the mean beam
length method can model the spectral variations of the absorption coefficient very well, but it
is limited to isothermal, black-walled enclosures with nonscattering media. The box model, on
the other hand, can handle nonisothermal, scattering media bounded by nonblack walls, while
its spectral modeling is rather crude.

How well the box model predicts radiative heat fluxes (or their divergence) for nongray
media largely depends on how well “optimum” box parameters are determined for a given
medium. To find appropriate values for these parameters, one must realize that the exact
integral relationships that govern radiative heat transfer in a participating medium [see, for
example, equation (10.28)] contain the spectral absorption coefficient in the form of the spectral
emissivity (or its derivative)

εη = 1 − e−κηX. (20.29)

Here X = L if the linear absorption coefficient is used, or L multiplied by the partial density
or pressure of the absorbing gas if either mass or pressure absorption coefficient is used; and
L is the geometric path length over which absorption/emission is being considered. Spectrally
integrated heat fluxes (or their divergence), therefore, depend strongly on the total band ab-
sorptances of the medium,

A(X) =

∫
band

εη dη =

∫
band

(1 − e−κηX) dη. (20.30)

Thus, the aim of the box model must be to approximate the total band absorptance as well as
possible for all possible conditions. For a gas without particle background, as shown in Fig. 20-4,
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we have for band n,
An(X) ' ∆ηn(1 − e−κnX), (20.31)

where ∆ηn and κn are two parameters that may have arbitrary dependence on all gas conditions
(pressure, temperature, line overlap, etc.), except path length X. Consequently, An(X) as calcu-
lated by equation (20.31) ranges in value between 0 and ∆ηn and can coincide with the exact
value of An(X) (as discussed in Chapter 11) for precisely two values of X. It is this restriction
that limits the accuracy of the box model, since the “exact” value of the total band absorptance
increases as ln(κηX) for optically thick conditions (cf. Table 11.2). Modest and Sikka [39] found
that best results are obtained by choosing ∆ηn and κn in such a way that equation (20.31) predicts
the correct band absorptance for optically thin situations (X small) and for a characteristic length
Xm based on the mean beam length Lm (as listed in Table 20.1). In the optically thin limit we
have

X� Xm : An(x) =

∫
band

κηX dη = αnX = κn∆ηnX, (20.32)

where αn is the integrated absorption coefficient, or

αn ' κn∆ηn. (20.33)

At the mean beam length we have

X = Xm : An(Xm) = ∆ηn(1 − e−κnXm ), (20.34)

where An(Xm) must be evaluated from any appropriate wide band model. Equations (20.33)
and (20.34) constitute a set of two equations for the unknowns κn and ∆ηn, which are readily
solved, especially if κnXm � 1 (which will be the case for most important bands).

As a simple illustration we consider radiative equilibrium in a one-dimensional plane-
parallel layer of molecular gases confined between two isothermal, gray-diffuse plates. The
medium does not scatter and the absorption coefficient obeys equation (20.27). As a further
simplification we assume that all bands are of equal strength, that is,

κ1 = κ2 = · · · = κN = κ, (20.35)

and that the band width ∆ηn does not vary with location or temperature. For this simple case
the spectral values for incident radiation, Gη, and radiative heat flux, qη, are readily found from
equations (14.34) and (14.35) as

Gη(τη) = 2
{
J1ηE2(τη) + J2ηE2(τLη − τη) +

∫ τL

0
Ebη(τ

′

η)E1(|τη−τ
′

η|) dτ′η
}
, (20.36)

qη(τη) = 2
{
J1ηE3(τη) − J2ηE3(τLη−τη)

+

∫ τη

0
Ebη(τ′η)E2(τη−τ′η) dτ′η −

∫ τLη

τη

Ebη(τ
′

η)E2(τ′η−τη) dτ′η
}
, (20.37)

where

τη =

∫ z

0
κ dz

N∑
n=1

[
H(η−ηn+ 1

2 ∆ηn) −H(η−ηn−
1
2 ∆ηn)

]
=

{
τ, within bands,
0, across windows.

(20.38)

Integrating equations (20.36) and (20.37) over all bands (excluding windows) results in

GB(τ) = 2
{
JB1E2(τ) + JB2E2(τL − τ) +

∫ τL

0
EB(τ′)E1(|τ − τ′|) dτ′

}
, (20.39)

qB(τ) = 2
{
JB1E3(τ) − JB2E3(τL − τ) +

∫ τ

0
EB(τ′)E2(τ−τ′) dτ′−

∫ τL

τ
EB(τ′)E2(τ′−τ) dτ′

}
, (20.40)
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where the subscript B denotes a quantity integrated over all bands, for example,

GB =

N∑
n=1

∫ η+ 1
2 ∆ηn

ηn−
1
2 ∆ηn

Gη dη. (20.41)

On the other hand, integrating the equation of transfer over the entire spectrum (including
windows) gives, from equation (10.60),

∇ · q =
dq
dz

=

∫
∞

0
κη(4Ebη − Gη) dη = κ(4EB − GB) = 0, (20.42)

where the zero is due to the fact that radiative equilibrium prevails. Since integrating the
equation of transfer over the bands only (excluding windows) would have resulted in the
identical right-hand side, we conclude that dqB/dz = 0 or qB = const, and GB = 4EB. Thus,
equations (20.39) and (20.40) are identical to the gray case, equations (14.34) and (14.35), after
replacing total values by band-integrated values, or

ΦB =
EB(τ) − JB2

JB1 − JB2
=

1
2

E2(τ) +

∫ τL

0
ΦB(τ′)E1(|τ − τ′|) dτ′

 , (20.43)

ΨB =
qB

JB1 − JB2
= 1 − 2

∫ τL

0
ΦB(τ′)E2(τ′) dτ′. (20.44)

The total heat flux between the plates is then determined by adding to this the heat flux over
the spectral windows

qW =

∫
windows

(J1η − J2η) dη = J1 − J2 − (JB1 − JB2), (20.45)

or

Ψ =
q

J1 − J2
=

qW + qB

J1 − J2
= 1 −

JB1 − JB2

J1 − J2
(1 −ΨB). (20.46)

We note that, for a gray medium, Ψ varies between 1 (vacuum) and 0 (opaque medium), while
the minimum heat flux for a nongray medium is

Ψmin = 1 −
JB1 − JB2

J1 − J2
, (20.47)

since radiation will travel unimpeded from surface to surface over spectral windows, even if
the bands are opaque.

Example 20.6. Pure CO2 at 1 bar = 100 kPa pressure is confined between two parallel, black plates,
spaced 1 m apart, which are kept isothermal at T1 = 1000 K and T2 = 2000 K, respectively. Assuming
conduction and convection to be negligible, estimate the radiative heat flux between the two plates.

Solution
From Table 11.3 we find that carbon dioxide has three important bands in the infrared: at 3660 cm−1

(2.7µm), 2410 cm−1 (4.3µm), and 667 cm−1 (15µm). Since the walls are at 1000 and 2000 K, respectively,
the most important wavelength regime will be between approximately 1µm and 4µm (Wien’s displace-
ment law, Chapter 1). At first glance it would appear that the 2.7µm band is the most important.
However, the 4.3µm band is approximately 20 times stronger and, therefore, should be modeled most
accurately. Before we can employ the box model we must find suitable box parameters for these bands.
We shall do this by comparing the band absorptances of the box model with those of the (more accurate)
exponential wide band model [39], by applying equations (20.33) and (20.34). Since we should like to
use a single κ for all bands we cannot use all of these conditions, and shall apply equation (20.34) only
for the (most important) 4.3µm band. Thus,

κ∆ηi = αi, for all three bands,
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∆η4.3 = A4.3(Xm), for the 4.3µm band.

In the last relation we have assumed κXm � 1, which needs to be verified.
To simplify the analysis further we shall calculate the box model parameters at a single temperature,

say T4
av = (T4

1 + T4
2)/2 or Tav ' 1700 K. With a gas constant of R = 0.18892 kJ/kg K for CO2 [52] and the

data in Table 11.3, and Fig. 11-24 we get

ρCO2
= p/RT = 100 kPa/(0.18892×1700 kJ/kg) = 311.4 g/m3,

2.7µm band: αρCO2
= α0(α/α0)ρ = 4.0 × 1.61 × 311.4 = 2005 cm−1/m,

ω = 23.5 ×
√

17 = 96.9 cm−1,

4.3µm band: αρCO2
= 110.0 × 1 × 311.4 = 34,254 cm−1/m,

ω = 11.2 ×
√

17 = 46.2 cm−1,

γ = γ0(γ/γ0) = 0.247 × 24.8 = 6.12,

Pe = 1.30.8 = 1.234, β = 6.12 × 1.234 = 7.55,

15µm band: αρCO2
= 19.0 × 1 × 311.4 = 5917 cm−1/m,

ω = 12.7 ×
√

17 = 52.4 cm−1.

With an average mean beam length of Lm = 1.76 × 1 m = 1.76 m, we obtain for the important 4.3µm
band from Table 11.3

∆η4.3 = A4.3 = ω4.3

[
ln
α4.3ρCO2

Lm

ω4.3
+ 1

]
= 46.2 cm−1

[
ln

34,254 × 1.76
46.2

+ 1
]

= 377.6 cm−1,

and

κ =
(
αρCO2

/∆η
)

4.3
= 34,254/377.6 = 90.7 m−1 = 0.907 cm−1.

Noting that κ is a linear absorption coefficient, and multiplying with Lm, we find κLm = 0.907 × 176 =
160� 1, so neglecting the exponential in equation (20.34) was indeed justified.

The widths of the other two bands follow from the same relationship as

∆η2.7 = α2.7ρCO2
/κ = 2005/90.7 = 22.1 cm−1,

∆η15 = α15ρCO2
/κ = 5917/90.7 = 65.2 cm−1.

We are now in a position to calculate the nondimensional heat flux between the plates from equa-
tion (20.46) with τ = κL = 90.7. ΨB(τ) obeys the same equation as Ψb(τ) in Chapter 14 and, thus, may be
evaluated from Table 14.1. Since the bands are essentially opaque we find ΨB = 0.015� 1, and

Ψ = 1 − 0.985
EB1 − EB2

Eb1 − Eb2
' 1 −

0.985
Eb1 − Eb2

3∑
n=1

(Ebηn ,1 − Ebηn ,2)∆ηn,

where radiosity is replaced by emissive power for the black-walled enclosure, and we assume that the
bands are narrow (to justify evaluation of EB as the value at band center× band width). To look up values
for spectral emissive power in Appendix C, we write with η2.7 = 3660 cm−1, η4.3 ' 104/4.3 = 2326 cm−1

(since the 4.3µm band is a band with head, it is better to evaluate Ebη near the center of the band), and
η15 = 667 cm−1,

Ψ = 1 −
0.985

σ(T4
1 − T4

2)

3∑
n=1

Ebη(ηn/T1)

T3
1

T3
1 −

Ebη(ηn/T2)

T3
2

T3
2

∆ηn

= 1 −
0.985

5.670 × 10−8(10004 − 20004)
×

[(
0.9523 × 10−8+9

− 1.7747 × 23
× 10

)
× 22.1

+
(
1.7157 × 10 − 1.3589 × 23

× 10
)
× 377.6 +

(
0.6885 × 10 − 0.2251 × 23

× 10
)
× 65.2

]
= 0.956.
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Thus, the heat flux is reduced only by 4.7%, as compared with the no-gas case, to

q = 0.956 × 5.670 × 10−8(20004
−10004) = 813,000 W/m2 = 81.3 W/cm2.

Note that, since all bands are essentially opaque, the (somewhat arbitrary) choice for band widths is of
extreme importance in this model.

The P1-Approximation for Radiative
Equilibrium in a Gas with Single Band
Strength
The method discussed in the previous section enables us to calculate heat transfer rates for a
nongray medium at radiative equilibrium in a simple way. Unfortunately, the method is limited
to one-dimensional plane-parallel media. Following the treatment of Modest [46], we shall now
show that the same box-model absorption coefficient may also be applied to the P1 or differential
approximation, making solutions for arbitrary multidimensional geometries possible.

The governing equations for the P1-approximation, on a spectral basis and for a nonscattering
medium, are, from Section 16.5

∇ · qη = κη(4Ebη − Gη), (20.48)
∇Gη = −3κηqη, (20.49)

subject to the boundary condition
2qη · n̂ = 4Jwη − Gη. (20.50)

Assuming again that the absorption coefficient may be approximated by equation (20.35), we
integrate equation (20.48) over the entire spectrum, and over all bands only, resulting in

∇ · q = ∇ · qB = κ(4EB − GB) = 0, (20.51)

where the zero is again due to the fact that radiative equilibrium is assumed. Now, integrating
equations (20.49) and (20.50) over all bands gives

∇GB = −3κqB, (20.52)
2qB · n̂ = 4JBw − GB. (20.53)

The heat flux may be eliminated from these equations, leading to a single elliptic equation in GB
as

∇
2
τGB = 0, (20.54)

with boundary condition
−

2
3 n̂ · ∇τGB + GB = 4JBw, (20.55)

where the subscriptτ indicates that the gradients are with respect to optical coordinates dτ = κ ds.
Once the band-integrated incident radiation, GB, has been determined, the heat flux for the gas
bands follows as

qB = −
1
3
∇τGB. (20.56)

Finally, to calculate total heat transfer rates, the heat fluxes through the optical windows, qW,
must be determined independently through standard methods (Chapters 5 and 6), as indicated
in the previous section for one-dimensional, plane-parallel media, equation (20.45).

Example 20.7. Repeat Example 20.6 using the differential approximation.
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Solution
Since we use the same box model as in the previous example to approximate the absorption coefficient,
we shall again use κ = 0.907 cm−1, ∆η2.7 = 22.1 cm−1, ∆η4.3 = 377.6 cm−1, and ∆η15 = 65.2 cm−1. Equa-
tions (20.51) through (20.53) or equations (20.54) and (20.55) are identical to the general P1-approximation
for gray media (except for the added subscript B). Thus, for radiative equilibrium in a one-dimensional
plane-parallel medium

ΨB =
1

1 + 3
4τ

= 0.015.

The heat flux over the spectral windows is, of course, the same as calculated for the previous example,
as is the expression for total heat flux, equation (20.46). We conclude that the heat flux evaluation using
the P1-approximation gives the identical result as the exact 2 method.

Both the exact method for one-dimensional plane-parallel media and the P1-approximation
for general geometries are readily extended to the general box model in which the extinction
coefficient is approximated by equation (20.28), including nongray backgrounds, as developed
by Modest and Sikka [39].

20.5 GENERAL BAND MODEL
FORMULATION

While the stepwise-gray model is very convenient, it is unfortunately not necessarily very
accurate. We have already seen that the rather arbitrary choice for the band width can introduce
serious errors. In addition, there are situations in which even the most careful choice for the
band width leads to unacceptable results. Consider, for example, flow of an absorbing/emitting
gas inside a tube. Let the gas temperature be equal to the surface temperature at the wall (no
slip) and hotter inside. The gas will emit and absorb radiation over the spectral regions of its
vibration–rotation bands, and there will be no net radiative heat flux over the spectral regions of
the windows. If the radius of the tube is sufficiently large and the box model is employed, such
that κR� 1, then the spectral heat flux for the bands will also vanish as a result of the diffusion
limit (since there is no temperature discontinuity). Thus, the stepwise-gray model predicts a
zero total radiative heat flux for this case, which is clearly not realistic. The reason for this error
is that the box model cannot take into account the effects of the exponentially decaying band
wings of a vibration–rotation band: No matter how optically thick the band center is, there
will always be a portion of the band wings that has an intermediate optical thickness and, thus,
contributes strongly to the radiative heat flux.

In this section we will use the band models of Chapter 11 (narrow band models, wide
band models, and the resulting emissivities) to formulate the solutions for spectrally integrated
intensities, incident radiation, and radiative heat fluxes for an absorbing/emitting medium; the
absorption coefficient of the medium may have arbitrary functional form (although we shall
look also at the important special cases of molecular gases and particulate suspensions), and
the geometry may be arbitrary and multidimensional. The development will be limited to
nonscattering media confined between black walls because of the limitations inherent to the
band models. While these formulations are not as general as one would like, they do have
a number of important applications, most notably heat transfer within combustion chambers,
where the medium consists of combustion gases and (nonscattering) soot, and where the walls
are soot covered (and nearly black).

The equation of transfer for the radiative intensity at a wavenumber η and along a path s is,
for a nonscattering medium, from equation (10.21),

dIη
ds

= κη(Ibη − Iη), (20.57)

2Exact calculation of radiative heat flux based on very approximate expressions for the spectral variation of the
absorption coefficient.
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FIGURE 20-5
Spectral intensity within an arbitrary
black-walled enclosure.

with the formal solution, equation (10.29),

Iη(s) = Ibwη exp
(
−

∫ s

0 κη ds′
)

+

∫ s

0
Ibη(s′) exp

(
−

∫ s

s′ κη ds′′
)
κη(s′) ds′, (20.58)

where Ibwη = Ibη(Tw) is the intensity emitted into the medium from the (black) wall at s = 0, as
shown in Fig. 20-5. Integrating this expression over the entire spectrum, we obtain the total
intensity as

I(s) =

∫
∞

0
Iη dη =

∫
∞

0
Ibwη exp

(
−

∫ s

0 κη ds′
)

dη

+

∫ s

0

∫
∞

0
Ibη(s′) exp

(
−

∫ s

s′ κη ds′′
)
κη(s′) dη ds′. (20.59)

In Sections 10.2 and 10.3 we defined the spectral absorptivity and emissivity of a participating
medium as

αη(0→s) = εη(0→s) = 1 − exp
(
−

∫ s

0 κη ds′
)
. (20.60)

For a constant absorption coefficient the absorptivity depends on the thickness of the gas layer
as well as the (constant) absorption coefficient. If κη is not constant but varies spatially and/or
with temperature, the absorptivity depends on the variation of κη along the entire path, here
denoted by the argument 0→s. Substituting equation (20.60) into (20.59), and using

∂αη
∂s′

(s′ → s) =
∂
∂s′

[
1 − exp

(
−

∫ s

s′ κη ds′′
)]

= −κη(s′) exp
(
−

∫ s

s′ κη ds′′
)

(20.61)

where Leibniz’s rule was used for the differentiation of an integral,3 we get

I(s) =

∫
∞

0
Ibwη

[
1−αη(0→s)

]
dη −

∫ s

0

∫
∞

0
Ibη(s′)

∂αη
∂s′

(s′→s) dη ds′. (20.62)

Physically, the first term represents transmitted radiation from the wall, and the second term
augmentation due to emission along the path s.4 With the definition of the total absorptivity as

α(T, s′→s) =
1

Ib(T)

∫
∞

0
αη(s′→s) Ibη(T) dη

=
1

Ib(T)

∫
∞

0

[
1 − exp

(
−

∫ s

s′ κη ds′′
)]

Ibη(T) dη, (20.63)

3Leibniz’s rule was first introduced in Chapter 3, equation (3.106).
4Thus, use of transmissivity τ = 1 − α would be more appropriate; we use absorptivity here primarily to avoid

confusion with “optical path length,” for which we also use the symbol τ.
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we may consolidate equation (20.62) as5

I(s) = [1 − α(Tw, 0→s)] Ibw −

∫ s

0

∂α
∂s′

[T(s′), s′→s] Ib(s′) ds′. (20.64)

To determine total heat flux, the total intensity must be integrated over all directions, after
multiplication with the unit vector ŝ, or

q =

∫
∞

0
qη dη =

∫
4π

I ŝ dΩ. (20.65)

To evaluate the divergence of the radiative heat flux (for a known temperature field) or the
temperature field (for radiative equilibrium), the equation governing conservation of radiative
energy must be integrated over all wavenumbers or, from equation (10.60),

∇ · q = ∇ ·

∫
∞

0
qη dη =

∫
∞

0
κη

(
4πIbη −

∫
4π

Iη dΩ

)
dη

= 4πκPIb −

∫
4π

(∫
∞

0
κηIη dη

)
dΩ, (20.66)

where κP is the Planck-mean absorption coefficient first defined in equation (11.182). Thus,
multiplying equation (20.58) by κη(s) and integrating, we get∫

∞

0
κη(s)Iη(s) dη =

∫
∞

0
Ibwηκη(s) exp

(
−

∫ s

0 κη ds′′
)

dη

+

∫ s

0

∫
∞

0
Ibη(s′) exp

(
−

∫ s

s′ κη ds′′
)
κη(s′)κη(s) dη ds′. (20.67)

Differentiating equation (20.61) with respect to s, again using Leibniz’s rule, leads to

∂2αη
∂s∂s′

(s′ → s) = κη(s′)κη(s) exp
(
−

∫ s

s′ κη ds′′
)
. (20.68)

Therefore, ∫
∞

0
κηIη dη =

∫
∞

0
Ibwη

∂αη
∂s

(0→s) dη +

∫ s

0

∫
∞

0
Ibη(s′)

∂2αη
∂s∂s′

(s′→s) dη ds′

=
∂α
∂s

(Tw, 0→s)Ibw +

∫ s

0

∂2α
∂s∂s′

[T(s′), s′→s] Ib(s′) ds′. (20.69)

The functional form of α(T, s′→s) depends, of course, on the local properties of the participating
medium. We shall briefly discuss the special cases of pure gas and gas–particulate mixtures.

Pure Molecular Gas
For a pure gas the total absorptivity needed in equations (20.65) and (20.66) can be calcu-
lated from a narrow band model, a wide band model, or from a total absorptivity correlation.
Narrow band calculations are potentially the most accurate, provided an accurate database is
used, such as the RADCAL [53, 54] (based on experimental data) and EM2C [55] (calculated
from high-resolution data) databases. However, they require a few hundred to thousands of
spectral evaluations. Some results for one-dimensional slabs were obtained by Menart and col-
leagues [56–58], the latter two papers overcoming the black-wall limitation of the narrow band

5Note that, in concurrence with the definition of total absorptivity, the derivative in ∂α/∂s′ is only with respect to
the path s′→s, and not with respect to the s′ in the temperature T(s′).
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model, by expanding wall radiosities into infinite series (for multiple reflections). Cherkaoui
and coworkers [59] used an approach similar to [57] to determine direct exchange factors (for
use with the zonal method of Chapter 18) in a one-dimensional slab with reflecting walls. Multi-
dimensional calculations were primarily carried out by the group around Liu [60–62] for various
combustion scenarios. All of the here-cited works used the Malkmus model together with the
EM2C database and its predecessors.

If the wide band model is to be used for a gas with N vibration–rotation bands, the absorption
coefficient may be stated as

κη =

N∑
n=1

κnη. (20.70)

To allow the use of wide band correlations it is also assumed that each band is fairly narrow,
i.e., that the blackbody intensity does not vary appreciably over each band, and that the bands
do not overlap.6 Then the total absorptivity may be evaluated as

α(T, s′→s) '
N∑

n=1

ωnIbηn

Ib
(T)

1
ωn

∫
∞

0

[
1 − exp

(
−

∫ s

s′ κnη ds′′
)]

dη =

N∑
n=1

ωnIbηn

Ib
(T) A∗n(s′→s),

(20.71)
where Ibηn is the Planck function at the center of band n, ωn is the band width parameter, and
A∗n is the nondimensional band absorptance, as discussed in detail in Chapter 11.

Molecular Gas with Suspended Particles
If the molecular gas contains a suspension of nonscattering particles, the absorption coefficient
may be written as

κη = κpη + κ1η = κpη +

N∑
n=1

κnη. (20.72)

We shall now assume that, not only are the gas bands narrow and nonoverlapping, but also that
the absorption coefficient of the particles, κpη, does not vary appreciably over each band. Then

α(T, s′→ s) =
1

Ib(T)

∫
∞

0

[
1 − exp

(
−

∫ s

s′ κpη ds′′
)

exp
(
−

∫ s

s′ κ1η ds′′
)]

Ibη(T) dη

=
1

Ib(T)

∫
∞

0

[
1 − exp

(
−

∫ s

s′ κpη ds′′
)]

Ibη(T) dη

+
1

Ib(T)

∫
∞

0
exp

(
−

∫ s

s′ κpη ds′′
) [

1 − exp
(
−

∫ s

s′ κ1η ds′′
)]

Ibη(T) dη. (20.73)

The first term in equation (20.73) is simply the absorptivity for the particle background (without
molecular gas). In the second spectral integral we note that the integrand is nonzero only when
κ1η is nonzero, i.e., over the vibration–rotation bands of the gas. Since we assume the gas bands
to be spectrally narrow, the particle attenuation term may be evaluated at the band center and
taken outside the spectral integral. Then

α(T, s′ → s) ' αp(T, s′→s) +

N∑
n=1

ωnIbηn

Ib
(T) exp

(
−

∫ s

s′ κpηn ds′′
)

A∗n(s′→s). (20.74)

6These assumptions are usually very good except in the limit of extreme optical thickness, which tends to widen
bands. Even at lesser optical thickness some bands of important gases overlap, most notably the 2.7µm bands of CO2
and H2O (see Chapter 11).
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Radiative Equilibrium
In the case of radiative equilibrium equation (20.69) is used to determine the temperature field.
Substituting the result into equation (20.66), with ∇ · q = 0, yields

4πκPIb =

∫
4π

[
∂α
∂s

(Tw, 0→s)Ibw +

∫ s

0

∂2α
∂s∂s′

[T(s′), s′→s]Ib(s′) ds′
]

dΩ. (20.75)

This is a single (but rather complicated) integral equation for the unknown temperature. Once
the temperature field is known, the heat flux follows from equations (20.65) and (20.64) as

q =

∫
4π

[
[1 − α(Tw, 0→s)]Ibw −

∫ s

0

∂α
∂s′

[T(s′), s′→s] Ib(s′) ds′
]

ŝ dΩ. (20.76)

In equations (20.75) and (20.76) the absorptivities and their derivatives are obtained from equa-
tion (20.71) (pure molecular gas) or (20.74) (gas–particulate mixture).

Medium with Known Temperature Field
If the temperature field is known, the local heat flux may be determined from equation (20.76),
while the divergence of the heat flux follows from equations (20.66) and (20.69) as

∇ · q = 4πκPIb −

∫
4π

[
∂α
∂s

(Tw, 0→s)Ibw +

∫ s

0

∂2α
∂s∂s′

[T(s′), s′→s]Ib(s′) ds′
]

dΩ. (20.77)

Again, the absorptivities and their derivatives are obtained from equations (20.71) (pure molec-
ular gas) or (20.74) (gas–particulate mixture).

The general relationships developed in this section will be employed over the following
two sections to carry out heat transfer calculations. First we shall look in some detail at
radiative transfer within an isothermal, one-dimensional nongray medium. Then follows a
section describing how the concept of a weighted-sum-of-gray-gases can be applied to the
general nongray medium problem.

The Wide Band Model for Isothermal Media
For an isothermal medium, we assume that the absorption coefficient is a function of temperature
only (and is, therefore, constant throughout the medium). The definition of the total absorptivity,
equation (20.63), keeping in mind that the absorption coefficient depends on Tm, while the Planck
function may be evaluated at medium or wall temperature, then simplifies to

α(T,Tm, s) =
1

Ib(T)

∫
∞

0

(
1 − e−κη(Tm)s

)
Ibη(T) dη, (20.78)

that is, the total absorptivity no longer depends on the entire path, but only on the path length
itself. If T = Tw, equation (20.78) gives the absorption of wall emission along the path s, while
for T = Tm equation (20.78) represents the total emissivity

ε(Tm, s) =
1

Ib(Tm)

∫
∞

0

(
1 − e−κη(Tm)s

)
Ibη(Tm) dη. (20.79)

Similarly, the nondimensional band absorptance of molecular gases now depends only on the
optical path length (as well as a line overlap parameter), as discussed in Chapter 11, or

A∗n(s′→s) = A∗[κn(s − s′), βn], (20.80)
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where κn = ρaαn/ωn is the gas absorption coefficient at the band center or band head,7 and βn
is the overlap parameter, all evaluated at Tm. Equation (20.64) then reduces for an isothermal
medium to

I(s) = [1 − α(Tw,Tm, s)]Ibw + ε(Tm, s)Ibm, (20.81)

where Ibm = Ib(Tm) and Tm is the (constant) temperature of the medium.

Example 20.8. Consider a 1 m thick isothermal layer of pure CO2 at a pressure of 100 kPa and a
temperature of 1700 K. The gas is confined between two parallel, cold, black plates. Calculate the
radiative transfer from the gas to the walls using the exponential wide band model.

Solution
For a slab 0 < z < L the intensity as given by equation (20.81) may emanate from either of the two
bounding surfaces. Splitting intensity into I+ and I− (“positive” and “negative” directions), as was done
in Section 14.2, leads to s = z/µ for “positive” directions (0 < µ < 1) and to s = − (L− z)/µ for “negative”
directions (−1 < µ < 0), as shown in Fig. 14-1. Substituting into equation (20.81) results in

I+(z) =
[
1 − α(Tw,Tm, z/µ)

]
Ibw + ε(Tm, z/µ)Ibm, 0 < µ < 1,

I−(z) =
[
1 − α

(
Tw,Tm,−(L−z)/µ

)]
Ibw + ε

(
Tm,−(L−z)/µ

)
Ibm, −1 < µ < 0.

The local heat flux is then determined from

q(z) = 2π
[∫ 0

−1
I−µ dµ +

∫ +1

0
I+µ dµ

]
= 2π

{∫ 1

0

[
ε

(
Tm,

z
µ

)
− ε

(
Tm,

L−z
µ

)]
µ dµ Ib(Tm)

−

∫ 1

0

[
α

(
Tw,Tm,

z
µ

)
− α

(
Tw,Tm,

L−z
µ

)]
µ dµ Ib(Tw)

}
.

If the medium is a molecular gas, equation (20.71) is substituted into this expression. Using emissive
powers in favor of intensities, Ebη = πIbη, then leads to

q(z) =

N∑
n=1

ωn

[
Ebηn (Tm) − Ebηn (Tw)

][
As(κnz, βn) − As(κn(L−z), βn)

]
,

where As, termed slab band absorptance by Edwards and Balakrishnan [63], is defined as

As(τ, β) = 2
∫ 1

0
A∗

(
τ
µ
, β

)
µ dµ. (20.82)

The slab band absorptance may be evaluated explicitly for a number of band absorptance correlations,
such as the Edwards and Menard correlation of Table 11.2 and the high-pressure limit given by equa-
tion (11.155), and must be evaluated numerically for more involved correlations such as the ones by
Felske and Tien, equation (11.156), and Wang, equation (11.158). The line overlap parameter β was
already calculated for the most important 4.3µm band in Example 20.6 (β4.3 = 7.55), and is substantially
larger than unity for all bands. Thus, the high-pressure limit may be used, and we shall only consider
the high-pressure limit (β→∞) here,

A∗(τ,∞) = E1(τ) + ln τ + γE,

or

As(τ,∞) = 2
∫ 1

0

[
E1

(
τ
µ

)
+ ln

τ
µ

+ γE

]
µ dµ.

Integrating by parts we obtain, with E′1(x) = −E0(x) = e−x/x,

As(τ,∞) =µ2

[
E1

(
τ
µ

)
+ ln

τ
µ

+ γE

]∣∣∣∣∣∣1
0

−

∫ 1

0
µ2

(
τ

µ2

e−τ/µ

τ/µ
−

1
µ

)
dµ,

7Note that, in wide band correlations, the band strength parameterα is usually based on a mass absorption coefficient
and must, therefore, be corrected by multiplying with the partial density of the absorbing gas, ρa.
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or

As(τ,∞) = E1(τ) + ln τ + γE + 1
2 − E3(τ). (20.83)

Calculating q at z = L for the three important CO2 bands, we obtain [with Tw = 0 and As(0, β) = 0]

qn(L) = ωnEbηn (Tm)As

(αnρCO2

ωn
L, β

)
.

All required terms have already been calculated in the previous example, and we find the following:8

2.7µm band: α2.7ρCO2
L/ω2.7 = 2005 × 1/96.9 = 20.69

As2.7(20.69,∞) = E1(20.69) + ln 20.69 + 0.5772 + 0.5 − E3(20.69) = 4.107

q2.7(L) = 1.7649 × 10−8
× 17003

× 96.9 × 4.107 = 34,508 W/m2;

4.3µm band: α4.3ρCO2
L/ω4.3 = 34,254 × 1/46.2 = 741.43

As4.3(741.43,∞) = E1(741.43) + ln 741.43 + 0.5772 + 0.5 − E3(741.43) = 7.686

q4.3(L) = 1.5548 × 10−8
× 17003

× 46.2 × 7.686 = 27,125 W/m2;

15µm band: α15ρCO2
L/ω15 = 5917 × 1/52.4 = 112.92

As15(112.92,∞) = E1(112.92) + ln 112.92 + 0.5772 + 0.5 − E3(112.92) = 5.804

q15(L) = 0.2979 × 10−8
× 17003

× 52.4 × 5.804 = 4805 W/m2.

Finally, the total heat loss from the gas is

q = 2 × [34,508 + 27,125 + 4805] = 13.29 W/cm2.

Comparison with Example 20.2 shows that the present results agree excellently with those of the
mean beam length method.

A number of investigators have obtained exact wide band model solutions to the relatively
simple problems of one-dimensional isothermal media. Edwards and Balakrishnan [63] found
expressions for the heat flux in an isothermal gas slab and gave results for the high-pressure limit
(strong spectral line overlap). Edwards [64] gave an expression for the heat loss from an isother-
mal gas sphere, while heat loss from an isothermal gas cylinder was discussed by Wassel and
Edwards [65]. More recent wide band calculations have been done by Kim and coworkers [56]
for a one-dimensional slab containing water vapor (to compare with their narrow band calcu-
lations). The wide band approach was also used by Hutchison and Richards [66] investigating
combined conduction and radiation in a layer containing CO2, again treating reflecting walls
by expanding radiosities into infinite series. Calculations for gases with suspended particles
have been carried out by Modest [67] (general wide band formulation with nongray particles),
Cumber and coworkers [68] (applying the Goody model together with the RADCAL database
to a jet flame with water vapor, CO2, and soot), Liu and colleagues [69] (three-dimensional mix-
tures of water vapor, CO2, and alumina particles, using the EM2C database), and Maruyama
and Guo [70] (three-dimensional furnace with water vapor, CO2, and carbon particles, using a
spectral version of the wide band model combined with the Elsasser narrow band model). The
latter two papers attempt to overcome the no-scattering limitation of the band models.

20.6 THE WEIGHTED-SUM-OF-
GRAY-GASES (WSGG) MODEL

The concept of a weighted-sum-of-gray-gases approach was first presented by Hottel [29] within
the framework of the zonal method, which is described in detail in Chapter 18. Modest [40]
has demonstrated that this approach can be applied to the directional equation of transfer,

8Note that all three bands are optically so thick that the exponential integrals essentially vanish.
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equation (20.57), and, therefore, to any solution method for the equation of transfer (exact,
PN-approximation, discrete ordinates method, etc.), provided all boundaries are black and the
medium is nonscattering. In this method the nongray gas is replaced by a number of gray gases,
for which the heat transfer rates are calculated independently. The total heat flux is then found
by adding the heat fluxes of the gray gases after multiplication with certain weight factors.

As a starting point consider equation (20.64). For mathematical simplicity we shall limit
ourselves here to a spatially constant (or averaged) absorption coefficient, which may, however,
vary across the spectrum. Such an absorption coefficient no longer depends on the local tem-
perature, although the choice for an appropriate constant value will be based on the overall
temperature field in the medium. Thus, we have for the spectrally-integrated intensity

I(s) = [1 − α(Tw, s)]Ibw −

∫
∞

0

∂ε
∂s′

[T(s′), s−s′] Ib(s′) ds′, (20.84)

where the expressions for total absorptivity and emissivity are similar to the ones developed
for an isothermal medium, equation (20.78),

ε (T, s) =
1

Ib(T)

∫
∞

0

(
1 − e−κηs) Ibη(T) dη, α(Tw, s) = ε (Tw, s). (20.85)

Since the absorption coefficient is assumed spatially constant, the total absorptivity no longer
depends on the medium’s temperature. It follows that, for a gray medium with κη = κ = const,

ε (T, s) = α(T, s) = 1 − e−κs. (20.86)

We shall now assume that the emissivity and absorptivity of equation (20.85) may be approxi-
mated by a weighted sum of gray gases, or

ε (T, s) = α(T, s) '
K∑

k=0

ak(T)
(
1 − e−κks) . (20.87)

Consistent with equations (20.84) and (20.85) we have chosen the gray-gas absorption coeffi-
cients κk to be constants, while the weight factors ak may be functions of source temperature
[wall temperature for the absorptivity and local medium temperature for emissivity, as required
in equation (20.84)]. Neither ak nor κk are allowed to depend on path length s. Depending on
the material, the quality of the fit, and the accuracy desired, a K of 2 or 3 usually gives results
of satisfactory accuracy [29]. Since, for an infinitely thick medium, the absorptivity approaches
unity, we find

K∑
k=0

ak(T) = 1. (20.88)

Still, for a pure molecular gas with its “spectral windows” it would take very large path lengths
indeed for the absorptivity to be close to unity. For this reason equation (20.88) starts with k = 0
(with an implied κ0 = 0), to allow for spectral windows. If the medium contains particles, such
that κη > 0 always, the k = 0 term is simply dropped, i.e., a0 = 0.

Substituting equation (20.87) into equation (20.84) and using

1 − α(Tw, s) =

K∑
k=0

ak(Tw) e−κks,

∂ε
∂s′

(T, s − s′) =
∂
∂s′

K∑
k=0

ak(T)
[
1 − e−κk(s−s′)

]
= −

K∑
k=0

ak(T)κk e−κk(s−s′),

leads to
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I(s) =

K∑
k=0

ak(Tw) e−κksIbw +

∫ s

0

K∑
k=0

ak[T(s′)]κk e−κk(s−s′)Ib(s′) ds′

=

K∑
k=0

{
[akIb](Tw) e−κks +

∫ s

0
[akIb](s′) e−κk(s−s′)κk ds′

}
. (20.89)

Setting

I(s) =

K∑
k=0

Ik(s), (20.90)

and comparing equations (20.89) and (20.58) we find that Ik satisfies the equation of transfer

dIk

ds
= κk([akIb] − Ik), (20.91)

subject to the boundary condition

s = 0 : Ik = [akIb](Tw). (20.92)

This expression is, of course, the equation of transfer for a gray gas with constant absorption
coefficient κk, but with blackbody intensity Ib (for medium as well as surfaces) replaced by a
weighted intensity akIb. Thus, if the temperature field is known (or assumed), the intensity field
(or simply the heat fluxes) must be determined for k = 0, 1, . . . ,K, using any standard solution
method. The results are then added to give the total intensity (or radiative heat flux). Note
that, as for the stepwise-gray approximation, it will always be necessary to know or assume a
temperature profile: For radiative equilibrium the condition ∇ · q = 0 applies to the total heat
flux only and, in general, ∇ · q k , 0.

The curve fit of the total absorptivity of the medium, equation (20.87), should be tailored to
the medium at hand, depending on composition, pressure levels, temperature levels, number
of molecular gas bands, and so on. Only if the fit is optimized will one be able to achieve
acceptable accuracy with a weighted sum of two or three gray gases. Unfortunately, the curve
fit is a nonlinear one, and is further complicated by the fact that the ak may be functions of
temperature, pressure, composition, and so forth. As a result of these difficulties the curve
fitting effort may become more involved than the heat transfer calculations themselves! Some
weighted-gray-gas absorptivity fits for important gases have been reported in the literature for
use with the zonal method (Chapter 18), e.g., by Smith and coworkers [71] for water vapor–
carbon dioxide mixtures, and by Farag and Allam [72] for carbon dioxide. A “cookbook”
formula for any gas, for which wide band data are available, has been given by Modest [40],
and has been used to obtain the WSGG results included in Fig. 20-3. A collection of WSGG
parameters for varying mixtures of water vapor, carbon dioxide, and soot has been given by
Truelove [73]. His correlation for the common case of pH2O = 2pCO2 (e.g., resulting from complete
combustion of methane) is reproduced in Table 20.2, with equation (20.87) slightly altered to

ε (T, s) = α(T, s) =

K∑
k=0

L∑
l=1

akl(T)
(
1 − e−[κ1k(pH2O+pCO2 )+κplρp fv]s

)
, (20.93)

where ρp is the density of the soot and fv is its volume fraction. Another, similar set of WSGG
parameters has been generated by Taylor and Foster [74].

Recently, to address global warming issues, oxy-fuel combustion systems have garnered a
lot of attention, where oxygen (rather than air) is used to burn coal, producing an exhaust gas
consisting primarily of H2O and CO2. The H2O can be condensed leaving a highly concentrated
CO2 stream, which can be sequestered. Temperature control is achieved by returning part of
the CO2. This leads to much higher levels of H2O and CO2, promoting radiative heat transfer



652 20 SOLUTION METHODS FOR NONGRAY EXTINCTION COEFFICIENTS

TABLE 20.2
Weighted-sum-of-gray-gases absorption coefficients and weight factors for a mixture of water
vapor, carbon dioxide, and soot, for a fixed ratio of partial pressures p H2O = 2p CO2 , akl =
a0

kl
+ a1

kl
T, from Truelove [73].

k l a0
kl a1

kl × 103 κ1,k (m−1 atm−1) κp,l (m2 kg−1)

0 1 0.588 −0.2401 0.0 541
0 2 −0.165 0.2834 0.0 2749
1 1 0.412 −0.1665 0.89 541
1 2 −0.127 0.2178 0.89 2749
2 1 0.2375 −0.0941 15.5 541
2 2 −0.0105 0.0265 15.5 2749
3 1 0.0585 −0.0243 239.0 541
3 2 0.0065 −0.0027 239.0 2749

and requiring different sets of WSGG parameters. Yin [75] and coworkers used the wide band
model data of Table 11.3 to find a set of four gray gas parameters for ten different pH2O/pCO2

ratios of relevance in oxy-fuel combustion. A similar set was generated by Johansson et al. [76]
for two pH2O/pCO2 ratios (1/8 and 1), employing the EM2C narrow band database [55].

Example 20.9. Consider an isothermal slab at temperature T = 1000 K, and a total pressure of p = 1 atm.
The slab consists of a mixture of 70% N2, 20% H2O, and 10% CO2 (by volume), and is bordered by cold,
black walls. Determine the heat loss from this slab as a function of slab thickness L, using the WSGG
method with Truelove’s parameters. In addition, determine the heat lost from the layer if the gas is
mixed with soot (ρp = 2,000 kg/m3, fv = 5 × 10−6).

Solution
If no soot is present, the summation over l in equation (20.93) can be carried out immediately, and with
a0 = (0.588 − 0.2401) + (−0.165 + 0.2834) = 0.466, etc., and also using κk = κ1,k(0.2 + 0.1) atm, we obtain

a0 = 0.466, a1 = 0.337, a2 = 0.159, a3 = 0.038;
κ0 = 0, κ1 = 0.267 m−1, κ2 = 4.65 m−1, κ3 = 71.7 m−1.

If we use the exact solution to the (spectral) equation of transfer, the answer was found in Example (14.1)
for a gray medium as

q = σT4 [1 − 2E3(κL)] (20.94)

(where we have set Tw = 0, εw = 1, and τL = κL). Therefore, if we use the WSGG method, this leads to
(in nondimensional form)

Ψ =
q
σT4 =

3∑
k=0

ak[1 − 2E3(κkL)]. (20.95)

A plot of this result is given in Fig. 20-6, together with line-by-line (LBL) results obtained from the
HITEMP 1995 database [17]. The WSGG method is seen to give results of very respectable accuracy, ex-
cept for extremely long path lengths, for which the method underpredicts the gas emissivity somewhat.

If soot is added to the gas mixture, the number of terms is doubled. With ρp fv = 10−2 kg/m3, we
obtain

a01 = 0.348, a02 = 0.118; a11 = 0.246, a12 = 0.091;
a21 = 0.143, a22 = 0.016; a31 = 0.034, a32 = 0.004.

Similarly, with κp1ρp fv = 541 × 10−2 = 5.41 m−1 and κp2ρp fv = 27.49 m−1, the corresponding gray-gas
absorption coefficients become

κ01 = 5.41 m−1, κ02 = 27.49 m−1; κ11 = 5.68 m−1, κ12 = 27.76 m−1;
κ21 = 10.05 m−1, κ22 = 32.14 m−1; κ31 = 77.11 m−1, κ32 = 99.19 m−1;
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FIGURE 20-6
Nondimensional heat loss from an isothermal N2, H2O, CO2 mixture with and without soot.

and the nondimensional heat flux is evaluated from

Ψ =
q
σT4 =

3∑
k=0

2∑
l=1

akl[1 − 2E3(κklL)], (20.96)

which is also plotted in Fig. 20-6 together with LBL results for a soot absorption coefficient that varies
linearly with wavenumber, and that has C0 = 5.71 [obtained from equation (12.123), using the Chang and
Charalampopoulos refractive index of m = 1.89−0.92i of Example 12.4]. For such soot the WSGG model
overpredicts emission by about 20% for small slab thicknesses, and the error gradually diminishes
with increasing L. Choosing C0 = 7, or m = 1.38 − 0.69i, would result in almost perfect agreement.
Truelove’s report [73] admits to great uncertainty for the values of the κp,l, and the values reported in
Table 20.2 represent compromise values chosen by Bressloff [77]. Also, equation (20.93) requires the
density of the soot, while equation (12.123) does not. There is additional uncertainty attached to the
soot’s density, which was here arbitrarily set to ρp = 2,000 kg/m3 (approximating the density of pyrolytic
graphite) and, finally, there are great variations possible in the index of refraction, as shown in Fig. 12-
20. Therefore, considering the substantial uncertainties surrounding soot generation and properties,
the agreement may be considered good; differences can be attributed to the soot model rather than the
WSGG approximation.

Example 20.10. Reconsider the isothermal medium of Example 20.9 (with and without particles).
Assuming the medium is confined between two parallel, cold and black plates a distance L apart,
calculate the radiative heat flux within the slab, using the weighted-sum-of-gray-gases approach together
with the P1-approximation.

Solution
The P1-approximation for an isothermal medium with absorption coefficient κk and a Planck function
of [akIb], bounded by cold and black plates, is

dqk

dz
= κk(4π[akIb] − Gk),

dGk

dz
= −3κkqk,

z = 0 : 2qk + Gk = 0,
z = L : −2qk + Gk = 0.

The answer to this simple set of equations follows immediately, as a special case of Example 16.2, as

qk(z) = akEb
2 sinh

√
3κk(z−L/2)

sinh 1
2

√
3κkL+ 1

2

√
3 cosh 1

2

√
3κkL

.
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Since the medium is identical to the one of Example 20.9, their total absorptivities and, thus, the values
for the correlation coefficients ak and κk are identical as well. The total nondimensional heat flux follows
as

Ψ =
q
σT4 =

∑L
k=0 qk

σT4 =

L∑
k=0

2ak sinh
√

3κk(z−L/2)

sinh 1
2

√
3κkL + 1

2

√
3 cosh 1

2

√
3κkL

.

Results from the P1-approximation for z = L are also included in Fig. 20-6, together with their LBL
results. The trends are the same as for the previous example, with the P1-approximation always slightly
overpredicting emission rates. The error is largest for large optical thicknesses, which is due to the cold
boundary as was discussed in Example 16.2.

At first glance, the weighted-sum-of-gases method appears to be a rather crude, approximate
tool to estimate radiative heat fluxes from extremely complicated participating media. And,
when the method was first developed before the advent of powerful computers and accurate,
high-resolution databases, it was just that. Still, even in its crudest form, the method has enjoyed
great popularity, since it is easy to apply and since more accurate calculations were difficult, if
not impossible, to obtain (in part due to a lack of accurate high-temperature spectral property
data). For example, Ramamurthy and coworkers [78] applied the method together with an
S4 discrete ordinates approach to reacting flow in radiant tubes. Mesyngier and Farouk [79]
investigated turbulent free convection in a square enclosure containing mixtures with water
vapor and/or carbon dioxide, Liu and coworkers [80] looked at natural gas-fired furnaces, and
Baek et al. [81] studied single droplet combustion, all using the WSGG scheme together with
the discrete ordinates method. Kühlert and Renz [82] considered a pulverized coal flame,
and Bressloff [77] compared the accuracy of the WSGG model with results obtained from
narrow band calculations, as did Pierrot and coworkers [7] (also using several other spectral
methods). Yu and colleagues [83] investigated various isothermal, one-dimensional H2O–CO2–
soot mixtures, and Omori et al. [84] used the method together with a commercial flow solver to
study an industrial furnace.

Today we know that the method can also be applied to reflecting (albeit gray) walls, to
variable absorption coefficients as long as they obey the scaling approximation [see equa-
tion (11.130) in Section 11.9], and that accurate gray-gas coefficients can be obtained from high-
resolution databases, mostly through the extensions to the WSGG method made by Denison and
Webb [3,5,85–87]. Noting that the WSGG method can be seen as a box model of Section 20.4 with
thousands of boxes across the spectrum (but relatively few different box heights κk), the weight
factors ak are simply the sum of the (Ebη∆η)i for all “boxes” with height κk, and normalized by
Eb; i.e., the ak are the fraction of the emissive power spectrum, where the absorption coefficient
equals κk. This approach, which they call Spectral-Line-Based Weighted-Sum-of-Gray-Gases, or
SLW, can finite-difference the spectral line structure of molecular gases to any desired accuracy.
Their calculations show that extremely accurate results (compared to LBL benchmarks) can be
obtained for homogeneous gas mixtures, using only three or four spectral calculations and—to
a lesser extent—also in mixtures with varying temperature and concentrations. Additional SLW
parameters were found by Solovjov and Webb [18], who also investigated schemes to treat over-
lapping gas bands in mixtures [12], including soot [88]. A very similar method, the Absorption
Distribution Function (ADF) model, was developed by Rivière and coworkers [6–8] and applied
to one-dimensional mixtures of water vapor and carbon dioxide with various temperature and
concentration profiles. In [8] the approach is extended to include fictitious gases, as was done
for the narrow band k-distribution in equation (11.138).

20.7 k-DISTRIBUTION MODELS

When the band models were developed in Chapter 11 we noted that results were obtained
in terms of spectrally averaged transmissivities or emissivities (narrow band models), total
band absorptances (wide band models), or total emissivities and absorptivities (full spectrum
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or “global” models), not in terms of a smoothened absorption coefficient. For that reason band
models are limited to line-of-sight calculations, i.e., they cannot be used in media with reflecting
walls and/or scattering particles, or at least only with great difficulty. While k-distributions
share some of the weaknesses of the band models (such as difficulty to apply the method
to nonhomogeneous media), they result in a reordered, rather than smoothened, absorption
coefficient and can, therefore, be applied to arbitrary enclosures (including reflecting walls
and scattering), using arbitrary RTE solution methods (including the stochastic Monte Carlo
method discussed in Chapter 21. However, k-distributions tend to be cumbersome to assemble
and must be generated individually for every cell in the computational domain, generally from
high-resolution databases, such as HITRAN 2008 [1] and HITEMP 2010 [2], with their millions
(and even hundreds of millions) of spectral lines. Thus, the rapid assembly of k-distributions
is of utmost importance, either through correlations or using a precalculated k-distribution
database.

Like traditional band models, k-distributions come in narrow band, wide band, and full
spectrum or global versions.

Narrow Band k-Distribution Calculations In traditional band models “narrow band” im-
plies a spectral range over which the applied statistics are valid (such as the Malkmus model),
limiting a narrow band to ∆η ' 4 to 10 cm−1 for high accuracy calculations, to an absolute max-
imum of perhaps 25 cm−1. For k-distributions “narrow band” implies a spectral range across
which the Planck function Ibη can be assumed to remain constant, i.e., perhaps 25 to 100 cm−1

for high accuracy, and up to several 100 cm−1 for fair accuracy. However, k-distributions require
approximately 10 spectral calculations for each ∆η range, making the numerical effort roughly
equivalent for both types of narrow band calculations. Most narrow band k-distribution cal-
culations to date have employed the k-distribution database of Soufiani and Taine [55] (based
on HITRAN96 plus proprietary high-temperature extrapolations). Marin and Buckius [11] ap-
plied the method to a one-dimensional slab containing water vapor or carbon dioxide (but not
both) with fixed concentrations and varying temperatures (steps and parabolic profiles). Using
wavenumber ranges of up to ∆η = 1000 cm−1 they noted that little loss of accuracy occurred
for ∆η ≤ 500 cm−1. Dembele and coworkers used the method to determine radiation from fires
with water spray curtains, using the discrete ordinates method and Mie scattering for the water
droplets [89], and also to predict intensities exiting from a natural gas flame [90]. Tang and
Brewster [20] also studied a one-dimensional slab containing CO2, but included anisotropic
scattering. Pierrot and colleagues [7, 8] considered one-dimensional slabs containing H2O and
CO2, as well, comparing various spectral solution methods. Liu et al. [91] tested different
quadrature schemes for narrow band k-distribution calculations, and used the method for a
three-dimensional geometry, to verify an approximate formulation of the statistical narrow
band model applied to scattering media [91]. The method was further optimized and applied to
several two-dimensional flames [92], using the EM2C database [55] to generate k-distributions
from equation (11.108). Finally, Tessé [93] applied the method for the evaluation of turbulence–
radiation interactions in turbulent flames.

Wide Band k-Distribution Calculations In traditional band models “wide band” implies the
spectral range covered by an entire vibration–rotation band, and it is assumed (somewhat tenu-
ously) that the Planck function is constant across the band. The same definition is generally used
for k-distributions, making the distinction between narrow band and wide band k-distributions
a judgement call. A number of approximate wide band k-distributions have been generated
to facilitate their use, which distinguishes them from narrow band distributions. In one ap-
proach [94–98] experimentally determined wide band parameters were reformulated, to allow
their use in arbitrary RTE solvers, as described in Section 11.10. These exponential wide band
based k-distributions have been tested by their authors on various one-dimensional isothermal
gas mixtures contained between parallel plates. In the other approach [99–102] k-distributions
for various vibration–rotation bands of CO2 and H2O were obtained from the HITRAN92
database [103], and relatively easy-to-use approximate correlations were formulated.
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Full Spectrum k-Distributions and Related Methods Narrow band and wide band k-distri-
butions rely on the fact that the Planck function is relatively constant across a band. Modest and
Zhang [104] have extended the k-distribution concept to the full spectrum by incorporating the
spectrally varying blackbody intensity, and showed that the WSGG method, as applied in the
SLW and ADF forms, is just a crude implementation of the Full Spectrum k-Distribution (FSK)
method and, as such, can also be used in media with (gray) scattering particles. Because of the
close relationship between the models, the SLW method will be described as a special case of
the full spectrum k-distribution approach.

20.8 THE FULL SPECTRUM
k-DISTRIBUTION (FSK) METHOD FOR
HOMOGENEOUS MEDIA

Like the WSGG method the Full Spectrum k-Distribution (FSK) method demands that, except
for the absorption coefficient, no other radiative property varies across the spectrum, and then
attempts to integrate the radiative transfer equation across the entire spectrum before solving
it. And, like the narrow band k-distribution of Section 11.9, this is achieved by reordering the
absorption coefficient into a monotonically increasing function. However, in the full spectrum
case allowance must be made for a blackbody intensity (or Planck function) varying across the
spectrum. The FSK method can be developed very much like a narrow band k-distribution via
a gas column transmissivity (or absorptivity), clearly showing its close relationship with the
WSGG approach. This has been described in the original paper by Modest and Zhang [104]. The
FSK method can also be applied directly to the RTE, resulting in a more powerful derivation,
because it shows that the approach is also valid for arbitrarily scattering media and for arbitrarily
reflecting surfaces, as long as the absorption coefficient remains the only spectrally varying
radiative property [104, 105]. We will describe here only the latter approach.

In this section we will first consider the simple case of a homogeneous medium, i.e., a
medium with uniform temperature, pressure, and mixture mole fraction throughout. Such
a mixture has an absorption coefficient that, while varying across the spectrum, is spatially
constant. The radiative transfer equation for such a medium is, from equation (10.21),

dIη
ds

= κηIbη − (κη + σs)Iη +
σs

4π

∫
4π

Iη(ŝ′) Φ(ŝ, ŝ′) dΩ′, (20.97)

where—in order to establish a global model—scattering coefficient and phase function are
assumed to be independent of wavenumber (gray). Let equation (20.97) be subject to the
boundary conditions at a wall

Iη = Iwη = εwIbwη + (1 − εw)
1
π

∫
n̂·ŝ<0

Iη |n̂ · ŝ| dΩ, (20.98)

where Iwη is the spectral intensity leaving the enclosure wall, due to (diffuse gray) emission
and/or (diffuse gray) reflection (and extension to more general boundary conditions is straight-
forward, provided the surface properties remain gray).

A full spectrum k-distribution is defined, in accordance with equation (11.98) for a narrow
band, as9

f (T, k) =
1
Ib

∫
∞

0
Ibη(T) δ(k − κη) dη. (20.99)

The f (T, k) in equation (20.99) is a Planck-function-weighted k-distribution and is a function of
temperature through the blackbody intensity. A reordered RTE is obtained by multiplying

9For a definition of the Dirac-delta function see Section 11.9, equation (11.99).
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FIGURE 20-7
Planck-function-weighted k-distributions for 10%
CO2 in nitrogen for Planck function temperatures
of T = 1000 K and Tw = 500 K.

equations (20.97) and (20.98) by the Dirac-delta function δ(k − κη), followed by integration over
the entire spectrum. This leads to

dIk

ds
= k f (T, k)Ib − (k + σs)Ik +

σs

4π

∫
4π

Ik(ŝ′) Φ(ŝ, ŝ′) dΩ′ (20.100)

with boundary condition

Ik = Iwk = εw f (Tw, k)Ibw + (1 − εw)
1
π

∫
n̂·ŝ<0

Ik |n̂ · ŝ| dΩ, (20.101)

where
Ik =

∫
∞

0
Iη δ(k − kη) dη (20.102)

is the intensity Iη collected over all spectral locations where kη = k (per dk). Thus, once Ik has
been found from equation (20.100), the total intensity can be determined from

I =

∫
∞

0
Iη dη =

∫
∞

0
Ik dk. (20.103)

Note that two Planck-function-weighted k-distributions are required: one at the temperature
of the homogeneous medium, f (T, k), and one evaluated at the wall temperature, f (Tw, k), but
both using the absorption coefficient evaluated at the conditions of the medium. Two typical
Planck-function-weighted k-distributions are shown in Fig. 20-7 for a medium at T = 1000 K
and a wall temperature Tw = 500 K, for a mixture of 10% CO2 in nitrogen at 1000 K, 1 bar, as
evaluated from the HITEMP 1995 database [17]. Unfortunately, full spectrum k-distributions
vary significantly with their method of evaluation, span across many orders of magnitude
(partially suppressed in Fig. 20-7 by plotting f δk instead of f itself), and may be quite ill-
behaved, much like their narrow band counterparts (cf. Fig. 11-15). Also, k-distributions at
different Planck function temperatures are seen to be quite different: different Planck function
temperatures emphasize different parts of the spectrum and, therefore, different spectral lines.
However, as noted in Section 11.9, the sharp peaks in f (T, k) are due to maxima and minima
of κη, which remain the same for all Planck function temperatures. Consequently, the ratio
of any two full spectrum k-distributions evaluated at different Planck function temperatures
should produce a much smoother function, in particular if the temperatures are close together.
This is indeed the case and is also indicated in Fig. 20-7 through the function a(T, k), although
some remnant noise remains, in particular for (fortunately fairly unimportant) small values
of k and low temperatures, as shown here. In Fig. 20-7 the smoothing effect is most obvious
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for large values of k, reducing noise by a factor of more than 100. For Tw approaching T,
the a-function approaches a → 1 in a smooth manner, and is generally well-behaved for high
temperatures (for both T and Tw). The reason for this behavior is that, for low temperatures,
the Planck function is essentially negligible across some important vibration–rotation bands
while, at high temperatures, all bands contribute regardless of their position in the spectrum.
Based on this discussion, to facilitate integration of equation (20.103), equations (20.100) and
(20.101) are divided by the k-distribution evaluated at the temperature of the medium. This
leads to a reordered RTE in smoothly-varying 1-space, where the cumulative k-distribution 1 is
a nondimensional, Planck-function-weighted, reordered wavenumber. This is termed the Full
Spectrum k-Distribution (FSK) method:

dI1
ds

= k
(
Ib(T) − I1

)
− σs

(
I1 −

1
4π

∫
4π

I1(ŝ′) Φ(ŝ, ŝ′) dΩ′
)
, (20.104)

with the boundary conditions

I1 = Iw1 = εwa(Tw,T, 1)Ibw + (1 − εw)
1
π

∫
n̂·ŝ<0

I1 |n̂ · ŝ| dΩ, (20.105)

where

I1 = Ik/ f (T, k) =

∫
∞

0
Iη δ

(
k − κη

)
dη

/
f (T, k), (20.106)

1(T, k) =

∫ k

0
f (T, k) dk, (20.107)

a(Tw,T, 1) =
f (Tw, k)
f (T, k)

=
d1w(Tw, k)

d1(T, k)
. (20.108)

Physically, 1 is the Planck-function-weighted fraction of the spectrum with absorption coefficient
κη < k. Thus, the total intensity is evaluated from

I =

∫
∞

0
Iη dη =

∫
∞

0
Ik dk =

∫ 1

0
I1 d1. (20.109)

In equation (20.108) numerator and denominator are both evaluated at identical values of k,
which in turn is related to 1 through equation (20.107).
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The cumulative k-distributions for the CO2-distributions of Fig. 20-7 are shown in Fig. 20-8,
and are seen to be smooth, monotonically increasing functions of nondimensional “wavenum-
ber” 1. Both k-distributions, k(T, 1) and k(Tw, 1w), have the same range of k-values (the absorption
coefficient of CO2 at T = 1000 K), but different 1-values, and the function a is the stretching fac-
tor d1w/d1 between the two distributions, evaluated at identical k-values (horizontal lines in
Fig. 20-8): Wherever the slope of k(Tw, 1w) is less than that of k(T, 1) (for the same value of k)
a(Tw,T, 1) > 1 and vice versa. While k(T, 1) is a monotonically increasing function (with tiny
steps wherever κη has a maximum or a minimum), a(Tw,T, 1) is not. Mathematically, wherever
κη has a maximum or a minimum f (Tw, k) and f (T, k) both tend toward infinity, leading to a
zero-divided-by-zero situation. Taking the limits, a(Tw,T, 1) should be a smooth function but,
in reality, this depends on the fidelity with which the k-distributions are evaluated. It is, in
general, better to evaluate the a(Tw,T, 1) employing the slopes of 1(k) as opposed to using the f
themselves, as indicated in equation (20.108), perhaps even only after slight smoothing of the
1(k).

It is important to understand that the FSK method given by equations (20.104) through
(20.108) is an exact method (subject to the restrictions of a homogeneous medium). In fact, the
method is also exact for nonhomogeneous media, provided the absorption coefficient is spatially
invariant (e.g., evaluated at a reference condition and then applied to the entire medium). Within
these restrictions the FSK results are equivalent to LBL calculations, the former requiring roughly
10 spectral evaluations vs. about 1,000,000 for LBL.

20.9 THE SPECTRAL-LINE-BASED
WEIGHTED SUM OF GRAY GASES (SLW)

It is also of interest to note what happens if equations (20.104) through (20.109) are applied to
a nonscattering medium bounded by black walls, and are integrated using a crude trapezoidal
scheme, i.e., the variable absorption coefficient k(T, 1) is replaced by a single, constant value
k̃i(T) for the ith finite range of 1 spanning across 1i−1 < 1 ≤ 1i. Integrating equation (20.104), and
omitting the scattering terms, then reduces it to

dIi

ds
= k̃i(T)

(
āi(T)Ib(T) − Ii

)
, i = 1, . . . ,N, (20.110)

for the N gray gases, subject to the boundary condition

Iwi = āi(Tw)Ib(Tw), (20.111)

where
Ii = I1 (̃ki)(1i − 1i−1). (20.112)

The weight function ai in equation (20.110) is

ai(T) = 1i − 1i−1, (20.113)

while for the boundary condition ai is evaluated from equation (20.108) as

ai(Tw) =

∫ 1i

1i−1

a(Tw,T, 1) d1(T) =

∫ 1w,i

1w,i−1

d1w(Tw) = 1w,i − 1w,i−1. (20.114)

Thus, ai is the ith finite range of the cumulative k-distribution evaluated at the local Planck
function temperature (T or Tw). This is also indicated in Fig. 20-8. The k̃i is an average value
of k(T, 1) over the range 1i−1 < 1 ≤ 1i. This is the SLW method as developed by Denison and
Webb [3, 5, 86], who suggest evaluating k̃i from a square-root average, i.e.,

k̃i(T) =
√

k(T, 1i−1)k(T, 1i). (20.115)
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FIGURE 20-9
Extraction of k-distributions from spectral absorption coefficient data (thick line is for CO2 in nitrogen, across a small
portion of the 15µm band, p = 1.0 bar, T = 296 K; thin line is an artificially created correlated absorption coefficient).

Inspection of equations (20.91) and (20.92) shows that the SLW scheme is simply the weighted-
sum-of-gray-gases method, with absorption coefficients ki and weights ai evaluated from a line-
by-line database. While in the development of the SLW method scattering was not considered,
we may conclude that (a) the WSGG method may be applied to gray scattering media as well
as to gray reflecting walls, and (b) the SLW method—or the WSGG method with its parameters
based on a spectral line database—is nothing but the crudest possible implementation of the
FSK method. Recently, Solovjov and coworkers [106] introduced the SLW-1 model for quick
calculations with a single gray gas, which is essentially the box model of equation (20.4), but
offering several ways of determining the k̃1(T).

20.10 THE FSK METHOD FOR
NONHOMOGENEOUS MEDIA

It was already noted in Section 11.9 that, like conventional band models, it is not possible to
develop exact k-distributions for arbitrary absorption coefficients in nonhomogeneous media.
Thus, to develop a full spectrum k-distribution method for nonhomogeneous media we will,
as for narrow band k-distributions, assume that the spectral absorption coefficient is correlated
or even obeys the scaling approximation. Defining a vector φ that contains the composition
variables that affect the absorption coefficient, i.e., temperature T, pressure p, and mole fractions
of gases (or the volume fraction of small particles, if present) x, the absorption coefficient may
be written as

κη(η,φ) =

{
k∗η(φ, kη), correlated,
kη(η) u(φ,φ0), scaled, (20.116)

where kη(η) = κη(η,φ0) is the absorption coefficient at a reference state φ0 = (T0, p0, x0). If the
absorption coefficient is correlated then, at every wavenumber where κη(η,φ0) has one and the
same value k, κη(η,φ) always also has one unique value k∗(φ, k), as illustrated in Fig. 20-9 for a
small part of a CO2 band. If the ratio k∗η/kη is constant (not a function of kη) then the absorption
coefficient is scaled, and u(φ,φ0) is called the scaling function.
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For such an absorption coefficient the general radiative transfer equation (10.21) becomes

dIη
ds

= k∗η(φ, kη)Ibη −
(
k∗η(φ, kη) + σs

)
Iη +

σs

4π

∫
4π

Iη(ŝ′) Φ(ŝ, ŝ′) dΩ′, (20.117)

subject to the boundary condition (20.98).
Extension of the FSK method to nonhomogeneous media with correlated absorption co-

efficients will require k-distributions evaluated for different absorption coefficient states φ as
well as different Planck function temperatures T. It is, therefore, important to understand the
relationships between these k-distributions, as reported by Modest [105].

Correlated Full Spectrum k-Distributions
For a nonhomogeneous medium a generalized full spectrum k-distribution is defined as

f (T,φ, k) =
1
Ib

∫
∞

0
Ibη(T) δ

(
k − κη(η,φ)

)
dη, (20.118)

which is a function of temperature through the Planck function, and also of φ through the
state at which the absorption coefficient κη is evaluated. Similar to narrow band k-distributions
Planck-function weighted k-distributions are evaluated as

f (T,φ0, k) =
1
Ib

∫
∞

0
Ibη(T) δ

(
k − κη(η,φ0)

) dη
dκη

dκη =
1

Ib(T)

∑
i

Ibηi(T)

∣∣∣∣∣∣ dη
dκη

∣∣∣∣∣∣
κη(ηi,φ0)=k

. (20.119)

In this relation the summation is over all occurrences where κη(η,φ0) = k, as illustrated in
Fig. 20-9 (the absolute value signs stem from the fact that, if dη/dκη < 0, then also dκη < 0).
Similarly, one can obtain the k-distribution for the local state φ, or

f (T,φ, k∗) =
1

Ib(T)

∑
i

Ibηi(T)

∣∣∣∣∣∣ dη
dκη

∣∣∣∣∣∣
κη(ηi,φ)=k∗

, (20.120)

which has identical k∗–κη–intersection wavenumbers ηi, as also indicated in Fig. 20-9. From
equation (20.116) we have∣∣∣∣∣∣dκηdη

∣∣∣∣∣∣
κη(ηi,φ)=k∗

=

∣∣∣∣∣∣dk∗η
dη

∣∣∣∣∣∣
k∗η=k∗

=

∣∣∣∣∣∣dk∗η
dkη

∣∣∣∣∣∣
∣∣∣∣∣∣dkη

dη

∣∣∣∣∣∣
kη=k

=

∣∣∣∣∣∣dκηdη

∣∣∣∣∣∣
κη(ηi,φ0)=k

dk∗

dk
(20.121)

and, therefore,
f (T,φ, k∗) dk∗ = f (T,φ0, k) dk. (20.122)

The cumulative k-distribution 1 is then identical for both cases, i.e.,

1(T,φ0, k) =

∫ k

0
f (T,φ0, k) dk =

∫ k∗

0
f (T,φ, k∗) dk∗ = 1(T,φ, k∗). (20.123)

Equation (20.123) may be inverted for both k and k∗, with both being a function of the same
cumulative k-distribution 1. This is the definition of correlated k-distributions.

We will now compare correlated k-distributions evaluated for the same absorption coeffi-
cient (say, at the reference state φ0), but for different Planck function temperatures (say, local
temperature T and reference state temperature T0). Using equation (20.123) this will result in
two different cumulative k-distributions 1 (for medium temperature T) and 10 (for reference
state temperature T0). Since k(T,φ0, 1) and k(T0,φ0, 10) are both reordering the same absorption
coefficient (but using different weight functions), k(T0,φ0, 10) is simply stretched in 1-space, as
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FIGURE 20-10
k-distribution equivalence of correlated absorption
coefficients for varying Planck function tempera-
tures.

shown in Fig. 20-10 (the four k-distributions in Fig. 20-10 were obtained from the two absorption
coefficient distributions of Fig. 20-9, after spreading their spectral range across the entire spec-
trum, for Planck function temperatures of 300 K and 1000 K). The two thick lines, k(Th,Tc, 10) and
k(Tc,Tc, 1), are both based on the thick line in Fig. 20-9, i.e., the absorption coefficient evaluated
at T = Tc = 300 K (second argument for k). The thick, solid line shows k(Th,Tc, 10), implying that
the Planck function is evaluated at the reference temperature, here set to T0 = Th = 1000 K (first
argument for k), resulting in the reference cumulative k-distribution 10. The thick, dash-dot
line is the k-distribution for the same absorption coefficient, but evaluated at T = Tc = 300 K
resulting in the cumulative k-distribution 1. Both k-distributions have identical k-values, but
different 1-distributions. The thin lines in Fig. 20-10 show the equivalent two k-distributions,
with the (artificial) absorption coefficient evaluated at T0 = Th = 1000 K (thin line in Fig. 20-9).
Since the absorption coefficients in Fig. 20-9 are truly correlated, and since equation (20.123)
can be applied at any temperature, including T = T0, it is clear that k∗(T0,φ, 10) is stretched in
exactly the same way, or

k∗(φ, k) = k∗(T,φ, 1) = k∗(T0,φ, 10). (20.124)

Note that equation (20.124) is exact only for a truly correlated absorption coefficient: Fig. 20-11
shows the equivalent four k-distributions for a 10% CO2–20% H2O–70% N2 mixture evaluated
from the HITEMP 1995 database [17]: if the k-distributions k(T0 = 1000 K, T = 300 K, 10) (Planck
function evaluated at the reference temperature of 1000 K, absorption coefficient at 300 K) and
k(T0 = 1000 K, T0 = 1000 K, 10) (Planck function at 1000 K, κη at 1000 K) were correlated, then,
from equation (20.123), they should also be correlated for a Planck function evaluated at 300 K.
This implies that for any value of 1 (here shown for 1 = 0.3) the two k-values at one Planck
function temperature (here 300 K) should map to identical 10-values at any other Planck function
temperature (here T0 = 1000 K). This is clearly not the case for the given carbon dioxide–water
vapor mixture. On the other hand, a graph such as Fig. 20-11 can be employed to investigate
how close to correlatedness an absorption coefficient actually is.

The Full Spectrum Correlated-k (FSCK)
Method
A reordered RTE is obtained by multiplying equation (20.117) and boundary condition (20.98)
by the Dirac-delta function δ(k − kη), i.e., using the absorption coefficient at a representative
reference state φ0 introduced in equation (20.116). This is then followed by integration over the
entire spectrum. Noting that∫

∞

0
k∗η(φ, kη)Ibη(T) δ(k − kη) dη = k∗(φ, k)

∫
∞

0
Ibη(T) δ(k − kη) dη,
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because δ(k − kη) is nonzero only wherever kη = k, this leads to

dIk

ds
= k∗(φ, k) f (T,φ0, k)Ib −

(
k∗(φ, k) + σs

)
Ik +

σs

4π

∫
4π

Ik(ŝ′) Φ(ŝ, ŝ′) dΩ′ (20.125)

with boundary condition

Ik = Iwk = εw f (Tw,φ0, k)Ibw + (1 − εw)
1
π

∫
n̂·ŝ<0

Ik |n̂ · ŝ| dΩ, (20.126)

and

Ik =

∫
∞

0
Iη δ(k − kη) dη. (20.127)

Again, to facilitate integration, equations (20.125) and (20.126) are divided by a k-distribution.
To allow such a division, this k-distribution must be evaluated at a constant but arbitrary Planck
function reference temperature T0 [generally chosen to be identical to the one used for the
absorption coefficient in equation (20.116)]. This leads to a reordered RTE in smoothly-varying
10-space, and is called the Full Spectrum Correlated-k (FSCK) method:

dI1
ds

= k∗(T0,φ, 10)
[
a(T,T0, 10)Ib(T) − I1

]
− σs

(
I1 −

1
4π

∫
4π

I1(ŝ′) Φ(ŝ, ŝ′) dΩ′
)
, (20.128)

subject to the boundary condition

I1 = Iw1 = εwa(Tw,T0, 10)Ibw + (1 − εw)
1
π

∫
n̂·ŝ<0

I1 |n̂ · ŝ| dΩ. (20.129)

Here

I1 = Ik/ f (T0,φ0, k) =

∫
∞

0
Iη δ

(
k − κη(η,φ0)

)
dη

/
f (T0,φ0, k), (20.130)

10(T0,φ0, k) =

∫ k

0
f (T0,φ0, k) dk, (20.131)

a(T,T0, 10) =
f (T,φ0, k)
f (T0,φ0, k)

=
d1(T,φ0, k)

d10(T0,φ0, k)
, (20.132)
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and the total intensity is evaluated from

I =

∫
∞

0
Iη dη =

∫
∞

0
Ik dk =

∫ 1

0
I1 d10. (20.133)

As for a homogeneous medium, numerator and denominator in equation (20.132) are both
evaluated at identical values of k, which in turn are related to 10 through equation (20.131). It
turns out that the weight function a(T,T0, 10) is actually independent ofφ0 for a truly correlated
absorption coefficient [as a consequence of equation (20.122)]. In equation (20.128) the k∗(φ, k)
of equation (20.125) has been replaced by k∗(T0,φ, 10), using equation (20.124), i.e., k∗ is the k(1)
value obtained from the k-distribution obtained for the absorption coefficient at local conditions and
the Planck function at reference temperature.

The Full Spectrum Scaled-k (FSSK) Method
As for narrow band k-distributions the problem is reduced to a single k-distribution if a scaled
absorption coefficient is employed. Then the k∗-term in equation (20.128) is replaced by

k∗(T,φ, 1) = k(T,φ0, 1)u(φ,φ0) = k∗(T0,φ, 10) = k(T0,φ0, 10)u(φ,φ0). (20.134)

This then becomes the Full Spectrum Scaled-k (FSSK) method:

dI1
ds

= k(T0,φ0, 10)u(φ,φ0)
[
a(T,T0, 10)Ib(T) − I1

]
− σs

(
I1 −

1
4π

∫
4π

I1(ŝ′) Φ(ŝ, ŝ′) dΩ′
)
, (20.135)

with the same boundary condition (20.129) as for the FSCK method. How to determine the
scaling function for a given medium will be discussed below together with the determination
of a proper reference state.

Both methods given by equations (20.128) through (20.135) are “exact” like equations (20.104)
through (20.108), but are now subject to the somewhat less severe restriction of an absorption
coefficient that is correlated or scaled.

The SLW Method for Nonhomogeneous
Media
The SLW method of Denison and Webb can also be applied to nonhomogeneous media, in-
cluding scattering media and reflecting walls. Again, integrating equation (20.128) over the ith
1-range, across which k̃i is assumed constant, this leads to

dIi

ds
= k̃i(T0,φ)

(
āi(T,T0)Ib(T) − Ii

)
− σs

(
Ii −

1
4π

∫
4π

Ii(ŝ′) Φ(ŝ, ŝ′) dΩ′
)
, i = 1, . . . ,N, (20.136)

subject to the boundary condition

Iwi = εwāi(Tw,T0)Ib(Tw) + (1 − εw)
1
π

∫
n̂·ŝ<0

Ii |n̂ · ŝ| dΩ, (20.137)

where
Ii = I1 (̃ki)(10,i − 10,i−1). (20.138)

The weight function ai is evaluated from equation (20.132) as

ai(T,φ0) =

∫ 10,i

10,i−1

a(T,T0, 10) d10(T0,φ0)

=

∫ 1i

1i−1

d1(T,φ0) = 1i(T,φ0) − 1i−1(T,φ0). (20.139)
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Thus, ai is the ith finite range of the cumulative k-distribution evaluated at the local Planck
function temperature. This transformation from reference state 10 to local state 1 is indicated in
Figs. 20-10 and 20-11 for a single value of 1 by the lower thin horizontal line. The k̃i is an average
value of k∗(T0,φ, 10) over the range 10,i−1 < 10 ≤ 10,i (i.e., the value from the k-distribution
evaluated from the local absorption coefficient and the Planck function evaluated at the reference
temperature), and is calculated as [3, 5, 86]

k̃i(T0,φ) =
√

ki−1(T0,φ)ki(T0,φ). (20.140)

Again values of ki(T0,φ) are indicated for a single value of 10 in Figs. 20-10 and 20-11, this
time as points on the thin vertical line going through 10; the top intersection for the case of
φ = Th, the lower for φ = Tc. These rather complicated relationships for a and k∗ were correctly
deduced by Denison and Webb [5, 86], well before a solid theoretical foundation describing the
interrelationships between k-distributions was developed by Modest [105].

Cumulative Wavenumber Solovjov and Webb [107–109] also introduced the concept of
cumulative wavenumber, defined as

w(φ; k, η) =

∫ η

0
H(k − κη) dη, (20.141)

where H(k) is again Heaviside’s unit step function, and applied it on a narrow band basis
to the SLW method. Comparison with equation (11.102) shows that this is the narrow band
k-distribution approach together with the N distinct gray gases of the SLW method. While
Solovjov and Webb report some promising results for nonhomogeneous examples, the method
is mathematically unclear and is expensive, requiring Nnb × N RTE evaluations, where Nnb is
the number of narrow bands employed.

Reference State and Scaling Function
The only errors in the FSK methods for nonhomogeneous media arise from the fact that ab-
sorption coefficients of actual gases or, even more so, gas mixtures are not truly correlated. The
strength of individual lines is given by equation (11.32), and is seen to be linearly proportional
to the (partial) pressure of the absorbing gas, while temperature dependence consists of three
parts: the rovibrational partition function, the stimulated emission term, and the influence of the
lower energy state El. Pressure dependence and rovibrational partition function are the same for
all lines and are, therefore, easily separated from spectral dependence. The stimulated emission
term varies only gradually with wavenumber, causing little problem. It is the sharp growth of
“hot lines” (lines with large El), which essentially do not contribute at moderate temperatures,
that decorrelate the absorption coefficient and make scaling difficult under extreme conditions.
Line broadening is also affected by pressure and temperature, but this dependence again is
fairly similar for all lines. In a mixture of gases each species has its own partial pressure and its
own temperature dependence, causing further degradation of the absorption coefficient’s level
of correlation.

Whether the assumption of a correlated absorption coefficient is to be used (FSCK), or
whether the absorption coefficient is to be scaled (FSSK), the exact k vs. 1 behavior can be
employed only for a single reference state φ0. Therefore, the choice of φ0 is very important and
should be optimized for any given problem (on the other hand, the reference Planck function
temperature is only a mathematical convenience, and its choice does not affect the accuracy of
calculations). Modest and Zhang [104] suggest, for a medium at constant total pressure p,

x0 =
1
V

∫
V

x dV, (20.142)
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κP(T0, x0)Ib(T0) =
1
V

∫
V
κP(T, x)Ib(T) dV, (20.143)

i.e., volume-averaged mole fraction and a Planck-mean temperature based on average emission
from the volume.

In the correlated-k method, the k(T,φ0, 1) are then determined, followed by evaluation of
k∗ = k(T0,φ, 10) making the assumption of corresponding 1-values (and its resulting errors). If
a scaled absorption coefficient is to be used, scaling functions must be found, and Modest and
Zhang [104] suggest the implicit relation∫

∞

0
Ibη(T0) exp

[
−κη(η,φ)Lm

]
dη =

∫
∞

0
Ibη(T0) exp

[
−κη(η,φ0)u(φ,φ0)Lm

]
dη, (20.144)

i.e., forcing correct evaluation of radiation leaving from a homogeneous slab equal in width to
the mean beam length, Lm. Using k-distributions this becomes∫ 1

0
exp

[
−k∗(T0,φ, 1)Lm

]
d1 =

∫ 1

0
exp

[
−k(T0,φ0, 10)u(φ,φ0)Lm

]
d10. (20.145)

Both methods are about equally efficient numerically: besides the evaluation of k(T,φ0, 1)
[needed for both methods to evaluate k(10) and the weight function a], for a correlated absorption
coefficient k-distributions must be evaluated for all statesφ (with a Planck function based on the
reference temperature). For a scaled absorption coefficient, the same k-distributions are needed,
but here for the evaluation of the scaling functions u. However, the scaled-k method holds
two advantages over its correlated cousin: (i) for a poorly correlated absorption coefficient the
scaling function from equation (20.145) can partially correct for this lack of correlation, and (ii)
alternatively, a simplified scaling function can be chosen without the use of equation (20.145),
thus reducing the number of cumbersome k-distribution evaluations.

Example 20.11. Consider a mixture of 10% CO2–20% H2O–70% N2 (by volume) confined between two
cold, black plates. The mixture is at a total pressure of 1 bar and consists of a hot, isothermal layer of
fixed width Lh = 50 cm and a temperature of Th = 1000 K, and a cold, isothermal layer (Tc = 300 K) of
variable width Lc. Determine the radiative heat flux leaving from the cold layer using the FSCK and
FSSK methods.

Solution
On a spectral basis the desired heat loss can be determined immediately from equation (14.54) as

qη(τL) = 2π
∫ τL

0
Ibη(τ)E2(τL − τ) dτ, (20.146)

where we have set J1 = J2 = 0 (cold, black boundaries) and S(τ) = Ibη(τ) (no scattering). The optical
coordinate for a medium with a step in temperature is

τ =

∫ x

0
κη dx =


κη(Th)x, x ≤ Lh,

κη(Th)Lh + κη(Tc)(x − Lh), x ≥ Lh,

and τL = τh + τc = κη(Th)Lh + κη(Tc)Lc. Since Ibη is constant across each layer, equation (20.146) is easily
integrated to yield

qη(τL) = 2πIbη(Th)
∫ τh

0
E2(τL − τ) dτ + 2πIbη(Tc)

∫ τL

τh

E2(τL − τ) dτ

= 2πIbη(Th)E3(τL − τ)
∣∣∣∣∣τh

0
+ 2πIbη(Tc)E3(τL − τ)

∣∣∣∣∣τL

τh

= 2πIbη(Th) [E3(τc) − E3(τc + τh)] + πIbη(Tc) [1 − 2E3(τc)] .
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If the FSK method is used to calculate the “spectral” flux q1, the Planck function Ibη must be replaced by
a weighted value aIb, and the absorption coefficient κη by a reordered k. Thus,

q1(τL) = 2a(Th,T0, 10)σT4
h [E3(τc) − E3(τc + τh)] + a(Tc,T0, 10)σT4

c [1 − 2E3(τc)] ,

with
for FSCK: τi = k∗(T0,Ti, 10)Li, i = c or h, from equation (20.128),

for FSSK: τi = k(T0,T0, 10)u(Ti,T0)Li, i = c or h, from equation (20.135).

Before these relations can be applied, a reference temperature must be found from equation (20.143),
leading to an implicit relation for T0

κP(T0)T4
0 =

Lh

Lh + Lc
κP(Th)T4

h +
Lc

Lh + Lc
κP(Tc)T4

c ,

which must be solved iteratively. From Fig. 11-31 we find

κP(1000 K) = 0.1 bar × 0.231 cm−1 bar−1 + 0.2 bar × 0.051 cm−1 bar−1 = 0.033 cm−1,

κP(300 K) = 0.1 bar × 0.259 cm−1 bar−1 + 0.2 bar × 0.516 cm−1bar−1 = 0.129 cm−1;

for example, for Lc = 0 cm this leads to T0 = 1000 K, for Lc = Lh = 50 cm to T0 = 780 K, etc. Five
k-distributions need to be determined: three of these are needed for the weight functions a, all with the
absorption coefficient evaluated at T0, but for the three Planck function temperatures Tc, T0, and Th. In
addition, k∗(T0,Th, 10) and k∗(T0,Tc, 10) are needed for the evaluation of τh and τc (FSCK) or the scaling
function u(T,T0) (FSSK). For the special case of T0 = Th (Lc ' 0), all the necessary k-distributions are
shown in Fig. 20-11. For example, for a(Tc,T0) we evaluate the k-distributions k(Tc,T0, 1) and k(T0,T0, 10),
or rather 1(Tc,T0, k) and 10(T0,T0, k) from equation (20.148). The weight function then follows as

a(Tc,T0, 10) =
d1(Tc,T0, k)
d10(T0,T0, k)

'
∆1

∆10
.

For T0 = 1000 K, this is the ratio of the slopes in Fig. 20-11 of the thin dash-dot line at 1 = 0.3 to that
of the thin solid line at 10 = 0.596. The equivalent value for k∗(T0,Tc, 10) is the intersection of the thick
solid line at 10 = 0.596. If the FSSK method is employed, scaling functions must be evaluated from
equation (20.145),∫ 1

0
exp

[
−k∗(T0,Ti, 1)Lm

]
d1 =

∫ 1

0
exp

[
−k(T0,T0, 10)u(Ti,T0)Lm

]
d10, i = c or h,

where Lm = 1.76(Lc + Lh) is the mean beam length of the layer (from Table 20.2). This implicit relation is
readily solved with a Newton–Raphson technique, starting with a first guess of u = 1 (the correct value
for Ti = T0), and requiring very few iterations. After determining the two weight functions a, and the
two k-distributions k∗(T0,Ti, 10) (FSCK) or scaling functions u(Ti,T0) (FSSK), the “spectral” flux q1 can
be integrated over the 1-spectrum, or

Ψ =
q(L)

σT4
h

=
1
σT4

h

∫ 1

0
q1(τL) d1 '

N∑
n=1

wn
q1(1n)

σT4
h

,

using the same quadrature as in Example 20.10. Results are shown in Fig. 20-12, and are compared with
LBL values, using the HITEMP 1995 database [17] for all the calculations. It is observed that both FSCK
and FSSK results coincide with LBL data for Lc = 0, since the methods become exact. For Lc > 0 the FSCK
method consistently underpredicts the heat loss, with a maximum error of about 25% at intermediate
Lc. The reason is that the FSCK method assumes the absorption coefficient to be correlated, i.e., that
large κη in the hot layer (emission) line up with large κη in the cold layer (absorption). Since this is not
the case (in particular in the presence of “hot lines”), absorption in the cold layer is overpredicted. The
FSCK method can partially compensate for this lack of correlation, with a maximum error of only about
10% at intermediate Lc.

For comparison, the case of Th = 2000 K is also included in Fig. 20-12 (Tc remains at 300 K), making
hot lines much more important and, thus, further decorrelating the absorption coefficients. Maximum
relative errors are seen to increase slightly to about 30% (FSCK) and 15% (FSSK).
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FIGURE 20-12
Heat loss from the cold column of a two-column 10% CO2–20% H2O–70% N2 mixture at different temperatures
(Th = 1000 K and 2000 K, Lh = 50 cm; Tc = 300 K, Lc variable; uniform p = 1 bar, cold and black walls), from LBL, FSSK
and FSCK models, all using the HITEMP 1995 database.

Note that the weight function a(T,T0) is always accompanied by the emissive power σT4: a is,
effectively, a scaling factor attached to the absorption coefficient for emission. In cold regions emission
can be neglected, and the a does not need to be calculated (in the present example, cold region emission
contributes < 1% to Ψ for Th = 1000 K, and < 0.1% for 2000 K).

Note also that the present example constitutes an “acid test” for the FSK models: the step in
temperature makes the gas extremely uncorrelated. More realistic situations, such as encountered in
actual combustion systems, incur much smaller errors.

A realistic example was given in Section 16.9, where a scaled-up version of the much studied
(but very small and, therefore, only weakly radiating) Sandia Flame D [110] was considered in
the context of the spherical harmonics RTE solution methods. Figure 16-13 shows temperature
and mass fraction distributions as well as the resulting radiative source term for one axial lo-
cation. Comparing Monte Carlo results using LBL and FSCK spectral models (see Section 21.4)
shows the FSCK approach to have excellent accuracy (in fact, the error across the entire compu-
tational domain rarely exceeds 3% of maximum ∇ · q), if only water vapor and carbon dioxide
are allowed to radiate. If methane is included in the calculations, the gas mixture becomes very
uncorrelated and small (methane) pockets with large errors are found (up to 40%); such errors
can be avoided with higher order methods discussed later in this chapter.

20.11 EVALUATION OF k-DISTRIBUTIONS

The full spectrum k-distribution f (T, k) and the cumulative k-distribution 1(T, k) are evaluated
exactly as outlined in Section 11.9, except that δη/∆η is replaced by Ibη δη/Ib, or

f (T, kj) δkj '
∑

i

Ibηi(T)
Ib(T)

∣∣∣∣∣∣ δηδκη
∣∣∣∣∣∣
i

[H(kj + δkj − κη) −H(kj − κη)]. (20.147)

If the simple method described in Section 11.9 is used, the k-distributions can be found simul-
taneously for any number of temperatures Ti (i = 1, 2, ..., I): The relevant (i.e., contributing) part
of the total spectrum is broken up into N equal subintervals δη, the absorption coefficient κη is
evaluated at the center of each interval and, if kj ≤ κη ≤ kj+1, the value of each f (Ti, kj) δkj is in-
cremented by Ibη(Ti, ηn) δη/Ib(Ti). At the end, the cumulative function 1(T, k) is again calculated
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from equation (11.105), or

1(Ti, kj+1) =

j∑
j′=1

f (Ti, kj′ ) δkj′ = 1(kj) + f (Ti, kj) δkj. (20.148)

fskdist is the corresponding Fortran program in Appendix F that evaluates the f (Ti, kj) and
1(Ti, kj) for a set of temperatures Ti and absorption coefficients kj, as well as the a(Ti, kj). Figure 20-
7 shows the full spectrum k-distributions for 10% CO2 in nitrogen for two temperatures. For
efficient integration of equation (20.109) it is desirable to have the function a(T, 1) as smooth
as possible, which—in turn—depends on the accuracy with which the f (T, k) are evaluated.
Different smoothing schemes have been discussed in the original paper by Modest and Zhang
[104].

As indicated earlier, assembling narrow band or full spectrum k-distributions from high-
resolution databases is a very time-consuming task. First, the absorption coefficient must be
calculated at fine spectral resolution for all relevant temperatures, pressures, and concentra-
tions. This was apparently first done by Rivière and coworkers [111] for various gases, using
the HITRAN 1992 database together with some proprietary French high-temperature exten-
sions. For repeated calculations absorption coefficients may be precalculated and placed into an
absorption coefficient database, such as the one by Wang and Modest [112], which is based on
HITEMP 1995 [17] (H2O and CO), and CDSD-1000 [113] for CO2. Wang and Modest’s database
includes 23 temperatures (300–2500 K), 24 pressures (0.1–30 bar), and 5 concentrations, requiring
about 225 GB of storage. (In its present version the database also includes several hydrocarbon
species and has been updated to HITRAN 2008 and HITEMP 2010). Next, in the case of gas
mixtures, the absorption coefficients of individual species are added; then the k-distribution is
found from equations (20.147) and (20.148). This should be done for closely spaced δkj. Finally,
the resulting function is inverted to determine the relevant k for desired quadrature points 1.
Clearly, this process of assembling k-distributions is too involved to make it part of an overall
heat transfer analysis, or even a pure radiation calculation. Rather, they must be available from
simple correlations or from databases.

Full Spectrum k-Distribution Correlations
Denison and Webb [3, 86, 114] have calculated large numbers of k-distributions for water vapor
and carbon dioxide, using the HITRAN92 database [103] together with the high-temperature ex-
trapolation scheme of Hartmann and coworkers [115]. The resulting cumulative k-distributions
were then presented in the form of relatively straightforward correlations for engineering use.
The correlations were subsequently updated by Modest and coworkers using the then-new
HITEMP 1995 database [116, 117], and one more time for CO2 using CDSD-1000 [118], after it
was recognized that HITEMP 1995 is seriously in error for CO2 above 1000 K. The latest corre-
lations (for atmospheric total pressure) have been reproduced in Table 20.3 (water vapor) and
Table 20.4 (carbon dioxide). The cumulative k-distributions for a Planck function temperature
TP, and the absorption coefficient evaluated at gas temperature T1, pressure p = 1 bar, and mole
fraction x, are calculated from With k0 = k equations (20.150) and (20.151) give the cumulative
k-distribution for air broadening, i.e., for small amounts of absorbing gas in air (x ' 0, account-
ing for collision broadening due to collisions with air molecules; see Section 11.4). If the mole
fraction of the absorbing gas is substantial, self-broadening must be accounted for (collisions
between two molecules of the absorbing species), resulting in a shift in 1. For CO2 this shift
is negligible (since CO2 and air molecules have roughly the same size), and k0 = k. However,
for water vapor the effect is quite substantial (since H2O molecules are much smaller than air
molecules), and must be accounted for. Modest and Singh [117] give a correlation for k0(T1, k, x)
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TABLE 20.3
Coefficients for the full spectrum k-distribution of water vapor, from [117].

l m
∖n 0 1 2 3

almn 0 0 1.172739 –0.792337 0.45678 –6.7356E-02
1 0.88261 3.3022 –2.048 0.394137
2 –0.28465 1.6339 1.09924 –0.20874
3 5.2641E-02 0.26822 –0.18706 3.5073E-02

1 0 0.27995 0.527055 –0.43156 0.13503
1 1.31104 –1.3535E-02 2.39465E-02 –3.7574E-02
2 –0.61658 –8.1576E-02 0.15935 –2.2954E-02
3 0.10234 1.70129E-02 –3.84058E-02 6.51758E-03

2 0 8.6277E-02 0.34948 –0.20189 5.5391E-02
1 0.31365 –1.06025 0.857 –0.17833
2 –0.136779 0.5768 –0.48058 9.1345E-02
3 2.007E-02 –9.727E-02 8.1344E-02 –1.14502E-02

3 0 5.5203E-02 –9.0309E-02 0.22803 –5.04129E-02
1 –2.64678E-02 –6.3565E-02 –0.13107 3.717E-02
2 1.333E-02 6.7414E-02 2.5817E-02 –1.325E-02
3 –2.5024E-03 –1.3749E-02 –1.4234E-03 1.9916E-03

blmn 0 0 –0.89871 0.539
1 1.0116 –0.58957
2 –0.48279 0.2747

1 0 1.0985 –5.829E-02
1 –1.0454 0.11542
2 0.4717 –5.623E-02

2 0 –0.22529 –6.06033E-03
1 0.18432 –1.6727E-02
2 –7.69132E-02 1.035E-02

as

log10

(
k0

kref

)
= log10

(
k

kref

)
+

2∑
l=0

2∑
m=0

1∑
n=0

blmn

[
log10

(
k

kref

)]n

[x]m+1
[

T1
Tref

]l

. (20.149)

1(TP,T1, x; k) =
1
2

[
1 + tanh

(
P(TP,T1, x; k)

)]
, (20.150)

with the function P given as

P(TP,T1, x; k) =

3∑
l=0

3∑
m=0

3∑
n=0

almn

[
T1
Tref

]n [ TP

Tref

]m [
log10

(
k0(T1, k, x)

kref

)]l

,

(Tref = 1000 K, kref = 1 cm−1bar−1). (20.151)

The values for the blmn are also included in Table 20.3. As an example, results of the correla-
tional fit (20.150) (based on the CDSD-1000 database), for a 10% CO2–N2 mixture at 1000 K are
compared in Fig. 20-13 with the one calculated from the new HITEMP 2010 (which is based on a
CDSD-1000 version), both directly or assembled from the NBKDIR database described in the fol-
lowing section. It is observed that the fit is generally very good for large values of k (> 10−3 cm−1,
the range over which most of the heat transfer takes place in common applications). Extensive
tests have shown that Planck-mean absorption coefficients and slab emissivities determined
with this correlation are never in error by more than 10% for CO2 and 8% for H2O, respectively.

For the convenience of the reader several Fortran routines are included in Appendix F for the
evaluation of equations (20.150) through (20.149). fskdh2o and fskdco2 are for the correlations
given by Tables 20.3 and 20.4, while fskdh2odw and fskdco2dw for the older Dennison and Webb
correlations are also included in Appendix F.
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TABLE 20.4
Coefficients for the full spectrum k-distribution of carbon dioxide, from [118].

l m
∖n 0 1 2 3

almn 0 0 1.85071 0.33373 0.62660 –0.12890
1 –0.20643 –2.57690 0.30090 –0.14090
2 0.27664 1.81420 –0.24728 0.10052
3 –0.37435E-01 –0.37762 0.53014E-01 –0.20836E-01

1 0 0.67523 1.25760 0.67523E-01 –0.39669E-01
1 –0.70897 –3.07080 1.71150 –0.57694
2 0.48493 2.04603 –1.20220 0.40510
3 –0.98138E-01 –0.41928 0.24956 –0.84109E-01

2 0 0.20690 0.28500 –0.48324E-01 0.15174E-01
1 –0.39473 –0.42333 0.54095 –0.23469
2 0.29020 0.21882 –0.34748 0.15857
3 –0.61998E-01 –0.38629E-01 0.68728E-01 –0.32314E-01

3 0 0.38488E-01 0.18292E-01 –0.18958E-01 0.61307E-02
1 –0.41013E-01 –0.59115E-02 0.47118E-01 –0.23229E-01
2 0.37740E-01 –0.30114E-01 –0.11303E-01 0.12140E-01
3 –0.87906E-02 0.98357E-02 –0.53884E-04 –0.20604E-02

k-Distribution Databases
k-distributions may be databased in narrow band form, which can then be collected into full
spectrum versions, or they may be stored directly in full spectrum form. Narrow band k-
distributions depend only on the local gas state, i.e., φ = (T, p, x), and — assuming a fixed
constant pressure — can be obtained by double interpolation in temperature and mole fraction
(albeit for many narrow bands). They have the additional advantage that they lend themselves
better to mixing of species (as shown later in this section). Full spectrum k-distributions, on
the other hand, also depend on the Planck function temperature, i.e., a triple interpolation is
required.

As already indicated in Chapter 11, Soufiani and Taine [55] have assembled a narrow band
database for H2O and CO2, using the HITRAN 1992 database together with some proprietary
French high-temperature extensions, which includes narrow band k-distributions for atmo-
spheric pressure and 16 temperatures (EM2C database). There are 17 narrow bands for CO2
(ranging in width from 100–300 cm−1), and 44 for H2O (50–500 cm−1 widths), each containing
7 Gauss-Lobatto quadrature points. A more voluminous high-accuracy narrow band database
was generated by Wang and Modest [112], using the absorption coefficients described earlier in
this section. They broke up the spectrum into 248 narrow bands (10–250 cm−1 widths), common
to all species, (i) to ensure that taking a constant Planck function across each band causes < 0.5%
error, and (ii) to allow for accurate mixing of the species. The database covers 23 temperatures
(300–2500 K) and 24 pressures (0.1–30 bar), and each k-distributions is given for nth order nested
quadrature schemes: the (variable) nth order guarantees 0.5% accuracy, but the nesting allows
the use of lower orders (with fewer quadrature points). The latest version of this database, ex-
tended to five species (CO2,H2O,CO,CH4,C2H4), and higher temperatures and pressures, and
updated to HITEMP 2010, is contained in the NBKDIR database. Both the EM2C and NBKDIR
databases are included in Appendix F.

Full spectrum k-distributions from narrow band data are assembled from narrow band data
using the definition of the cumulative k-distribution,

1(TP,φ0, k) =

∫ k

0
f (TP,φ0, k) dk =

1
Ib

∫
∞

0
Ibη(TP)H

(
k − κη(φ0)

)
dη

=
∑

j∈[all NB’s]

Ibj

Ib
1 j(φ0, k), (20.152)
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FIGURE 20-13
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distributions for 10% CO2 in nitrogen for gas
and Planck function temperatures of 1000 K,
as evaluated from the HITEMP database and
the correlation by Modest and Mehta.

where H is the Heaviside step function, and Ibj is the Planck function integrated over the narrow
band:

Ibj =

∫
∆η j

Ibη dη. (20.153)

A collection of full spectrum k-distributions is included in the spectral module of Pal et
al. [119]. This database covers the same temperature and pressure ranges as the Wang and
Modest narrow band database, as well as their nested quadrature scheme.

Example 20.12. Reconsider Example 20.9, i.e., the heat loss from an isothermal slab at T = 1000 K, but
here consisting of a 90% N2–10% CO2 (by volume) binary gas mixture. Calculate the heat loss from
this slab using the FSK and SLW methods, employing both the HITEMP database and the correlation of
Modest and Mehta [118].

Solution
For a homogeneous medium without scattering the FSK’s radiative transfer equation, equation (20.104),
reduces to

dI1
ds

= k(Ib − I1), (20.154)

subject to the cold-wall boundary condition of I1 = 0 at both walls. Since the walls are cold no a-function is
needed and only one k-distribution must be obtained, either (i) directly from the HITEMP 2010 database
using the Fortran program fskdist from Appendix F, (ii) assembling it from a narrow band database,
such as the EM2C database [55] or the one by Wang and Modest [112] (the latter employed here), or (iii)
from the Modest and Mehta correlation using subroutine fskdco2. All three distributions are shown
in Fig. 20-13, with the k-distribution obtained from the narrow band database being indistinguishable
from the exact direct calculation. The solution to the spectral equation (20.154) is, as in Example 20.9

q1(L) = σT4 [1 − 2E3(kL)] ,

and the total, nondimensional heat flux becomes,

Ψ =
q
σT4 =

∫ 1

0
[1 − 2E3(kL)] d1 '

N∑
n=1

wn

[
1 − 2E3

(
k(1n)L

)]
,

where the integral is evaluated through an N-point numerical quadrature (with quadrature points 1n

and weights wn). Usually N ' 10 gives accuracies better than 1% if the quadrature scheme is chosen
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wisely. Since k-values generally vary over several orders of magnitude, and since the larger k-values
tend to have a larger impact on the solution, quadrature points should move closer together for larger
values of k and 1. The Gauss–Lobatto quadrature scheme [120] has probably been the most popular for
this purpose. Another scheme, the mth order Gaussian quadrature of moments [120], is somewhat more
flexible, because, depending on the order m, the spacing of quadrature points can be controlled. We will
here use an eight-point, third order Gaussian quadrature of moments, whose quadrature points have
been obtained from a Numerical Recipes [121] routine and are included in Fig. 20-13. Results are shown
in Fig. 20-14 and are seen to virtually coincide with line-by-line results: for a homogeneous medium
the FSK methods are exact and any discrepancies are due to quadrature errors (for the LBL as well as
the FSK quadratures). Using the k-distribution correlation of Modest and Mehta gives very respectable
results, slightly overpredicting the LBL data for intermediate L, with a maximum error of about 5% in
that range. For large L the correlation would be expected to underpredict the heat loss, since the fit
underpredicts small k-values (see Fig. 20-13); indeed, Fig. 20-14 shows the correlation to be about 10%
in error for L = 10 m.

For the SLW approach four 1-ranges have been chosen, namely ranges (based on the LBL k-
distribution) with k < 10−5 cm−1 (and a lower limit taken as k at 1 = 0.01), 10−5 cm−1 < k < 10−3 cm−1,
10−3 cm−1 < k < 10−1 cm−1, and k > 10−1 cm−1 (and the actual maximum k as the upper limit), and the
same 1-values are employed for the k-distribution correlation. The k̃-values are then calculated from
equation (20.115), resulting in almost identical values for the HITEMP and correlation distributions for
large 1 (where the correlation is very accurate), and k HITEMP > kcorrelation for 1 < 0.8 (where the correlation
underpredicts actual k-values); see Fig. 20-13. Consequently, both SLW simulations yield similar results
for small L (where large k dominate), with increasing underprediction by the correlation as L increases.
The SLW results oscillate slightly around the LBL data, indicating that the accuracy of the SLW method
depends mostly on a wise choice of 1-ranges (with different optima for different slab widths L).

Full Spectrum k-Distributions for Mixtures
Similar to narrow band k-distributions, variable mixtures of different absorbing gases, and
perhaps the addition of nonscattering particles, such as soot, pose no additional difficulty,
in principle, because the absorption coefficient of all species can simply be added up. In
practice, however, because of the considerable effort involved, one would like to precalculate and
database all necessary k-distributions, before embarking on detailed heat transfer calculations.
Because of the infinite number of possible mixture concentrations this would quickly become a
Herculean task. Therefore, it would be highly desirable to build full spectrum k-distributions
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for arbitrary gas mixtures from relatively few distributions databased for individual species.
Exact construction of such k-distributions is possible as long as the absorption coefficient of
each species is unaffected by the other species (i.e., collisions with varying amounts of other
species have no impact on line broadening), but the integral in equation (20.109) or (20.133)
becomes a multiple integral (one for each species) [6, 8, 12]. Numerical effort would increase
from N RTE evaluations (number of quadrature points), to NM RTE evaluations in a mixture
of M absorbing species, quickly eliminating the advantages of the FSK methods. Mixing full
spectrum k-distributions is essentially identical to the narrow band mixing case described in
Section 11.9, equations (11.111) through (11.126) and, therefore, the discussion here will be very
brief.

Variable Mole Fraction of a Single Absorbing Gas As in equation (11.111) we consider an
absorption coefficient that is linearly dependent on its partial pressure, i.e., a gas whose line
broadening is unaffected by its own partial pressure, or

κxη(T, p, x; η) = xκη(T, p; η). (20.155)

Going through the identical steps as for narrow bands, we obtain

fx(TP,T1, p, x; kx) =
1
x

f (TP,T1, p; kx/x), (20.156)

and
1(TP,T1, p; k) = 1x(TP,T1, p, x; kx), (20.157)

where the arguments, from the definition of full spectrum k-distributions, now include a Planck
function temperature TP. As before, the k vs. 1 behavior is independent of mole fraction, with kx
smaller than k(1) by the multiplicative factor x for any value of 1. Equation (20.156) also implies
that the nongray stretching function a remains unaffected if the mole fraction is changed [see
equations (20.108) and (20.132)].

Single Absorbing Gas Mixed with Gray Medium Identical to its narrow band equivalent,
if

κpη(T, p, κp; η) = κη(T, p, η) + κp, (20.158)
it follows that

fp(TP,T1, p, κp; kp) = f (TP,T1, p; k = kp − κp) (20.159)
1(TP,T1, p; k) = 1p(TP,T1, p, κp; kp = k + κp). (20.160)

As for narrow bands, for the same 1 the k-values are displaced by a constant additive factor
κp and, as for the variable mole fraction case, equation (20.159) implies that the weight factor a
remains unaffected.

Superposition of k-Distributions Under certain conditions it may be acceptable to neglect
overlap of spectral lines from different species. For example, Bansal and coworkers [122] have
shown that radiation in air plasma is dominated by few widely spaced electronic excitation lines
of monatomic N and O. Thus, if we consider a mixture of M different absorbing gases, whose
absorption coefficients do not overlap each other anywhere across the entire spectrum, then the
k-distributions of the individual species are unaffected by the others, i.e., the spectral locations
where k = κmη for the mth species remain unaffected by the other gases, and

fmix(TP,T1, p; k) =

M∑
m=1

fm(TP,T1, p; k), (20.161)

where the fm are the k-distributions of the individual species. Keeping in mind that, for nonover-
lapping absorption coefficients, each species must have large parts of the spectrum with κmη ≡ 0,
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we integrate equation (20.161) as

1 − 1mix(TP,T1, p; k) =

∫
∞

k
f (TP,T1, p; k) dk =

M∑
m=1

∫
∞

k
fm(TP,T1, p; k) dk =

M∑
m=1

(
1 − 1m(TP,T1, p; k)

)
or

1mix(TP,T1, p; k) =

M∑
m=1

1m(TP,T1, p; k) −M + 1. (20.162)

Therefore, the cumulative k-distribution for a nonoverlapping mixture is constructed by simply
adding up the individual components. Note that 1 − 1m is the (Planck function weighted) part
of the spectrum where κmη > 0 and, thus, their sum can never exceed unity.

k-Distributions for Random Overlap As pointed out by Taine and Soufiani [123], there is no
physical reason why there should be any significant correlation between the spectral variation
of absorption coefficients of different gas species. If one treats the absorption coefficients of the
M species as statistically independent random variables of wavenumber, the k-distributions are
said to be statistically uncorrelated. Using such an argument, Solovjov and Webb [12] postulated
that the cumulative k-distributions are multiplicative, or

1mix(TP,T1, p; k) = 11(TP,T1, p; k) × 12(TP,T1, p; k) × . . . =
M∏

m=1

1m(TP,T1, p; k). (20.163)

Statistically Uncorrelated Gas Mixtures Taine and Soufiani [123] argued that, if the M
species in a gas mixture are statistically uncorrelated, then their transmissivities should be
multiplicative, i.e.,

τmix =

M∏
m=1

τη,m, (20.164)

and this was shown to be true on a narrow band basis by comparison with LBL calculations
(see [123] as well as Fig. 11-18). Based on equation (20.164) Modest and Riazzi [124] developed
the narrow band mixing scheme in Section 11.9, equations (11.121) through (11.126). The same
argument can also be made at the full spectrum level. Defining a full spectrum transmissivity
as

τ(T,L) =
1
Ib

∫
∞

0
Ibη(T)e−κηL dη, (20.165)

we can manipulate this expression, using the definition of the Dirac-delta function given by
equation (11.99), to obtain

τ(T,L) =
1
Ib

∫
∞

η=0
Ibη(T)e−κηL

∫
∞

k=0
δ(k − κη) dk dη

=

∫
∞

k=0
e−kL 1

Ib

∫
∞

η=0
Ibη(T)δ(k − κη) dη dk

=

∫
∞

k=0
e−kL f (T, k) dk =

∫ 1

1=0
e−kLd1, (20.166)

which is identical to equation (11.122). Assuming equation (20.164) to hold, the analysis is
identical to the narrow band case, leading to

1mix(T, kmix) =

∫ 1

11=0

∫ 1

12=0
H[kmix − (k1 + k2)]d12 d11 =

∫ 1

11=0
12(kmix − k1) d11 (20.167)
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FIGURE 20-15
Full-spectrum k-distributions for a 10% CO2–20% H2O–70% N2 mixture without soot, for various Planck function
temperatures (absorption coefficient evaluated at 1000 K).

for a two-component mixture, and

1mix(T, kmix) =

∫ 1

11=0
....

∫ 1

1M=0
H[kmix − (k1 + .... + kM)]d1M....d11 (20.168)

for a mixture of M species, but now using full spectrum k-distributions.
Mixtures of Gases and Particles If the particles are assumed to be gray, equation (20.160)

applies directly, i.e., the full spectrum k-distribution is found for the gas mixture as 1(TP,T1, p; k).
The mixture’s k-distribution is then determined by simply adding the particles’ constant absorp-
tion coefficient κp for every value of 1. If the particles’ absorption coefficient is nongray, mixing
must be performed at the narrow band level, assuming that κpη = κp, j is constant across narrow
band range j. Any of the narrow band schemes described in Section 11.9 may be employed. For
example, with the Modest and Riazzi [124] model, equation (11.126), for each narrow band:

1mix, j(φ0, k) =

∫ 1

11=0
....

∫ 1

1M=0
H[kmix − (k1 + .... + kM + κp, j)]d1M....d11, (20.169)

whereφ0 is the (reference) state at which the absorption coefficients of the gas are evaluated, and
κp, j has been added to the argument inside the Heaviside function according to equation (11.119).
The full spectrum k-distribution is then determined from

1(TP,φ0, k) =
∑

j∈[all NB’s]

Ibj

Ib
(T) 1mix, j(φ0, k). (20.170)

Test Calculations A real gas mixture will, of course, always have some spectral overlap,
and the absorption coefficient will never be quite statistically uncorrelated. Figure 20-15 shows
the case of a 10% CO2–20% H2O–70% N2 mixture, with the absorption coefficient evaluated
at a reference temperature of T0 = 1000 K. Full-spectrum k-distributions were evaluated for a
number of Planck function temperatures by five methods: (i) the exact k-distribution for the
mixture was found from the HITEMP database [2], (ii) individual k-distributions were found
for CO2 and H2O, and a mixture distribution was found from equation (20.162) (superposition,
neglecting overlap), (iii) similarly a mixture distribution was determined from equation (20.163)
(random overlap), and (iv) the Modest and Riazzi full spectrum mixing of equation (20.167) was
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FIGURE 20-16
Full-spectrum k-distributions for a 10% CO2–20% H2O–70% N2 mixture with soot, for various Planck function temper-
atures (absorption coefficient evaluated at 1000 K).

employed; finally, (v) mixing was done on a narrow band basis, using the Modest and Riazzi
scheme, equation (11.125), after which the full spectrum distribution was obtained from equa-
tion (20.152). Figure 20-15 shows that all approximate methods predict the correct distribution
very well for large values of k. For very small values of k substantial overlap between species
is to be expected, and the superposition method fails. The product method, on the other hand,
appears to give good accuracy for nearly all conditions. The uncorrelated transmissivity scheme
of Modest and Riazzi, when applied on a full-spectrum basis, displays good accuracy similar to
the multiplication scheme, but outperforms it for very small values of k. When applied at the
narrow band level, the uncorrelated mixing rule is virtually exact (lines become indistinguish-
able). Note that the k(1) levels decrease with temperature, because of the strong effect of the
rotational band of water vapor at long wavelengths, favoring low temperatures. When applied
to evaluate the radiative source within a homogeneous slab [124] (for which directly calculated
k-distributions return exact answers), the multiplication scheme incurred errors of 4% and 5%
when mixing on narrow band and full spectrum levels, respectively, while the Modest and Ri-
azzi mixing scheme resulted in 0% and 1% error, respectively. These findings were corroborated
by Demarco et al. [125], who tested several spectral models (WSGG with parameters from Smith
and coworkers [71]; statistical narrow band using the EM2C database [55]; and SLW and FSCK
using the EM2C database [55] to assemble full-spectrum k-distributions) as well as mixing mod-
els (superposition, multiplication and uncorrelated mixing), and found that the combination of
FSCK with the Modest and Riazzi mixing scheme gave the most accurate results.

The methods were also tested for gas mixtures with nonscattering soot, using equation (12.123)
with a volume fraction of fv = 5 × 10−6 and a refractive index m = 1.89 − 0.92i. Clearly, none
of the first four methods should work terribly well, since strong overlap is assured, and the
soot absorption coefficient is anything but random. That Fig. 20-16, nonetheless, shows reason-
able agreement is a consequence of the fact that the soot k-distribution dominates the mixture,
especially at high Planck function temperatures (favoring short wavelengths with strong soot
and weak gas radiation). For the same reason k(1) values now increase with temperature. None
of the assumptions underlying scheme (v) are violated, and it again displays superb accuracy
(with its line indistinguishable from the exact one).

Example 20.13. Repeat Example 20.11 using individual k-distributions for CO2 and H2O obtained from
the correlations in Tables 20.3 and 20.4, together with the superposition, multiplication, and uncorrelated
methods.
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FIGURE 20-17
Heat loss from the cold column of a two-column 10% CO2–20% H2O–70% N2 mixture at different temperatures
(Th = 1000 K and 2000 K, Lh = 50 cm; Tc = 300 K, Lc variable; uniform p = 1 bar, cold and black walls), from LBL and
FSCK models; LBL from HITEMP 2010 database and CDSD1000(CO2)/HITEMP 1995(H2O); FSCK using individual
k-distributions for CO2 from CDSD1000 and the Modest and Singh correlation [117]/H2O from HITEMP 1995 and the
Modest and Mehta correlation [118].

Solution
The solution proceeds identically to that of Example 20.11, except that the five k-distributions are
evaluated differently.

Subroutines fskdco2 and fskdh2o are provided in Appendix F to calculate the individual k-
distributions for CO2 and H2O, respectively. Combined k-distributions are then obtained using pro-
gram fskdistmix, choosing the proper mixing option, i.e., applying equations (20.162) (superposition),
(20.163) (multiplication), or (20.167) (uncorrelated mixture). Results from the FSCK method are shown
in Fig. 20-17 and are compared with LBL results, all using the identical spectroscopic databases (CDSD-
1000 for CO2 and HITEMP 1995 for H2O) that were used for the correlations given in Tables 20.3 and
20.4. As was observed in Fig. 20-12 for this problem the FSCK scheme is less accurate than FSSK, giving
fair answers for a hot medium temperature of Th = 1000 K, but rather poor answers for Th = 2000 K. For
Th = 1000 K the agreement between the directly calculated FSCK and those from the correlations is good
for all three mixing schemes, with—as expected—the uncorrelated mixture scheme of equation (20.167)
giving the best results. At Th = 2000 K there is a considerable difference between directly calculated
FSCK results and those from the correlations, indicating that one or both of the correlations loses accu-
racy (probably the H2O correlation, which—due to neglect of TP-dependence—becomes inaccurate for
the small values of k important here). For both cases the superposition method returns the least-accurate
answers and should be avoided. While the uncorrelated-mixture approach always is the most accurate,
the multiplication scheme returns respectable results with less effort and, given the inaccuracies of the
correlations, may be sufficient.

The exiting flux for this example was also calculated using the NBKDIR database given in Ap-
pendix F, i.e., the FSCK result compiled from databased narrow band k-distributions for CO2 and H2O
mixed at the narrow band level with the Modest and Riazzi (uncorrelated mixture) scheme. Those
results are virtually indistinguishable from the directly calculated FSCK line in Fig. 20-17, attesting to
the accuracy of this mixing model.

Also shown in Fig. 20-17 are LBL results obtained with the latest HITEMP 2010 database [2]
(for both CO2 and H2O) yielding a noticeably higher heat flux at Th = 2000 K, due to the inclusion
of many more high-temperature lines for water vapor. On the other hand, the LBL flux given in
Fig. 20-12 is quite a bit larger for the higher temperature, in this case due to errors in HITEMP
1995 that manifest themselves for T > 1000 K (incorrectly strong high-temperature lines for CO2,
as discussed in Chapter 11).
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20.12 HIGHER ORDER k-DISTRIBUTION
METHODS

The FSK method is exact for homogeneous media, and also for materials with a “correlated”
absorption coefficient, i.e., media where spectral minima and maxima always occur at the same
wavenumbers everywhere inside the spatial domain. We noticed that this premise is violated in
media with large temperature disparities, because of the rise of “hot lines” in high-temperature
regions (spectral lines from elevated vibrational energy levels, which are not present in colder
gas). In such cases the gas becomes “uncorrelated” and the FSK method breaks down, and
likewise the SLW and ADF schemes (see Fig. 20-12). The problem is exacerbated if the medium
also contains strong concentration changes, with spectral lines of one species (say, a hydrocarbon
fuel, such as methane) in one part of the domain, and other species (such as combustion products
CO2 and H2O) elsewhere. There is no reason to believe spectral lines of two different gas species
would occur at the same wavenumbers, and the gas mixture becomes uncorrelated. In fact, this
uncorrelatedness between species is the basis for some of the k-distribution mixing models of
the previous section.

The accuracy of the FSK methods for nonhomogeneous media (and similarly, that of the
SLW and ADF methods) can be improved by breaking up the absorption coefficient of the gas
into spectral scales or groups, each of which is assumed to be correlated or scaled, and solving
separate RTEs for each scale or group. This was first recognized by researchers in France for
the case of strong temperature inhomogeneities. They grouped spectral lines according to the
values of their lower level energies into a number of “fictitious gases,” first for narrow band
k-distributions [10, 111] (cf. Section 11.9), and then for the ADF scheme, calling it the ADFFG
(absorption distribution function fictitious gases) method [8].

While grouping spectral lines according to their lower level energies is straightforward, it
does have the disadvantage that the absorption coefficients of the different scales overlap. The
ADFFG treats this overlap exactly, by evaluating conditional probability density functions (i.e.,
the joint event that k1 = κ1η while also k2 = κ2η, etc.). This makes the method uneconomical
beyond two or three fictitious gases, requiring NM RTE evaluations, where M is the number of
fictitious gases or scales and N is the number of gray gases for each scale. Zhang and Modest [14]
also used this scheme to extend the validity of the FSK approach, calling it the “multiscale”
MSFSK method. However, recognizing that overlap between scales (separate species or groups
of species, or a single gas broken up into temperature scales) tends to be relatively minor, they
opted for an approximate approach to determine overlap, arguing that a small error in overlap
treatment would result in near-negligible overall error. In this way the MSFSK method requires
only N × M RTE evaluations, making it much more economical than the ADFFG approach.
Zhang and Modest applied their method to gas mixtures without wall emission, using both the
FSSK and FSCK schemes. They noted that—even for the worst-possible temperature steps—
already a two-scale model returns near-exact answers with little difference between the scaled
FSSK and the correlated FSCK. Since the FSCK is somewhat more straightforward to apply, only
this scheme was pursued in further work. Wang and Modest [126] extended the MSFSK scheme
to allow determination of the required k-distributions from narrow band databases, such as the
one by Wang and Modest [112], and, finally, the method was further developed to allow for
gray surface emission as well as for nongray particles [127, 128].

A somewhat different approach to improve the accuracy of the FSK method in the presence
of strong temperature disparities is the “multigroup” or MGFSK approach [15, 16], in which
spectral positions are grouped together according to their absorption coefficient’s temperature
and pressure dependence (i.e., the contributions from all spectral lines at one spectral location,
as opposed to individual lines contributing to all wavenumbers in the multiscale/fictitious gas
approach). Since there is no overlap between spectral groups, there is no need to evaluate an
overlap factor with the presumption of uncorrelatedness among scales (somewhat questionable
for lines from the same species). The method also requires only N ×M RTE evaluations, but
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without additional approximations, and was shown to reach line-by-line accuracy with as few
as N = 4 spectral groups.

Recently, Pal and coworkers [129,130] combined the advantages of the multigroup approach
(breaking up the absorption coefficient of a single species according to temperature behavior,
without overlap issues between groups), with those of the multiscale scheme (treating different
species or groups of species as separate scales, exploiting their uncorrelatedness to accurately
evaluate overlap effects). They generated a four-group narrow band database for the two most
important species (H2O and CO2), which can be used for four-group simulations or combined
for two-group and single-group calculations, and it can be employed in conjunction with Wang
and Modest’s [112] narrow band database for other species.

For illustrative purposes we will present here only the (relatively) simple case of the MSFSK
approach applied to a gas mixture without wall emission [126]. Readers interested in gas–
particulate mixtures and/or wall emission should consult [127, 128], and those striving for
the greatest accuracy obtainable by the hybrid multigroup–multiscale scheme are referred to
[129, 130].

If one separates the contributions to κη from the M scales (such as component gases, or
groups of species) and breaks up the radiative intensity Iη accordingly, i.e.,

κη =

M∑
m=1

κmη, Iη =

M∑
m=1

Imη, (20.171)

then the RTE equation (20.97) (without particle absorption and scattering) is transformed into
M component RTEs, one for each species or scale. For each scale this leads to

dImη

ds
= κmη(φ)Ibη − κη(φ)Imη+, for m = 1, . . . ,M. (20.172)

Physically, the intensity Imη for the mth scale is due to emission from the mth species but subject
to absorption by all species.

If there is no particle or wall emission present in the medium, the spectral locations where
κη contributes to the absorption of Imη (i.e., absorption by all the gas scales) are only those
wavenumbers for which κmη is nonzero. Therefore, the overlap region is only a subset of
those wavenumbers with κmη , 0, across which absorption from other gases occurs as well.
The MSFSK formulation takes advantage of the fact that the overlap regions for each scale are
relatively small compared to the total emission/absorption spectrum of each scale.

In the absence of wall emission, equation (20.98) for scale m can be written as

Imη = Iwmη = (1 − εw)
1
π

∫
n̂·ŝ<0

Imη |n̂ · ŝ| dΩ, (20.173)

where Iwmη is the spectral intensity leaving the enclosure wall, due to diffuse, gray reflection.
We now apply the FSK scheme to the RTE of each scale: First equation (20.172) is multiplied

by Dirac’s delta function δ(km − κmη(φ0)), followed by division with

fm(T0,φ0, km) =
1

Ib(T0)

∫
∞

0
Ibη(T0) δ

(
km − κmη(φ0)

)
dη, (20.174)

where φ0 and T0 refer to a reference state. The resulting equation is then integrated over the
entire spectrum, leading to

dIm1

ds
= kmamIb − λmIm1, for m = 1, . . . ,M, (20.175)

where
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Im1 =

∞∫
0

Imη δ
(
km − κmη(φ0)

)
dη

/
fm

(
T0,φ0, km

)
, (20.176)

subscript 1 pertains to the cumulative k-distribution for the mth scale,

1m =

∫ km

0
fm(T0,φ0, k) dk, (20.177)

am is the nongray stretching factor,

am =
fm(T,φ0, km)
fm(T0,φ0, km)

, (20.178)

and λm is the overlap parameter of the mth scale with all other scales, defined by

λmIm1 = kmIm1 +

∞∫
0

∑
n,m

κnη

 Imη δ
(
km − κmη(φ0)

)
dη

/
fm

(
T0,φ0, km

)
(20.179)

Similarly, FSK reordering is performed on boundary condition(s) with respect to κmη(φ0), which
results in

Im1 =
1 − ε
π

∫
2π

Im1 |n̂.ŝ| dΩ, for m = 1, . . . ,M. (20.180)

The last term in equation (20.175) describes the overlap of the absorption coefficient of the
mth scale, κmη, with those of all other scales, which occurs over part of the spectrum. In the
MSFSK method the overlap parameter λm is evaluated in an approximate way, such that the
emitted intensity emanating from a homogeneous nonscattering layer bounded by black walls
is predicted exactly. The so-determined λm is a function of the state variables as well as of km
(or 1m).

In equation (20.175) the reordering is performed in terms of the absorption coefficient of one
scale κmη, and the interaction between κmη and κη during the reordering process is lumped into
the overlap parameter λm. The reordering of equation (20.172) can also be performed in terms
of κη, which, for a homogeneous layer at temperature T, leads to

dI∗m1
ds

=
k∗mIb

f (T,φ, k)
− kI∗m1, for m = 1, . . . ,M, (20.181)

where

f (T,φ, k) =
1

Ib(T)

∫
∞

0
Ibη(T) δ

(
k − κη(φ)

)
dη, (20.182)

I∗m1 =

∞∫
0

Imηδ
(
k − κη(φ)

)
dη

/
f
(
T,φ, k

)
, (20.183)

k∗m =
1
Ib

∫
∞

0
Ibη(T)κmηδ

(
k − κη(φ)

)
dη. (20.184)

In equation (20.181) the interaction between κmη and κη is lumped into k∗m. The solutions to
equations (20.175) and (20.181) for a homogeneous layer at temperature T bounded by black
walls (for which am ≡ 1) can be obtained analytically, and the total exiting intensities from the
gas scales at s = L are

Im =

∫ 1

0
Im1 d1m =

∫
∞

0

km

λm
Ib

[
1 − exp(−λms)

]
fm(T,φ, km) dkm, for m = 1, . . . ,M, (20.185)

and
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I∗m =

∫ 1

0
I∗m1 d1 =

∫
∞

0

k∗m
k

Ib
[
1 − exp(−ks)

]
dk, for m = 1, . . . ,M, (20.186)

respectively. The spectrally integrated intensity, Im, should be equal to I∗m, and this requirement
leads to

λm = k, and km fm(T, km) dkm = k∗m(T, k) dk, (20.187)
or

k∗m(T, λm) dλm = km fm(T, km) dkm = km(1m) d1m. (20.188)

Equation (20.188) provides the relationship between λm and km that is required to solve equa-
tion (20.175). One convenient way of determining λm is using a partly integrated form∫ 1m(km)

0
km(1m) d1m =

∫ k=λm

0
k∗m(T, k) dk. (20.189)

The overlap parameter can be determined efficiently and accurately from a database of narrow
band k-distributions of individual species (scales). One advantage of using narrow band k-
distributions is that assembling mixture full spectrum k-distributions from narrow band k-
distributions of individual gas species mixed at the narrow band level is more accurate than
mixing entire full spectrum k-distributions of individual species. In addition, the use of narrow
band k-distributions of individual species allows the inclusion of nongray absorbing particles
in the participating medium, by employing equation (11.120).

For the mth scale, substituting equation (20.184), into equation (20.189) the right-hand side
(RHS) may be rewritten in terms of narrow band k∗m as

RHS =

∫ k=λm

0

Nnb∑
i=1

Ibi

Ib

1
∆η

∫
∆η
κmη δ(k − κη) dη dk =

Nnb∑
i=1

Ibi

Ib

∫ k=λm

0
k∗m,i(k) dk, (20.190)

where k∗m,i is the narrow band counterpart of k∗m, Nnb is the number of narrow bands comprising
the entire spectrum, and the narrow band Planck function Ibi is defined by equation (20.153).
In order to evaluate the integrals involving k∗m,i in equation (20.190) in terms of narrow band
k-distributions, we consider the quantity

Qm =
1

∆η

∫
∆η
κmη exp(−κηL) dη (20.191)

for the ith narrow band. Physically, Qm is related to narrow band emission from scale m,
attenuated over path L by the entire gas mixture. Using the definition of the Dirac-delta
function, equation (11.99), Qm can be rewritten as

Qm =
1

∆η

∫
∆η
κmη

∫
∞

0
exp(−kL) δ(k − κη) dk dη =

∫
∞

0
k∗m,i exp(−kL) dk = L (k∗m,i), (20.192)

i.e., Qm is the Laplace transform of k∗m,i. It was observed in Section 20.11 that, on a narrow band
basis, the spectral behavior of different species is essentially statistically uncorrelated. With this
assumption, Qm can also be written as

Qm =
1

∆η

∫
∆η
κmη exp(−κmηL)

∏
n,m

exp(−κnηL) dη

≈
1

∆η

∫
∆η
κmη exp(−κmηL) dη

∏
n,m

(
1

∆η

∫
∆η

exp(−κnηL) dη
)
. (20.193)
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The second step follows by recognizing that the integration in the first step is an averaging
operator, together with the assumption that the absorption coefficients of different scales are
statistically uncorrelated. The k-distribution method can then be applied to equation (20.193)
and we obtain

Qm ≈

∫ 1

0
km,i exp(−km,iL) d1m

∏
n,m

(∫ 1

0
exp(−kn,iL) d1n

)

=

∫ 1

11=0
· · ·

∫ 1

1M=0
km,i exp

− M∑
n=1

kn,iL

 d11 · · · d1M. (20.194)

Equating equations (20.192) and (20.194), we have

L (k∗m,i) ≈
∫ 1

11=0
· · ·

∫ 1

1M=0
km,i exp

− M∑
n=1

kn,iL

 d11 · · · d1M, (20.195)

and, using the integral property of the Laplace transform,

L

(∫ k=λm

0
k∗m,i(k) dk

)
≈

∫ 1

11=0
· · ·

∫ 1

1M=0
km

exp(−
∑M

n=1 knL)
L

d11 · · · d1M. (20.196)

Finally, taking the inverse Laplace transform, we obtain∫ k=λm

0
k∗m,i(k) dk ≈

∫ 1

11=0
· · ·

∫ 1

1M=0
kmH

k −
M∑

n=1

kn

 d11 · · · d1M, (20.197)

where H is the Heaviside step function.
The left-hand side of equation (20.189) is also readily expressed in terms of narrow band

k-distributions, as defined by equation (11.98), as

LHS =

∫ km

0
km

1
Ib

∫
∞

0
Ibη δ(km − κmη) dη dkm =

Nnb∑
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Ibi

Ib

∫ km

0
km

1
∆η

∫
∆η
δ(km − κmη) dη dkm

=

Nnb∑
i=1

Ibi

Ib

∫ 1m,i(km)

0
km,i d1m. (20.198)

Equating the left- and right-hand sides, we obtain a generic expression for the determination of
the overlap coefficient λm based on narrow band k-distributions of individual gases as

Nnb∑
i=1

Ibi

Ib

∫ 1m,i(km)

0
km,i d1m =

Nnb∑
i=1

Ibi

Ib

∫ 1

11,i=0
· · ·

∫ 1

1M,i=0
km,iH

λm −

M∑
n=1

kn,i

 d11 · · · d1M,

for m = 1, . . . ,M. (20.199)

In this expression the km and λm are global values; all others (km,i, 1m, etc.), are for the ith narrow
band. In particular, the integration in equation (20.198) is taken over the k-distribution of the
ith narrow band until km,i reaches the global value km,i = km. In practice, λm(km) is found by
evaluating the left- and right-hand sides of equation (20.199) independently for many values of
km and λm once and for all for each cell. Required values of λm(km) for 1-quadrature are then
found by interpolation.

A few extreme one-dimensional examples are shown in Figs. 20-18 and 20-19, all considering
a mixture of CO2, H2O, and N2 confined between two cold black walls [126, 130]. The mixture
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FIGURE 20-18
Relative errors of the FSCK, FSSK, MSFSKdir, and MSFSKnb calculations with step changes in mole fraction. Left layer:
2% CO2 and 20% H2O; right layer: 20% CO2 and 2% H2O. (a) Medium at uniform temperature (500 K or 1500 K); (b)
medium with step temperature (left layer at 1500 K, right at 500 K) [126].

is at a total pressure of 1 bar and consists of two different homogeneous layers (denoted as
left and right layer). The left layer has a fixed width of LL = 50 cm, and the right layer a
variable width of LR. The radiative heat flux leaving from the right layer is calculated. Five
methods are used to calculate the exiting flux: the LBL, FSK (using both the correlated-k, FSCK,
and the scaled-k, FSSK, approaches), and MSFSK (using correlated-k, both, with the overlap
coefficient calculated directly from the spectral database, MSFSKdir, and calculated from the
NBKDIR narrow band database, MSFSKnb) methods. In the LBL calculations, the HITEMP
1995 and CDSD-1000 spectral databases were used for the absorption coefficients of H2O and
CO2, respectively. In the FSK calculations, the k–1 distributions are constructed directly from
the spectral databases; the reference states and the scaling functions were determined according
to equations (20.142) and (20.143). Only correlated-k was considered for the present MSFSK
examples. For the MSFSKdir calculations the overlap coefficients (and k-distributions) were
obtained directly from HITEMP 1995 and CDSD-1000; for the MSFSKnb calculation the overlap
coefficients and k-distributions were obtained from narrow band k–1 distributions read from the
narrow band k–1 database of Wang and Modest [112]. A 10-point Gaussian quadrature scheme
was used for the spectral integrations in all FSCK, FSSK, MSFSKdir, and MSFSKnb calculations.

In Fig. 20-18a the temperatures of both layers (TL and TR) are set equal, but the species mole
fractions change sharply: the left layer contains 20% CO2 and 2% H2O, while the right layer has
2% CO2 and 20% H2O. The nondimensional heat flux exiting from the right layer is plotted in
the upper half of Fig. 20-18a as a function of the right layer width (i.e., the optical thickness of
the right layer). The figure includes the results for two mixture temperatures (1500 and 500 K).
The heat flux increases with increasing thickness of the right layer as emission from the right
layer builds up. The MSFSK results follow the LBL calculations closely, while the FSK methods
show significant departures. The relative errors of the FSCK, FSSK, MSFSKdir, and MSFSKnb
calculations compared to LBL calculations are shown in the lower half of the figure. For the
case of homogeneous temperature with strongly inhomogeneous gas concentration, the MSFSK
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FIGURE 20-19
Relative errors of the FSCK, MSFSK, and MGMSFSK (two and
four groups) calculations for the two-layer slab of Fig. 20-18b
with 0.1 ppm nongray soot added to right layer [130].

method gives errors less than 1% with 10 quadrature points (and, thus, RTE evaluations) for
various optical thicknesses, while the FSCK and FSSK methods reach errors of 10% to 12%.
As the width of the right layer increases, the FSCK and FSSK errors decrease, indicating that
emission from the homogeneous right layer becomes dominant, and that limit can be predicted
exactly by the FSCK and FSSK methods.

In Fig. 20-18b, in addition to a step change in species mole fraction, a step change in mixture
temperature is introduced: the temperature of the left layer is set to 1500 K, and the right layer
to 500 K, with the same mixture as given in Fig. 20-18a. Thus, in this example the absorption
coefficients of both layers are uncorrelated due to, both, species concentration and temperature
effects. Heat flux leaving the right layer is now due to emission by the left hot layer, which is
attenuated by the (strongly uncorrelated) right layer. The nondimensional heat fluxes calculated
by the LBL, FSCK, FSSK, MSFSKdir, and MSFSKnb methods are shown in Fig. 20-18b against
the width of the right layer. In the MSFSK calculations, the reference states are determined
separately for each scale. The heat flux decreases with increasing width of the right absorption
layer. For this extreme case of strong inhomogeneity in both species concentration and temper-
ature, the FSCK and FSSK methods fail completely, while the present MSFSK method, although
designed for just dealing with strong inhomogeneities in gas concentration, has a maximum
error of only about 12% with 10 quadrature points for various optical thickness. The difference
between MSFSKdir and MSFSKnb calculations is small, indicating that the scheme of using a
database of narrow band k-distributions to evaluate overlap coefficients is robust.

Finally, in Fig. 20-19 we consider the same two-layer slab as in Fig. 20-18b, but with 0.1 ppm
soot added to the right layer [130]. Nongray soot absorption coefficients were calculated from
equation (12.53), with the complex index of refraction given by Chang and Charalampopoulos
[131], equation (12.116). Again, LBL, FSCK, and MSFSK results are shown, the latter using
3 scales (one each for CO2, H2O, and soot) within the extended MSFSK model of Pal and
Modest [128]. Also included are hybrid multigroup–multiscale results [130] (three scales, two
or four groups each for CO2 and H2O). It is seen that the FSCK incurs a maximum error of close
to 60%, but even the three-scale MSFSK displays large errors, indicating that the method cannot
always cope with severe temperature and concentration inhomogeneity in multiphase mixtures.
The hybrid model, on the other hand, never has errors exceeding 5%, with the two-group model
requiring 2 × 10(CO2) + 2 × 10(H2O) + 10(soot) = 50 RTE evaluations.

It should be understood that these examples (with discontinuities in temperature, concen-
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trations, and/or soot levels) are extreme, and are never encountered in realistic systems. For the
vast majority of industrial applications the MSFSK method can be expected to produce excellent
results. Pal and Modest have investigated several realistic combustion situations, applying
the FSCK and MSFSK approaches to an artificial methane flame [128, 132] and all higher order
methods to an ethylene flame [130] first studied experimentally by Kent and Honnery [133].
In the Kent and Honnery flame radiation from ethylene (C2H4),H2O,CO2,CO, and nongray
soot was considered, using the FSCK scheme (10 spectral RTE evaluations), the MSFSK scheme
(treating C2H4,CO, and soot as separate scales, and combining H2O and CO2 into a single scale,
for a total of four scales, or 4 × 10 spectral RTE evaluations), and the MSMGFSK scheme (also
separating H2O and CO2 and breaking each into two groups, for a total of 7 × 10 spectral RTE
evaluations). The basic FSCK scheme displayed good accuracy over most of the domain, but
had errors of up to 35% (in terms of maximum ∇ · q) near the inlet; the MSFSK and MSMGFSK
schemes reduced the maximum error to 6% and 3%, respectively. It was also demonstrated
that the methods, including the Modest and Riazzi mixing scheme, remain accurate at high
pressures [132].

We close our discussion in this section by observing that narrow band k-distributions were
first applied in the field of atmospheric sciences, before the development of full spectrum k-
distributions in the heat transfer field; and that the full-spectrum versions have since then
found their way back to the atmospheric sciences [134, 135]. The concept may be applied to
any system with strong spectrally varying radiation, and has most recently also been applied to
nonequilibrium radiation in hypersonic plasmas [122, 136, 137].
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60. Liu, F., O. L. Gülder, G. J. Smallwood, and Y. Ju: “Non-grey gas radiative transfer analyses using the statistical
narrow-band model,” International Journal of Heat and Mass Transfer, vol. 41, no. 14, pp. 2227–2236, 1998.

61. Ju, Y., K. Takita, M. Goro, F. Liu, and H. Guo: “Analyses of extinction and flammability limit of stretched
premixed flames using the statistical narrow-band model,” in Proceedings of the 11th International Heat Transfer
Conference, vol. 7, Kyongju, Korea, pp. 301–306, 1998.

62. Liu, F.: “Numerical solutions of three-dimensional non-grey gas radiative transfer using the statistical narrow-
band model,” ASME Journal of Heat Transfer, vol. 121, no. 1, pp. 200–203, 1999.

63. Edwards, D. K., and A. Balakrishnan: “Slab band absorptance for molecular gas radiation,” Journal of Quanti-
tative Spectroscopy and Radiative Transfer, vol. 12, pp. 1379–1387, 1972.

64. Edwards, D. K.: “Molecular gas band radiation,” in Advances in Heat Transfer, vol. 12, Academic Press, New
York, pp. 115–193, 1976.

65. Wassel, A. T., and D. K. Edwards: “Molecular gas band radiation in cylinders,” ASME Journal of Heat Transfer,
vol. 96, pp. 21–26, 1974.

66. Hutchison, J. R., and R. F. Richards: “Effect of nongray gas radiation on thermal stability in carbon dioxide,”
Journal of Thermophysics and Heat Transfer, vol. 13, no. 1, pp. 25–32, 1999.

67. Modest, M. F.: “Radiative heat transfer in a plane-layer mixture of non-gray particulates and molecular gases,”
Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 26, pp. 523–533, 1981.

68. Cumber, P. S., M. Fairweather, and H. S. Ledin: “Application of wide band radiation models to non-
homogeneous combustion systems,” International Journal of Heat and Mass Transfer, vol. 41, no. 11, pp. 1573–1584,
1998.
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Problems

20.1 A long, cylindrical furnace bounded by a cold, black wall of 1 m radius contains pure CO2 that is
isothermal at 1700 K and at a pressure of p atm. Using the mean-beam-length method, determine the
nondimensional wall heat flux Ψ = qw/σT4 as a function of pressure. Plot Ψ vs. p (actual calculations
for p = 0.001, 0.01, 0.1, and 1.0 should suffice).

20.2 A high-pressure isothermal mixture (p > 40 atm) of 80% N2 and 20% CO at 2000 K is contained
between two large, parallel, cold black plates, spaced 1 m apart. If the radiative flux to each wall may
not exceed 100 kW/m2, what is the maximum pressure the gas mixture may be raised to? Use the
mean-beam-length method.

20.3 An isothermal mixture of N2 and soot (m = 2.5 − 0.15i) at 2000 K is contained between two large,
parallel, cold black plates, spaced 1 m apart. If the radiative flux to each wall may not exceed 100
kW/m2, what is the maximum volume fraction of soot, fv, allowed? Use the mean-beam-length
method.

20.4 Two parallel, infinite, black plates at constant temperatures T1 and T2 are separated by a nongray
medium of geometrical thickness d = 10 cm that is at radiative equilibrium. The absorption charac-
teristics of the medium are such that they can be approximated by

κλ =
{
κ = 1 cm−1 3µm < λ < 7µm,
0 elsewhere.

Calculate the nondimensional heat flux, q/σ(T4
1 − T4

2), for a number of T2 (T2 = 500 K, 750 K, 1000 K,
1500 K, and 2000 K) and T1 = 300 K by

(a) the differential approximation, using a gray gas with Planck-mean absorption coefficient κP,
(b) the nongray differential approximation.

For the evaluation of κP you may use Tm = (T1 + T2)/2. Plot, compare, and discuss your results.

20.5 A cold-walled cylindrical furnace of 1 m radius contains pure CO2 that is isothermal at 1700 K and at
a pressure of p atm. Using the (i) gray and (ii) nongray differential approximation with single band
strength κ, determine the nondimensional wall heat flux Ψ = qw/σT4 as a function of pressure. Plot
Ψ vs. p (actual calculations for p = 0.001, 0.01, 0.1, and 1.0 should suffice; for simplification, you may
assume that band width is not a function of p).

20.6 Repeat Problem 20.5, adding steam at 0.1 atm partial pressure to the medium. You may assume that
only the 2.7 and 6.3µm bands are of importance.
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20.7 An infinitely long cylinder of radius R = 10 cm is bounded by a cold black wall. Inside the cylinder
there is uniform heat generation of Q̇ ′′′ = 38,136 W/m3. Estimate wall heat fluxes and temperature
distributions using the P1-approximation if

(a) the medium has a band at λ = 4µm of width ∆λ = 1µm; across the band it has a constant
absorption coefficient such that κR = 100,

(b) the medium is gray with an “appropriately” chosen κP, say by evaluating κP at the volume-
averaged temperature Tav, that is

T4
av =

1
V

∫
V

T4 dV.

20.8 The new planet in an adjacent solar system recently found by Penn State (and other) researchers has
been determined to have an atmosphere consisting of nitrogen with 1% by volume NO. The planet’s
surface has an emittance of ε = 0.5, and a temperature of Ts = 900 K. The atmosphere’s total pressure
is known to be p(z) = ps e−z/L (surface pressure ps = 5 bar, characteristic length L = 10 km). Assuming
radiative equilibrium prevails, what is the heat loss from the planet? You may assume that for NO
line broadening is unaffected by temperature.

(a) To make a coarse approximation, replace the atmosphere by a constant pressure (ps) layer
of a thickness that would contain the correct total pressure path length. Evaluate radiative
properties as if the atmosphere’s temperature were constant at Ts.

(b) The problem is to be solved by the P1-approximation combined with the box model. Find the
appropriate absorption coefficient(s) and other necessary parameters. You may assume that the
spectral width of bands for NO is unaffected by altitude (evaluate at surface conditions). Set
up equation(s) and boundary condition(s).

(c) Determine the heat loss from the planet.
(d) What would change if an infinitely thick atmosphere with exponentially decaying pressure

were considered?

20.9 A high-pressure isothermal mixture (p > 40 atm) of 80% N2 and 20% CO at 2000 K is contained
between two large, parallel, cold black plates, spaced 1 m apart. If the radiative flux to each wall may
not exceed 100 kW/m2, what is the maximum pressure the gas mixture may be raised to? Use the box
model together with (a) the P1-approximation as well as (b) the exact formulation.

20.10 The coal particles of Problem 12.3 are burnt in a long cylindrical combustion chamber of R = 1 m
radius. The combustor walls are gray and diffuse, with εw = 0.8, and are at 800 K. Since it is well
stirred, combustion results in uniform heat generation throughout of Q̇ ′′′ = 720 kW/m3.

(a) Determine the maximum temperature in the combustor, using the P1/differential approximation,
assuming radiation is the only mode of heat transfer (use κ = 4.5 m−1 and σs = 0.5 m−1 if the
results of Problem 12.3 are not available).

(b) How will the answer change if, instead, the combustion gas is responsible for the radiation with

κλ =
{

10 cm−1, 4µm < λ < 5µm
0, elsewhere

; σs = 0?

(c) What if both are present?

20.11 Consider a sphere of very hot molecular gas of radius 50 cm. The gas has a single vibration–
rotation band at η0 = 3000 cm−1, is suspended magnetically in a vacuum within a large cold container
and is initially at a uniform temperature T1 = 3000 K. For this gas (ρaα)(T) = 500 cm−2, ω(T) =

100
√

T/100 K cm−1, and β � 1. These properties imply that the absorption coefficient may be deter-
mined from

κη = κ0 e−2|η−η0 |/ω, κ0 =
ρaα

ω
and the band absorptance from

A(s) = ωA∗ = ω[E1(κ0s) + ln(κ0s) + γE], γE = 0.577216.



PROBLEMS 693

Using the stepwise-gray model together with the P1-approximation and neglecting conduction and
convection, specify the total heat loss per unit time from the entire sphere at time t = 0. Outline the
solution procedure for times t > 0.
Hint: Solve the governing equation by introducing a new dependent variable 1(τ) = τ(4πIb − G).

20.12 Repeat Problem 20.11 using the exact integral relations together with the exponential wide band
model.

20.13 Repeat Problem 20.11 using the weighted-sum-of-gray gases approach together with the P1-approxi-
mation.

20.14 Repeat Problem 20.11 for varying line overlap β, say β = 0.01, 0.1, 1, and 10. Plot heat loss at t = 0 vs.
β.
Hint: Use Table 11.2 or some other correlation for the band absorptance.

20.15 An infinitely long cylinder of radius R = 10 cm is bounded by a wall that is isothermal at Tw = 1500 K
and has a gray emittance of ε = 0.3. Inside the cylinder there is uniform heat generation of Q̇ ′′′ =
38,136 W/m3. The cylinder is filled with a mixture of combustion gases at p = 1 atm, containing 10%
by volume CO2 and 20% water vapor. Assuming the gas to be well-stirred (i.e., isothermal) determine
the gas temperature using the weighted-sum-of-gray-gases approach, using the data of Table 20.2.
This problem will require an iteration and, thus, is most conveniently solved on a computer.

(a) Set up all necessary equations and explain the procedure. You may use the exact relations of
Section 14.6 or the P1-approximation.

(b) Write a small computer code to find the gas temperature.

Note for the P1-approximation: The solution to the ODE

1
r

d
dr

(
r

d f
dr

)
− ν2 f = 0

is
f (r) = C1I0(νr) + C2K0(νr),

where I0 and K0 are modified Bessel functions. Note also that K0(0)→∞ and I′0(x) = I1(x).

20.16 Repeat Problem 20.7 for the case that the medium is a mixture of 30% water vapor in nitrogen,
using the SLW method with four gray gases, together with the correlation of Denison and Webb.
To determine an appropriate reference temperature, first make a more approximate gray calculation,
using a Planck mean absorption coefficient from Fig. 11-31.

20.17 A spherical container of 1 m diameter is filled with pure CO2 and is initially at 2000 K, 1 bar. While
the CO2 is continuously stirred (i.e., stays isothermal), the walls of the container are cooled such that
the gray, diffuse wall (εw = 0.6) remains at a constant Tw = 400 K. Determine the time it takes for the
gas to cool down to 500 K, using the FSK method together with the Denison and Webb correlation.
Assume a constant reference condition of Tref = 1000 K, and use the P1 method to solve the RTE.

20.18 Repeat Problem 20.17 adding small gray particles with an absorption coefficient of κp = 0.1 m−1 and
an (isotropic) scattering coefficient of σp = 1 m−1.

20.19 Repeat Problem 20.17 adding H2O and N2 to the mixture, so that the final mixture has 20% CO2 and
40% N2 (by volume).

20.20 Repeat Problem 20.19 using the WSGG approach together with the correlation of Truelove.

20.21 Repeat Problem 20.19 using the SLW method with four gray gases. Compare with results from the
previous problem.

20.22 Repeat Problem 20.19 for the case of radiative equilibrium without stirring.

20.23 Repeat Problem 20.21 for the case of radiative equilibrium without stirring.


