
CHAPTER

2
RADIATIVE PROPERTY
PREDICTIONS FROM
ELECTROMAGNETIC
WAVE THEORY

2.1 INTRODUCTION

The basic radiative properties of surfaces forming an enclosure, i.e., emissivity, absorptivity,
reflectivity, and transmissivity, must be known before any radiative heat transfer calculations
can be carried out. Many of these properties vary with incoming direction, outgoing direction,
and wavelength, and must usually be found through experiment. However, for pure, perfectly
smooth surfaces these properties may be calculated from classical electromagnetic wave theory.1

These predictions make experimental measurements unnecessary for some cases, and help
interpolating as well as extrapolating experimental data in many other situations.

The first important discoveries with respect to light were made during the seventeenth
century, such as the law of refraction (by Snell in 1621), the decomposition of white light into
monochromatic components (by Newton in 1666), and the first determination of the speed of
light (by Römer in 1675). However, the true nature of light was still unknown: The corpuscular
theory (suggested by Newton) competed with a rudimentary wave theory. Not until the early
nineteenth century was the wave theory finally accepted as the correct model for the description
of light. Young proposed a model of purely transverse waves in 1817 (as opposed to the model
prevalent until then of purely longitudinal waves), followed by Fresnel’s comprehensive treat-
ment of diffraction and other optical phenomena. In 1845 Faraday proved experimentally that
there was a connection between magnetism and light. Based on these experiments, Maxwell
presented in 1861 his famous set of equations for the complete description of electromagnetic
waves, i.e., the interaction between electric and magnetic fields. Their success was truly re-
markable, in particular because the theories of quantum mechanics and special relativity, with

1The National Institute of Standards and Technology (NIST, formerly NBS) has recommended to reserve the ending
“-ivity” for radiative properties of pure, perfectly smooth materials (the ones discussed in this chapter), and “-ance”
for rough and contaminated surfaces. Most real surfaces fall into the latter category, discussed in Chapter 3. While we
will follow this convention throughout this book, the reader should be aware that many researchers in the field employ
endings according to their own personal preference.
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32 2 RADIATIVE PROPERTY PREDICTIONS FROM ELECTROMAGNETIC WAVE THEORY

which electromagnetic waves are so strongly related, were not discovered until half a century
later. To this day Maxwell’s equations remain the basis for the study of light.∗

2.2 THE MACROSCOPIC MAXWELL
EQUATIONS

The original form of Maxwell’s equations is based on electrical experiments available at the time,
with their very coarse temporal and spatial resolution. Thus any of these measurements were
spatial averages taken over many layers of atoms and temporal averages over many oscillations
of an electromagnetic wave. For this reason the original set of equations is termed macroscopic.
Today we know that electromagnetic waves interact with matter at the molecular level, with
strong field fluctuations over each wave period. Therefore, more detailed treatises on optics and
electromagnetic waves now generally start with a microscopic description of the wave equations,
for example, the book by Stone [1]. While there is little disagreement in the literature on the
microscopic equations, the macroscopic equations often differ somewhat from book to book,
depending on assumptions made and constitutive relations used. Following the development
of Stone [1], we may state the macroscopic Maxwell equations as

∇ · (εE) = ρ f , (2.1)
∇ · (µH) = 0, (2.2)

∇ × E = −µ
∂H
∂t
, (2.3)

∇ ×H = ε
∂E
∂t

+ σeE, (2.4)

where E and H are the electric field and magnetic field vectors, respectively, ε is the electrical
permittivity, µ is the magnetic permeability, σe is the electrical conductivity, and ρ f is the
charge density due to free electrons, which is generally assumed to be related to the electric field
by the equation

∂ρ f

∂t
= −∇ · (σeE). (2.5)

The phenomenological coefficients σe, µ, and ε depend on the medium under consideration, but
may be assumed independent of the fields (for a linear medium) and independent of position and
direction (for a homogeneous and isotropic medium); they may, however, depend on the wavelength
of the electromagnetic waves [2].

2.3 ELECTROMAGNETIC WAVE
PROPAGATION IN UNBOUNDED MEDIA

We seek a solution to the above set of equations in the form of a wave. The most general form
of a time-harmonic field (i.e., a wave of constant frequency or wavelength) is

F = A cosωt + B sinωt = A cos 2πνt + B sin 2πνt, (2.6)

where ω is the angular frequency (in radians/s), and ν = ω/2π is the frequency in cycles per
second. While a little less convenient, we will use the cyclical frequency ν in the following

∗James Clerk Maxwell (1831–1879)
Scottish physicist. After attending the University of Edinburgh he obtained a mathematics
degree from Trinity College in Cambridge. Following an appointment at Kings College
in London he became the first Cavendish Professor of Physics at Cambridge. While best
known for his electromagnetic theory, he made important contributions in many fields, such
as thermodynamics, mechanics, and astronomy.
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development in order to limit the number of different spectral variables employed in this book.
When it comes to the time-harmonic solution of linear partial differential equations, it is usually
advantageous to introduce a complex representation of the real field. Thus, setting

Fc = Fc e2πiνt, Fc = A − iB, (2.7)

where Fc is the time-average of the complex field, results in

F =<{Fc}, (2.8)

where the symbol< denotes that the real part of the complex vector Fc is to be taken. Since the
Maxwell equations are linear in the fields E and H, one may solve them for their complex fields,
and then extract their real parts after a solution has been found. Therefore, setting

E =<{Ec} =<{Ec e2πiνt
}, (2.9)

H =<{Hc} =<{Hc e2πiνt
}, (2.10)

results in
∇ · (γEc) = 0, (2.11)
∇ ·Hc = 0, (2.12)
∇ × Ec = −2πiνµHc, (2.13)
∇ ×Hc = 2πiνγEc, (2.14)

where
γ = ε − i

σe

2πν
(2.15)

is the complex permittivity. If γ , 0, then it can be shown that the solution to the above set of
equations must be plane waves, i.e., the electric and magnetic fields are transverse to the direction
of propagation (have no component in the direction of propagation). Thus, the solution of
equations (2.11) through (2.14) will be of the form

E =<{Ec e2πiνt
} =<{E0 e−2πi(w·r−νt)

}, (2.16)

H =<{Hc e2πiνt
} =<{H0 e−2πi(w·r−νt)

}, (2.17)

where r is a vector pointing to an arbitrary point in space, w is known as the wave vector2 and
E0 and H0 are constant vectors. In general w is a complex vector,

w = w′ − iw′′, (2.18)

where w′ turns out to be a vector whose magnitude is the wavenumber, and w′′ is known as the
attenuation vector. Employing equation (2.18), equations (2.16) and (2.17) may be rewritten as

Ec = E0 e−2πw′′·r e−2πi(w′·r−νt), (2.19)

Hc = H0 e−2πw′′·r e−2πi(w′·r−νt). (2.20)

Thus, the complex electric and magnetic fields have local amplitude vectors E0 e−2πw′′·r and
H0 e−2πw′′·r and an oscillatory part e−2πi(w′·r−νt) with phase angle φ = 2π(w′ · r − νt). The posi-
tion vector r may be considered to have two components: one parallel to w′, and the other
perpendicular to it. The vector product w′ · r is constant for all vectors r that have the same
component parallel to w′, i.e., on planes normal to the vector w′; these planes are known as
planes of equal phase. To see how the wave travels let us look at the phase angle at two different
times and locations (Fig. 2-1). First, consider the point r = 0 at time t = 0 with a zero phase

2The present definition of the wave vector differs by a factor of 2π and in name from the definition k = 2πw in most
optics texts in order to conform with our definition of wavenumber.
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FIGURE 2-1
Phase propagation of an electromagnetic wave.

angle. Second, consider another point a distance z away into the direction of w′; we see that the
phase angle is zero at that point when t = |w′|z/ν. Thus, the phase velocity with which the wave
travels from one point to the other is c = z/t = ν/w′. We conclude that the wave propagates
into the direction of w′, and that the vector’s magnitude, w′, is equal to the wavenumber η.
Examining the amplitude vectors we see that w′′ · r = const are planes of equal amplitude, and
that the amplitude of the fields diminishes into the direction of w′′. If planes of equal phase
and equal amplitude coincide (i.e., if w′ and w′′ are parallel) we say the wave is homogeneous,
otherwise the wave is said to be inhomogeneous. Since E0 and w are independent of position,
we can substitute equation (2.19) into equation (2.11) and, assuming γ to be also invariant with
space, find that

∇ · (γEc) = γ∇ ·
(
E0 e−2πi(w·r−νt)

)
= γE0 · ∇

(
e−2πi(w·r−νt)

)
= γE0 e−2πi(w·r−νt)

· ∇ (−2πiw · r) = −2πiγw · E0 e−2πi(w·r−νt) = 0. (2.21)

Similarly, substituting equation (2.19) into equation (2.13) results in

∇ × Ec = ∇ ×
(
E0 e−2πi(w·r−νt)

)
= ∇

(
e−2πi(w·r−νt)

)
× E0

= −2πiw e−2πi(w·r−νt)
× E0 = −2πiνµH0 e−2πi(w·r−νt). (2.22)

Thus, the partial differential equations (2.11) through (2.14) may be replaced by a set of algebraic
equations,

w · E0 = 0, (2.23)
w ·H0 = 0, (2.24)
w × E0 = νµH0, (2.25)
w ×H0 = −νγE0. (2.26)

It is clear from equations (2.23) and (2.24) that both E0 and H0 are perpendicular to w, and it
follows then from equations (2.25) and (2.26) that they are also perpendicular to each other.3 If
the wave is homogeneous, then w points into the direction of wave propagation, and the electric
and magnetic fields lie in planes perpendicular to this direction, as indicated in Fig. 2-2.

It remains to relate the complex wave vector w to the properties of the medium. Taking the
vector product of equation (2.25) with w and recalling the vector identity derived, for example,
in Wylie [3],

A × (B × C) = B(A · C) − C(A · B), (2.27)
3Remember that all three vectors are complex and, therefore, the interpretation of “perpendicular” is not straight-

forward.



2.3 ELECTROMAGNETIC WAVE PROPAGATION IN UNBOUNDED MEDIA 35

E

H

S = E × H

λ

w, s

z

FIGURE 2-2
Electric and magnetic fields of a homogeneous wave.

which leads to

w × (w × E0) = w(w · E0) − E0w ·w = νµw ×H0 = −ν2µγE0,

or
w ·w = ν2µγ. (2.28)

If the wave travels through vacuum there can be no attenuation (w′′ = 0) and µ = µ0, γ = ε0.
We thus obtain the speed of light in vacuum as

c0 = ν/w′ = ν/
√

w ·w =
1
√
ε0µ0

. (2.29)

It is customary to introduce the complex index of refraction

m = n − ik (2.30)
into equation (2.28) such that

w ·w = ν2µγ = ν2ε0µ0

(
εµ

ε0µ0
− i

σeµ

2πνε0µ0

)
= η2

0m2, (2.31)

where η0 = ν/c0 is the wavenumber of a wave with frequency ν and phase velocity c0, i.e., of a
wave traveling through vacuum. This definition of m demands that

n2
− k2 =

εµ

ε0µ0
= εµc2

0, (2.32)

nk =
σeµ

4πνε0µ0
=
σeµλ0c0

4π
, (2.33)

where λ0 = 1/η0 = c0/ν is the wavelength for the wave in vacuum. Equations (2.32) and (2.33)
may be solved for the refractive index n and the absorptive index4 k as

4The absorptive index is often referred to as extinction coefficient in the literature. Since the term extinction coefficient is
also employed for another, related property we will always use the term absorptive index in this book to describe the
imaginary part of the index of refraction.
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n2 =
1
2

 εε0
+

√(
ε
ε0

)2
+

(
λ0σe

2πc0ε0

)2
 , (2.34)

k2 =
1
2

− εε0
+

√(
ε
ε0

)2
+

(
λ0σe

2πc0ε0

)2
 , (2.35)

where we have assumed the material to be nonmagnetic, or µ = µ0. These relations do not
reveal the frequency (wavelength) dependence of the complex index of refraction, since the
phenomenological coefficientss ε and σe may depend on frequency. If the wave is homogeneous
the wave vector may be written as w = (w′ − iw′′)ŝ, where ŝ is a unit vector in the direction
of wave propagation, and it follows from equation (2.31) that w′ − iw′′ = η0(n − ik), so that the
electric and magnetic fields reduce to

Ec = E0 e−2πη0kz e−2πiη0n(z−c0t/n), (2.36)

Hc = H0 e−2πη0kz e−2πiη0n(z−c0t/n), (2.37)

where z = ŝ · r is distance along the direction of propagation. For a nonvacuum, the phase velocity
c of an electromagnetic wave is5

c =
c0

n
. (2.38)

Further, the field strengths decay exponentially for nonzero values of k; thus, the absorptive
index gives an indication of how quickly a wave is absorbed within the medium. Inspection of
equation (2.35) shows that a large absorptive index k corresponds to a large electrical conduc-
tivity σe: Electromagnetic waves tend to be attenuated rapidly in good electrical conductors,
such as metals, but are often transmitted with weak attenuation in media with poor electrical
conductivity, or dielectrics, such as glass.

The magnitude and direction of the transfer of electromagnetic energy is given by the
Poynting vector, i.e., a vector of magnitude EH pointing into the direction of propagation
(cf. Fig. 2-2),6

S = E ×H =<{Ec} × <{Hc}. (2.39)

The instantaneous value for the Poynting∗ vector is a rapidly varying function of time. Of
greater value to the engineer is a time-averaged value of the Poynting vector, say

S =
1
δt

∫ t+δt

t
S(t) dt, (2.40)

where δt is a very small amount of time, but significantly larger than the duration of a period,
1/ν; since S repeats itself after each period (if no attenuation occurs) a δt equal to any multiple
of 1/ν will give the same result for S, namely

S = 1
2<{Ec ×H∗c}, (2.41)

5Since there are materials that have n < 1 it is possible to have phase velocities (i.e., the velocity with which the
amplitude of continuous waves penetrates through a medium) larger than c0; these should be distinguished from the
signal velocities (i.e., the velocity with which the energy contained in the waves travels), which can never exceed the
speed of light in vacuum. The difference between the two may be grasped more easily by visualizing the movement
of ocean waves: The wave crests move at a certain speed across the ocean surface (phase velocity), while the actual
velocity of the water (signal velocity) is relatively slow.

6Note that, since the vector cross-product is a nonlinear operation, the Poynting vector may not be calculated from
S =<{Ec ×Hc}.

∗John Henry Poynting (1852–1914)
British physicist. He served as professor of physics at the University of Birmingham from
1880 until his death. His discovery that electromagnetic energy is proportional to the
product of electric and magnetic field strength is known as Poynting’s theorem.



2.4 POLARIZATION 37

where H∗ denotes the complex conjugate of H, and the factor of 1/2 results from integrating over
cos2(2πη0c0t) and sin2(2πη0c0t) terms. Thus using equation (2.25) and the vector identity (2.27),
the Poynting vector may be expressed as

S =
1

2νµ
<{Ec × (w∗ × E∗c)} =

1
2νµ
<{w∗(Ec · E∗c)}

=
n

2c0µ
|E0|

2 e−4πη0kzŝ. (2.42)

The vector S points into the direction of propagation, and—as the wave traverses the medium—
its energy content is attenuated exponentially, where the attenuation factor

κ = 4πη0k (2.43)

is known as the absorption coefficient of the medium.

Example 2.1. A plane homogeneous wave propagates through a perfect dielectric medium (n = 2) in
the direction of ŝ = 0.8ı̂ + 0.6k̂ with a wavenumber of η0 = 2500 cm−1 and an electric field amplitude
vector of E0 = E0[(6 + 3i)ı̂ + (2 − 5i)̂ − (8 + 4i)k̂]/

√
154, where E0 = 600 N/C, and the ı̂, ̂, and k̂ are unit

vectors in the x-, y- and z-directions. Determine the magnetic field amplitude vector and the energy
contained in the wave, assuming that the medium is nonmagnetic.

Solution
Since w = w′ is colinear with ŝ, we find from equation (2.31) that w = wŝ = η0nŝ and, from equation (2.25),

H0 =
1
νµ

w × E0 =
1
νµ0

w × E0 =
n

c0µ0
ŝ × E0

=
nE0

c0µ0
√

154

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

0.8 0.0 0.6
6 + 3i 2 − 5i −8 − 4i

∣∣∣∣∣∣∣∣
=

nE0

c0µ05
√

154
[(−6 + 15i)ı̂ + (50 + 25i)̂ + (8 − 20i)k̂]

=
H0
√

3850
[(−6+15i)ı̂ + (50+25i)̂ + (8−20i)k̂],

where

H0 =
nE0

c0µ0
=

2 × 600 N/C
2.998×108 m/s×4π×10−7 N s2/C2

= 3.185 C/m s,

and it is assumed that, for a nonmagnetic medium, the magnetic permeability is equal to the one in
vacuum, µ = µ0 (from Table A.1). The energy content of the wave is given by the Poynting vector, either
equation (2.41) or equation (2.42). Choosing the latter, we get

S =
n

2c0µ0
E2

0ŝ = Sŝ, S =
2 × 6002 N2/C2

2×2.2998×10−8 m/s×4π×10−7 N s2/C2
= 955.6 W/m2.

2.4 POLARIZATION

Knowledge of the frequency, direction of propagation, and the energy content [i.e., the mag-
nitude of the Poynting vector, equation (2.42)] does not completely describe a monochromatic
(or time-harmonic) electromagnetic wave. Every train of electromagnetic waves has a property
known as the state of polarization. Polarization effects are generally not very important to the
heat transfer engineer since emitted light generally is randomly polarized. In some applications
partially or fully polarized light is employed, for example, from laser sources; and the engineer
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needs to know (i) how the reflective behavior of a surface depends on the polarization of incom-
ing light, and (ii) how reflection from a surface tends to alter the state of polarization. We shall
give here only a very brief introduction to polarization, based heavily on the excellent short
description in Bohren and Huffman [2]. More detailed accounts on the subject may be found in
the books by van de Hulst [4], Chandrasekhar [5], and others.

Consider a plane monochromatic wave with wavenumber η propagating through a non-
absorbing medium (k ≡ 0) in the z-direction. When describing polarization, it is customary
to relate parameters to the electric field (keeping in mind that the magnetic field is simply
perpendicular to it), which follows from equation (2.36) as

E =<{Ec} =<{(A − iB) e−2πiηn(z−ct)
} = A cos 2πηn(z − ct) − B sin 2πηn(z − ct), (2.44)

where the vector E0 and its real components A and B are independent of position and lie, at any
position z, in the plane normal to the direction of propagation. At any given location, say z = 0,
the tip of the electric field vector traces out the curve

E(z = 0, t) = A cos 2πνt + B sin 2πνt. (2.45)

This curve, shown in Fig. 2-3, describes an ellipse that is known as the vibration ellipse. The
ellipse collapses into a straight line if either A or B vanishes, in which case the wave is said
to be linearly polarized (sometimes also called plane polarized). If A and B are perpendicular to
one another and are of equal magnitude, the vibration ellipse becomes a circle and the wave is
known as circularly polarized. In general, the wave in equation (2.44) is elliptically polarized.

At any given time, say t = 0, the curve described by the tip of the electric field vector is a
helix (Fig. 2-4), or

E(z, t = 0) = A cos 2πnηz − B sin 2πnηz. (2.46)

Equation (2.46) describes the electric field at any one particular time. As time increases the helix
moves into the direction of propagation, and its intersection with any plane z = const describes
the local vibration ellipse.

The state of polarization, which is characterized by its vibration ellipse, is defined by its
ellipticity, b/a (the ratio of the length of its semiminor axis to that of its semimajor axis, as shown
in Fig. 2-3), its azimuth γ (the angle between an arbitrary reference direction and its semimajor
axis), and its handedness (i.e., the direction with which the tip of the electric field vector traverses
through the vibration ellipse, clockwise or counterclockwise). These three parameters together
with the magnitude of the Poynting vector are the ellipsometric parameters of a plane wave.

Example 2.2. Calculate the ellipsometric parameters a, b, and γ for the wave considered in Example 2.1.

Solution
From equation (2.44) we find

A = E0(6ı̂ + 2̂ − 8k̂)/
√

154, B = −E0(3ı̂ − 5̂ − 4k̂)/
√

154,

A

B

a

b

γ

FIGURE 2-3
Vibration ellipse for a monochromatic wave.



2.4 POLARIZATION 39

A

B
–A

–B

A

A

–A–B

t = 0

z

4cnt = 1
η

z

8n
1
ηz =  0 8n

2
η 8n

3
η 8n

4
η 8n

5
η 8n

6
η 8n

7
η n

1
η

–BB

FIGURE 2-4
Space variation of electric field at fixed times.

and at any given location, say z = 0, the electric field vector may be written as

E = E0

[
(6 cos 2πνt − 3 sin 2πνt)ı̂ + (2 cos 2πνt + 5 sin 2πνt)̂ − (8 cos 2πνt − 4 sin 2πνt)k̂

]
/
√

154.

The time-varying magnitude |E| at this location then is

|E|2 = E · E =
E2

0

154
(36 cos2 2πνt − 36 cos 2πνt sin 2πνt + 9 sin2 2πνt

+ 4 cos 2πνt + 20 cos2 2πνt sin 2πνt + 25 sin2 2πνt

+ 64 cos 2πνt − 64 cos2 2πνt sin 2πνt + 16 sin2 2πνt)

= E2
0(50 − 80 cos 2πνt sin 2πνt + 54 cos2 2πνt)/154.

The maximum (a) and minimum (b) of |E| may be found by differentiating the last expression with
respect to t and setting the result equal to zero. This operation leads to

−80(cos2 2πνt − sin2 2πνt) = 108 sin 2πνt cos 2πνt

−80 cos 4πνt = 54 sin 4πνt

or

2πνt = 0.5 tan−1
(
−

80
54

)
.

This function is double-valued, leading to (2πνt)1 = −27.99◦ and (2πνt)2 = 62.01◦. Substituting these
values into the expression for E gives

E1 = E0(0.5404ı̂ − 0.0468̂ − 0.7205k̂), |E| = a = 0.9009E0

and

E2 = E0(0.0134ı̂ + 0.4314̂ − 0.0179k̂), |E| = b = 0.4339E0.

The evaluation of the azimuth depends on the choice of a reference axis in the plane of the vibration
ellipse. In the present problem the y-axis lies in this plane and is, therefore, the natural choice. Thus,

cosγ =
E · ̂
|E|

= −
0.0468
0.9009

= −0.0519, γ = 92.97◦.

While the ellipsometric parameters completely describe any monochromatic wave, they are
difficult to measure directly (with the exception of the Poynting vector). In addition, when
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two or more waves of the same frequency but different polarization are superposed, only
their strengths are additive: The other three ellipsometric parameters must be calculated anew.
For these reasons a different but equivalent description of polarized light, known as Stokes’
parameters, is usually preferred. The Stokes’ parameters are defined by separating the wave
train into two perpendicular components:

Ec = E0 e−2πiηn(z−ct); E0 = E‖ê‖ + E⊥ê⊥, (2.47)

where ê‖ and ê⊥ are real orthogonal unit vectors in the plane normal to wave propagation,
such that ê‖ lies in an arbitrary reference plane that includes the wave propagation vector, and
ê⊥ is perpendicular to it.7 The parallel (E‖) and perpendicular (E⊥) polarization components are
generally complex and may be written as

E‖ = a‖ e−iδ‖ , E⊥ = a⊥ e−iδ⊥ , (2.48)

where a is the magnitude of the electric field and δ is the phase angle of polarization. Waves with
parallel polarization (i.e., with electric field in the plane of incidence, and magnetic field normal
to it) are also called transverse magnetic (TM) waves; and perpendicular polarization is transverse
electric (TE). Substitution into equation (2.44) leads to

E =<{a‖ e−iδ‖−2πiηn(z−ct)ê‖ + a⊥ e−iδ⊥−2πiηn(z−ct)ê⊥}
= a‖ cos[δ‖ + 2πηn(z − ct)]ê‖ + a⊥ cos[δ⊥ + 2πηn(z − ct)]ê⊥. (2.49)

Thus, the arbitrary wave given by equation (2.44) has been decomposed into two linearly
polarized waves that are perpendicular to one another. The four Stokes’ parameters I, Q, U, and
V are defined by

I = E‖E∗‖ + E⊥E∗⊥ = a2
‖

+ a2
⊥, (2.50)

Q = E‖E∗‖ − E⊥E∗⊥ = a2
‖
− a2
⊥, (2.51)

U = E‖E∗⊥ + E⊥E∗
‖

= 2a‖a⊥ cos(δ‖ − δ⊥), (2.52)

V = i(E‖E∗⊥ − E⊥E∗
‖
) = 2a‖a⊥ sin(δ‖ − δ⊥), (2.53)

where the asterisks again denote complex conjugates. It can be shown that these four parameters
may be determined through power measurements either directly (I ), using a linear polarizer
(arranged in the parallel and perpendicular directions for Q, rotated 45◦ for U ), or a circular
polarizer (V ) (see, for example, Bohren and Huffman [2]). It is clear that only three of the Stokes’
parameters are independent, since

I2 = Q2 + U2 + V2. (2.54)

Since the Stokes’ parameters of a wave train are expressed in terms of the energy contents of its
component waves [which can be seen by comparison with equation (2.42)], it follows that the
Stokes’ parameters for a collection of waves are additive.

The Stokes’ parameters may also be related to the ellipsometric parameters by

I = a2 + b2, (2.55)

Q = (a2
− b2) cos 2γ, (2.56)

U = (a2
− b2) sin 2γ, (2.57)

V = ±2ab, (2.58)

7In the literature subscripts p and s are also commonly used, from the German words “parallel” and “senkrecht”
(perpendicular).
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TABLE 2.1
Stokes’ parameters for several cases of polarized light.

Linearly Polarized
0◦ 90◦ +45◦ −45◦ γ
↔ l ↘ ↙
1
1
0
0




1
−1
0
0



1
0
1
0




1
0
−1
0




1
cos 2γ
sin 2γ

0


Circularly Polarized

Right Left
� 	
1
0
0
1




1
0
0
−1


where the azimuth γ is measured from ê‖, and the sign of V specifies the handedness of the
vibration ellipse. The sets of Stokes’ parameters for a few special cases of polarization are
shown—normalized, and written as column vectors—in Table 2.1 (from [2]). The parameters Q
and U show the degree of linear polarization (plus its orientation), while V is related to the degree
of circular polarization.

The above definition of the Stokes’ parameters is correct for strictly monochromatic waves
as given by equation (2.47). Most natural light sources, such as the sun, lightbulbs, fires, and so
on, produce light whose amplitude, E0, is a slowly varying function of time (i.e., in comparison
with a full wave period, 1/ν), or

E0(t) = E‖(t)ê‖ + E⊥(t)ê⊥. (2.59)

Such waves are called quasi-monochromatic. If, through their slow respective variations with time,
E‖ and E⊥ are uncorrelated, then the wave is said to be unpolarized. In such a case the vibration
ellipse changes slowly with time, eventually tracing out ellipses of all shapes, orientations, and
handedness. All waves discussed so far had a fixed relationship between E‖ and E⊥, and are
known as (completely) polarized. If some correlation between E‖ and E⊥ exists (for example, a
wave of constant handedness, ellipticity, or azimuth), then the wave is called partially polarized.
For quasi-monochromatic waves the Stokes’ parameters are defined in terms of time-averaged
values, and equation (2.54) must be replaced by

I2
≥ Q2 + U2 + V2, (2.60)

where the equality sign holds only for polarized light. For unpolarized light one gets Q = U =
V = 0, while for partially polarized light the magnitudes of Q, U, and V give the following:

degree of polarization =
√

Q2 + U2 + V2/I,
degree of linear polarization =

√
Q2 + U2/I,

degree of circular polarization = V/I.

Example 2.3. Reconsider the plane wave of the last two examples. Decompose the wave into two
linearly polarized waves, one in the x-z-plane, and the other perpendicular to it. What are the Stokes’
coefficients, the phase differences between the two polarizations, and the different degrees of polariza-
tion?
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Solution
With ŝ = 0.8ı̂ + 0.6k̂ and the knowledge that ê‖ must lie in the x-z-plane, i.e., ê‖ · ̂ = 0, and that ê‖ must
be normal to ŝ, or ê‖ · ŝ = 0, and finally that ê⊥ must be perpendicular to both of them, we get

ê‖ = 0.6ı̂ − 0.8k̂, ê⊥ = ̂,

where the choice of sign for both vectors is arbitrary (and we have chosen to let ê‖, ê⊥, and ŝ form a
right-handed coordinate system). Thus, from equation (2.47) and

E0 = E0[(6 + 3i)ı̂ + (2 − 5i)̂ − (8 + 4i)k̂]/
√

154

it follows immediately that

E‖ =E0(2 + i)(3ı̂ − 4k̂)/
√

154 =
(
5/
√

154
)

(2 + i)E0ê‖,

E⊥ =E0(2 − 5i)̂/
√

154 =
[
(2 − 5i)/

√

154
]

E0ê⊥,

or

E‖ =
(
5/
√

154
)

(2 + i)E0 =

√
125
154

E0 e−iδ‖ ,

E⊥ =
[
(2 − 5i)/

√

154
]

E0 =

√
29
154

E0 e−iδ⊥ ,

with

δ‖ = − tan−1
(1

2

)
= −26.565◦,

δ⊥ = − tan−1
(
−

5
2

)
= 68.199◦,

and a phase difference between the two polarizations of

δ‖ − δ⊥ = −94.76◦

(since tan−1 is a double-valued function, the correct value is determined by checking the signs of the real
and imaginary parts of E). The Stokes’ parameters can be calculated either directly from equations (2.50)
through (2.53), or from equations (2.55) through (2.58) (using the ellipsometric parameters calculated in
the last example). We use here the first approach so that we get

I = (125 + 29)E2
0/154 = E2

0,

Q = (125 − 29)E2
0/154 = 48E2

0/77,

U = 5(4 + 2i + 10i − 5 + 4 − 2i − 10i − 5)E2
0/154 = −5E2

0/77,

V = 5i(4 + 2i + 10i − 5 − 4 + 2i + 10i + 5)E2
0/154 = −60E2

0/77.

Finally, the degrees of polarization follow as
√

Q2+ U2+ V2/I = 100% total polarization,
√

Q2+ U2/I =
62.7% linear polarization, and |V|/I = 77.9% circular polarization.

In general, the state of polarization of an electromagnetic wave train is changed when it
interacts with an optical element (which may be a polarizer or reflector, but can also be a
reflecting surface in an enclosure, or a scattering element, such as suspended particles). While a
polarized beam is characterized by its four-element Stokes vector, it is possible to represent the
effects of an optical element by a 4× 4 matrix, known as the Mueller matrix, which describes the
relations between incident and transmitted Stokes vectors. Details can be found, e.g., in Bohren
and Huffman [2].

2.5 REFLECTION AND TRANSMISSION

When an electromagnetic wave is incident on the interface between two homogeneous media,
the wave will be partially reflected and partially transmitted into the second medium. We will
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Medium 1,
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m2 = n2 – ik2

FIGURE 2-5
Geometry for derivation of interface condi-
tions.

limit our discussion here to plane interfaces, i.e., to cases where the local radius of curvature
is much greater than the wavelength of the incoming light, λ, for which the problem may be
reduced to algebraic equations. Some discussion on strongly curved surfaces in the form of
small particles will be given in Chapter 12, which deals with radiative properties of particulate
clouds.

In the following, after first establishing the general conditions for Maxwell’s equations at
the interface, we shall consider a wave traveling from one nonabsorbing medium into another
nonabsorbing medium, followed by a short discussion of a wave incident from a nonabsorbing
onto an absorbing medium.

Interface Conditions for Maxwell’s Equations
To establish boundary conditions for E and H at an interface between two media, we shall apply
the theorems of Gauss and Stokes to Maxwell’s equations. Both theorems convert volume
integrals to surface integrals and are discussed in detail in standard mathematical texts such
as Wylie [3]. Given a vector function F, defined within a volume V and on its boundary Γ, the
theorems may be stated as
Gauss’ theorem: ∫

V
∇ · F dV =

∫
Γ

F · dΓ, (2.61)

Stokes’ theorem: ∫
V
∇ × F dV = −

∫
Γ

F × dΓ, (2.62)

where dΓ = n̂ dΓ and n̂ is a unit surface normal pointing out of the volume.
Now consider a thin volume element δV = A δs containing part of the interface as shown in

Fig. 2-5. Applying Gauss’ theorem to the first of Maxwell’s equations, equation (2.11) yields∫
δV
∇· (γEc) dV =

∫
Γ

γEc · dΓ ≈
∫

A
[(γEc)1 · (−n̂) + (γEc)2 ·n̂] dA = 0, (2.63)

where Γ is the total surface area of δV, and contributions to the surface integral come mainly
from the two sides parallel to the interface since δs is small. Also, shrinking A to an arbitrarily
small area, we conclude that, everywhere along the interface,

m2
1 Ec1 · n̂ = m2

2 Ec2 · n̂, (2.64)

where equation (2.31) has been used, together with assuming nonmagnetic media, to eliminate
the complex permittivity γ. Similarly, from equation (2.12)

Hc1 · n̂ = Hc2 · n̂. (2.65)

Thus, the normal components of m2Ec and Hc are conserved across a plane boundary. Stokes’
theorem may be applied to equations (2.13) and (2.14), again for the volume element shown in
Fig. 2-5. For example,∫

δV
∇ ×Hc dV = −

∫
Γ

Hc × dΓ ≈
∫

A
(Hc1−Hc2) × n̂ dA =

∫
V

2πiνγEc dV, (2.66)
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FIGURE 2-6
Transmission and reflection of a plane wave at the interface between two nonabsorbing media.

or, after shrinking δs→ 0 and A to a small value,

Ec1 × n̂ = Ec2 × n̂ (2.67)
and

Hc1 × n̂ = Hc2 × n̂. (2.68)

Therefore, the tangential components of both Ec and Hc are conserved across a plane boundary.
Given the incident wave, it is possible to find the complete fields from Maxwell’s equations

and the above interface conditions. However, it is obvious that there will be a reflected wave in
the medium of incidence, and a transmitted wave in the other medium. We may also assume
that all waves remain plane waves. A consequence of having guessed the solution to this point
is that conditions (2.67) and (2.68) are sufficient to specify the reflected and transmitted waves,
and it turns out that conditions (2.64) and (2.65) are automatically satisfied (Stone [1]).

The Interface between Two Nonabsorbing
Media
The reflection and transmission relationships become particularly simple if homogeneous plane
waves reach the plane interface between two nonabsorbing media. For such a wave train
the planes of equal phase and equal amplitude coincide and are normal to the direction of
propagation, as shown in Fig. 2-6. This plane, also called the wavefront, moves at constant speed
c1 = c0/n1 through Medium 1, and at a constant but speed c2 = c0/n2 through Medium 2. If
n2 > n1 then, as shown in Fig. 2-6, the wavefront will move more slowly through Medium 2,
lagging behind the wavefront traveling through Medium 1. This is readily put in mathematical
terms by looking at points A and B on the wavefront at a certain time t. At time t + ∆t the part
of the wavefront initially at A will have reached point A′ on the interface while the wavefront
at point B, traveling a shorter distance through Medium 2, will have reached point B′, where

∆t =
AA′

c1
=

BB′

c2
. (2.69)

Using geometric relations for AA′ and BB′ and substituting for the phase velocities, we obtain

∆t =
BA′ sinθi

c0/n1
=

BA′ sinθ2

c0/n2
=

BA′ sinθr

c0/n1
, (2.70)
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where the last term pertains to reflection, for which a similar relationship must exist (but which
is not shown to avoid overcrowding of the figure). Thus we conclude that

θr = θi = θ1, (2.71)

that is, according to electromagnetic wave theory, reflection of light is always purely specular.
This is a direct consequence of a “plane” interface, i.e., a surface that is not only flat (with infinite
radius of curvature) but also perfectly smooth. Equation (2.70) also gives a relationship between
the directions of the incoming and transmitted waves as

sinθ2

sinθ1
=

n1

n2
, (2.72)

which is known as Snell’s law.∗ The anglesθ1 = θi andθ2 = θr are called the angles of incidence and
refraction. The present derivation of Snell’s law was based on geometric principles and is valid
only for plane homogeneous waves, which limits its applicability to the interface between two
nonabsorbing media, i.e., two perfect dielectrics. A more rigorous derivation of a generalized
version of Snell’s law is given when incidence on an absorbing medium is considered.

Besides the directions of reflection and transmission we should like to be able to determine
the amounts of reflected and transmitted light. From equations (2.19) and (2.20) we can write
expressions for the electric and magnetic fields in Medium 1 (consisting of incident and reflected
waves) by setting w′′ = 0 for a nonabsorbing medium as

Ec1 = E0i e−2πi(w′i ·r−νt) + E0r e−2πi(w′r·r−νt), (2.73)

Hc1 = H0i e−2πi(w′i ·r−νt) + H0r e−2πi(w′r·r−νt). (2.74)
Similarly for Medium 2,

Ec2 = E0t e−2πi(w′t ·r−νt), (2.75)

Hc2 = H0t e−2πi(w′t ·r−νt). (2.76)

For convenience we place the coordinate origin at that point of the boundary where reflection
and transmission are to be considered. Thus, at that point of the interface, with r = 0, using
boundary conditions (2.67) and (2.68),

(E0i + E0r) × n̂ = E0t × n̂, (2.77)
(H0i + H0r) × n̂ = H0t × n̂. (2.78)

To evaluate the tangential components of the electric and magnetic fields at the interface, it
is advantageous to break up the fields (which, in general, may be unpolarized or elliptically
polarized) into two linearly polarized waves, one parallel to the plane of incidence (formed by
the incident wave vector wi and the surface normal n̂), and the other perpendicular to it, or

E0 = E‖ê‖ + E⊥ê⊥, H0 = H‖ê‖ + H⊥ê⊥. (2.79)

This is shown schematically in Fig. 2-7. It is readily apparent from the figure that, in the plane
of incidence, the unit vectors normal to the interface (n̂) and tangential to the interface (t̂) may
be expressed as

n̂ = ŝi cosθ1 − êi‖ sinθ1 = −ŝr cosθ1 + êr‖ sinθ1 = ŝt cosθ2 − êt‖ sinθ2, (2.80a)
t̂ = ŝi sinθ1 + êi‖ cosθ1 = ŝr sinθ1 + êr‖ cosθ1 = ŝt sinθ2 + êt‖ cosθ2. (2.80b)

∗ Willebrord van Snel van Royen (1580–1626)
Dutch astronomer and mathematician, who discovered Snell’s law in 1621.
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FIGURE 2-7
Orientation of wave vectors at an interface.

As defined in Fig. 2-7 the unit vectors ê‖, ê⊥ and ŝ form right-handed coordinate systems for
the incident and transmitted waves, i.e.,

ê‖ = ê⊥ × ŝ, ê⊥ = ŝ × ê‖, ŝ = ê‖ × ê⊥, (2.81)

and a left-handed coordinate system for the reflected wave (leading to opposite signs for the
above cross-products of unit vectors).8

Therefore, from equation (2.80)

ê‖ × n̂ = ±ê‖ × ŝ cosθ = −ê⊥ cosθ,
ê⊥ × n̂ = ±ê⊥ × ŝ cosθ ∓ ê⊥ × ê‖ sinθ = ê‖ cosθ + ŝ sinθ = t̂,

where the top sign applies to the incident and transmitted waves, while the lower sign applies
to the reflected component. The second of these relations can also be obtained directly from
Fig. 2-7. Using these relations, equations (2.77) and (2.78) may be rewritten in terms of polarized
components as (

Ei‖ + Er‖
)

cosθ1 = Et‖ cosθ2, (2.82)
Ei⊥ + Er⊥ = Et⊥, (2.83)(

Hi‖ + Hr‖
)

cosθ1 = Ht‖ cosθ2, (2.84)
Hi⊥ + Hr⊥ = Ht⊥. (2.85)

The magnetic field may be eliminated through the use of equation (2.25): With w = η0mŝ =
(ν/c0)mŝ from equation (2.31) we have

H0 =
m

c0µ
ŝ × E0 = ±

m
c0µ cosθ

(n̂ ± ê‖ sinθ) × (E‖ê‖ + E⊥ê⊥)

= ±
m

c0µ cosθ

[
E‖ cosθê⊥ − E⊥(t̂ − ŝ sinθ)

]
= ±

m
c0µ

(E‖ê⊥ − E⊥ê‖). (2.86)

8This is necessary for consistency, i.e., for normal incidence there should not be any difference between parallel and
perpendicular polarized waves.
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Again, the upper sign applies to incident and transmitted waves, and the lower sign to reflected
waves. The last two conditions may now be rewritten in terms of the electric field. Assuming
the magnetic permeability to be the same in both media, and setting m = n (nonabsorbing
media), this leads to

(Ei⊥ − Er⊥) n1 cosθ1 = Et⊥n2 cosθ2, (2.87)(
Ei‖ − Er‖

)
n1 = Et‖n2. (2.88)

From this one may calculate the reflection coefficient r and the transmission coefficient t as

r‖ =
Er‖

Ei‖
=

n1 cosθ2 − n2 cosθ1

n1 cosθ2 + n2 cosθ1
, (2.89)

r⊥ =
Er⊥

Ei⊥
=

n1 cosθ1 − n2 cosθ2

n1 cosθ1 + n2 cosθ2
, (2.90)

t‖ =
Et‖

Ei‖
=

2n1 cosθ1

n1 cosθ2 + n2 cosθ1
, (2.91)

t⊥ =
Et⊥

Ei⊥
=

2n1 cosθ1

n1 cosθ1 + n2 cosθ2
. (2.92)

For an interface between two nonabsorbing media these coefficients turn out to be real, even
though the electric field amplitudes are complex. The reflectivity ρ is defined as the fraction of
energy in a wave that is reflected and must, therefore, be calculated from the Poynting vector,
equation (2.42), so that

ρ‖ =
Sr‖

Si‖
=

(
Er‖

Ei‖

)2

= r2
‖

(2.93)

gives the reflectivity of that part of the wave whose electric field vector lies in the plane of
incidence (with its magnetic field normal to it), and

ρ⊥ =
Sr⊥

Si⊥
=

(Er⊥

Ei⊥

)2

= r2
⊥ (2.94)

is the reflectivity for the part whose electric field vector is normal to the plane of incidence. In
terms of these polarized components the overall reflectivity may be stated as “reflected energy
for both polarizations, divided by the total incoming energy,” or

ρ =
Ei‖E∗i‖ρ‖ + Ei⊥E∗i⊥ρ⊥

Ei‖E∗i‖ + Ei⊥E∗i⊥
. (2.95)

For unpolarized and circularly polarized light Ei‖ = Ei⊥, and the reflectivity for the entire wave
train is

ρ =
1
2
(
ρ‖ + ρ⊥

)
=

1
2

[(n1 cosθ2 − n2 cosθ1

n1 cosθ2 + n2 cosθ1

)2

+
(n1 cosθ1 − n2 cosθ2

n1 cos1 +n2 cosθ2

)2]
. (2.96)

From this relationship the refractive indices may be eliminated through Snell’s law, giving

ρ =
1
2

[
tan2(θ1 − θ2)
tan2(θ1 + θ2)

+
sin2(θ1 − θ2)
sin2(θ1 + θ2)

]
, (2.97)

which is known as Fresnel’s relation.∗ Subroutine fresnel in Appendix F is a generalized version
of Fresnel’s relation for an interface between a perfect dielectric and an absorbing medium (see
following section), where n = n2/n1, k = k2/n1, and th = θ1.

∗Augustin-Jean Fresnel (1788–1827)
French physicist, and one of the early pioneers for the wave theory of light. Serving as
an engineer for the French government he studied aberration of light and interference in
polarized light. His optical theories earned him very little recognition during his lifetime.
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FIGURE 2-8
Reflection coefficients and reflectivities for the interface between two dielectrics (n2/n1 = 1.5).

The overall transmissivity τ may similarly be evaluated from the Poynting vector, equa-
tion (2.42), but the different refractive indices and wave propagation directions in the transmit-
ting and incident media must be considered, so that

τ =
n2

n1

cosθ2

cosθ1
t2 = 1 − ρ. (2.98)

An example for the angular reflectivity at the interface between two dielectrics (with n2/n1 = 1.5)
is given in Fig. 2-8. It is seen that, at an angle of incidence of θ1 = θp, r‖ passes through zero
resulting in a zero reflectivity for the parallel component of the wave. This angle is known
as the polarizing angle or Brewster’s angle,∗ since light reflected from the surface—regardless
of the incident polarization—will be completely polarized. Brewster’s angle follows from
equations (2.72) and (2.89) as

tanθp =
n2

n1
. (2.99)

Different behavior is observed if light travels from one dielectric into another, optically less
dense medium (n1 > n2),9 shown in Fig. 2-9. Examination of equation (2.72) shows that θ2
reaches the value of 90◦ for an angle of incidence θc, called the critical angle,

sinθc =
n2

n1
. (2.100)

It is left as an exercise for the reader to show that, for θ1 > θc, light of any polarization is
reflected, and nothing is transmitted into the second medium.

It is important to realize that upon reflection a wave changes its state of polarization, since E‖
and E⊥ are attenuated by different amounts. If the incident wave is unpolarized (e.g., emission
from a hot surface), E‖ and E⊥ are unrelated and will remain so after reflection. If the incident
wave is polarized (e.g., laser radiation), the relationship between E‖ and E⊥ will change, causing
a change in polarization.

Example 2.4. The plane homogeneous wave of the previous examples encounters the flat interface with
another dielectric (n2 = 8/3) that is described by the equation z = 0 (i.e., the x-y-plane at z = 0). Calculate

∗Sir David Brewster (1781–1868)
Scottish scientist, entered Edinburgh University at age 12 to study for the ministry. After
completing his studies he turned his attention to science, particularly optics. In 1815, the
year he discovered the law named after him, he was elected Fellow of the Royal Society.

9The optical density of a medium is related to the number of atoms contained over a distance equal to the wavelength
of the light and is proportional to the refractive index.
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FIGURE 2-9
Reflection coefficients and reflectivities for the interface between two dielectrics (n1/n2 = 1.5).

the angles of incidence, reflection, and refraction. What fraction of energy of the wave is reflected, and
how much is transmitted? In addition, determine the state of polarization of the reflected wave.

Solution
Since the interface is described by z = 0, the surface normal (pointing into Medium 2) is simply n̂ = k̂.
From ŝ = 0.8ı̂ + 0.6k̂ and n̂ · ŝ = cosθ1 = 0.6, it follows that the angle of incidence is θ1 = 53.13◦ off
normal, which is equal to the angle of reflection, while the angle of refraction follows from Snell’s law,
equation (2.72), as

sinθ2 =
n1

n2
sinθ1 =

2
8/3
× 0.8 = 0.6, θ2 = 36.87◦.

It follows that cosθ2 = 0.8 and the reflection coefficients are calculated from equations (2.89) and (2.90)
as

r‖ =
2 × 0.8 − (8/3) × 0.6
2 × 0.8 + (8/3) × 0.6

=
1.6 − 1.6

3.2
= 0,

r⊥ =
2 × 0.6 − (8/3) × 0.8
2 × 0.6 + (8/3) × 0.8

=
3.6 − 6.4

10.0
= −0.28,

and the respective reflectivities follow as

ρ‖ = 0 and ρ⊥ = (−0.28)2 = 0.0784.

For the present wave and interface, the wave impinges on the surface at Brewster’s angle, i.e., the
component of the wave that is linearly polarized in the plane of incidence is totally transmitted.

In general, to calculate the overall reflectivity, the wave must be decomposed into two linear polar-
ized components, vibrating within the plane of incidence and perpendicular to it. Fortunately, this was
already done in Example 2.3. From equation (2.95), together with the values of Ei‖ = [5(2 + i)/

√
154]E0

and Ei⊥ = [(2 − 5i)/
√

154]E0 from the previous example, we obtain

ρ =
Ei‖E∗i‖ρ‖ + Ei⊥E∗i⊥ρ⊥

Ei‖E∗i‖ + Ei⊥E∗i⊥
=

125 × 0 + 29 × 0.0784
154

= 0.0148,

and the overall transmissivity τ follows as

τ = 1 − ρ = 0.9852.

To determine the polarization of the reflected beam, we first need to determine the reflected electric field
amplitude vector. From the definition of the reflection coefficient we have

Er‖ = r‖Ei‖ = 0, Er⊥ = r⊥Ei⊥ = −0.28 ×
2 − 5i
√

154
E0
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and, from equations (2.50) through (2.53),

I = −Q = Er⊥E∗r⊥ =
0.282

154
29 E2

0 = 0.01476 E2
0,

U = V = 0.

Therefore, the wave remains 100% polarized, but the polarization is not completely linear. Indeed, any
polarized radiation reflecting off a surface at Brewster’s angle will become linearly polarized with only
a perpendicular component.

The Interface between a Perfect Dielectric and
an Absorbing Medium
The analysis of reflection and transmission at the interface between two perfect dielectrics
is relatively straightforward, since an incident plane homogeneous wave remains plane and
homogeneous after reflection and transmission. However, if a plane homogeneous wave is
incident upon an absorbing medium, then the transmitted wave is, in general, inhomogeneous.
If a beam travels from one absorbing medium into another absorbing medium, then the wave is
usually inhomogeneous in both, making the analysis somewhat cumbersome. Fortunately, the
interface between two absorbers is rarely important: A wave traveling through an absorbing
medium is usually strongly attenuated, if not totally absorbed, before hitting a second absorber.
In this section we shall consider a plane homogeneous light wave incident from a perfect
dielectric on an absorbing medium.

The incident, reflected, and transmitted waves are again described by equations (2.73)
through (2.76), except that the wave vector for transmission, wt, may be complex. Thus us-
ing equations (2.67) and (2.68), the interface condition may be written as

E0i × n̂ e−2πiw′i ·r + E0r × n̂ e−2πiw′r·r = E0t × n̂ e−2πi(w′t ·r−iw′′t ·r), (2.101)

H0i × n̂ e−2πiw′i ·r + H0r × n̂ e−2πiw′r·r = H0t × n̂ e−2πi(w′t ·r−iw′′t ·r), (2.102)

where r is left arbitrary here in order to derive formally the generalized form of Snell’s law
although, for convenience, we still assume that the coordinate origin lies on the interface. We
note that none of the amplitude vectors, E0i, H0i, etc., depends on location, and that r is a vector
to an arbitrary point on the interface, which may be varied independently. Thus, in order for
equations (2.101) and (2.102) to hold at any point on the interface, we must have

w′i · r = w′r · r = w′t · r, (2.103)
0 = w′′t · r, (2.104)

that is, since r is tangential to the interface, the tangential components of the wave vector w′

must be continuous across the interface, while the tangential component of the attenuation
vector w′′t must be zero, or w′′t = w′′t n̂. Thus, within the absorbing medium, planes of equal
amplitude are parallel to the interface, as indicated in Fig. 2-10. Since w′r has the same tangential
component as w′i as well as the same magnitude [cf. equation (2.31)], it follows again that the
reflection must be specular, or θr = θi.

The continuity of the tangential component for the transmitted wave vector indicates that

w′i sinθ1 = η0n1 sinθ1 = w′t sinθ2. (2.105)

The wave vector for transmission, w′t, may be eliminated from equation (2.105) by using equa-
tion (2.31):

wt ·wt = w′t
2
− w′′t

2
− 2iw′t ·w

′′

t = η2
0m2

2 = η2
0(n2

2 − k2
2 − 2in2k2), (2.106a)

or
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Transmission and reflection at the in-
terface between a dielectric and an ab-
sorbing medium.

w′t
2
− w′′t

2 = η2
0(n2

2 − k2
2), (2.106b)

w′t ·w
′′

t = w′tw
′′

t cosθ2 = η2
0n2k2. (2.106c)

Thus, equations (2.105) and (2.106) constitute three equations in the three unknowns θ2, w′t, and
w′′t . This system of equations may be solved to yield

p2 =

(
w′t cosθ2

η0

)2

=
1
2

[√
(n2

2 − k2
2 − n2

1 sin2θ1)2 + 4n2
2k2

2 + (n2
2 − k2

2 − n2
1 sin2θ1)

]
, (2.107a)

q2 =

(
w′′t
η0

)2

=
1
2

[√
(n2

2 − k2
2 − n2

1 sin2θ1)2 + 4n2
2k2

2 − (n2
2 − k2

2 − n2
1 sin2θ1)

]
, (2.107b)

and the refraction angle θ2 may be calculated from equation (2.105) as

p tanθ2 = n1 sinθ1. (2.108)

Equation (2.108) together with equations (2.107) is known as the generalized Snell’s law.
The reflection coefficients are calculated in the same fashion as was done for two dielectrics

(left as an exercise). This leads to

r̃‖ =
Er‖

Ei‖
=

n2
1(w′t cosθ2 − iw′′t ) −m2

2w′i cosθ1

n2
1(w′t cosθ2 − iw′′t ) + m2

2w′i cosθ1
, (2.109a)

r̃⊥ =
Er⊥

Ei⊥
=

w′i cosθ1 − (w′t cosθ2 − iw′′t )

w′i cosθ1 + (w′t cosθ2 − iw′′t )
, (2.109b)

where the tilde has been added to indicate that the reflection coefficients are now complex. From
equations (2.106) through (2.107) we find

m2
2 =

p2

cos2θ2
− q2
− 2ipq = p2(1 + tan2θ2) − q2

− 2ipq = p2
− q2 + n2

1 sin2θ1 − 2ipq. (2.110)

Eliminating the wave vectors, the reflection coefficients may be written as

r̃‖ =
n1(p − iq) − (p2

− q2 + n2
1 sin2θ1 − 2ipq) cosθ1

n1(p − iq) + (p2 − q2 + n2
1 sin2θ1 − 2ipq) cosθ1

, (2.111a)

r̃⊥ =
n1 cosθ1 − p + iq
n1 cosθ1 + p − iq

. (2.111b)
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FIGURE 2-11
Directional reflectivity for a metal (aluminum at
3.1µm with n2 = 4.46, k2 = 31.5) in contact with
air (n1 = 1).

The expression for r̃‖ may be simplified by dividing the numerator (and denominator) of r̃‖ by
cosθ1 times the numerator (or denominator) of r̃⊥. This operation leads to

r̃‖ =
p − n1 sinθ1 tanθ1 − iq
p + n1 sinθ1 tanθ1 − iq

r̃⊥. (2.112)

Finally, the reflectivities are again calculated as

ρ‖ = r̃‖̃r∗‖ =
(p − n1 sinθ1 tanθ1)2 + q2

(p + n1 sinθ1 tanθ1)2 + q2 ρ⊥, (2.113a)

ρ⊥ = r̃⊥r̃∗⊥ =
(n1 cosθ1 − p)2 + q2

(n1 cosθ1 + p)2 + q2 . (2.113b)

Subroutine fresnel in Appendix F calculates ρ‖, ρ⊥, and ρ = (ρ‖ + ρ⊥)/2 from this generalized
version of Fresnel’s relation for an interface between a perfect dielectric and an absorbing
medium, where n = n2/n1, k = k2/n1, and th = θ1.

We note that for normal incidence θ1 = θ2 = 0, resulting in p = n2, q = k2 and

ρ‖ = ρ⊥ =
(n1 − n2)2 + k2

2

(n1 + n2)2 + k2
2

. (2.114)

The directional behavior of the reflectivity for a typical metal with n2 = 4.46 and k2 = 31.5
(corresponding to the experimental values for aluminum at 3.1µm [6]) exposed to air (n1 = 1)
is shown in Fig. 2-11.

Example 2.5. Redo Example 2.4 for a metallic interface, i.e., the plane homogeneous wave of the
previous examples encounters the flat interface with a metal (n2 = k2 = 90), which again is described by
the equation z = 0. Calculate the incidence, reflection, and refraction angles. What fraction of energy of
the wave is reflected, and how much is transmitted?

Solution
If n2 and k2 are much larger than n1 it follows from equations (2.107) that p ≈ n2 and q ≈ k2 and, from
equation (2.105),

n1 sinθ1 ≈ n2 tanθ2 ≈ n2 sinθ2

(i.e., as long as n2 � n1, Snell’s law between dielectrics holds) and it follows that θ2 = 1.02◦. With n2 = k2
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Reflection and transmission by a slab.

equations (2.113) reduce to

ρ⊥ =
(n1 cosθ1 − n2)2 + n2

2

(n1 cosθ1 + n2)2 + n2
2

=
(1.2 − 90)2 + 902

(1.2 + 90)2 + 902 = 0.9737,

ρ‖ =
(n2−n1 sinθ1 tanθ1)2+n2

2

(n2+n1 sinθ1 tanθ1)2+n2
2

ρ⊥=
(90 − 2×0.82/0.6)2+902

(90+2×0.82/0.6)2+902 ×0.9737 = 0.9286,

and the total reflectivity is again evaluated from equation (2.95) as

ρ =
Ei‖E∗i‖ρ‖ + Ei⊥E∗i⊥ρ⊥

Ei‖E∗i‖ + Ei⊥E∗i⊥
=

125 × 0.9286 + 29 × 0.9737
154

= 0.9371.

Thus, nearly 94% of the radiation is being reflected (and even more would have been reflected if the
metal was surrounded by air with n ≈ 1), and only 6% is transmitted into the metal, where it undergoes
total attenuation after a very short distance because of the large value of k2: Equation (2.42) shows that
the transmission reaches its 1/e value at

4πη0k2z = 1, or z = 1/(4π × 2500 × 90) = 3.5 × 10−7 cm = 0.0035µm.

Reflection and Transmission by a Thin Film or
Slab
As a final topic we shall briefly consider the reflection and transmission by a thin film or slab
of thickness d and complex index of refraction m2 = n2 − ik2, embedded between two media
with indices of refraction m1 and m3, as illustrated in Fig. 2-12. While the theory presented
in this section is valid for slabs of arbitrary thickness, it is most appropriate for the study of
interference wave effects in thin films or coatings. When an electromagnetic wave is reflected by a
thin film, the waves reflected from both interfaces have different phases and interfere with one
another (i.e., they may augment each other for small phase differences, or cancel each other
for phase differences of 180◦). For thick slabs, such as window panes, geometric optics provides
a much simpler vehicle to determine overall reflectivity and transmissivity. However, for an
antireflective coating on a window, thin film optics should be considered.
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Normal Incidence

Since the computations become rather cumbersome, we shall limit ourselves to the simpler case
of normal incidence (θ = 0). For more detailed discussions, including oblique incidence angles,
the reader is referred to books on the subject such as the one by Knittl [7] or to the very readable
monograph by Anders [8].

Consider the slab shown in Fig. 2-12: The wave incident at the left interface is partially
reflected, and partially transmitted toward the second interface. At the second interface, again,
the wave is partially reflected and partially transmitted into Medium 3. The reflected part
travels back to the first interface where a part is reflected back toward the second interface,
and a part is transmitted into Medium 1, i.e., it is added to the reflected wave, etc. Therefore,
the reflected wave Er and the transmitted wave Et consist of many contributions, and inside
Medium 2 there are two waves E+

2 and E−2 traveling into the directions n̂ and −n̂, respectively.
Thus, the boundary conditions, equations (2.67) and (2.68), may be written for the first interface,
similar to equations (2.82) through (2.85), as

z = r · n̂ = 0 : Ei + Er = E+
2 + E−2 , (2.115)

Hi + Hr = H+
2 + H−2 , (2.116)

where polarization of the beam does not appear since at normal incidence E‖ = E⊥. The
magnetic field may again be eliminated using equation (2.25), as well as wi = −wr = η0m1n̂ and
w+ = −w− = η0m2n̂ [from equation (2.31)], or

(Ei − Er)m1 = (E+
2 − E−2 )m2. (2.117)

The boundary condition at the second interface follows [similar to equations (2.101) and (2.102)]
as

z = r · n̂ = d : E+
2 e−2πiη0m2d + E−2 e+2πiη0m2d = Et e−2πiη0m3d (2.118)

(E+
2 e−2πiη0m2d

− E−2 e+2πiη0m2d)m2 = Et e−2πiη0m3dm3. (2.119)

Equations (2.115), (2.117), (2.118), and (2.119) are four equations in the unknowns Er, E+
2 , E−2 ,

and Et, which may be solved for the reflection and transmission coefficients of a thin film. After
some algebra one obtains

r̃film =
Er

Ei
=

r̃12 + r̃23 e−4πiη0dm2

1 + r̃12r̃23 e−4πiη0dm2
, (2.120)

t̃film =
Et e−2πiη0dm3

Ei
=

t̃12̃t23 e−2πiη0dm2

1 + r̃12r̃23 e−4πiη0dm2
, (2.121)

where r̃i j and t̃i j are the complex reflection and transmission coefficients of the two interfaces,

r̃12 =
m1 −m2

m1 + m2
, r̃23 =

m2 −m3

m2 + m3
; (2.122a)

t̃12 =
2m1

m1 + m2
, t̃23 =

2m2

m2 + m3
. (2.122b)

To evaluate the thin film reflectivity and transmissivity from the complex coefficients, it is
advantageous to write the coefficients in polar notation (cf., for example, Wylie [3]),

r̃i j = ri j eiδi j , ri j = |̃ri j|, tan δi j =
=(̃ri j)

<(̃ri j)
, (2.123a)

t̃i j = ti j eiεi j , ti j = |̃ti j|, tan εi j =
=(̃ti j)

<(̃ti j)
, (2.123b)



2.5 REFLECTION AND TRANSMISSION 55

where ri j and ti j are the absolute values, and δi j and εi j the phase angles of the coefficients. Care
must be taken in the evaluation of phase angles, since the tangent has a period of π, rather than
2π: The correct quadrant for δi j and εi j is found by inspecting the signs of the real and imaginary
parts of r̃i j and t̃i j, respectively. This calculation leads, after more algebra, to the reflectivity,
Rfilm, and transmissivity, Tfilm, of the thin film as

Rfilm = r̃̃r∗ =
r2

12 + 2r12r23 e−κ2d cos(δ12 − δ23 + ζ2) + r2
23 e−2κ2d

1 + 2r12r23 e−κ2d cos(δ12 + δ23 − ζ2) + r2
12r2

23 e−2κ2d
, (2.124)

Tfilm =
n3

n1
t̃ t̃∗ =

τ12τ23 e−κ2d

1 + 2r12r23 e−κ2d cos(δ12 + δ23 − ζ2) + r2
12r2

23 e−2κ2d
, (2.125)

where

r2
i j = ρi j =

(ni − nj)2 + (ki − k j)2

(ni + nj)2 + (ki + k j)2 , (2.126a)

nj

ni
t2
i j = τi j =

ni

nj

4(n2
i + k2

i )

(ni + nj)2 + (ki + k j)2 , (2.126b)

tan δi j =
2(nik j − njki)

n2
i + k2

i − (n2
j + k2

j )
, (2.126c)

κi = 4πη0ki, ζi = 4πη0nid. (2.126d)

The correct quadrant for δi j is found by checking the sign of both the numerator and denominator
in equation (2.126c) (which, while different from the real and imaginary parts of r̃i j, carry their
signs). If both adjacent media, i and j, are dielectrics then r̃i j = ri j is real. In that case we set δi j = 0
and let ri j carry a sign. The definition of the thin film transmissivity includes the factor (n3/n1),
since it is the magnitude of the transmitted and incoming Poynting vector, equation (2.42), that
must be compared.

Example 2.6. Determine the reflectivity and transmissivity of a 5µm thick manganese sulfide (MnS)
crystal (n = 2.68, k� 1), suspended in air, for the wavelength range between 1µm and 1.25µm.

Solution
Assuming n1 = n3 = 1, k1 = k2 = k3 = 0, and n2 = 2.68 and substituting these into equations (2.126) leads
to

r12 = r23 =
n2 − 1
n2 + 1

; t12 =
2

n2 + 1
, t23 =

2n2

n2 + 1
;

tan δ12 =
0

1 − n2
2

= 0; tan δ23 =
0

n2
2 − 1

= 0.

Since the real part of r̃12 is negative, i.e., 1 − n2
2 < 0, it follows that δ12 = π. By similar reasoning δ23 = 0.

Alternatively, since all media are dielectrics, we could have set δ12 = δ23 = 0 and r12 = −r23. Thus, with
κ2 = 0, the reflectivity and transmissivity of a dielectric thin film follow as

Rfilm =
2ρ12(1 − cos ζ2)

1 − 2ρ12 cos ζ2 + ρ2
12

, (2.127)

Tfilm =
τ2

12

1 − 2ρ12 cos ζ2 + ρ2
12

. (2.128)

It is a simple matter to show that τ12 = τ23 = 1 − ρ12 and, therefore, Rfilm + Tfilm = 1 for a dielectric
medium. Substituting numbers for MnS gives ρ12 = 0.2084 and

Rfilm =
0.3995(1 − cos ζ2)
1 − 0.3995 cos ζ2

, Tfilm =
0.6005

1 − 0.3995 cos ζ2
,
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FIGURE 2-13
Normal reflectivity of a thin film with interference effects.

with ζ2 = 4πn2 dη0 = 168.4µm η0 = 168.4µm/λ0. Rfilm and Tfilm are periodic with a period of ∆η0 =
2π/168.4µm = 0.0373µm−1. At λ0 = 1µm this fact implies ∆λ0 = λ2

0∆η0 = 0.0373µm. The reflectivity
of the dielectric film in Fig. 2-13 shows a periodic reflectivity with maxima of 0.5709 (at ζ2 = π, 3π, . . .).
For values of ζ2 = 2π, 4π, . . ., the reflectivity of the layer vanishes altogether. Also shown is the case of a
slightly absorbing film, with k2 = 0.01. Maximum and minimum reflectivity (as well as transmissivity)
decrease and increase somewhat, respectively. This effect is less pronounced at larger wavelengths, i.e.,
wherever the absorption coefficient κ2 is smaller [cf. equation (2.126d)].

While equations (2.124) through (2.126) are valid for arbitrary slab thicknesses, their ap-
plication to thick slabs becomes problematic as well as unnecessary. Problematic because (i)
for d � λ0 the period of reflectivity oscillations corresponds to smaller values of ∆λ0 between
extrema than can be measured, and (ii) for d � λ0 it becomes rather unlikely that the dis-
tance d remains constant within a fraction of λ0 over an extended area. Thick slab reflectivities
and transmissivities may be obtained by averaging equations (2.124) and (2.125) over a period
through integration, which results in

Rslab = ρ12 +
ρ23(1 − ρ12)2 e−2κ2d

1 − ρ12ρ23 e−2κ2d
, (2.129)

Tslab =
(1 − ρ12)(1 − ρ23) e−κ2d

1 − ρ12ρ23 e−2κ2d
, (2.130)

where for Tslab use has been made of the fact that k1 and k2 must be very small, if an appreciable
amount of energy is to reach Medium 3. The same relations for thick sheets without wave
interference will be developed in the following chapter through geometric optics.

Oblique Incidence

Knittl [7] has shown that equations (2.124) and (2.125) remain valid for each polarization for
oblique incidence if the interface reflectivities, ρi j, and transmissivities, τi j, are replaced by their
directional values; see, for example, equations (2.113). We will state the final result here, mostly
following the development of Zhang [9]. The field reflection and transmission coefficients are
then expressed as

r̃ = r̃12 +
t̃12̃t21r̃23e−2iβ

1 − r̃21r̃23e−2iβ , (2.131a)
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t̃ =
t̃12̃t23e−iβ

1 − r̃21r̃23e−2iβ , (2.131b)

which are known as Airy’s formulae. Here the interface reflectivity and transmissivity coefficients
are given by equations (2.89) through (2.92) for dielectrics, and by equations (2.111) and (2.112)
for absorbing media, and the phase shift in Medium 2 is, for a dielectric film, calculated from

β = 2πη0nid cosθ2. (2.131c)

The overall reflectivity of the film follows from

Rfilm = r̃̃r∗ =

∣∣∣∣∣∣̃r12 +
t̃12̃t21r̃23e−2iβ

1 − r̃21r̃23e−2iβ

∣∣∣∣∣∣
2

, (2.132)

and, if Media 1 and 3 are dielectrics, the film transmissivity is evaluated as

Tfilm =
n3 cosθ3

n1 cosθ1
t̃ t̃∗ =

n3 cosθ3

n1 cosθ1

∣∣∣∣∣∣ t̃12̃t23e−iβ

1 − r̃21r̃23e−2iβ

∣∣∣∣∣∣ . (2.133)

As for single interfaces, for random polarization equations (2.132) and (2.133) are evaluated
independently for parallel and perpendicular polarizations, followed by averaging.

2.6 THEORIES FOR OPTICAL
CONSTANTS

If the radiative properties of a surface—absorptivity, emissivity, and reflectivity—are to be theo-
retically evaluated from electromagnetic wave theory, the complex index of refraction, m, must
be known over the spectral range of interest. A number of classical and quantum mechanical
dispersion theories have been developed to predict the phenomenological coefficients ε (electrical
permittivity) and σe (electrical conductivity) as functions of the frequency (or wavelength) of
incident electromagnetic waves for a number of different interaction phenomena and types of
surfaces. While the complex index of refraction, m = n− ik, is most convenient for the treatment
of wave propagation, the complex dielectric function (or relative permittivity), ε = ε′ − iε′′, is more
appropriate when the microscopic mechanisms are considered that determine the magnitude
of the phenomenological coefficients. The two sets of parameters are related by the expression

ε = ε′ − iε′′ =
ε
ε0
− i

σe

2πνε0
= m2 (2.134)

[compare equations (2.31) through (2.35)] and, therefore,

ε′ =
ε
ε0

= n2
− k2, (2.135a)

ε′′ =
σe

2πνε0
= 2nk, (2.135b)

n2 =
1
2

(
ε′ +

√

ε′2 + ε′′2
)
, (2.136a)

k2 =
1
2

(
−ε′ +

√

ε′2 + ε′′2
)
, (2.136b)

where we have again assumed the medium to be nonmagnetic (µ = µ0).
Any material may absorb or emit radiative energy at many different wavelengths as a result

of impurities (presence of foreign atoms) and imperfections in the ionic crystal lattice. However,
a number of phenomena tend to dominate the optical behavior of a substance. In the frequency
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Electron energy bands and band gaps in a solid (shading indicates amount of electrons filling the bands) [2].

range of interest to the heat transfer engineer (ultraviolet to midinfrared), electromagnetic
waves are primarily absorbed by free and bound electrons or by change in the energy level of
lattice vibration (converting a photon into a phonon, i.e., a quantum of lattice vibration). Since
electricity is conducted by free electrons, and since free electrons are a major contributor to a
solid’s ability to absorb radiative energy, there are distinct optical differences between conductors
and nonconductors of electricity. Every solid has a large number of electrons, resulting in a near-
continuum of possible energy states (and, therefore, a near-continuum of photon frequencies
that can be absorbed). However, these allowed energy states occur in bands. Between the bands
of allowed energy states may be band gaps, i.e., energy states that the solid cannot attain. This
is schematically shown in Fig. 2-14. If a material has a band gap between completely filled
and completely empty energy bands, the material is a nonconductor, i.e., an insulator (wide band
gap), or a semiconductor (narrow band gap). If a band of electron energy states is incompletely
filled or overlaps another, empty band, electrons can be excited into adjacent energy states
resulting in an electric current, and the material is called a conductor. Electronic absorption by
nonconductors is likely only for photons with energies greater than the band gap, although
sometimes two or more photons may combine to bridge the band gap. An intraband transition
occurs when an electron changes its energy level, but stays within the same band (which can
only occur in a conductor); if an electron moves into a different band (i.e., overcomes the band
gap) the movement is termed an interband transition (and can occur in both conductors and
nonconductors). This difference between conductors and nonconductors causes substantially
different optical behavior: Insulators tend to be transparent and weakly reflecting for photons
with energies less than the band gap, while metals tend to be highly absorbing and reflecting
between the visible and infrared wavelengths [2].

During the beginning of the century Lorentz [10]∗ developed a classical theory for the
evaluation of the dielectric function by assuming electrons and ions are harmonic oscillators (i.e.,
springs) subjected to forces from interacting electromagnetic waves. His result was equivalent to

∗Hendrik Anton Lorentz (1853–1928)
Dutch physicist. Lorentz studied at Leiden University, where he subsequently served as
professor of mathematical physics for the rest of his life. His major work lay in refining the
electromagnetic theory of Maxwell. For his theory that the oscillations of charged particles
inside atoms were the source of light, he and his student Pieter Zeeman received the 1902
Nobel Prize in Physics. Lorentz is also famous for his Lorentz transformations, which
describe the increase of mass of a moving body. These laid the foundation for Einstein’s
special theory of relativity.
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FIGURE 2-15
Lorentz model for (a) the dielectric function, (b) the index of refraction, and normal, spectral reflectivity.

the subsequent quantum mechanical development, and may be stated, as described by Bohren
and Huffman [2], as

ε(ν) = 1 +
∑

j

ν2
pj

ν2
j − ν

2 + iγjν
, (2.137)

where the summation is over different types of oscillators, νpj is known as the plasma frequency
(and ν2

pj is proportional to the number of oscillators of type j), νj is the resonance frequency, and
γj is the damping factor of the oscillators. Thus, the dielectric function may have a number of
bands centered at νj, which may or may not overlap one another. Inspecting equation (2.137), we
see that for ν� νj the contribution of band j to ε vanishes, while for ν� νj it goes to the constant
value of (νpj/νj)2. Therefore, for any nonoverlapping band i, we may rewrite equation (2.137) as

ε(ν) = ε0 +
ν2

pi

ν2
i − ν

2 + iγiν
, (2.138)

where ε0 incorporates the contributions from all bands with νj > νi. Equation (2.138) may be
separated into its real and imaginary components, or

ε′ = ε0 +
ν2

pi(ν
2
i − ν

2)

(ν2
i − ν

2)2 + γ2
i ν

2
, (2.139a)

ε′′ =
ν2

piγiν

(ν2
i − ν

2)2 + γ2
i ν

2
. (2.139b)

The frequency dependence of the real and imaginary parts of the dielectric function for a single
oscillating band is shown qualitatively in Fig. 2-15; also shown are the corresponding curves
for the real and imaginary parts of the complex index of refraction as evaluated from equa-
tion (2.136), along with the qualitative behavior of the normal, spectral reflectivity of a surface
from equation (2.114). A strong band with k � 0 results in a region with strong absorption
around the resonance frequency and an associated region of high reflection: Incoming photons
are mostly reflected, and those few that penetrate into the medium are rapidly attenuated. On
either side outside the band the refractive index n increases with increasing frequency (or de-
creasing wavelength); this is called normal dispersion. However, close to the resonance frequency,
n decreases with increasing frequency; this decrease is known as anomalous dispersion. Note that
ε′ may become negative, resulting in spectral regions with n < 1.

All solids and liquids may absorb photons whose energy content matches the energy differ-
ence between filled and empty electron energy levels on separate bands. Since such transitions
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require a substantial amount of energy, they generally occur in the ultraviolet (i.e., at high fre-
quency). A near-continuum of electron energy levels results in an extensive region of strong
absorption (and often many overlapping bands). It takes considerably less energy to excite the
vibrational modes of a crystal lattice, resulting in absorption bands in the midinfrared (around
10µm). Since generally few different vibrational modes exist in an isotropic lattice, such tran-
sitions can often be modeled by equation (2.137) with a single band. In the case of electrical
conductors photons may also be absorbed to raise the energy levels of free electrons and of
bound electrons within partially filled or partially overlapping electron bands. The former,
because of the nearly arbitrary energy levels that a free electron may assume, results in a single
large band in the far infrared; the latter causes narrower bands in the ultraviolet to infrared.
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Problems

2.1 Show that for an electromagnetic wave traveling through a dielectric (m1 = n1), impinging on the
interface with another, optically less dense dense dielectric (n2 < n1), light of any polarization is
totally reflected for incidence angles larger than θc = sin−1(n2/n1).
Hint: Use equations (2.105) and (2.106) with k2 = 0.

2.2 Derive equations (2.109) using the same approach as in the development of equations (2.89) through
(2.92).
Hint: Remember that within the absorbing medium, w = w′ − iw′′ = w′ŝ − iw′′n̂; this implies that E0

is not a vector normal to ŝ. It is best to assume E0 = E‖ê‖ + E⊥ê⊥ + Esŝ.

2.3 Find the normal spectral reflectivity at the interface between two absorbing media.
Hint: Use an approach similar to the one that led to equations (2.89) and (2.90), keeping in mind
that all wave vectors will be complex, but that the wave will be homogeneous in both media, i.e., all
components of the wave vectors are colinear with the surface normal.

2.4 A circularly polarized wave in air is incident upon a smooth dielectric surface (n = 1.5) with a direction
of 45◦ off normal. What are the normalized Stokes’ parameters before and after the reflection, and
what are the degrees of polarization?

2.5 A circularly polarized wave in air traveling along the z-axis is incident upon a dielectric surface
(n = 1.5). How must the dielectric–air interface be oriented so that the reflected wave is a linearly
polarized wave in the y-z-plane?

2.6 A polished platinum surface is coated with a 1µm thick layer of MgO.

(a) Determine the material’s reflectivity in the vicinity of λ = 2µm (for platinum at 2µm mPt =
5.29 − 6.71 i, for MgO mMgO = 1.65 − 0.0001 i).

(b) Estimate the thickness of MgO required to reduce the average reflectivity in the vicinity of 2µm
to 0.4. What happens to the interference effects for this case?


