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19.1 INTRODUCTION

In recent years, there has been increasing interest in the analysis of radiative transfer in multi-
dimensional absorbing, emitting, and scattering media with collimated irradiation. By colli-
mated irradiation we mean external radiation that penetrates from the outside into a partici-
pating medium (as opposed to emission from a bounding surface), with all light waves being
parallel to one another (or approximately so). Typical examples include solar radiation through
the atmosphere and into the ocean, laser irradiation of particles or liquids, and so on. With the
advent of short-pulsed lasers with pulse durations measured in pico- or even femtoseconds,
transient radiation effects have also become of interest. Since, in engineering applications, vir-
tually all transient radiation effects are due to short-pulsed lasers, these two topics are treated
jointly in the present chapter. By collimated irradiation we mean that the intensity incident on
a surface dA at location rw on the bounding surface of the medium, as shown in Fig. 19-1, may
be written as

Iow(rw, ŝ) = qo(rw) δ [ŝ − ŝo(rw)]
= qo(rw) δ

[
µ − µo(rw)

]
δ[ψ − ψo(rw)], (19.1)

where δ is the Dirac-delta function, which is here defined as1

δ(x) =

 0, |x| > ε,

lim
ε→0

1
2ε
, |x| < ε, (19.2a)∫

4π
f (ŝ) δ(ŝ − ŝo) dΩ =

∫ 2π

0

∫ +1

−1
f (µ,ψ) δ(µ − µo) δ(ψ − ψo) dµ dψ = f (µo, ψo), (19.2b)

and
ŝo = cosθon̂ + sinθo(cosψo t̂1 + sinψo t̂2), µo = cosθo, (19.3)

is the direction from which the collimated radiation impinges onto the medium (with n̂ the
surface normal pointing into the medium and t̂1 and t̂2 two orthogonal unit vectors lying on the

1For a definition of the standard, one-dimensional Dirac-delta function see equation (11.99) in Section 11.9.
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FIGURE 19-1
Collimated irradiation impinging on an arbitrary surface: (a) solar irradiation, (b) laser irradiation.

boundary surface). Equation (19.1) implies that the incident intensity is zero for all directions
except for ŝo, where it is infinitely large. The total heat flux within the collimated irradiation is
determined from

qo =

∫
4π

Iow(ŝ) ŝ dΩ = qo

∫
4π

ŝ δ(ŝ − ŝo) dΩ = qoŝo, (19.4)

that is, qo is the total radiative heat flux of the collimated irradiation through a surface normal
to the rays. The component penetrating into the medium is then

qc =
[
1 − ρ(rw, ŝo)

]
qoŝc, (19.5)

where ρ is the reflectance of the interface in the direction of ŝo. Since the irradiation penetrating
into the medium may be refracted, the unit direction vector inside the medium is denoted as
ŝc, which may be different from ŝo. As indicated in the above expressions the magnitude of
the irradiation qo, as well as the direction of irradiation, ŝo, may vary over the surface of the
enclosure, while the reflectance of the surface may vary with position and direction.

In a strictly mathematical sense equation (19.1) introduces nothing new: Collimated irradi-
ation could simply be treated as “strongly directional emission.” However, the discontinuity
of intensity with direction causes problems with analytical as well as numerical solution tech-
niques, thus warranting a separate approach for this type of problem.

Most earlier works on collimated radiation dealt with solar radiation and other atmospheric
or astrophysical applications. They are, therefore, generally limited to one-dimensional cases
with uniform irradiation of a planar medium. For this simple case, some exact and approximate
solutions have been given by Irvine [1], who used the Henyey–Greenstein phase function, a
scattering phase function that adequately approximates the anisotropic scattering behavior of
a large number of media [2], as given by equation (12.95). The identical problem for Rayleigh
scattering was treated by Kubo [3] without, however, reporting any results. Armaly and El-
Baz [4] found some approximate solutions for isotropic scattering in a finite-thickness slab using
the kernel approximation. Their application was in the area of solar collectors. A similar problem
was treated by Houf and Incropera [5], who investigated different approximate techniques for
solar irradiation of aqueous media.

Only with the advent of the laser as a research and manufacturing tool has nonsolar colli-
mated radiation received some research attention. Smith [6] investigated the case of a uniform
strip of collimated radiation incident on a semi-infinite medium. The resulting two-dimensional
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integral equation was reduced to one-dimensional form using Fourier transforms. Hunt [7] in-
vestigated the effect of a cylindrical collimated beam impinging upon a finite layer. A solution
was found for the basic case of Bessel-function varying intensity using Green’s functions. The
first ones to apply this theory to laser radiation appear to be Beckett and coworkers [8], who
investigated numerically the effect of a cylindrical beam with Gaussian variation penetrating
through a finite layer. They showed how a diagnostic laser beam can be used to deduce radiative
properties of an optically thick slab, such as single-scattering albedo, extinction, and absorption
coefficients. Finally, a number of papers by Crosbie and coworkers [9–12] dealt with exact
solutions to the general two-dimensional problem of collimated radiation impinging onto an
absorbing–scattering layer. First, they treated collimated strip sources irradiating a semi-infinite
body [9]; later, they discussed cylindrical beams falling on a semi-infinite body [10, 11]. Colli-
mated irradiation onto a rectangular medium was investigated by Crosbie and Schrenker [12]
for isotropic scattering, while Kim and Lee [13] demonstrated the accuracy of the high-order
discrete ordinates method by applying it to the same problem with anisotropic scattering. The
exact solutions may be used as benchmarks for evaluation of approximate methods and may be
necessary in cases where the requirement for highly accurate results justifies going through the
trouble usually associated with these methods. In the area of heat transfer, however, approxi-
mate solutions often result in acceptable predictions for most practical situations.

Recently, some more advanced problems have also become of interest. Tan and coworkers
considered combined conduction and radiative laser heating of glass [14], while Lacroix and
colleagues [15] and Xu and Song [16, 17] applied the discrete ordinates method to analyze the
interaction of a laser beam with the plume or plasma generated by the laser. El Ammouri
et al. [18] showed how laser beam fluctuations, caused by temperature fluctuations, can be
employed as a tool to measure turbulence levels. Along the same line Ben-Abdallah [19] and
coworkers analyzed the curved beam path that a laser traverses in a gas with varying refractive
index.

Lasers with ultra-short pulse lengths are utilized heavily in the emerging field of nan-
otechnology and also in biomedical engineering [20]. The radiative fields generated by such
short-pulsed lasers may differ from those discussed in this book in two important aspects: (1)
since light travels only 300µm during a time span of 1 ps, transient effects must be accounted
for, and (2) packing a fixed amount of energy into a pulse of extremely short duration leads to
temporally extreme intensities. The former requires consideration of the transient term in the
RTE, equation (10.20), and has been investigated by a number of researchers [21–32]. At very
high intensities, many molecules are promoted to excited levels, which have different absorption
behavior, making the absorption coefficient a function of intensity; this is known as saturable
absorption [33]. Depending on the relative magnitude of absorption cross-sections, this may lead
to bleaching (absorption coefficient decreases with intensity) or darkening (absorption coefficient
increases with intensity) [34]. In addition, at very high intensities molecules may absorb more
than a single photon at the same time, raising the molecule to an excited electronic state. This
is known as multiphoton absorption [35–37]. If the total absorbed photon energy is high enough
this, in turn, may lead to ionization or dissociation, which is known as photolysis. Several photo-
chemical and photothermal models have been developed to describe short-pulse laser ablation
of materials [38–41]. In biomedical engineering short-pulsed lasers are seen as promising tools
for optical imaging (of tumors, etc.) [24, 42, 43] and for minimally invasive surgery (such as
ablation of tumors) [44].

In this chapter we shall describe how problems involving radiative transfer in an absorbing,
emitting, and anisotropically scattering medium of arbitrary geometry exposed to arbitrary
collimated irradiation2 are dealt with by separating the collimated radiation (as it travels through
the medium) from the rest of the radiation field. The problem is thus reduced to one without

2We shall limit our discussion to unpolarized irradiation, even though laser sources are always polarized (circularly
or linearly). Polarization together with specular reflections may result in a number of interesting effects, for example,
in the area of laser processing of materials [45, 46].
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collimated irradiation, but with a modified radiation source term (now including a source
due to the scattered part of the collimated irradiation). We shall see that it is possible to
incorporate collimated irradiation readily into well-known approximate methods such as the
P1-approximation. Because of its emerging importance, the chapter also includes a very brief
section on transient effects during short-pulsed laser irradiation.

19.2 REDUCTION OF THE PROBLEM

The equation of transfer for an absorbing, emitting, and anisotropically scattering medium is
given by equation (10.18) as

ŝ · ∇I(r, ŝ) = κ Ib(r) − βI(r, ŝ) +
σs

4π

∫
4π

I(r, ŝ′) Φ(ŝ, ŝ′) dΩ′. (19.6)

As usual, the lack of a spectral subscript implies that we deal either with spectral intensity
or with a gray medium. We shall limit ourselves here to media with diffusely emitting and
reflecting boundaries. Then the boundary condition for equation (19.6) is, for any location rw
on the surface,

I(rw, ŝ) =
[
1 − ρ(rw)

]
Iow(rw, ŝ) + ε(rw)Ibw(rw) +

ρ(rw)
π

∫
n̂·ŝ′<0

I(rw, ŝ′) |n̂ · ŝ′| dΩ′. (19.7)

Here the first term on the right-hand side represents penetration of collimated radiation, the
second term describes emission from the surrounding medium, and the last term is due to
diffuse reflection at the interface. This distribution is shown schematically in Fig. 19-2a. Since
we assume here diffuse emission and reflection and are looking at spectral relations or a gray
medium, we also have ε = 1 − ρ.

We now separate the intensity within the medium into two parts: (i) the remnant of the
collimated beam after partial extinction, by absorption and scattering, along its path, and (ii) a
fairly diffuse part, which is the result of emission from the boundaries, emission from within
the medium, and the radiation scattered away from the collimated irradiation. Thus, we set

I(r, ŝ) = Ic(r, ŝ) + Id(r, ŝ), (19.8)

where the collimated remnant of the irradiation obeys the equation of transfer

ŝ · ∇Ic(r, ŝ) = −βIc(r, ŝ), (19.9)

subject to the boundary condition

Ic(rw, ŝ) =
[
1 − ρ(rw)

]
qo(rw) δ [ŝ − ŝc(rw)] . (19.10)

Equations (19.9) and (19.10) are readily solved as3

Ic(r, ŝ) =
[
1 − ρ(rw)

]
qo(rw) δ [ŝ − ŝc(rw)] e−τc , (19.11)

where τc =
∫ s

0 β ds′ and s = |r − rw| as indicated in Fig. 19-2b. Substituting equations (19.8) and
(19.9) into equation (19.6) gives the equation of transfer for the noncollimated radiation as

1
β

ŝ · ∇Id(r, ŝ) = ŝ · ∇τId(r, ŝ) = −Id(r, ŝ) +
ω
4π

∫
4π

Id(r, ŝ′) Φ (ŝ, ŝ′) dΩ′

+ (1 − ω) Ib(r) + ωSc(r, ŝ), (19.12)

3For simplicity of notation, equation (19.11) and the following development assumes collimated radiation from a
single direction; if multiple collimated sources are present Ic is found by summation.
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FIGURE 19-2
Radiative intensity at the surface of an enclosure with collimated irradiation: (a) outgoing intensity, (b) incoming
intensity.

where the abbreviation

Sc(r, ŝ) ≡
1

4π

∫
4π

Ic(r, ŝ′) Φ(ŝ, ŝ′) dΩ′ =
1

4π
[
1 − ρ(rw)

]
qo(rw) e−τcΦ(ŝ, ŝc) (19.13)

has been introduced and ∇τ again implies that the gradient is to be taken with respect to nondi-
mensional optical coordinates. Thus, Sc is a radiative source term resulting from radiation scat-
tered away from the collimated beam; it behaves similarly to Ib, although this “emission” may
not be isotropic (in the case of anisotropic scattering). Similarly, substituting equations (19.8)
and (19.10) into equation (19.7) gives the boundary condition for equation (19.12) as

Id(rw, ŝ) = εIbw(rw) +
ρ(rw)
π

[
Hc(rw) +

∫
n̂·ŝ′<0

Id(rw, ŝ′) |n̂ · ŝ′| dΩ′
]
, (19.14)

where

Hc(rw) ≡
∫

n̂·ŝ′<0
Ic(rw, ŝ′) |n̂ · ŝ′| dΩ′ =

[
1 − ρ(r′w)

]
qo(r′w)|n̂ · ŝ′c| e

−τc (19.15)

is a surface irradiation term due to the collimated beam, and its diffuse reflection results in
an additional surface source similar to Ibw. In this expression r′w is the location at which the
collimated beam enters the medium with a direction of ŝ′c, and rw is the next point on the
enclosure surface that the beam hits after traversing through the medium, as shown in Fig. 19-
2b.

Inspection of equations (19.12) and (19.14) shows that, for isotropic scattering, the intensity
field for Id is readily determined from standard methods, after replacing Ib within the medium
by Ib + (σs/κ)Sc, and Ibw at the enclosure surface by Ibw + (ρ/ε)Hc/π. In the case of anisotropic
scattering the emission term Sc becomes direction-dependent, which may necessitate slight
changes in the solution procedure.

Example 19.1. Consider a plane-parallel slab of an absorbing and isotropically scattering medium as
shown in Fig. 19-3. The medium is gray (with absorption coefficient κ, scattering coefficient σs, and a
refractive index of n = 1), cold (i.e., essentially nonemitting) and of constant thickness L. At the top
(z = 0) the layer is bounded by a nonparticipating gas (n = 1) and is exposed to solar radiation impinging
at θo off-normal. At the bottom of the layer (z = L) the medium is bounded by a cold black surface.
Determine radiative heat flux (and its divergence) as functions of depth.
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FIGURE 19-3
Geometry for Example 19.1.

Solution
Since both media have the same index of refraction the interface reflectivity is ρ = 0 and ŝc = ŝo; from
equation (19.11) we find immediately

Ic(τ, ŝ) = qs e−τ/µoδ(ŝ − ŝo),

as well as
Sc(τ) =

Gc

4π
(τ) =

qs

4π
e−τ/µo ,

qc(τ) = qs e−τ/µo ŝo.

The heat flux vector due to collimated irradiation has two components, one in the direction of τ, the
other in a direction normal to it (in the plane formed by ŝo and the surface normal). Thus, the overall
problem is two-dimensional. However, inspection of the source term in equation (19.12) shows that the
source is isotropic, as are the boundary conditions for equation (19.12). Therefore, Id can depend only
on distance perpendicular to the surfaces, τ, and on polar angle. Thus,

µ
dId

dτ
+ Id = ω

[
1

4π

∫
4π

Id dΩ′ + Sc

]
=
ω
4π

[Gd(τ) + Gc(τ)] .

The boundary conditions are

τ = 0 : I(0, ŝ) = qsδ(ŝ − ŝo), 0 ≤ θ <
π
2
,

τ = τL : I(τL, ŝ) = 0,
π
2
< θ ≤ π,

or, after subtracting the collimated component,

τ = 0 : Id(0, µ) = 0, 0 < µ ≤ 1,

τ = τL : Id(τ, µ) = 0, −1 ≤ µ < 0.

Therefore, with S = (ω/4π)(Gd + Gc), the solution for Id is, from equation (14.21),

Gd(τ) = 2π
∫ τL

0

ω
4π

(Gd + Gc)(τ′)E1(|τ − τ′|) dτ′.

In nondimensional form, with Φ(τ) = (Gd + Gc)/qs, this expression becomes

Φ(τ) − e−τ/µo =
ω
2

∫ τL

0
Φ(τ′)E1(|τ − τ′|) dτ′.
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FIGURE 19-4
Nondimensional radiative heat flux in a purely scattering layer with collimated irradiation.

This integral equation must be solved numerically in the same fashion as equation (14.43). Once the
function Φ(τ) has been determined, the diffuse component of the heat flux is found from equation (14.22)
as

qd(τ) = qd(τ) k̂ = 2π
∫ 1

−1
Idµ dµ k̂,

qd(τ) = 2π
{∫ τ

0

ω
4π

(Gd + Gc)(τ′)E2(τ − τ′) dτ′ −
∫ τL

τ

ω
4π

(Gd + Gc)(τ′)E2(τ′ − τ) dτ′
}
.

Finally, the total heat flux in the τ-direction, on a nondimensional basis, is

Ψ =
qc ·k̂+qd

qs
= µo e−τ/µo +

ω
2

[∫ τ

0
Φ(τ′)E2(τ−τ′) dτ′ −

∫ τL

τ
Φ(τ′)E2(τ′−τ) dτ′

]
.

The divergence of the radiative heat flux is found from equation (10.59) as

∇τ · q = (1 − ω)(4πIb − G) = −(1 − ω)(Gc + Gd),

or in nondimensional form
1
qs
∇τ · q = −(1 − ω)Φ.

Some results for a purely scattering medium (ω = 1) are shown in Fig. 19-4. For that case we find
∇ · q = 0 and, since the tangential component of qc does not depend on tangential direction, q · k̂ =
const and Ψ = const. Thus, evaluating the heat flux at τ = 0, we get

Ψ(ω=1) = µo −
1
2

∫ τL

0
Φ(τ′)E2(τ′) dτ′.

19.3 THE MODIFIED P1-APPROXIMATION
WITH COLLIMATED IRRADIATION

As for problems without collimated irradiation, exact or approximate solutions to equation (19.12),
together with its boundary condition (19.14), may be found using a variety of different methods.
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As an illustration we will show here how the P1-approximation may be applied to problems
with collimated irradiation, following the development of Modest and Tabanfar [47]. The P1 or
differential approximation is simple to use (requiring only the solution of an elliptic differential
equation) and powerful (applicable to multidimensional geometries, as well as to anisotropic
scattering). Unfortunately, the fact that the P1-approximation is accurate only for smoothly
varying (with direction) intensity fields makes the method particularly unsuitable for prob-
lems with collimated irradiation. However, once the collimated intensity, Ic, has been removed
from the intensity field, similar to the development in Section 16.8, the resulting modified P1-
approximation may be expected to give accurate solutions to equations (19.12) and (19.14) for
many situations. To apply the method, we assume again that the remnant intensity can deviate
only slightly from isotropic conditions or, from equation (16.31),

Id(r, ŝ) '
1

4π
[
Gd(r) + 3qd(r) · ŝ

]
. (19.16)

As in Section 16.5 we shall limit ourselves to linear-anisotropic scattering,

Φ(ŝ, ŝ′) = 1 + A1ŝ · ŝ′, (19.17)
so that

Sc =
1

4π

∫
4π

Ic(ŝ′)(1 + A1ŝ · ŝ′) dΩ′

=
1

4π
(
Gc + A1qc · ŝ

)
=

1
4π

[1 − ρ(rw)]q(rw) e−τc (1 + A1ŝ · ŝc) . (19.18)

Now, integrating equation (19.12) over all directions (zeroth moment), we obtain

∇τ · qd = (1 − ω)(4πIb − Gd) + ωGc. (19.19)

Similarly, integrating equation (19.12) after multiplication with ŝ and invoking equation (19.16),
we obtain

1
3
∇τGd = −

(
1 −

A1ω
3

)
qd +

A1ω
3

qc. (19.20)

As for the standard P1-approximation, the necessary boundary conditions for this set of equa-
tions are found by demanding continuity of heat flux normal to the surface at the boundary,
that is,

qd · n̂(rw) =

∫
4π

Id(rw, ŝ) n̂ · ŝ dΩ, (19.21)

with Id(rw, ŝ) from equation (19.16) for incoming directions (n̂ · ŝ < 0), and from equation (19.14)
for outgoing directions (n̂ · ŝ > 0). Calculating first the diffuse irradiation leads to

−Hd(rw) =

∫
n̂·ŝ<0

Id(rw, ŝ) n̂ · ŝ dΩ =
1

4π

∫ 2π

0

∫ π

π/2

(
Gd + 3qd · ŝ

)
n̂ · ŝ dΩ

=
1
2

∫ π

π/2

(
Gd + 3qd ·n̂ cosθ

)
cosθ sinθ dθ = −

Gd

4
+

qd ·n̂
2

. (19.22)

Thus,
qd · n̂ = επIbw + ρ (Hc + Hd) −Hd,

or, after substituting equation (19.22),

r = rw : 2qd · n̂ =
ε(4πIbw − Gd) + 4(1 − ε)Hc

2 − ε
. (19.23)
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The derivation of equations (19.19) and (19.20) is very similar to the development of the standard
P1-approximation, which has been given in some greater detail in Section 16.5.

Example 19.2. Find the solution to the previous example using the P1-approximation.

Solution
As for the exact solution we find

Gc = qs e−τ/µo , qc = Gcŝo,

and we realize again that Gd and qd = qdk̂ depend on τ (optical distance perpendicular to the layer)
only. Thus, from equations (19.19) and (19.20) and their boundary conditions (19.23), we find that

dqd

dτ
= −(1 − ω)Gd + ωGc,

dGd

dτ
= −3qd,

τ = 0 : 2qd = −Gd,

τ = τL : −2qd = −Gd.

Since the solution procedure for this equation is different for ω = 1 (as opposed to ω < 1), and since we
would like to compare the present results with exact ones shown in Fig. 19-4, we shall limit the rest of
our discussion to ω = 1. Then

dqd

dτ
= qs e−τ/µo , or qd = −µoqs e−τ/µo + C1,

dGd

dτ
= −3qd, or Gd = −3µ2

oqs e−τ/µo − 3C1τ + C2.

It follows from the boundary conditions that

τ = 0 : 2C1 + C2 = (2 + 3µo)µoqs,

τ = τL : (2 + 3τL) C1 − C2 = (2 − 3µo)µoqs e−τ/µo ,

or

C1 =
2 + 3µo + (2 − 3µo) e−τL/µo

4 + 3τL

µo qs,

qd =

[
2 + 3µo + (2 − 3µo) e−τL/µo

4 + 3τL

− e−τ/µo

]
µoqs.

Finally,

Ψ =
qc · k̂ + qd

qs
=

2 + 3µo + (2 − 3µo) e−τL/µo

4 + 3τL

µo,

which, as discussed in the previous example, is constant across the layer. This nondimensional heat flux
is compared with the exact result in Fig. 19-4. It is seen that the P1-approximation gives good accuracy
for all cases shown in that figure.

Some two-dimensional examples for the P1-approximation with collimated irradiation have
been given by Modest and Tabanfar [47], comparing with exact results by Crosbie and Koewing
[48] and Crosbie and Dougherty [10]. The accuracy of the P1-approximation was found to
be excellent in most cases, since it is generally applied to an “emitting” medium with cold
boundaries. As expected, the accuracy of the P1-approximation decreases if sharp gradients of
the radiative source occur within the medium (e.g., a source resulting from scattering of a highly
focused, penetrating laser beam).
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19.4 SHORT-PULSED COLLIMATED
IRRADIATION WITH TRANSIENT
EFFECTS

If a laser pulse of extremely short duration, usually accompanied by strong temporal variation
over the duration of the pulse, impinges on a medium, the transient term in the radiative transfer
equation becomes of importance. Therefore, according to equation (10.20), equation (19.12) must
be reformulated as

1
βc
∂Id

∂t
(r, ŝ, t) +

1
β

ŝ · ∇Id(r, ŝ) = −Id(r, ŝ) +
ω
4π

∫
4π

Id(r, ŝ′) Φ (ŝ, ŝ′) dΩ′

+ (1 − ω) Ib(r) + ωSc(r, ŝ), (19.24)

in which the “diffuse intensity” Id and the scattering source Sc are now functions of time as well
as of location and direction. Furthermore, the remnant of the collimated irradiation, entering
the medium at point rw, arrives at location r with a time delay of s/c = |r − rw| /c. Therefore,
equation (19.13) must be replaced by

Sc(r, ŝ, t) =
1

4π
[
1 − ρ(rw)

]
qo(rw, t − s/c) e−τcΦ(ŝ, ŝc). (19.25)

The boundary conditions remain essentially unchanged [except for the time delay in qo in
equation (19.15)]. Equation (19.24) is hyperbolic in nature, i.e., the signal (intensity) can travel
(and change) with a signal velocity of c (the speed of light). This is also immediately obvious from
the source term, equation (19.25). This set of equations has been solved, after transformation
into an integral formulation, by Tan and Hsu [49] for a one-dimensional layer, and by Wu and
Wu [27–30] for one-dimensional and two-dimensional, axisymmetric slabs. Hsu [50] used the
Monte Carlo method of Chapter 21 to predict incident radiation and fluxes in a one-dimensional
slab, while Guo and coworkers [24] employed the Monte Carlo method for a two-dimensional,
axisymmetric field. The backward Monte Carlo scheme was applied by Lu and Hsu [51, 52] to
predict one-dimensional slab reflectivities and transmissivities.

A number of approximate models based on the RTE solution methods presented in Chapters
15–17 have also been developed. Considering a one-dimensional slab with nonreflecting bound-
aries, Kumar and coworkers [21] extended the modified P1-approximation to this case, and a
little later Mitra and Kumar [23] added two-flux and discrete ordinates formulations. They noted
that the signal velocity of the two-flux approximation is only c/2, while the P1-approximation
has a signal velocity of c/

√
3. As higher-order methods are used, either spherical harmonics,

PN, or discrete ordinates, SN, the correct signal velocity, c, is approached. Noting this incorrect
phase velocity of the P1-approximation, Olson and colleagues [25] and Morel [26] modified the
method into what they dubbed the P1/3-approximation.

Several investigators [43, 53, 54] extended the regular discrete ordinates method (DOM)
to transient problems, and Chai and coworkers [55–57] did so for the related finite volume
method (FVM) as applied to one-, two-, and three-dimensional problems. Finally, Liu and
coworkers [58–60] showed how a variant of the FVM, using discontinuous finite elements for
spatial discretization, can be employed for transient calculations. Apparently, Liu and Hsu [60]
have been the first to recognize that, because equation (19.24) is linear in time, solutions to
arbitrary temporal pulse shapes (and pulse trains) can be found by superposition.

In all cases discussed above the medium was assumed to be nonemitting. A few studies
have considered heating of the material and emission from it, assuming radiative equilibrium
to hold, equation (10.74) [61, 62], and some included Fourier conduction, as well [61, 63], and
even hyperbolic conduction [44].

Because of their simplicity and popularity, we will here briefly outline the development of,
both, the P1- and the P1/3-approximations for a nonemitting medium.
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P1-Formulation
The starting point is now the augmented RTE, equation (19.24). After taking the zeroth and first
moments, and again using the near-isotropy condition, equation (19.16), and the assumption of
linear-anisotropic scattering, equation (19.17), the augmented P1-equations (19.19) and (19.20)
become

∂Gd

∂t∗
+ ∇τ · qd = (1 − ω)(4πIb − Gd) + ωGc, (19.26)

∂qd

∂t∗
+

1
3
∇τGd = −

(
1 −

A1ω
3

)
qd +

A1ω
3

qc, (19.27)

where t∗ = βct is a nondimensional time. These equations are, of course, identical to equa-
tions (19.19) and (19.20) except for the addition of a transient term. As for the exact formulation,
the boundary conditions, equation (19.23), remain unchanged [again, except for the time delay
in qo in equation (19.15)]. Elimination of qd from equations (19.26) and (19.27) results in a
hyperbolic wave equation for Gd with a signal velocity of c/

√
3.

P1/3-Formulation
Olson and coworkers [25] noticed that, if the transient term in equation (19.27) is multiplied by
1/3, the resulting set of equations has the correct propagation velocity c, while still reducing to
the correct steady-state P1-approximation. The so-called P1/3-approximation is, therefore,

∂Gd

∂t∗
+ ∇τ · qd = (1 − ω)(4πIb − Gd) + ωGc, (19.28)

1
3
∂qd

∂t∗
+

1
3
∇τGd = −

(
1 −

A1ω
3

)
qd +

A1ω
3

qc, (19.29)

again subject to the boundary condition, equation (19.23). While the multiplication by the factor
1/3 appears arbitrary, one should keep in mind that equation (19.27) is already approximate
(through the use of the near-isotropy condition, equation (19.16)), and thus can be augmented
by a transient term to produce the desired result.

Example 19.3. Consider a cold medium of width L (0 ≤ x ≤ L) with refractive index n = 1, bounded
by vacuum (resulting in nonreflecting interfaces). The medium absorbs, scatters isotropically, and is
subjected to a square laser pulse at x = 0, according to

qo(0, t) = qo[H(t) −H(t − tp)],

where tp is the duration of the pulse and H(t) is Heaviside’s unit step function.4 Determine the trans-
missivity of the slab as a function of time. (This is essentially the example problem carried out by Mitra
and Kumar [23] and by Wu and Ou [31].)

Solution
For a nonemitting and isotropically scattering, one-dimensional medium, the equations for the P1- and
P1/3-approximations reduce to

∂G
∂t∗

+
∂q
∂τ

= −(1 − ω)G + ωGc,

3a
∂q
∂t∗

+
∂G
∂τ

= −3q,

where a = 1 for P1 and a = 1/3 for P1/3, and G and q have been normalized as G = Gd/qo and q = qd/qo.
These two equations are subject to the initial and boundary conditions

t∗ = 0 : G(0, τ) = q(0, τ) = 0,

τ = 0 : −2q(t∗, 0) = G(t∗, 0),

τ = τL : +2q(t∗, τL) = G(t∗, τL).

4For its definition see equation (11.103) in Section 11.9.
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FIGURE 19-5
Transient transmissivity of an absorbing–scattering
slab subjected to a collimated square laser pulse
(t∗p = 0.3, τL = 5).

The normalized isotropic scattering source is immediately found from equations (19.25) and (19.18) for
a nonreflecting boundary, as

Gc(t∗, τ) =
[
H(t∗ − τ) −H∗(t∗ − τ − t∗p)

]
e−τ.

The hyperbolic nature of this set of equations becomes obvious, if q is eliminated from them (by
differentiating the first with respect to t∗ and the second with respect to τ), leading to

∂2G
∂t∗2
−

1
3a
∂2G
∂τ2 +

(
1 − ω +

1
a

)
∂G
∂t∗

+
1 − ω

a
G −

ω
a

Gc − ω
∂Gc

∂t∗
= 0,

which has a signal velocity of 1/
√

3a (nondimensional in terms of speed of light, c), as already indicated
in the formulation for the Pa methods. Eliminating q also from the initial and boundary conditions gives

t∗ = 0 : G(0, τ) =
∂G
∂t∗

(0, τ) = 0,

τ = 0 : 3
(
G(t∗, 0) + a

∂G
∂t∗

(t∗, 0)
)
− 2

∂G
∂τ

(t∗, 0) = 0,

τ = τL : 3
(
G(t∗, 0) + a

∂G
∂t∗

(t∗, 0)
)

+ 2
∂G
∂τ

(t∗, 0) = 0.

This second-order hyperbolic equation is readily solved by the method of characteristics [64] along the
characteristic lines τ = ±t∗/

√
3a, and this was done in the program transPN given in Appendix F. Some

typical results for the temporal transmission rate,
[
qc(τL) + qd(τL)

]
/qo, are shown in Fig. 19-5, for a slab

with an optical thickness of τL = 5 and a nondimensional pulse width t∗p = 0.3 and are compared with
results from a Monte Carlo simulation (see Problem 21.8). The transmissivity remains zero until t∗ = τL,
since it takes the direct component that amount of time to traverse the layer. As is clearly visible in
the inset, between τL < t∗ < τL + t∗p the transmissivity is dominated by the direct component qc(τL)/qo,
while the scattered contribution builds up gradually and, for ω = 1, reaches its maximum around t∗ ' 9.
It is apparent that the P1-approximation, with its c/

√
3 signal velocity, woefully lags behind the true

transmissivity, and later overshoots, while the P1/3-approximation predicts the transient behavior rather
accurately.

Wu and Ou [31] used a clipped Gaussian laser pulse (rather than the square pulse), and noted
that the P1-approximation produced an unphysical, secondary spike at t∗ =

√
3τL (i.e., the time it

takes radiation scattered at τ = 0 to reach τ = τL in a direct path), while the P1/3-approximation
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does not show this behavior. Apparently, this is due to the fact that, for a Gaussian profile,
∂Gc/∂t∗ , 0, which produces the secondary peak (this may be verified by running transPNwith
its preprogrammed Gaussian pulse).

Since the transient RTE is hyperbolic in nature, the method of characteristics is often used in
numerical solutions (including transPN), in order to accurately capture the radiation wavefront.
Katika and Pilon [65] introduced a modified (backward) characteristic method that gives better
flexibility in time stepping. If hyperbolic equations are solved by conventional differencing,
second-order time schemes are generally preferred. Olson [63, 66] has discussed several first-
and second-order time stepping techniques for such methods.
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Problems

19.1 A semi-infinite, gray, isotropically scattering medium, originally at zero temperature, is subjected
to collimated irradiation with a constant flux qo normal to its nonreflecting surface. Set up the
integral relationships governing steady-state temperature and radiative heat flux within the medium,
assuming radiative equilibrium.

19.2

L

ql
ql = 100W/m2

45° 45° 

 = 0,    sσ

 = 1

κ

∋

=0.2 cm–1

In a greenhouse a layer of water (thickness L = 5 cm) is resting
on top of a black substrate. The water is loaded with growing
organisms that scatter light isotropically but do not absorb (σs =
0.2 cm−1). The water layer is illuminated by two long growth-
enhancing lights, fitted with reflector shields that make the
light essentially parallel, as shown in the sketch, each light
delivering a heat flux of ql = 100 W/m2 (per unit area normal
to the light rays). Using the exact method, calculate energy
generated within the water and the radiative heat flux absorbed
by the black surface in the zone between the lights, where the
heat transfer is essentially one-dimensional. Emission from the
water and substrate are negligible.
Hint: Use Figs. 3-16 and 19-4.

19.3 Reconsider the medium described in Example 19.1. Rather than being bounded by a cold black surface
at the bottom, the layer is now exposed to the nonparticipating gas as well as to solar irradiation
(using mirrors) on both sides. Determine radiative heat flux and its divergence within the layer in
terms of the function Φ(τL, ω, µo, τ) given in Example 19.1.

19.4 Solve Problem 19.1 using the P1-approximation.

19.5 The starship Enterprise is hitting a Klingon cruiser with its phaser gun. The armament of the cruiser
is a partially reflecting material that, after some irradiation, partly evaporates, forming a protective
gas layer above the surface. Assuming that the surface is at evaporation temperature Tev and has
an emittance ε, and that the gas has an absorption coefficient κ1 and a thickness L, determine the
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fraction of the heat flux that hits the Klingon ship. Under these conditions you may assume the
effects of conduction and convection to be negligible (but not reradiation from the gas). Use the
P1-approximation.

19.6 Reconsider Problem 19.5. After further irradiation, the surface material starts to disintegrate, spewing
particulate material into the gas layer. If we make the assumption that the debris has an absorption
coefficient κp and (isotropic) scattering coefficient σsp, how does this modify the surface irradiation?

19.7 Consider a semi-infinite gray medium with a nonreflecting surface. The medium is cold, and absorbs
(absorption coefficient κ) and scatters isotropically (scattering coefficient σs). Collimated radiation
obeying the relation

qc = qo(1 − cosατx)k̂
shines normally onto the medium as shown below. Determine the reflectivity of the medium (i.e., the
fraction of the irradiation leaving the interface in the opposite direction), using the P1-approximation.
Hint: To solve the two-dimensional governing equation, set Gd(τx, τz) = G1(τz) + G2(τz) cosατx.
This problem is a special case of solutions given by Crosbie and Koewing [48] (exact) and Modest
and Tabanfar [47] (P1).

z,  zτ

x,  xτ

qc ( x )τ

19.8

L

 = 1

Q ĺ = 100W/m

∋

 = 0,    sσκ =0.2 cm–1

Reconsider Problem 19.2 for lights not fitted with reflec-
tor shields as depicted in the adjacent sketch. Assuming
that the figure shows only two of many equally spaced
lights (i.e., using symmetry), set up the solution for the ra-
diative heat flux, using the P1-approximation. Each light
outputs a total of 100 W per meter length. Since this is
a two-dimensional problem it will be sufficient to reduce
the problem to the solution of a two-dimensional partial
differential equation with stated boundary conditions.

19.9 A slab of constant thickness L consisting of an absorbing and linear-anisotropically scattering medium,
is subjected to collimated laser irradiation with a Gaussian flux profile qo(r) = (2Q̇/πw2) e−2(r/w)2

normal
to its nonreflecting surface, where r is radial distance from the beam center, w is the so-called “1/e2-
beam radius” and Q is total laser power (in W). Assuming the temperature of the medium to be
moderate, emission can generally be neglected as compared to the laser flux. Show that this problem
can be solved by the modified P1-approximation, using subroutine P1sor and/or program P1-2D of
Appendix F. Then determine the reflectivity of the medium (i.e., the fraction of the irradiation leaving
the interface in the opposite direction), as a function of radius r, for a purely isotropically scattering
medium with σs = 5 cm−1,L = 1 cm, and w = 100µm.

19.10 Repeat Example 19.3 for a clipped Gaussian laser pulse as considered by Wu and Ou [31], using
program transPN of Appendix F.

19.11 Consider a cold medium of width L (0 ≤ x ≤ L) with refractive index n = 1, bounded by vacuum
(resulting in nonreflecting interfaces). The medium absorbs, scatters isotropically, and is subjected to
a CW (“continuous wave,” or constant) laser pulse at x = 0 and starting at time t = 0, according to

qo(0, t) = qoH(t),

where H(t) is Heaviside’s unit step function. Determine the reflectivity and transmissivity of the slab
as a function of time until steady state is achieved. Use program transPN of Appendix F.


