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17
THE METHOD OF
DISCRETE
ORDINATES
(SN-APPROXIMATION)

17.1 INTRODUCTION

Like the spherical harmonics method, the discrete ordinate method is a tool to transform the
equation of transfer (for a gray medium, or on a spectral basis) into a set of simultaneous
partial differential equations. Like the PN-method, the discrete ordinates or SN-method may
be carried out to any arbitrary order and accuracy, although the mathematical formulation of
high-order SN-schemes is considerably less involved. First proposed by Chandrasekhar [1] in
his work on stellar and atmospheric radiation, the SN-method originally received little attention
in the heat transfer community. Again like the PN-method, the discrete ordinates method was
first systematically applied to problems in neutron transport theory, notably by Lee [2] and
Lathrop [3, 4]. There were some early, unoptimized attempts to apply the method to one-
dimensional, planar thermal radiation problems (Love et al. [5, 6], Hottel et al. [7], Roux and
Smith [8, 9]). But only during the past thirty years has the discrete ordinates method been
applied to, and optimized for, general radiative heat transfer problems, primarily through the
pioneering works of Fiveland [10–13] and Truelove [14–16].

The discrete ordinates method is based on a discrete representation of the directional vari-
ation of the radiative intensity. A solution to the transport problem is found by solving the
equation of transfer for a set of discrete directions spanning the total solid angle range of 4π. As
such, the discrete ordinates method is simply a finite differencing of the directional dependence
of the equation of transfer. Integrals over solid angle are approximated by numerical quadrature
(e.g., for the evaluation of the radiative source term, the radiative heat flux, etc.).

Today, many numerical heat transfer models use finite volumes rather than finite differences.
Similarly, one may also use finite “solid angle volumes” for directional discretization. This
variation of the discrete ordinates method is commonly known as the finite volume method (for
radiative transfer), and enjoys increasing popularity. As a result of the relatively straightforward
formulation of high-order implementations, the discrete ordinates method (DOM) and its finite
volume cousin (FVM) have received great attention and are today probably the most popular
RTE solvers (together with the P1-approximation), and some version of them is incorporated
in most commercial CFD codes. Detailed reviews of the capabilities and shortcomings of the
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DOM and FVM have been given by Charest et al. [17] and by Coelho [18]. The latter provides
the most complete description of the method for general geometries, far exceeding the details
we can provide in this book.

In this chapter we shall first develop the set of partial differential equations for the standard
SN-method and their boundary conditions. This is followed by a section describing how the
method may be applied to one-dimensional plane-parallel media, and another dealing with
spherical and cylindrical geometries, and then its application to two- and three-dimensional
problems will be outlined. This is followed by the development of the finite volume method
and, finally, the chapter will close with a brief look at other, related methods.

17.2 GENERAL RELATIONS

The general equation of transfer for an absorbing, emitting, and anisotropically scattering
medium is, according to equation (10.21),

dI
ds

= ŝ · ∇I(r, ŝ) = κ(r)Ib(r) − β(r)I(r, ŝ) +
σs(r)
4π

∫
4π

I(r, ŝ′) Φ(r, ŝ′, ŝ) dΩ′. (17.1)

Equation (17.1) is valid for a gray medium or, on a spectral basis, for a nongray medium, and is
subject to the boundary condition

I(rw, ŝ) = ε(rw)Ib(rw) +
ρ(rw)
π

∫
n̂·ŝ′<0

I(rw, ŝ′) |n̂ · ŝ′| dΩ′, (17.2)

where we have limited ourselves to an enclosure with opaque, diffusely emitting and diffusely
reflecting walls. The extension of equation (17.2) to more complicated boundary conditions is
straightforward.

Discrete Ordinates Equations
In the discrete ordinates method, equation (17.1) is solved for a set of n different directions
ŝi, i = 1, 2, . . . ,n, and the integrals over direction are replaced by numerical quadratures, that is,∫

4π
f (ŝ) dΩ '

n∑
i=1

wi f (ŝi), (17.3)

where the wi are the quadrature weights associated with the directions ŝ i. Thus, equation (17.1)
is approximated by a set of n equations,

ŝ i · ∇I(r, ŝi) = κ(r) Ib(r) − β(r) I(r, ŝ i) +
σs(r)
4π

n∑
j=1

w j I(r, ŝ j) Φ(r, ŝ j, ŝi), i = 1, 2, . . . ,n, (17.4)

subject to the boundary conditions

I(rw, ŝi) = ε(rw) Ib(rw) +
ρ(rw)
π

∑
n̂·ŝj<0

w j I(rw, ŝ j) |n̂ · ŝ j|, n̂ · ŝ i > 0. (17.5)

Each beam traveling in a direction of ŝi intersects the enclosure surface twice: once where the
beam emanates from the wall (n̂ · ŝ i > 0), and once where it strikes the wall, to be absorbed or
reflected (n̂·ŝ i < 0). The governing equation is first order, requiring only one boundary condition
(for the emanating intensity, n̂ · ŝ i > 0). Equations (17.4) together with their boundary conditions
(17.5) constitute a set of n simultaneous, first-order, linear partial differential equations for the
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unknown Ii(r) = I(r, ŝi). The solution for the Ii may be found using any standard technique
(analytical or numerical). If scattering is present (σs , 0), and/or if the bounding walls are
reflecting, the equations are coupled in such a way that generally an iterative procedure is
necessary. Even in the absence of scattering and surface reflections, the temperature field may
not be known, but must be calculated from the intensity field if radiative equilibrium persists,
again making iterations necessary. Only in the absence of scattering and wall reflections, and if
the temperature field is given, then the solution to the intensities Ii is straightforward (as is the
exact solution).

Once the intensities have been determined the desired direction-integrated quantities are
readily calculated. The radiative heat flux, inside the medium or at a surface, may be found
from its definition, equation (10.52),

q(r) =

∫
4π

I(r, ŝ) ŝ dΩ '

n∑
i=1

wi Ii(r) ŝi. (17.6)

The incident radiation G [and, through equation (10.59), the divergence of the radiative heat
flux] is similarly determined as

G(r) =

∫
4π

I(r, ŝ) dΩ '

n∑
i=1

wi Ii(r). (17.7)

At a surface the heat flux may also be determined from surface energy balances [equations (4.1)
and (3.16)] as

q · n̂(rw) = ε(rw) [πIb(rw) −H(rw)]

' ε(rw)
(
πIb(rw) −

∑
n̂·ŝi<0

wi Ii(rw) |n̂ · ŝi|
)
. (17.8)

Equations (17.4) and (17.5) can be written in a somewhat more compact form if one limits the
analysis to linear-anisotropic scattering, i.e., to a scattering phase function of

Φ(r, ŝ, ŝ′) = 1 + A1(r) ŝ′ · ŝ. (17.9)

Then, using equations (17.6) and (17.7) and/or equation (14.15) leads to

ŝ i · ∇Ii + βIi = κIb +
σs

4π
(G+A1 q · ŝi), i = 1, 2, . . . ,n, (17.10)

with boundary condition

Ii =
Jw

π
= Ibw −

1 − ε
επ

q · n̂, n̂ · ŝi > 0 (17.11)

at the enclosure surface. Of course, radiative heat flux and incident radiation are unknowns
to be determined from directional intensities from the series in equations (17.6) and (17.7).
Equations (17.10) and (17.11) are convenient forms for the iterative solution procedure: For each
iteration values of G and q are estimated, and the n intensities Ii are evaluated. The values for
G and q are then updated, and so on.

Selection of Discrete Ordinate Directions
The choice of quadrature scheme is arbitrary, although restrictions on the directions ŝi and
quadrature weights wi may arise from the desire to preserve symmetry and to satisfy certain
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conditions. It is customary to choose sets of directions and weights that are completely sym-
metric (i.e., sets that are invariant after any rotation of 90◦), and that satisfy the zeroth, first, and
second moments, or ∫

4π
dΩ = 4π =

n∑
i=1

wi, (17.12a)

∫
4π

ŝ dΩ = 0 =

n∑
i=1

wi ŝ i, (17.12b)

∫
4π

ŝŝ dΩ =
4π
3
δ =

n∑
i=1

wi ŝ iŝ i, (17.12c)

where δ is the unit tensor [cf. equation (16.30)]. Different sets of directions and weights satisfy-
ing all these criteria have been tabulated, for example, by Lee [2] and Lathrop and Carlson [19].
Fiveland [12] and Truelove [15] have observed that different sets of ordinates may result in con-
siderably different accuracy. They noted that (i) the intensity may have directional discontinuity
at a wall, and (ii) the important radiative heat fluxes at the walls are evaluated through a first
moment of intensity over a half range of 2π [equation (17.8)]. They concluded that the set of
ordinates and weights should also satisfy the first moment over a half range, that is,∫

n̂·ŝ<0
|n̂ · ŝ| dΩ =

∫
n̂·ŝ>0

n̂ · ŝ dΩ = π =
∑

n̂·ŝi>0

wi n̂ · ŝi. (17.13)

While it is impossible to satisfy equation (17.13) for arbitrary orientations of the surface normal,
it can be satisfied for the principal orientations, if n̂ = ı̂, ̂, or k̂. Sets of ordinates and weights
that satisfy (i) the symmetry requirement, (ii) the moment equations (17.12), and (iii) the half-
moment equation (17.13) (for the three principal directions of n̂)1 have been given by Lathrop
and Carlson [19]. The first four sets labeled S2-, S4-, S6-, and S8-approximation are reproduced
in Table 17.1. In the table the ξi, ηi, and µi are the direction cosines of ŝi, or

ŝi = (ŝi · ı̂) ı̂ + (ŝi · ̂) ̂ + (ŝ i · k̂) k̂ = ξi ı̂ + ηi ̂ + µik̂. (17.14)

Only positive direction cosines are given in Table 17.1, covering one eighth of the total range
of solid angles 4π. To cover the entire 4π any or all of the values of ξi, ηi, and µi may be
positive or negative. Therefore, each row of ordinates contains eight different directions. For
example, for the S2-approximation the different directions are ŝ1 = 0.577350(ı̂ + ̂ + k̂), ŝ2 =

0.577350(ı̂ + ̂ − k̂), . . . , ŝ8 = −0.577350(ı̂ + ̂ + k̂). Since the symmetric S2-approximation does
not satisfy the half-moment condition, a nonsymmetric S2-approximation is also included in
Table 17.1, as proposed by Truelove [15]. This approximation satisfies equation (17.13) for
two principal directions and should be applied to one- and two-dimensional problems, from
which the nonsymmetric term drops out (as seen in Example 17.1 in the following section).
The name “SN-approximation” indicates that N different direction cosines are used for each
principal direction. For example, for the S4-approximation ξi = ±0.295876 and ±0.908248 (or ηi
or µi). Altogether there are always n = N(N+2) different directions to be considered (because of
symmetry, many of these may be unnecessary for one- and two-dimensional problems). Several
other quadrature schemes can be found in the literature. Carlson [20] proposed a set with
equal weights wi (such as the S2 and S4 sets in Table 17.1). Two more quadratures and a good
review of the applicability of all discrete ordinate sets have been given by Fiveland [21]. Other
publications documenting procedures for the generation of quadrature sets are those of Sánchez
and Smith [22] and El-Wakil and Sacadura [23]. A new family of quadrature sets, like the Sn

1With the exception of the symmetric S2-approximation.
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TABLE 17.1
Discrete ordinates for the SN-approximation (N = 2, 4, 6, 8), from [19].

Order of Ordinates Weights

Approximation ξ η µ w

S2 (symmetric) 0.5773503 0.5773503 0.5773503 1.5707963

S2 (nonsymmetric) 0.5000000 0.7071068 0.5000000 1.5707963

S4 0.2958759 0.2958759 0.9082483 0.5235987
0.2958759 0.9082483 0.2958759 0.5235987
0.9082483 0.2958759 0.2958759 0.5235987

S6 0.1838670 0.1838670 0.9656013 0.1609517
0.1838670 0.6950514 0.6950514 0.3626469
0.1838670 0.9656013 0.1838670 0.1609517
0.6950514 0.1838670 0.6950514 0.3626469
0.6950514 0.6950514 0.1838670 0.3626469
0.9656013 0.1838670 0.1838670 0.1609517

S8 0.1422555 0.1422555 0.9795543 0.1712359
0.1422555 0.5773503 0.8040087 0.0992284
0.1422555 0.8040087 0.5773503 0.0992284
0.1422555 0.9795543 0.1422555 0.1712359
0.5773503 0.1422555 0.8040087 0.0992284
0.5773503 0.5773503 0.5773503 0.4617179
0.5773503 0.8040087 0.1422555 0.0992284
0.8040087 0.1422555 0.5773503 0.0992284
0.8040087 0.5773503 0.1422555 0.0992284
0.9795543 0.1422555 0.1422555 0.1712359

sets symmetric in 90◦ rotations, but with different arrangement of directions, have been given
by Thurgood and coworkers [24], and have been dubbed Tn sets by the authors. These always
generate positive weights and are claimed to reduce the so-called “ray effect” (which will be
discussed a little later on p. 560). These sets have been further refined by Li and coworkers [25].
A comprehensive review of directional quadrature schemes, including an evaluation of their
accuracies, has recently been given by Koch and Becker [26]. None of the above ordinate sets
can treat collimated (i.e., unidirectional) irradiation accurately. To address this problem Li and
coworkers [27] developed the ISW scheme adding a single ordinate of “infinitely small weight”
to the regular quadrature set.

17.3 THE ONE-DIMENSIONAL SLAB

We will first demonstrate how the SN discrete ordinates method is applied to the simple case of
a one-dimensional plane-parallel slab bounded by two diffusely emitting and reflecting isother-
mal plates. As in previous chapters we shall limit ourselves to linear-anisotropic scattering,
although extension to arbitrarily anisotropic scattering is straightforward. We avoid it here
to make the steps in the development a little easier to follow. If we choose z as the spatial
coordinate between the two plates (0 ≤ z ≤ L), and introduce the optical coordinate τ with
dτ = β dz (0 ≤ τ ≤ τL), equation (17.4) is transformed to

µi
dIi

dτ
= (1 − ω) Ib − Ii +

ω
4π

n∑
j=1

w j I j

[
1+A1(µiµ j+ξiξ j+ηiη j)

]
, i = 1, 2, . . . ,n. (17.15)
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TABLE 17.2
Discrete ordinates for the one-dimensional SN-approximation (N = 2, 4, 6, 8).

Order of Ordinates Weights
Approximation µ w′

S2 (symmetric) 0.5773503 6.2831853

S2 (nonsymmetric) 0.5000000 6.2831853

S4 0.2958759 4.1887902
0.9082483 2.0943951

S6 0.1838670 2.7382012
0.6950514 2.9011752
0.9656013 0.6438068

S8 0.1422555 2.1637144
0.5773503 2.6406988
0.8040087 0.7938272
0.9795543 0.6849436

For a one-dimensional slab intensity is independent of azimuthal angle. Since for every ordinate
j (with a given µj) with a positive value for ξ j there is another with the same, but negative, value,
and since the intensity is the same for both ordinates, the terms involving ξ j in equation (17.15)
add to zero. The same is true for the terms involving η j, but not for those with µ j (since the
intensity does depend on polar angle θ, and µ = cosθ). However, the terms involving µ j are
repeated several times: Each value of µ (counting positive and negative µ-values separately)
shown in one row of Table 17.1 corresponds to four different ordinates (combinations of positive
and negative values for ξ and η). In addition, a particular value of µ may occur on more than
one line of Table 17.1. If all the quadrature weights corresponding to a single µ-value are added
together, equation (17.15) reduces to

µi
dIi

dτ
= (1 − ω) Ib − Ii +

ω
4π

N∑
j=1

w′j I j(1 + A1 µiµ j), i = 1, 2, . . . ,N, (17.16)

where the w′j are the summed quadrature weights. For example, for µ = 0.2958759 in the
S4-approximation the summed quadrature weight is w′ = 4 × (0.5235987 + 0.5235987) = 4π/3,
and so forth. The ordinates and quadrature weights for the one-dimensional slab are listed in
Table 17.2. Equation (17.16) could have been found less painfully by using equation (17.10)
instead of (17.4), leading directly to

µi
dIi

dτ
+ Ii = (1 − ω) Ib +

ω
4π

(G + A1 qµi), i = 1, 2, . . . ,N. (17.17)

Before proceeding to the boundary conditions of equation (17.17) we should recognize that, of
the N different intensities, half emanate from the wall at τ = 0 (with µi > 0), and the other half
from the wall at τ = τL (with µi < 0). Following the notation of Chapter 14, we replace the N
different Ii by

I+
1 , I+

2 , . . . , I
+
N/2 and I−1 , I−2 , . . . , I

−

N/2.
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Then equation (17.17) may be rewritten as

µi
dI+

i

dτ
+ I+

i = (1 − ω) Ib +
ω
4π

(G + A1 qµi), (17.18a)

−µi
dI−i
dτ

+ I−i = (1 − ω) Ib +
ω
4π

(G − A1 qµi), (17.18b)

i = 1, 2, . . . ,N/2; µi > 0.

With this notation the boundary conditions for equation (17.18) follow from equations (17.5) or
(17.11) as

τ = 0 : I+
i = J1/π = Ib1 −

1 − ε1

ε1 π
q1, (17.19a)

τ = τL : I−i = J2/π = Ib2 +
1 − ε2

ε2 π
q2, (17.19b)

i = 1, 2, . . . ,N/2, µi > 0.

(For the boundary condition at τL the sign switches since n̂ points in the direction opposite to z.)
Radiative heat flux q and incident radiation G are related to the directional intensities through

equations (17.6) and (17.7), or

q =

N/2∑
i=1

w′i µi(I+
i − I−i ), (17.20a)

G =

N/2∑
i=1

w′i (I
+
i + I−i ). (17.20b)

At the two surfaces the radiative heat flux is more conveniently evaluated from equation (17.8)
as

τ = 0 : q1 = q(0) = ε1

(
Eb1 −

N/2∑
i=1

w′i µi I−i
)
, (17.21a)

τ = τL : q2 = −q(τL) = −ε2

(
Eb2 −

N/2∑
i=1

w′i µi I+
i

)
. (17.21b)

Example 17.1. Consider two large, parallel, gray-diffuse and isothermal plates, separated by a distance
L. One plate is at temperature T1 with emittance ε1, the other is at T2 with ε2. The medium between the
two plates is a gray, absorbing/emitting and linear-anisotropically scattering gas (n = 1) with constant
extinction coefficient β and single scattering albedo ω. Assuming that radiative equilibrium prevails,
determine the radiative heat flux between the two plates using the S2-approximation.

Solution
For radiative equilibrium we have, from equation (10.59), Ib = G/4π and q = const; equations (17.18)
and (17.19) become

µ1
dI+

1

dτ
+ I+

1 =
1

4π
(G + A1ωµ1q),

−µ1
dI−1
dτ

+ I−1 =
1

4π
(G − A1ωµ1q),

τ = 0 : I+
1 = J1/π, τ = βL = τL : I−1 = J2/π.

For the S2-approximation we have only a single ordinate direction µ1 (pointing toward τL for I+
1 , and

toward 0 for I−1 ), where µ1 = 0.57735 for the symmetric S2-approximation, and µ1 = 0.5 for the non-
symmetric S2-approximation [which satisfies the half-range moment, equation (17.13)]. For the simple
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S2-approximation the simultaneous equations (only two in this case) may be separated. We do this here
by eliminating I+

1 and I−1 in favor of G and q. From equation (17.20), with w′i = 2π,

G = 2π(I+
1 + I−1 ),

q = 2πµ1(I+
1 − I−1 ).

Therefore, adding and subtracting the two differential equations and multiplying by 2π leads to

dq
dτ

+ G = G, or
dq
dτ

= 0,

µ1
dG
dτ

+
1
µ1

q = A1ωµ1q, or
dG
dτ

= −
( 1
µ2

1

− A1ω
)
q.

The first equation is simply a restatement of radiative equilibrium, while the second may be integrated
(since q = const), or

G = C −
( 1
µ2

1

− A1ω
)
qτ.

This relation contains two unknown constants (C and q), which must be determined from the boundary
conditions, that is,

τ = 0 : I+
1 =

1
4π

(
G +

q
µ1

)
= J1/π,

τ = τL : I−1 =
1

4π

(
G −

q
µ1

)
= J2/π,

or
τ = 0 : 4J1 = G +

q
µ1

= C +
q
µ1
,

τ = τL : 4J2 = G −
q
µ1

= C −
( 1
µ2

1

− A1ω
)
q τL −

q
µ1
.

Subtracting, we obtain,

Ψ =
q

J1− J2
=

2µ1

1 +
(
1/µ2

1 − A1ω
)
µ1τL/2

,

from which the radiosities may be eliminated through equation (14.48). For the symmetric S2-approxi-
mation, µ1 = 0.57735 = 1/

√
3, and with isotropic scattering, A1 = 0, this expression becomes

Ψsymmetric =
1

√
3/2 + 3τL/4

.

On the other hand, for the nonsymmetric S2-approximation (µ1 = 0.5), also with isotropic scattering,

Ψnonsymmetric =
1

1 + τL

.

The S2-approximation is the same as the two-flux method discussed in Section 15.3, and the nonsym-
metric S2-method is nothing but the Schuster–Schwarzschild approximation. Results from the two
S2-approximations are compared in Table 17.3 with those from the P1-approximation and the exact solu-
tion. It is seen that the accuracy of the S2-method is roughly equivalent to that of the P1-approximation.
The nonsymmetric S2-approximation is superior to the symmetric one, since the symmetric S2 does not
satisfy the half-moment condition, equation (17.13), and causes substantial errors in the optically thin
limit.

As a second example for the one-dimensional discrete ordinates method we shall repeat
Example 16.4, which was originally designed to demonstrate the use of the P3-approximation.

Example 17.2. Consider an isothermal medium at temperature T, confined between two large, parallel
black plates that are isothermal at the (same) temperature Tw. The medium is gray and absorbs and
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TABLE 17.3
Radiative heat flux through a one-dimensional plane-parallel medium at radiative equilib-
rium; comparison of S2- and P1-approximations.

Ψ = q/(J1− J2)

τL Exact S2 (sym) S2 (nonsym) P1

0.0 1.0000 1.1547 1.0000 1.0000
0.1 0.9157 1.0627 0.9091 0.9302
0.5 0.7040 0.8058 0.6667 0.7273
1.0 0.5532 0.6188 0.5000 0.5714
5.0 0.2077 0.2166 0.1667 0.2105

emits, but does not scatter. Determine an expression for the heat transfer rates within the medium using
the S2 and S4 discrete ordinates approximations.

Solution
For this particularly simple case equations (17.18) reduce to

µi
dI+

i

dτ
+ Ii = Ib,

−µi
dI−i
dτ

+ Ii = Ib.

Since Ib = const, these equations may be integrated right away, leading to

I+
i = Ib + C+ e−τ/µi ,

I−i = Ib + C− eτ/µi .

The integration constants C+ and C− may be found from boundary conditions (17.19) as

τ = 0 : I+
i = Ibw = Ib + C+, or C+ = Ibw − Ib;

τ = τL : I−i = Ibw = Ib + C− eτL/µi , or C− = (Ibw − Ib) e−τL/µi .

Thus,

I+
i = Ib + (Ibw − Ib) e−τ/µi ,

I−i = Ib + (Ibw − Ib) e−(τL−τ)/µi .

The radiative heat flux follows then from equation (17.20) as

q =

N/2∑
i=1

w′i µi(Ibw−Ib)
(
e−τ/µi − e−(τL−τ)/µi

)
,

or, in nondimensional form,

Ψ =
q

n2σ(T4
w−T4)

=
1
π

N/2∑
i=1

w′i µi

(
e−τ/µi − e−(τL−τ)/µi

)
.

For the nonsymmetric S2-approximation we have w′1 = 2π and µ1 = 0.5, or

ΨS2 = e−2τ
− e−2(τL−τ).

For the S4-approximation, w′1 = 4π/3, w′2 = 2π/3, µ1 = 0.2958759, µ2 = 0.9082483, and
∑

w′i µi = π, so
that

ΨS4 = 0.3945012
(
e−τ/0.2958759

− e−(τL−τ)/0.2958759
)

+ 0.6054088
(
e−τ/0.9082483

− e−(τL−τ)/0.9082483
)
.
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The results should be compared with those of Examples 16.2 and 16.4 for the P1- and P3-approximations.
Note that the SN-method goes to the correct optically thick limit (τL →∞) at the wall, i.e., Ψ→ 1 [if the
half moment of equation (17.13) is satisfied]. The PN-approximations, on the other hand, overpredict
the optically thick limit for this particular example.

It should be emphasized that this last example—dealing with a nonscattering, isothermal
medium—is particularly well suited for the discrete ordinates method. One should not expect
that, for a general problem, the S4-method is easier to apply than the P3-approximation.

A number of researchers have solved more complicated one-dimensional problems by the
discrete ordinates method. Fiveland [12] considered the identical case as presented in this
section, but allowed for arbitrarily anisotropic scattering. Solving the system of equations by a
finite difference method, he noted that higher-order SN-methods demand a smaller numerical
step ∆τ, in order to obtain a stable solution. Kumar and coworkers [28] not only allowed
arbitrarily anisotropic scattering, but also considered boundaries with specular reflectances as
well as boundaries with collimated irradiation (as discussed in Chapter 19). To solve the set
of simultaneous first-order differential equations they employed a subroutine from the IMSL
software library [29], which is available on many computers. Stamnes and colleagues [30, 31]
investigated the same problem as Kumar and coworkers but also allowed for variable radiative
properties and a general bidirectional reflection function at the surfaces. They decoupled the set
of simultaneous equations using methods of linear algebra and found exact analytical solutions
in terms of eigenvalues and eigenvectors that, in turn, were determined using the EISPACK
software library [32]. Other examples of the use of the one-dimensional discrete ordinates
model as a tool to solve more complex problems may be found in [33–42].

17.4 ONE-DIMENSIONAL CONCENTRIC
SPHERES AND CYLINDERS

Applying the discrete ordinates method and taking advantage of the symmetries in a one-di-
mensional problem is considerably more difficult for concentric spheres and cylinders than for
a plane-parallel slab. The reason is that the local direction cosines change while traveling along
a straight line of sight through such enclosures.

Concentric Spheres
Consider two concentric spheres of radius R1 and R2, respectively. The inner sphere surface has
an emittance ε1 and is kept isothermal at temperature T1, while the outer sphere is at temperature
T2 with emittance ε2. If the temperature within the medium is a function of radius only, then
the equation of transfer is given by equation (14.69),

µ
∂I
∂r

+
1 − µ2

r
∂I
∂µ

+ βI = βS, (17.22a)

or, alternatively,
µ

r2

∂
∂r

(r2I) +
1
r
∂
∂µ

[
(1 − µ2) I

]
+ βI = βS, (17.22b)

whereµ = cosθ is the cosine of the polar angle, measured from the radial direction (see Fig. 14-5).
S is the radiative source function,

S(r, µ) = (1 − ω) Ib +
ω
2

∫ 1

−1
I (r, µ′) Φ(µ, µ′) dµ′, (17.23a)

or
S(r, µ) = (1 − ω) Ib +

ω
4π

(G + A1 qµ), (17.23b)
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FIGURE 17-1
Directional discretization and discrete ordinate values for one-dimensional
problems.

if the scattering is limited to the linear-anisotropic case. The additional difficulty lies in the fact
that equation (17.22) contains a derivative over direction cosine, µ, that is to be discretized in
the discrete ordinates method. Applying the SN-method to equation (17.22), we obtain

µi

r2

d
dr

(r2Ii) +
1
r

{
∂
∂µ

[
(1−µ2)I

]}
µ=µi

+ β Ii = βSi, i = 1, 2, . . . ,N, (17.24)

where Si is readily determined from equation (17.23) (and is independent of ordinate direction
unless the medium scatters anisotropically). Equation (17.24) is only applied to the N principal
ordinates since, similar to the slab, there is no azimuthal dependence. Since the direction vector
µ is discretized, its derivative must be approximated by finite differences. We may write{

∂
∂µ

[
(1−µ2)I

]}
µ=µi

'
αi+1/2Ii+1/2 − αi−1/2Ii−1/2

w′i
, (17.25)

which is a central difference with the Ii±1/2 evaluated at the boundaries between two ordinates,
as shown in Fig. 17-1. Since the differences between any two sequential µi are nonuniform,
the geometrical coefficients α are nonconstant and need to be determined. The values of α
depend only on the differencing scheme and, therefore, are independent of intensity and may
be determined by examining a particularly simple intensity field. For example, if both spheres
are at the same temperature, then Ib1 = Ib2 = Ib = const, and also I = Ib = const. This then leads
to

αi+1/2 − αi−1/2 = w′i

[
∂
∂µ

(1 − µ2)
]
µ=µi

= −2 w′i µi, i = 1, 2, . . . ,N. (17.26)

This expression may be used as a recursion formula for αi+1/2, if a value for α1/2 can be determined.
That value is found by noting that I1/2 is evaluated at µ = −1 (Fig. 17-1), where (1− µ2)I = 0 and,



552 17 THE METHOD OF DISCRETE ORDINATES (SN-APPROXIMATION)

therefore, α1/2 = 0. Similarly, IN+1/2 is evaluated at µ = +1 and also αN+1/2 = 0. The finite-difference
scheme of equations (17.25) and (17.26) satisfies the relation [4]∫ +1

−1

∂
∂µ

[
(1 − µ2)I

]
dµ = (1 − µ2) I

∣∣∣∣+1

−1
= 0

=

N∑
i=1

w′i

{
∂
∂µ

[
(1 − µ2)I

]}
µ=µi

=

N∑
i=1

(
αi+1/2Ii+1/2 − αi−1/2Ii−1/2

)
= α3/2I3/2−α1/2I1/2 +α5/2I5/2−α3/2I3/2 +− · · ·αN+1/2IN+1/2−αN−1/2IN−1/2

= 0.

Finally, the intensities at the node boundaries, Ii±1/2, need to be expressed in terms of node center
values, Ii. We shall use here simple, linear averaging, i.e., Ii+1/2 '

1
2 (Ii + Ii+1). Equation (17.24)

may now be rewritten as

µi

r2

d
dr

(r2Ii) +
αi+1/2Ii+1 + (αi+1/2 − αi−1/2)Ii − αi−1/2Ii−1

2rw′i
+ βIi = βSi,

or, carrying out the differentiation and using equation (17.26),

µi
dIi

dr
+
µi

r
Ii +

αi+1/2Ii+1 − αi−1/2Ii−1

2rw′i
+ βIi = βSi, (17.27a)

αi+1/2 = αi−1/2 − 2w′i µi, α1/2 = αN+1/2 = 0, i = 1, 2, . . . ,N. (17.27b)

Equations (17.27) constitute a set of N simultaneous differential equations in the N unknown
intensities Ii, subject to the boundary conditions [cf. equation (17.19)]

r=R1 : Ii = J1/π = Ib1 −
1−ε1

ε1π
q1, i =

N
2

+1,
N
2

+2, . . . ,N (µi>0), (17.28a)

r=R2 : Ii = J2/π = Ib2 +
1−ε2

ε2π
q2, i = 1, 2, . . . ,

N
2

(µi<0). (17.28b)

As for the one-dimensional slab the radiative heat flux and incident radiation are evaluated [cf.
equations (17.20) and (17.21)] from

G(r) =

N∑
i=1

w′i Ii(r), (17.29a)

q(r) =

N∑
i=1

w′i µi Ii(r), (17.29b)

and

q(R1) = q1 = ε1

(
Eb1 +

N/2∑
i=1

(µi<0)

w′i µi Ii

)
, (17.29c)

−q(R2) = q2 = ε2

(
Eb2 −

N∑
i=N/2+1

(µi>0)

w′i µi Ii

)
. (17.29d)

Example 17.3. Consider a nonscattering medium at radiative equilibrium that is contained between
two isothermal, gray spheres. The absorption coefficient of the medium may be assumed to be gray
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and constant. Using the S2-approximation determine the radiative heat flux between the two concentric
spheres.

Solution
From equation (17.27) we find, with N = 2, that α1/2 = α5/2 = 0, α3/2 = −2w′1 µ1 = 2w′2 µ2 = 4πµ (since
µ2 = −µ1 > 0; we keep µ = µ2 as a nonnumerical value to allow comparison between the symmetric and
nonsymmetric S2-approximations). For a gray, nonscattering medium at radiative equilibrium we have
β = κ and ∇ · q = 0, and the source function is, from equations (10.61) and (17.39), S = Ib = G/4π.

i = 1 : −µ
dI1

dτ
−
µ

τ
I1 +

µ

τ
I2 + I1 =

G
4π

=
1
2

(I1 + I2),

−µ
dI1

dτ
−

(µ
τ
−

1
2

)
(I1 − I2) = 0,

i = 2 : µ
dI2

dτ
+
µ

τ
I2 −

µ

τ
I1 + I2 =

1
2

(I1 + I2),

µ
dI2

dτ
−

(µ
τ

+
1
2

)
(I1 − I2) = 0.

While addition of the two equations simply leads to a restatement of radiative equilibrium (as in Example
17.1), subtracting them (and multiplying by w′i = 2π) leads to

−µ
d

dτ
[2π(I1 + I2)] + 2π(I1 − I2) = 0,

or
dG
dτ

= −
q
µ2 = −

τ2q
µ2

1
τ2 .

Since for a medium at radiative equilibrium between concentric spheres Q = 4πr2q = const and, therefore,
τ2q = const, the incident radiation may be found by integration,

G(τ) =
τ2q
µ2

1
τ

+ C,

where the two constants (τ2q) and C are still unknown and must be determined from the boundary
conditions, equations (17.28):

I2(τ1) = J1/π, I1(τ2) = J2/π.

Using the definitions for q and G, equations (17.29),

q = 2πµ (I2 − I1) and G = 2π(I2 + I1),

or

I1 =
1

4π

(
G −

q
µ

)
, I2 =

1
4π

(
G +

q
µ

)
,

the boundary conditions may be restated in terms of q and G as

τ = τ1 : 4J1 = G +
q1

µ
=
τ1q1

µ2 + C +
q1

µ
=
τ2q
µ2

( 1
τ1

+
µ

τ2
1

)
+ C,

τ = τ2 : 4J2 = G −
q2

µ
=
τ2q2

µ2 + C −
q2

µ
=
τ2q
µ2

( 1
τ2
−
µ

τ2
2

)
+ C.

Subtracting the second boundary condition from the first we obtain

Ψ =
τ2

τ2
1

q
J1 − J2

=
1

1
4µ

(
1 +

τ2
1

τ2
2

)
+
τ1

4µ2

(
1 −

τ1

τ2

) .
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For the symmetric S2-approximation, with µ = 1/
√

3, this equation becomes

Ψsymmetric =
1

√
3

4

(
1 +

τ2
1

τ2
2

)
+

3τ1

4

(
1 −

τ1

τ2

) ,
and for the nonsymmetric approximation with µ = 0.5,

Ψnonsymmetric =
1

1
2

(
1 +

τ2
1

τ2
2

)
+ τ1

(
1 −

τ1

τ2

) .
The accuracy of the S2-approximation is very similar to that of the P1-approximation, for which

ΨP1 =
1

1
2

(
1 +

τ2
1

τ2
2

)
+

3τ1

4

(
1 −

τ1

τ2

) .
Note that the method is very accurate for large τ1 (large optical thickness) but breaks down for optically
thin conditions (κ→ 0), in particular for small ratios of radii, R1/R2. In the limit (κ→ 0, R1/R2 → 0) we
find ΨP1 = ΨS2 ,nonsym → 2, while the correct limit should go to Ψexact → 1.

Numerical solutions to equations (17.27), allowing for anisotropic scattering, variable prop-
erties, and external irradiation, have been reported by Tsai and colleagues [43] using the S8
discrete ordinates method with the equal-weight ordinates of Fiveland [12]. The same method
was used by Jones and Bayazitoğlu [44,45] to determine the combined effects of conduction and
radiation through a spherical shell.

Concentric Cylinders
The analysis for two concentric cylinders follows along similar lines. Again we consider an
absorbing, emitting, and scattering medium contained between two isothermal cylinders with
radii R1 (temperature T1, diffuse emittance ε1) and R2 (temperature T2, emittance ε2), respec-
tively. For this case the equation of transfer is given by equation (14.88),

sinθ cosψ
∂I
∂r
−

sinθ sinψ
r

∂I
∂ψ

+ βI = βS, (17.30)

where polar angle θ is measured from the z-axis, and azimuthal angle ψ is measured from the
local radial direction (cf. Fig. 14-6). S is the radiative source function and has been given by
equation (17.23). Introducing the direction cosines ξ = ŝ · êz = cosθ, µ = ŝ · êr = sinθ cosψ, and
η = ŝ · êψc = sinθ sinψ, we may rewrite equation (17.30) as

µ

r
∂
∂r

(rI) −
1
r
∂
∂ψ

(η I) + βI = βS. (17.31)

For a one-dimensional cylindrical medium the symmetry conditions are not as straightforward
as for slabs and spheres. Here we have

I(r, θ, ψ) = I(r, π − θ,ψ) = I(r, θ,−ψ). (17.32)

Therefore, the intensity is the same for positive and negative values of ξ, as well as for positive
and negative values of η. Thus, we only need to consider positive values for ξi and ηi from
Table 17.1, leading to Nc = N(N + 2)/4 different ordinates for the SN-approximation, with



17.4 ONE-DIMENSIONAL CONCENTRIC SPHERES AND CYLINDERS 555

quadrature weights w′′i = 4wi. Equation (17.31) may then be written in discrete ordinates form
as

µi

r
d
dr

(rIi) −
1
r

{
∂
∂ψ

(ηI)
}
ψ=ψi

+ βIi = βSi, i = 1, 2, . . . ,Nc. (17.33)

As for the concentric spheres case the term in braces is approximated as{
∂
∂ψ

(ηI)
}
ψ=ψi

'
αi+1/2Ii+1/2 − αi−1/2Ii−1/2

w′′i
, i = 1, 2, . . . ,Ni, ξi fixed. (17.34)

In this relation the subscript i + 1/2 implies “toward the next higher value of ψi, keeping ξi
constant.” The value of Ni depends on the value of ξi. For example, for the S4-approximation
we have from Table 17.1 Ni = 4 for ξi = 0.2958759 (four different values for µi, two positive and
two negative) and Ni = 2 for ξi = 0.9082483. In the case of concentric cylinders the recursion
formula for α, by letting I = S = const in equation (17.31), is obtained as

αi+1/2 − αi−1/2 = w′′i
∂η

∂ψ

∣∣∣∣∣
ψ=ψi

= w′′i µi, i = 1, 2, . . . ,Ni, ξi fixed. (17.35)

Again, α1/2 = 0 since at that location ψ1/2 = 0 and, therefore, η = 0. Similarly, αNi+
1/2 = 0 since

ψNi+
1/2 = π and η = 0. Finally, using linear averaging for the half-node intensities leads to

µi
dIi

dr
+
µi

2r
Ii −

αi+1/2Ii+1 − αi−1/2Ii−1

2rw′′i
+ βIi = βSi, i = 1, 2, . . . ,Nc, (17.36a)

αi+1/2 = αi−1/2 + w′′i µi, α1/2 = αN+1/2 = 0, i = 1, 2, . . .Ni, ξi fixed. (17.36b)

Equation (17.36) is the set of equations for concentric cylinders, for the Nc = N(N+2)/4 unknown
directional intensities Ii, and is equivalent to the set for concentric spheres, equation (17.27). The
boundary conditions for cylinders and spheres are basically identical [equations (17.28)], except
for some renumbering, as are the expressions for incident intensity and radiative heat flux
[equations (17.29)], that is,

r=R1 : Ii =
J1

π
= Ib1 −

1−ε1

ε1π
q1, i=

Nc

2
+1,

Nc

2
+2, . . . ,Nc (µi>0), (17.37a)

r=R2 : Ii =
J2

π
= Ib2 +

1−ε2

ε2π
q2, i=1, 2, . . . ,

Nc

2
(µi<0), (17.37b)

G(r) =

Nc∑
i=1

w′′i Ii(r), (17.37c)

q(r) =

Nc∑
i=1

w′′i µi Ii(r), (17.37d)

and

q(R1) = q1 = ε1

(
Eb1 +

Nc/2∑
i=1

(µi<0)

w′′i µi Ii

)
, (17.37e)

− q(R2) = q2 = ε2

(
Eb2 −

Nc∑
i=Nc/2+1

(µi>0)

w′′i µi Ii

)
. (17.37f )

An example of the use of the discrete ordinates method in a one-dimensional medium is
the work of Krishnaprakas [46], who considered combined conduction and radiation in a gray,
constant property medium with various scattering behaviors.
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FIGURE 17-2
A general two-dimensional control volume.

17.5 MULTIDIMENSIONAL PROBLEMS
While the discrete ordinates method is readily extended to multidimensional configurations, the
method results in a set of simultaneous first-order partial differential equations that generally
must be solved numerically. As for one-dimensional geometries, the equation of transfer is
slightly different whether a Cartesian, cylindrical, or spherical coordinate system is employed.
We shall first describe the method for Cartesian coordinate systems, followed by a brief descrip-
tion of the differences for cylindrical and spherical geometries.

Enclosures Described by Cartesian
Coordinates
For Cartesian coordinates equation (17.4) becomes, using equation (17.14),

ξi
∂Ii

∂x
+ ηi

∂Ii

∂y
+ µi

∂Ii

∂z
+ β Ii = βSi, i = 1, 2, . . . ,n, (17.38)

where Si is again shorthand for the radiative source function

Si = (1 − ω) Ib +
ω
4π

n∑
j=1

w j Φi j I j, i = 1, 2, . . . ,n. (17.39)

Equation (17.38) is subject to the boundary conditions in equation (17.5) along each surface. For
example, for a surface parallel to the y-z-plane, with n̂ = ı̂ and n̂ · ŝ j = ŝ j · ı̂ = ξ j, we have for all
i with ξi > 0 (n/2 boundary conditions)

Ii = Jw/π = εw Ibw +
1 − εw

π

∑
ξ j<0

(n/2 values)

w j I j |ξ j|. (17.40)

Although the numerical solution to equation (17.38) may be found through standard finite dif-
ferences, the first order of the equations necessitates backward differencing with large truncation
errors. Consequently, it is more common to employ the finite-volume approach of Carlson and
Lathrop [4] described below.

Two-Dimensional Problems
For clarity, we shall develop the method here for a two-dimensional geometry (i.e., for ∂I/∂z ≡ 0).
For such a problem the intensity is the same for positive and negative values of µi. Thus, we
need to consider only positive values of µi (and double the quadrature weights wi). A general
volume element is shown in Fig. 17-2. The volume element has four face areas AW and AE
(in the x-direction), and AS and AN (in the y-direction). In a simple rectangular enclosure one
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FIGURE 17-3
Enclosure corner, used as starting point for discrete ordinates calcula-
tions.

would have (per unit length in the z-direction) AW = AE = ∆y, AS = AN = ∆x, and V = ∆x∆y.
The finite-volume formulation of equation (17.38) is obtained by integrating it over a volume
element. For example, the term ∂Ii/∂x transforms to∫

V

∂Ii

∂x
dV =

∫
AE

Ii dAE −

∫
AW

Ii dAW = IEiAE − IWiAW , (17.41)

where IEi and IWi are average values of Ii over the faces of AE and AW , respectively. Operating
similarly on the other terms changes equation (17.38) to

ξi(AEIEi − AWIWi) + ηi(ANINi − ASISi) = −βVIpi + βVSpi, (17.42)

where Ipi and Spi are volume averages. The number of unknowns in equation (17.42) may be
reduced by relating cell-edge intensities to the volume-averaged intensity. Most often a linear
relationship is chosen, i.e.,

Ipi = γyINi + (1 − γy)ISi = γxIEi + (1 − γx)IWi, (17.43)

in which γx and γy are constants 1
2 ≤ γx, γy ≤ 1, and the scheme is known as “weighted

diamond differencing” as proposed by Carlson and Lathrop [4]. To date most investigators
have employed γx = γy = 1

2 , simply known as the diamond scheme.
For any point on a surface, boundary conditions are given for all directions pointing away

from the surface. Therefore, the numerical solution of equation (17.38) customarily proceeds as
follows: First, the surface radiosities, Jw, and internal radiative source terms, Si, are estimated
(usually by neglecting reflected surface irradiation and volume in-scattering during the first
iteration). Next, the lower left corner (corresponding to minimum values of x and y, as indicated
in Fig. 17-3) is chosen as a starting point. From that point all outgoing directions lie in the first
quadrant (i.e., both direction cosines ξi and ηi are positive). The West and South faces of the
control volume in that corner are part of the enclosure surface and, therefore, their intensities
IWi and ISi are known from the boundary conditions. For any discrete ordinate i, the volume-
averaged intensity, Ipi, of the corner control volume can be calculated by eliminating IEi and INi
from equation (17.42) with the help of equation (17.43). Thus,

γx(AEIEi − AWIWi) = AEIpi −
[
(1 − γx)AE + γxAW

]
IWi,

etc., and

Ipi =
βVSpi + ξiAEWIWi/γx + ηiANSISi/γy

βV + ξiAE/γx + ηiAN/γy
, (17.44)

where
AEW = (1 − γx)AE + γxAW , (17.45a)
ANS = (1 − γy)AN + γyAS, (17.45b)
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are averaged face areas. Once Ipi has been calculated, IEi and INi are readily determined from
equation (17.43), and are equal to the West and South intensities for the adjacent control volumes
(for increasing x and y); thus, one by one, the first-quadrant intensities can be calculated for all
finite volumes in the enclosure. The procedure is then repeated three times, starting from the
remaining three corners of the enclosure, covering the remaining three quadrants of directions.
For example, for ξi < 0, the intensity at the East face of the control volume is known, and the
West face intensity must be eliminated from equation (17.42), to be determined after Ipi has been
found. Thus, we may rewrite equations (17.42) and (17.43) for general (positive or negative)
values of ξi and ηi as

|ξi| (Axe Ixei − Axi Ixii) + |ηi| (Aye Iyei − Ayi Iyii) = −βVIpi + βVSi, (17.46)

Ipi = γx Ixei + (1 − γx) Ixii = γy Iyei + (1 − γy) Iyii, (17.47)

where Axi is the x-direction face area where the beam enters (= AW for ξi > 0, and = AE for
ξi < 0), Axe is the x-direction face area through which the beam exits (= AE for ξi > 0, and
= AW for ξi < 0), Iyii and Iyei are the corresponding y-direction face intensities, and so on. Then
equation (17.44) may be generalized to

Ipi =
βVSpi + |ξi|AxIxii/γx + |ηi|AyIyii/γy

βV + |ξi|Axe/γx + |ηi|Aye/γy
, (17.48)

where
Ax = (1 − γx)Axe + γxAxi , (17.49a)
Ay = (1 − γy)Aye + γyAyi . (17.49b)

If all walls are black and in the absence of scattering, all unknown quantities can be calculated
with a single pass, since all wall radiosities, Jw, and all internal sources Spi = (Ib)pi are known
a priori (if the temperature field is given or assumed). If the walls are reflecting and/or the
medium is scattering, iterations are necessary. After a pass over all directions and over all
finite volumes has been completed, the values for the wall radiosities and the radiative source
terms are updated, and the procedure is repeated until convergence criteria are met. And finally,
internal values of incident radiation and radiative heat flux are determined from equations (17.6)
and (17.7), while heat fluxes at the walls may be calculated from equations (17.8). For highly
reflecting walls (εw � 1) and strongly scattering media (1 − ω � 1), the discrete ordinates
method will become extremely inefficient. As pointed out by Chai and coworkers [47], the
number of iterations caused by scattering can be reduced by removing forward scattering from
the phase function, and treating it as transmission. This can be done in equations (17.38) and
(17.39) by defining a modified extinction coefficient and a modified source as

βmi = β −
σs

4π
wiΦii, (17.50)

Smi = (1 − ω)Ib +
ω
4π

n∑
j=1
j,i

w jΦi jI j, i = 1, 2, ...,n. (17.51)

This leads to faster convergence, particularly if the phase function has a strong forward peak
(as is often the case for large particles; see also the discussion in Section 12.9).

Spatial Differencing Schemes

Expressing unknown intensities in terms of upstream values, such as defining INi and IEi in
terms of Ipi, ISi, and IWi in equation (17.43) for ξi, ηi > 0, is known as spatial differencing (of
intensity). Many different schemes have been proposed over the years. We give here only a
brief description of the most basic and popular ones.
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Step Scheme The step scheme is the simplest differencing scheme, setting γx = γy = 1,
which leads to INi = Ipi and IEi = Ipi for ξi, ηi > 0, etc. Akin to a fully implicit finite difference of
a first derivative, it has the largest truncation error of all methods, but is the only one that never
produces unphysical results.

Diamond Scheme This is the most popular differencing scheme, in which the interpolation
factors are set to γx = γy = 1

2 . However, already Carlson and Lathrop [4] noticed that this may
lead to physically impossible negative intensities at the control volume faces (i.e., INi and IEi for
ξi, ηi > 0, etc.). While they simply suggest setting negative intensities to zero and continuing
computations, this may lead to oscillations and instability. Fiveland [13] showed that such
negative intensities may be minimized (but not totally avoided) if finite volume dimensions are
kept within

∆x <
|ξi|min

β(1 − γx)
, ∆y <

|ηi|min

β(1 − γy)
. (17.52)

Therefore, higher-order SN-approximations (with their smaller minimum value for ξi and ηi),
as well as optically thick media (large β), require finer volumetric meshes. However, Chai and
coworkers [48] have demonstrated that a fine mesh does not guarantee positive intensities, but
may in fact cause negative intensities. They further noticed that the diamond scheme may result
in “overshoot,” i.e., predicting unphysically high intensity (intensity leaving a control volume
larger than intensity entering plus internal emission).

Exponential Scheme The exponential scheme [4] is generally regarded to be more accurate,
particularly for one-dimensional geometries. Here

γs =
1

1 − e−τsi
−

1
τsi
, s = x or y; τxi =

β∆x
ξi
, τyi =

β∆y
ηi
. (17.53)

Since equation (17.53) leads to interpolation factors less than unity, this method also can lead to
physically impossible intensities.

Other relatively simple differencing schemes have been proposed, such as the positive
scheme (Lathrop [49]), a variable-weight scheme (Jamaluddin and Smith [50]), an upstream
tracing scheme (Chai and colleagues [48]), and a hybrid scheme (Kim and Kim [51]). These
methods are somewhat more complex, and have smaller truncation error. However, unlike the
simple step scheme they all can lead to unphysical results.

CLAM Scheme The CLAM scheme is a second-order method and, therefore, does not obey
equation (17.43). The method is a bounded scheme originally developed for fluid flow problems,
and was first applied to radiative heat transfer by Jessee and Fiveland [52]. The intensity exiting
the control volume at face f (where f = W,N,E, or S) is expressed in terms of Ip and center
values of adjacent volume elements in the upstream (Iu) and downstream (Id) directions:

I f =

{
Ip + φ(Id − Ip), 0 ≤ φ ≤ 1,
Ip, otherwise, (17.54)

where φ =
Ip − Iu

Id − Iu
. (17.55)

In the context of Fig. 17-2 for the given direction ŝi, intensity exits the N face (with d being the
volume element above N, and u the volume element below S) and the E face (with d being the
volume element to the right of E, and u the one to the left of W). Intensity entering the S face
exits the N face of the volume element below and equation (17.54) is applied to that element,
etc.

Since high-order schemes, such as CLAM, make the set of equations nonlinear, the intensity
propagating along a single direction can no longer be evaluated in a single sweep, even in the
absence of scattering and/or wall reflection. The equations must be linearized and a solution
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is found through iteration, mostly using the “deferred correction” procedure [18]. For the nth
iteration equation (17.54) is modified to

In
f = In

p + φn−1(In−1
d − In−1

p ), (17.56)

i.e., the first term on the right-hand side is treated implicitly (using the step scheme, γx = γy = 1),
while the remainder is explicit (taking values from the previous iteration, provided 0 ≤ φn−1

≤ 1).
This way equation (17.48) remains in effect, but includes additional source terms stemming from
the explicit terms in equation (17.56).

The CLAM scheme belongs to the class of bounded, high-resolution interpolation schemes
based on the Normalized Variable Diagram (NVD) formulation proposed by Leonard [53]. The
CLAM scheme is known to be stable and fairly economical and, while other NVD schemes can
be more accurate, they also tend to be more time consuming. More detail on spatial differencing
schemes may be found in [18, 52, 54]

False Scattering

One of the more serious shortcomings of the discrete ordinates method is false scattering, which
is a consequence of spatial discretization errors, and is akin to “numerical diffusion” in CFD
calculations. If a single, collimated beam is traced through an enclosure by the discrete ordinates
method, the beam will gradually widen as it moves farther away from its point of origin. This
unphysical smearing of the radiative intensity, even in the absence of real scattering, is known
as false scattering and can be reduced by using a finer mesh of control volumes.

Ray Effect

Another serious drawback of the method is the so-called “ray effect,” which is a consequence
of angular discretization. Consider an enclosure with a very small zone (volume or surface
area) with very high emission. Intensity from this zone will be carried away from it into the
directions of the discrete ordinates. Far away from the emission zone these rays may become
so far apart that some control volumes and/or surface zones may not receive any energy from
this high-emission zone, leading to unphysical results. Clearly, the ray effect can be reduced by
increasing the size of control volumes and surface zones. Therefore, when using a finer spatial
mesh to reduce false scattering, this should be accompanied by an increase in the order of the
method (i.e., a finer angular quadrature). More discussion on ray effects and how to mitigate
them may be found in [55–58].

Example 17.4. A gray, absorbing/emitting (but not scattering) medium is contained within a square
enclosure of side lengths L. The medium is at radiative equilibrium and has a constant absorption
coefficient such that κL = 1. The top and both side walls are at zero temperature, while the bottom
wall is isothermal at temperature Tw (with constant blackbody intensity Ibw); all four surfaces are black.
Calculate the local heat loss from the bottom surface using the discrete ordinates method.

Solution
For the illustrative purposes of this example we shall limit ourselves to the simple nonsymmetric S2-
approximation, with the crude nodal system indicated in Fig. 17-4. For the nonsymmetric S2-approxi-
mation (without dependence in the z-direction) we have to consider four discrete ordinates whose
direction vectors (projected into the x-y-plane) are ŝ i = ξi ı̂ + ηi ̂ = ± 0.5(ı̂ ± ̂), as given by Table 17.1.
The quadrature weight for each direction is, after doubling because of the two-dimensionality, wi = π.
For radiative equilibrium in a gray, nonscattering medium ∇ · q = 0, and the source function is, from
equations (10.61) and (17.39), S = Ib = G/4π, which is not a function of direction.

We will first solve the problem with the popular diamond spatial differencing scheme, i.e., γx = γy =
1
2 . Since all nodal surface areas are A = L/2, all |ξi| = |ηi| = 0.5, and βV = κ(L/2)2 = 0.25κL2 = 0.25 L,
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Square enclosure for Example 17.4.

equation (17.48) becomes

Ipi =
1
8 Sp + 1

4 Ixii + 1
4 Iyii

1
8 + 1

4 + 1
4

= 1
5

(
Sp + 2Ixii + 2Iyii

)
.

We start in the lower left corner with all directions for which ξi > 0 and ηi > 0 (i.e., a single direction for
the S2-approximation). For this direction xi = West and yi = South. To distinguish among the different
nodes we attach the node number after the W, etc. For example, IW2,1 is the intensity at the West face of
volume element 2, pointing into the direction of ŝ1.

i = 1
[
ŝ1 = 0.5(ı̂ + ̂)

]
: For all nodes

Ipj,1 = 1
5

(
Spj + 2IW j,1 + 2ISj,1

)
,

IEj,1 = 2Ipj,1 − IW j,1,

IN j,1 = 2Ipj,1 − ISj,1, j = 1, 2, 3, 4.

Starting at Element 1 we have IW1,1 = 0, IS1,1 = Ibw, and

Ip1,1 = 1
5

(
Sp1 + 2Ibw

)
,

IE1,1 = 2Ip1,1 = IW2,1, IN1,1 = 2Ip1,1 − Ibw = IS3,1;

Ip2,1 = 1
5

(
Sp2 + 2IW2,1 + 2IS2,1

)
= 1

5

(
Sp2 + 4Ip1,1 + 2Ibw

)
,

IN2,1 = 2Ip2,1 − Ibw = IS4,1;

Ip3,1 = 1
5

(
Sp3 + 2IS3,1

)
= 1

5

(
Sp3 + 4Ip1,1 − 2Ibw

)
,

IE3,1 = 2Ip3,1 = IW4,1;

Ip4,1 = 1
5

(
Sp4 + 2IW4,1 + 2IS4,1

)
= 1

5

(
Sp4 + 4Ip3,1 + 4Ip2,1 − 2Ibw

)
.

i = 2
[
ŝ2 = 0.5(−ı̂ + ̂)

]
: In a problem without symmetry we would start in the lower right corner, scanning

again over all elements. However, in this problem we can determine the intensities right away through
symmetry, as

Ip1,2 = Ip2,1, Ip2,2 = Ip1,1, Ip3,2 = Ip4,1, Ip4,2 = Ip3,1.
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i = 3
[
ŝ3 = −0.5(ı̂ + ̂)

]
: Starting in the upper right corner, we have, for all nodes,

Ipj,3 = 1
5

(
Spj + 2IEj,3 + 2IN j,3

)
,

IW j,3 = 2Ipj,3 − IWE,3,

ISj,3 = 2Ipj,3 − IN j,3.

Starting at Element 4 with IE4,3 = IN4,3 = 0, we find

Ip4,3 = 1
5 Sp4,

IS4,3 = 2Ip4,3 = IN2,3, IW4,3 = 2Ip4,3 = IE3,3;

Ip3,3 = 1
5

(
Sp3 + 2IE3,3

)
= 1

5

(
Sp3 + 4Ip4,3

)
,

IS3,3 = 2Ip3,3 = IN1,3;

Ip2,3 = 1
5

(
Sp2 + 2IN2,3

)
= 1

5

(
Sp2 + 4Ip4,3

)
,

IW2,3 = 2Ip2,3 = IE1,3;

Ip1,3 = 1
5

(
Sp1 + 2IE1,3 + 2IN1,3

)
= 1

5

(
Sp1 + 4Ip2,3 + 4Ip3,3

)
.

Also
IS1,3 = 2Ip1,3 − IN1,3 = 2(Ip1,3 − Ip3,3),

IS2,3 = 2Ip2,3 − IN2,3 = 2(Ip2,3 − Ip4,3),

which will be needed later for the calculation of wall heat fluxes from equation (17.8).

i = 4
[
ŝ4 = 0.5(ı̂ − ̂)

]
: Again, by symmetry it follows immediately that

Ip1,4 = Ip2,3, Ip2,4 = Ip1,3, Ip3,4 = Ip4,3, Ip4,4 = Ip3,3,

and also
IS1,4 = IS2,3, IS2,4 = IS1,3.

Summarizing, we have

Ip1,1 = Ip2,2 = 1
5

(
Sp1 + 2Ibw

)
,

Ip2,1 = Ip1,2 = 1
5

(
Sp2 + 4Ip1,1 + 2Ibw

)
,

Ip3,1 = Ip4,2 = 1
5

(
Sp3 + 4Ip1,1 − 2Ibw

)
,

Ip4,1 = Ip3,2 = 1
5

(
Sp4 + 4Ip3,1 + 4Ip2,1 − 2Ibw

)
,

Ip1,3 = Ip2,4 = 1
5

(
Sp1 + 4Ip2,3 + 4Ip3,3

)
,

Ip2,3 = Ip1,4 = 1
5

(
Sp2 + 4Ip4,3

)
,

Ip3,3 = Ip4,4 = 1
5

(
Sp3 + 4Ip4,3

)
,

Ip4,3 = Ip3,4 = 1
5 Sp4,

IS1,3 = IS2,4 = 2(Ip1,3 − Ip3,3),

IS2,3 = IS1,4 = 2(Ip2,3 − Ip4,3).

The source functions are readily evaluated from equation (17.7) and symmetry as

Sp1 = Sp2 = 1
4 (Ip1,1 + Ip1,2 + Ip1,3 + Ip1,4),

Sp3 = Sp4 = 1
4 (Ip3,1 + Ip3,2 + Ip3,3 + Ip3,4).

Since the equations are linear, one could substitute the relations for the Spj into the above equations and
solve for the unknown Ipj,i by matrix inversion. However, in general one would have many more, and
much more complicated, equations, which are best solved by iteration. We start by setting all Spj = 0,
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TABLE 17.4
Nodal intensities of Example 17.4 as a function of iteration, normalized by I bw.

Iter. Ip1,1 Ip2,1 Ip3,1 Ip4,1 Ip1,3 Ip2,3 Ip3,3 Ip4,3 Sp1 Sp3

Diamond scheme
1 0.4000 0.7200 0.0000* 0.1760 0.0000 0.0000 0.0000 0.0000 0.2800 0.0440
2 0.4560 0.8208 0.0000* 0.2654 0.1191 0.0630 0.0158 0.0088 0.3647 0.0725
3 0.4729 0.8513 0.0000* 0.2955 0.1615 0.0846 0.0261 0.0145 0.3926 0.0840
≥9 0.4815 0.8667 0.0037 0.3148 0.1852 0.0963 0.0333 0.0185 0.4074 0.0926

Step scheme
1 0.3333 0.4444 0.1111 0.1852 0.0000 0.0000 0.0000 0.0000 0.1944 0.0741
2 0.3981 0.5309 0.1574 0.2541 0.1001 0.0730 0.0329 0.0247 0.2755 0.1173
3 0.4252 0.5669 0.1808 0.2883 0.1442 0.1049 0.0521 0.0391 0.3103 0.1401
≥ 10 0.4459 0.5946 0.2027 0.3198 0.1802 0.1306 0.0721 0.0541 0.3378 0.1622
∗negative values set to zero

finding values for the Ipj,i, updating the Spj, reevaluating the Ipj,i, and so on, until convergence has been
reached. The changing values of the intensity (normalized with Ibw) as a function of iteration are given in
Table 17.4. Values accurate to ' 5% are reached after three iterations, and fully converged values (to four
significant digits) are obtained after nine iterations. The converged intensities are used to determine the
net radiative heat flux from the bottom wall at x = L/4 and x = 3L/4. From equation (17.8) we have

q(x=0.25 L) = q(x=0.75 L) = πIbw −

4∑
i=3

wi IS1,i |ηi| = πIbw −
π
2

(IS1,3 + IS1,4),

or

Ψ =
q0.25L

Ebw
=

q0.75L

Ebw
= 1 −

Ip1,3 − Ip3,3 + Ip2,3 − Ip4,3

Ibw
= 0.7704.

For comparison we will work this example also with the simpler, but more stable step differencing
scheme, i.e., γx = γy = 1. Then we obtain from equations (17.47) and (17.48)

Ipi =
1
3

(Sp + Ixii + Iyii), Ixei = Iyei = Ipi.

Then, following the same procedure we obtain (a little more easily)

Ip1,1 = 1
3 (Sp1 + 0 + Ibw) = Ip2,2

Ip2,1 = 1
3 (Sp2 + Ip1,1 + Ibw) = Ip1,2

Ip3,1 = 1
3 (Sp3 + 0 + Ip1,1) = Ip4,2

Ip4,1 = 1
3 (Sp4 + Ip3,1 + Ip2,1) = Ip3,2

Ip4,3 = 1
3 (Sp4 + 0 + 0) = Ip3,4

Ip3,3 = 1
3 (Sp3 + Ip4,3 + 0) = Ip4,4

Ip2,3 = 1
3 (Sp2 + 0 + Ip4,3) = Ip1,4

Ip1,3 = 1
3 (Sp1 + Ip2,3 + Ip3,3) = Ip2,4

The formulas for the source functions and heat fluxes remain the same, but the nondimensional flux
becomes, after substituting for IS = Ip,

Ψ = 1 −
Ip1,3 + Ip1,4

2Ibw
= 0.844.

The iteration results for the step scheme are also included in Table 17.4. Results for the nondimensional
heat flux from both schemes are shown in Fig. 17-5 along with exact results reported by Razzaque and
coworkers [59], and with S2- and S4-calculations of Truelove [15] (for a much finer mesh). Truelove’s
results demonstrate the importance of good ordinate sets, at least for low-order approximations: The S′2
and S′4 results were obtained with sets that do not obey the half-moment condition of equation (17.13) (as
used by Fiveland [11] in a first investigation of rectangular enclosures), while the S2 and S4 results were
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FIGURE 17-5
Nondimensional heat flux along the bottom wall of the
square enclosure of Example 17.4.

obtained with the sets given in Table 17.1 (using the nonsymmetric ordinates for S2). Not surprisingly, the
diamond scheme (similar to a Crank–Nicolson finite differencing scheme) is more accurate than the step
scheme (similar to fully implicit finite differencing). The step scheme shows a smoother distribution for
the Ip and Sp and is always stable. The diamond scheme, on the other hand, gives nonphysical negative
intensities for Ip3,1 during the first few iterations, which were set to zero.

Ray effects, while present, are not apparent in this example because of the large cells used to allow
for hand calculations. They become very noticeable when repeating this example with a fine mesh, as
will be done in the context of the finite volume method, the subject of the next section (see Example 17.7).

In his early calculations Fiveland [11] applied the S2-, S4-, and S6-approximations to purely
scattering rectangular media (ω = 1), and to isothermal, nonscattering media bounded by cold
black walls. Truelove [15] repeated some of those results to demonstrate the importance of
good ordinate sets, and gave some new results for radiative equilibrium in a square enclo-
sure. Jamaluddin and Smith [50] applied the S4-approximation to a rectangular, nonscattering
enclosure with known temperature profile. Kim and Lee investigated the effects of strongly
anisotropic scattering, using high-order approximations (up to S16) [60], and the effects of colli-
mated irradiation [61]. Finally, combined conduction and radiation in a linear-anisotropically
scattering rectangular enclosure has been studied by Baek and Kim [62]. They also investigated
the influence of radiation in compressible, turbulent flow over a backward facing step, using
the same method (gray constant properties, here without scattering) [63]. Finally, radiation in
two-dimensional packed beds, together with conduction and convection, was studied by Lu and
coworkers [36]. While they also assumed gray properties, they allowed them to vary locally;
for scattering, they used the large diffuse sphere phase function, equation (12.85). Other appli-
cations of the two-dimensional Cartesian form of the discrete ordinates method can be found
in [64–67], all dealing with combined-mode heat transfer. Particularly noteworthy here is the
study of Selçuk and Kayakol [68], who compared the performance of the S4 method with that of
the related discrete transfer method [69] (see p. 575), finding the methods to have comparable
accuracy, while the S4 solution required three orders of magnitude less computer time.

Three-Dimensional Problems

The method can be extended immediately to three-dimensional geometries by giving the control
volume Front and Back surfaces, AF and AB, and rewriting equation (17.48) as

Ipi =
βVSpi + |ξi|AxIxii/γx + |ηi|AyIyii/γy + |µi|AzIzii/γz

βV + |ξi|Axe/γx + |ηi|Aye/γy + |µi|Aze/γz
, (17.57)
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where
Ax = (1 − γx) Axe + γx Axi , (17.58a)
Ay = (1 − γy) Aye + γy Ayi , (17.58b)
Az = (1 − γz) Aze + γz Azi , (17.58c)

and the sub-subscript i again denotes the face where the beam enters, and e where it exits,
as explained in the context of equation (17.48). A three-dimensional Cartesian enclosure has
eight corners, from each of which 1

8 N(N + 2) directions must be traced (covering one octant
of directions), for a total of N(N + 2) ordinates. Some such calculations have been performed
by Jamaluddin and Smith [70] (nonscattering medium with prescribed temperature), and by
Fiveland [13] and Truelove [16] (both studying the idealized furnace of Mengüç and Viskanta
[71], considering a linear-anisotropically scattering medium with internal heat generation at
radiative equilibrium), by Park and Yoon [72] (combined conduction and radiation, using inverse
analysis to determine constant, gray values for κ and σs, for given temperature profiles), and
Lacroix and colleagues (radiation in a plasma formed by the laser welding process) [73], and
others. Also, Gonçalves and Coelho [74] have shown how the discrete ordinates method can
be implemented on parallel computers. Fiveland and Jessee [75] discussed several acceleration
schemes for optically thick geometries, for which the discrete ordinate method is known to
converge very slowly (or not at all). An extensive review up to the year 2000 of the discrete
ordinate method from a computer science point of view, emphasizing convergence rates and
multigrid and parallel implementations, has been given by Balsara [76].

Multidimensional Non-Cartesian Geometries
A few investigations have dealt with the application of the discrete ordinates method to two- and
three-dimensional cylindrical enclosures, and more recently the method has also been applied
to irregular geometries. A two-dimensional axisymmetric enclosure was first considered by
Fiveland [10], who calculated radiative heat flux rates for a cylindrical furnace with known
temperature profile. A very similar problem was treated by Jamaluddin and Smith [70] who,
a little later, also addressed the case of a three-dimensional cylindrical furnace [77, 78]. Kim
and Baek [79] investigated fully developed nonaxisymmetric pipe flow with a gray, constant
property, absorbing/emitting and isotropically scattering medium. Kaplan and coworkers [80]
modeled an unsteady ethylene diffusion flame, treating soot and combustion gasses as gray
and nonscattering, but with spatial variation. Ramamurthy and colleagues [81] investigated
reacting, radiating flow in radiant tubes, using a more sophisticated model for the spectral
behavior of the combustion gases, and a molten glass jet was studied by Song and coworkers [82].
All of these used the S4-method in two-dimensional, cylindrical geometries, although the S14-
scheme was used by Jendoubi et al. [83] to evaluate different scattering behaviors.

Complex three-dimensional geometries are difficult to treat with the standard discrete ordi-
nates method. This was attempted by Howell and Beckner [84], who used “embedded bound-
aries” to simulate irregular surfaces, and by Adams and Smith [85], who modeled a complex
furnace. Their results clearly demonstrate the ray effect: using a coarse ordinate mesh (up to
S8) together with a very fine spatial mesh, their calculated radiative fluxes undergo very strong
unphysical oscillations. Sakami and colleagues [86, 87] showed how spatial differentiation can
be done across unstructured, triangular, two-dimensional meshes. They trace back each ray
through each cell, integrating over the entire cell using a finite-element Galerkin scheme. A
somewhat similar approach was suggested by Cheong and Song [88–91]. Through careful spa-
tial differencing, they showed how the standard discrete ordinates method can be applied to
unstructured grids and irregular geometries. This method was also further refined by Seo and
Kim [92].

Discretization of equation (17.4) for, both, rectangular Cartesian and irregular structured or
unstructured grids may also be carried out using the finite volume approach of Patankar [93],
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Spatial and directional discretization in a two-dimensional domain: (a) finite volume elements with nodes at the centers
of the elements, (b) typical subdivision of all directions into solid angle elements.

as is done in the “finite volume method” (for radiation) described in the following section. This
can then be combined with any spatial differencing scheme [18]. Alternatively, equation (17.4)
can be solved using the finite element approach (e.g., [94,95]), meshless methods (e.g., [96]), etc.

17.6 THE FINITE VOLUME METHOD

The discrete ordinates method, in its standard form, suffers from a number of serious drawbacks,
such as false scattering and ray effects. The fact that half-range moments, equation (17.13), must
be satisfied for the accurate evaluation of surface fluxes makes it very difficult to apply the
method to irregular geometries. Perhaps the most serious drawback of the method is that it does
not ensure conservation of radiative energy. This is a result of the fact that the standard discrete
ordinates method uses simple quadrature for angular discretization, even though generally a
finite volume approach is used for spatial discretization, as outlined in the previous sections.
Thus, it was a logical step in the evolution of the method to move to a fully finite volume
approach, in space as well as in direction. This was first proposed by Briggs and colleagues [97]
in the field of neutron transport. The first formulations for radiative heat transfer were given by
Raithby and coworkers [98–101]. Slightly different schemes have been proposed by Chai and
colleagues [102–104]. A good review has been given by Raithby [105].

The finite volume method uses exact integration to evaluate solid angle integrals, which is
analogous to the evaluation of areas and volumes in the finite volume approach. The method is
fully conservative: exact satisfaction of all full- and half-moments can be achieved for arbitrary
geometries, and there is no loss of radiative energy. The angular grid can be adapted to each
special situation, such as collimated irradiation [102].

Two-Dimensional Formulation
As in the development of the standard discrete ordinates method, for clarity we will limit our
development to two-dimensional geometries; extension to three dimensions is straightforward.
However, in view of the finite volume method’s ability to easily accommodate irregular geome-
tries, we will consider a general two-dimensional domain with irregularly-shaped finite volumes
as depicted in Fig. 17-6a. The quadrilateral volumes follow “practice B” of Patankar [93], the
ones used by Chai and coworkers [104] (i.e., nodes are placed at the center of each finite volume).
However, other finite volume schemes may be used, as well. Similar to the spatial domain, the
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directional domain of 4π steradians is broken up into n solid angles Ωi (i = 1, 2, . . . ,n), which
exactly fill the directional domain without overlap. This can be done in many ways, and without
restrictions, but it is usually easiest to define the Ωi as the areas on a unit sphere defined by
lines of longitude and latitude, as shown in Fig. 17-6b.

The starting point for the analysis is again equation (17.1) together with its boundary condi-
tion, equation (17.2). For each volume element, such as the one surrounding point P in Fig. 17-6a,
equation (17.1) is integrated over the volume element and over each of the solid angle elements
Ωi. The volume integration over ∂I/∂s is the same as in equation (17.41), but is now for an
element of arbitrary shape, for which we obtain∫

V

∂I
∂s

dV =

∫
V

ŝ · ∇I dV =

∫
V
∇ · (ŝI) dV =

∫
Γ

Iŝ · n̂ dΓ, (17.59)

where Γ is the surface of the volume element consisting of four (two-dimensional) or six (three-
dimensional) faces and n̂ is the outward surface normal as indicated in the figure. In equa-
tion (17.59) the unit direction vector ŝ can be moved inside the spatial ∇-operator since direc-
tional coordinates are independent from spatial coordinates. Conversion to a surface integral
in the last step follows from the divergence theorem [106].

Thus, integrating equation (17.1) over the volume element V and solid angle Ωi leads to∫
Ωi

∫
Γ

Iŝ · n̂ dΓ dΩ =

∫
Ωi

∫
V

(κIb − βI) dV dΩ +

∫
Ωi

∫
V

σs

4π

∫
4π

Φ(ŝ′, ŝ)I(ŝ′) dΩ′ dV dΩ. (17.60)

In the simplest implementation of the finite volume method it is assumed, for the term on the
left-hand side, that the intensity is constant across each face of the element as well as over
the solid angle Ωi. Similarly, it is assumed for the volume integrals that values are constant
throughout and equal to the value at point P. Equation (17.60) then becomes∑

k

Iki(si · n̂k)Ak = βp(Spi − Ipi)VΩi, (17.61a)

Spi = (1 − ωp)Ibp +
ωp

4π

n∑
j=1

IpjΦ̄i j, (17.61b)

Φ̄i j =
1

Ωi

∫
Ωi

∫
Ω j

Φ̄(ŝ′, ŝ) dΩ′ dΩ, (17.61c)

si =

∫
Ωi

ŝ dΩ, (17.61d)

where subscripts k and p imply evaluation at the center of the volume’s faces Ak (as indicated
by an × in Fig. 17-6a) and element center P, respectively; subscript i denotes a value associated
with solid angle Ωi. The radiative source Spi is similar to the one in equation (17.39), but now
has an analytically averaged phase function Φ̄i j. Finally, the si is a vector (of varying length
indicative of the size of Ωi) pointing into an average direction within solid angle element Ωi.
Of course, the forward-scattering term in Spi can, and should, be removed as was done in the
standard discrete ordinate formulation [cf. equation (17.50)].

What remains to be done is to relate the intensities at the face centers, Iki, to those at volume
centers, Ipi. There are many different ways to do this. Raithby and coworkers [98], in particular,
have developed schemes of high accuracy. However, such sophisticated schemes require sub-
stantial analytical and computational overhead. In light of the stability considerations discussed
by Chai and colleagues [48], the simple step scheme has generally been preferred. Therefore,
similar to equation (17.43) with γ = 1, we assume that for intensities leaving control volume P
(i.e., for si · n̂k > 0) Iki = Ipi. All incoming intensities (si · n̂k < 0) are assigned the value of the
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element center from which they came. Substituting Iki = Ipi for si · n̂k > 0 into equation (17.61)
then leads to the final expression

Ipi =

βpSpiVΩi+
∑
k,in

Iki |si · n̂k|Ak

βpVΩi+
∑

k,out
(si · n̂k)Ak

, (17.62)

where the “in” and “out” on the summation signs denote summation over volume faces with
incoming (si · n̂k < 0) or outgoing (si · n̂k > 0) intensities, only. Lately, the CLAM scheme has
become popular (e.g., [58, 107]), requiring an iterative approach as discussed in Section 17.5.

The boundary conditions are developed in a similar manner, except that—for diffusely
emitting and reflecting surfaces—it is advantageous to make an energy balance to ensure con-
servation of radiative energy for surfaces not lined up with the solid angles Ωi. Multiplying
equation (17.2) by n̂ · ŝ and integrating over all outgoing directions gives an expression for
surface radiosity as

Jw =

∫
n̂·ŝ>0

I n̂ · ŝ dΩ =

∫
n̂·ŝ>0

εwIbw n̂ · ŝ dΩ + (1 − εw)
∫

n̂·ŝ<0

I |n̂ · ŝ| dΩ. (17.63)

In finite volume form, integrating over a surface element such as AQ shown in Fig. 17-6a, and
making the standard assumption of constant intensities across AQ leads to

Iq0

∑
i,out

si · n̂q AQ = εqIbq

∑
i,out

si · n̂q AQ + (1 − εq)
∑
i,in

Iqi

∣∣∣si · n̂q

∣∣∣ AQ (17.64)

or
Iq0 = εqIbq + (1 − εq)

∑
i,in

Iqi

∣∣∣si · n̂q

∣∣∣ /∑
i,out

(si · n̂q), (17.65)

where Iq0 is the diffuse intensity leaving boundary element Q (same for all outgoing directions
Ωi with si · n̂k > 0), n̂q is the unit surface normal at Q pointing out of the boundary (but into the
adjacent volume element R). The Iqi are intensities leaving the adjacent volume element R going
into boundary element Q. Using the step scheme we can set Iqi = IRi for si · n̂q < 0.

Once all internal intensities Ipi and boundary intensities Iqi have been determined, internal
values for incident radiation and radiative flux are found from

Gp =
∑

i

IpiΩi, qp =
∑

i

Ipisi, (17.66)

while wall fluxes are given by

qq = εq

(
Ebq −Hq

)
= εq

Ibq

∑
i,out

si · n̂q−
∑
i,in

Iqi

∣∣∣si · n̂q

∣∣∣ . (17.67)

Note that, for arbitrarily oriented surfaces, the sums of |si · n̂q| may not add up to π (for either
incoming or outgoing directions); therefore, for consistency, the finite volume rendition for Ebq
given in the right-most part of equation (17.67) is preferred.

Example 17.5. Repeat Example 17.1 for the finite volume method, using the upper and lower hemi-
spheres as solid angle ranges.

Solution
The governing equation is, as before,

µ
dI
dτ

+ I = (1 − ω) Ib +
ω
4π

(G + A1 qµ).

If we want to apply the finite volume method in a similar fashion as in Example 17.1, i.e., to obtain a
differential equation for each solid angle range, then we need only integrate the governing equation
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over these solid angles, not over volume. Assuming a constant intensity I+ over the upper hemisphere,
and I− over the lower one, we obtain with Ib = G/4π

upper hemisphere:
∫ 2π

0

∫ 1

0

[
µ

dI+

dτ
+ I+ =

1
4π

(G + A1ωµq)
]

dµ dψ,

lower hemisphere:
∫ 2π

0

∫ 0

−1

[
µ

dI−

dτ
+ I− =

1
4π

(G + A1ωµq)
]

dµ dψ,

or

π
dI+

dτ
+ 2πI+ =

1
2

G +
1
4

A1ωq,

−π
dI−

dτ
+ 2πI− =

1
2

G −
1
4

A1ωq.

From the definitions for heat flux and incident radiation we have again{
G
q

}
=

∫ 2π

0

∫ +1

−1

{
1
µ

}
I dµ dψ =

{
2π (I+ + I−)
π (I+ − I−)

}
,

as in Example 17.1. Thus adding and subtracting the equations for the upper and lower hemispheres
we obtain

dq
dτ

+ G = G or
dq
dτ

= 0,

1
2

dG
dτ

+ 2q =
1
2

A1ωq or
dG
dτ

= −(4 − A1ω) q.

For the boundary conditions, equation (17.65), we need to first calculate the si:

s1 =

∫ 2π

0

∫ π/2

0
(sinθ cosψı̂ + sinθ sinψ̂ + cosθk̂) sinθ dθ dψ = πk̂,

s2 =

∫ 2π

0

∫ π

π/2
(sinθ cosψı̂ + sinθ sinψ̂ + cosθk̂) sinθ dθ dψ = −πk̂.

For the bottom boundary we have n̂ = k̂ and s1 · n̂ = −s2 · n̂ = π, so that at

τ = 0 : I+ = ε1Ib1 + (1 − ε1)I−.

Subtracting (1 − ε1)I+, using the definition for q, and dividing by ε1 leads to

τ = 0 : I+ = J1/π = Ib1 −
1 − ε1

ε1π
q,

which is, of course, the same as for Example 17.1 (and for any diffuse surface). Similarly, at the top wall

τ = τL : I− = J2/π.

The solution is then found immediately from Example (17.1) (setting 1/µ2
1 = 4) as

Ψ =
q

J1 − J2
=

1

1 +
(
1 + A1ω

4

)
τL

,

which is the same as the answer from the nonsymmetric S2-approximation. More importantly, the
analysis in this example shows that the Schuster–Schwarzschild (or two-flux) approximation is simply
the lowest-level finite volume method.

Example 17.6. Repeat Example 17.4 using the finite volume method, by splitting the total solid angle
into four equal ranges.

Solution
As in Example 17.4 we will put the z-axis perpendicular to the paper in Fig. 17-4, from which the polar
angle θ is measured. Because of the two-dimensionality, it is best to assign each Ω i the entire range of
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polar angles, and a quarter of the azimuthal range. Thus, breaking up by quadrant we choose

Ω1 : 0 ≤ ψ <
π
2
, 0 ≤ θ ≤ π,

Ω2 :
π
2
≤ ψ < π, 0 ≤ θ ≤ π,

Ω3 : π ≤ ψ <
3π
2
, 0 ≤ θ ≤ π,

Ω4 :
3π
2
≤ ψ < 2π, 0 ≤ θ ≤ π.

The solid angle vectors si are obtained with ŝ = sinθ cosψı̂ + sinθ sinψ̂ + cosθk̂ as

si =

∫
∆ψi

∫ π

0
ŝ sinθ dθ dψ =

∫
∆ψi

[
π
2

cosψı̂ +
π
2

sinψ̂ + 0k̂
]

dψ

=
(
π
2

sinψı̂ −
π
2

cosψ̂
)∣∣∣∣∣

∆ψi

,

or
s1 =

π
2

(ı̂ + ̂), s2 = −
π
2

(ı̂ − ̂), s3 = −
π
2

(ı̂ + ̂), s4 =
π
2

(ı̂ − ̂),

which are identical to the directions in Example 17.4, except for the factor π (which gives the total solid
angle of the Ω i), and the fact that the ŝi in Example 17.4 were projections in the x-y-plane, while the si in

this example actually lie in the x-y-plane. Now, with Ak = 1
2 L, βV = κ

(
1
2 L

)2
= 1

4 L, and Ω i = π, we obtain
from equation (17.62)

Ω1 (i = 1) : Ip1 =

1
4 LπSp1 + IW1 |s1 · (−ı̂)| 1

2 L + IS1

∣∣∣s1 · (−̂)
∣∣∣ 1

2 L
1
4 Lπ + s1 · ı̂ 1

2 L + s1 · ̂
1
2 L

, p = 1, 2, 3, 4,

and similarly for the other three directions. Evaluating the dot products and simplifying this may be
written in general form for all nodes and all directions as

Ipi =
1
3

(Sp + Ipxi ,i + Ipyi ,i), p, i = 1, 2, 3, 4,

where Ipxi ,i is the intensity entering volume p across the x = const face in the si direction, and similarly
for Ipyi ,i. Thus

Ip1,1 =
1
3

(Sp1 + IW1,1 + IS1,1) =
1
3

(Sp1 + 0 + IbW),

Ip2,1 =
1
3

(Sp2 + IW2,1 + IS2,1) =
1
3

(Sp2 + Ip1,1 + IbW),

. . . ,

which is exactly the same as the S2-approximation together with the step scheme. This is to be expected
since (i) the finite volume method—as applied here—uses the step scheme, and (ii) the S2-approximation
satisfies all half-moments for this very simple case. The strength of the finite volume method lies in
the fact that it is easily applied to irregular geometries, and that it conserves radiative energy. As in
Example 17.4 ray effects are not obvious because of the coarse spatial mesh.

Appendix F includes program FVM2D.f, developed by Chai and colleagues [102–104], which
solves equations (17.62), (17.65) and (17.67) for arbitrary rectangular enclosures.

Example 17.7. Repeat Example 17.6 using program FVM2D.f to allow for fine grid and ordinate
resolution. In particular, consider the case where only a part of the bottom strip, −0.1 < x < +0.1, is
heated.

Solution
As in Example 17.4 we will put the z-axis perpendicular to the paper. We will use N × N cells in the
x-y-plane, and discretize the total solid angle into 4 ×M subangles, limiting ourselves to 4 polar angles
because of the two-dimensional nature of the problem. Results obtained by FVM2D.f for irradiation
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FIGURE 17-7
Irradiation of top surface in a square enclosure with heated strip at bottom wall: (a) effects of directional discretization,
(b) effects of spatial discretization.

upon the top surface, for an optically intermediate case of τL = κL = 1, are shown in Fig. 17-7. The
answers are compared with exact results from the Monte Carlo method (see Chapter 21), and also
with those obtained from the P1- and P3-approximations described in the previous chapter. Note that,
for radiative equilibrium of a gray medium with isotropic scattering, the solution only depends on
extinction coefficient (regardless of what fraction is scattered or absorbed/reemitted), and the present
example is identical to the case presented in Fig. 16-11 (except for the partially heated strip considered
here). Figure 17-7a shows the effects of directional discretization for a fixed 10 × 10 spatial grid. It is
observed that accuracy improves as we go from 4× 4 to 4× 8 directions, but deteriorates for much finer
directional spacing. Ray effects are even more obvious in Fig. 17-7b for a fixed directional discretization
of 4×8: as the spatial grid becomes finer, more and more cells away from the heated wall receive no direct
radiation along the chosen ordinates. Clearly, for a (relatively coarse) 4 × 8 directional discretization
a (coarse) 10 × 10 spatial grid gives the most accurate answer, with rapidly diminishing accuracy for
finer grids. Note that in the finite volume approach ray effects are less pronounced than in the standard
discrete ordinates method (with its discrete directions as opposed to averaged solid angles), which is
therefore expected to perform even worse for the present case.

In comparison, the PN answers are relatively accurate, because they do not suffer from ray effects,
and their answers are independent of spatial discretization (beyond a minimum N ×N discretization to
avoid noticeable truncation errors). In this particular example, P1 actually outperforms P3. This does
not mean that the PN-approximations are superior to the discrete ordinates approach, (or that P1 is better
than P3), as seen from the additional results given in Fig. 16-11 and the direct comparison between PN

and FVM given in [108] for this and several other problems.

Murthy and Mathur [109–111] pointed out that, in general, equations (17.62), (17.65), and
(17.67) incur errors due to solid angle overhang. For example, for face k of volume element P
part of solid angle Ωi with si · n̂k > 0 (pointing out of volume element) may actually overlap into
the element. Similarly, it is unlikely to have solid angle boundaries lined up perfectly with the
solid boundaries everywhere. They improved the accuracy of the method through pixelation,
i.e., by breaking up Ωi into smaller pieces, to determine overlap fractions. Also, noting that
the standard line iteration method leads to unacceptably slow convergence in optically thick
situations, they introduced a new scheme, which updates all directional intensities within a
cell simultaneously, leading to convergence rates essentially independent of optical thickness
[111,112]. Hassanzadeh and coworkers [113] also developed a method to accelerate convergence
for optically thick media by carrying out iterations in terms of mean intensity, G/4π, as opposed
to all directional intensities. Several other improvements to the method have been suggested.
Kim and Huh [114] noted that most researchers broke up the total solid angle of 4π into N ×N
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segments of equal polar angles θ and azimuthal angles ψ. This makes the Ωi very small near
the poles (θ = 0, π), and large near the equator (θ = π/2). They suggest that, for n different
polar angles θi, one should pick fewer azimuthal angles near the poles, namely a distribution
of 4, 8, ..., 2n − 4, 2n, 2n, 2n − 4, ..., 8, 4 with growing θi. This results in n(n + 2) different solid
angles (equal to the number of ordinates in the standard Sn scheme), with all Ωi being roughly
equally large. Finally, Liu and coworkers [115] have shown how the finite volume method with
unstructured grids can be parallelized using domain decomposition. The method has also been
employed in a number of combined heat transfer problems [116,117] and is included in several
important commercial CFD codes, such as FLUENT [118].

Comparison with Standard Discrete Ordinates
Method
The radiative transfer equation (RTE), equation (17.1), is a five-dimensional integro-differential
equation, with three spatial and two directional coordinates. For a numerical solution both,
spatial and directional dependencies must be discretized. Various methods of discretization are
available, such as finite differences, finite volumes, finite elements, etc., and one or the other
may be applied for the spatial and for the directional discretization. Originally, for the standard
discrete ordinates method finite differences were used for both. As the method has evolved
to more general geometries, different spatial discretization schemes have been employed, but
directional discretization has remained in finite difference form. In contrast, in the original
form of the finite volume method finite volumes were used for both spatial and directional
discretization. However, recently other spatial discretization schemes have also been used,
e.g., Cui and Li [119] and Grissa et al. [120] employed the finite element method. Therefore,
the one defining difference between the standard discrete ordinates method and the finite
volume method is the fact that the standard discrete ordinates method uses finite differences
for directional discretization, while the finite volume method employs finite volumes.

Liu and coworkers [121] have expressed the RTE in general boundary-fitted coordinates
[122], and applied both the standard discrete ordinates method and the finite volume method to
a number of two- and three-dimensional problems. They found both methods to require similar
amounts of CPU time, while the finite volume method was always slightly more accurate.
Similar conclusions were drawn by Fiveland and Jessee [123] and by Kim and Huh [124],
noting that the finite volume (FV) method outperforms standard discrete ordinates particularly
in optically thin media, since it is less sensitive to ray effects. Coelho and coworkers [125]
compared the performance of the FV method with that of the discrete transfer method [69]
and, like Selçuk and Kayakol [68], found the FV method to be much more economical. Major
advantages of the finite volume method are greater freedom to select ordinates, and the fact that
the FV method conserves radiative energy. In addition, treatment of complex enclosures comes
more natural to the FV method. For example, Baek and colleagues [126–128] used boundary-
fitted coordinates to investigate radiation in several three-dimensional enclosures with gray,
constant-property media.

17.7 THE MODIFIED DISCRETE
ORDINATES METHOD

It was noted in Section 17.5 that the discrete ordinates method (in its standard or finite volume
form) can suffer from ray effects, if directional discretization is coarse compared to spatial
discretization, and if the medium contains small sources of strong emission (from walls or from
within the medium). This prompted Ramankutty and Crosbie [129, 130] to separate boundary
emission from medium emission, as is done in the modified differential approximation of Section
16.8, i.e., letting

I(r, ŝ) = Iw(r, ŝ) + Im(r, ŝ). (17.68)
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The wall-related intensity field can be solved by any standard method as outlined in Section 17.5,
while the RTE and boundary conditions for Im become

dIm

ds
= κIb − βIm(ŝ) +

σs

4π

∫
4π

Im(ŝ′) Φ(ŝ′, ŝ) dΩ′ +
σs

4π

∫
4π

Iw(ŝ′) Φ(ŝ′, ŝ) dΩ′, (17.69)

Im(rw, ŝ) =
1 − ε
π

∫
n̂·ŝ′<0

Imŝ′) |n̂ · ŝ′| dΩ′. (17.70)

Again, equations (17.69) and (17.70) are valid for a gray medium or, on a spectral basis, for a
nongray medium, in an enclosure with opaque, diffusely emitting and diffusely reflecting walls.
Comparing with equations (17.4) and (17.5) it is apparent that the modified equation for Im can
be solved in the same manner by replacing the emission term, κIb, in equation (17.4) by

κ Ib +
σs

4π

n∑
j=1

w j Iw(ŝ j) Φ(ŝ j, ŝi).

For a given temperature and radiative property field the wall-related intensity is calculated
once and for all, and does not require reevaluation during the iterations required for Im in
the presence of scattering, wall reflections, or higher-order spatial schemes. Alternatively,
equations (17.69) and (17.70) can also be solved with the finite volume method by adding the
Iw-related scattering source to Spi in equation (17.61b). Ramankutty and Crosbie applied the
modified discrete ordinates method to boundary-emission dominated rectangular enclosures
with black walls, using analytical solutions for Iw. For such problems, when using lower-order
SN-techniques with fine spatial meshes, the standard discrete ordinates method shows strong
ray effects, which are completely mitigated by the modified discrete ordinates approach. Sakami
and colleagues [131, 132] and Baek and coworkers [128, 133] investigated irregular geometries
with this modified discrete ordinates method, the latter employing a straightforward Monte Carlo
scheme for the wall emission part, giving excellent accuracy even with extreme boundary source
terms.

However, like the modified differential approximation, the modified discrete ordinates
method cannot improve the accuracy of the underlying standard method if strong, isolated
emission sources are located within the medium. Coelho [56] and Li and Werther [134] extended
the method by associating all emission (walls and medium) with Iw, and only scattered radia-
tion is calculated by discrete ordinates. While this mitigates all ray effects, it is not clear what
is gained by this approach (since solution for the emission-related intensity is essentially as
involved as the full problem).

17.8 EVEN-PARITY FORMULATION

The directional RTEs that are solved for the standard discrete ordinates method, equation (17.4),
or the finite volume method, equation (17.61), are first-order partial differential equations with
hyperbolic character, which can lead to unphysical results (negative intensities) and may display
strong ray effects. Converting them into second-order boundary value problems eliminates
unphysical results and could potentially mitigate ray effects. In the heat transfer field this
was first attempted by Song and Park [135]. A second-order formulation may be obtained by
defining even- and odd-parity intensities, involving both forward ŝ and backward −ŝ directions
along a line:

ψ(r, ŝ) = I(r, ŝ) + I(r,−ŝ), (17.71)
φ(r, ŝ) = I(r, ŝ) − I(r,−ŝ). (17.72)
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In the following discussion we will limit ourselves to the simpler case of isotropic scattering.
Under those conditions, adding and subtracting the RTE (17.1) for both directions ŝ and−ŝ leads
to

ŝ · ∇φ(r, ŝ) = −β(r)ψ(r, ŝ) + 2κ(r) Ib(r) +
2σs(r)

4π

∫
2π
ψ(r, ŝ′) dΩ′, (17.73)

ŝ · ∇ψ(r, ŝ) = −β(r)φ(r, ŝ). (17.74)

Note that integration over all directions now encompasses only 2π (half a unit sphere). Using
equation (17.74) the odd-parity term is easily eliminated, leading to a parabolic, second-order
partial differential equation,

ŝ · ∇
(

1
β(r)

ŝ · ∇ψ(r, ŝ)
)

= β(r)ψ(r, ŝ) − 2κ(r) Ib(r) −
2σs(r)

4π

∫
2π
ψ(r, ŝ′) dΩ′, (17.75)

which requires a boundary condition at each end (boundary intersection) of the dual-direction
ray. Substituting equations (17.71) and (17.72) into (17.2) gives

ψ(rw, ŝ) +φ(rw, ŝ) = 2ε(rw)Ib(rw) +
ρ(rw)
π

∫
n̂·ŝ′<0

[ψ(rw, ŝ′)−φ(rw, ŝ′)] |n̂ · ŝ′| dΩ′, n̂ · ŝ > 0. (17.76)

Because of the dual-directional nature of ψ and φ, the boundary condition must also be applied
in the −ŝ-direction, or

ψ(rw, ŝ)−φ(rw, ŝ) = 2ε(rw)Ib(rw) +
ρ(rw)
π

∫
n̂·ŝ′<0

[ψ(rw, ŝ′) +φ(rw, ŝ′)] |n̂ · ŝ′| dΩ′, n̂ · ŝ < 0. (17.77)

These two differ only with the sign of n̂ · ŝ; they are readily combined and φ is eliminated giving
the proper boundary conditions at both ends of a ray described by equation (17.75) as

ψ(rw, ŝ) − sign(n̂ · ŝ)
1
β(r)

ŝ · ∇ψ(r, ŝ)

= 2ε(rw)Ib(rw) +
ρ(rw)
π

∫
n̂·ŝ′<0

[
ψ(rw, ŝ′) + sign(n̂ · ŝ)

1
β(r)

ŝ · ∇ψ(r, ŝ′)
]
|n̂ · ŝ′| dΩ′. (17.78)

In the even-parity formulation directional discretization is only over 2π or a half-sphere, i.e.,
only half as many ordinates are required and, instead, second-order partial differential equations
need to be solved. Spatial discretization may be done by central differences [135], by finite
volumes [136,137], or by finite elements [94,123,138,139]; directional discretization has generally
been done according to the standard discrete ordinates method, with the exception of Becker and
coworkers [139], who employed finite elements also for directional discretization. Liu et al. [137],
Fiveland and Jessee [123], and Kang and Song [138] compared the standard implementation
of the discrete ordinates method to the even-parity formulation and found, in general, that
the accuracy was similar, but the even-parity model required more CPU time, particularly in
optically thin situations.

17.9 OTHER RELATED METHODS

The difficulty caused by the directional nature of radiation has prompted a number of researchers
to develop various approximate schemes to discretize directions (similar to the standard discrete
ordinates method) or to average over solid angle ranges (akin to the finite volume method). We
will here briefly discuss the most important of these related models.

Flux Methods. We have already seen in Example 17.5 that the two-flux or Schuster–Schwarz-
schild approximation is nothing but a crude implementation of the finite volume method. The
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two-flux method has been applied to one-dimensional problems by a number of investigators,
usually in situations where the accurate determination of radiative fluxes is not crucial [140–145].
Noting that the accuracy of this method is more or less limited to one-dimensional problems
without anisotropic scattering, Chin and Churchill [146, 147] developed the six-flow method,
primarily to deal with strongly anisotropic scattering in the presence of collimated irradiation.
In this method the intensity is broken up into a forward, a backward, and four (usually equal)
sideways components. How these components are broken up or averaged over the total solid
angle of 4π is arbitrary. The method has been applied by various researchers to several two-
and three-dimensional problems [147–150].

Discrete Transfer Method. The discrete transfer method (DTM) was developed by Lock-
wood and Shah [69], several years before serious development of the discrete ordinates method
(DOM) began. The discrete transfer method is similar to the discrete ordinates method inasmuch
as discrete directions are chosen. It is also related to the Monte Carlo method (see Chapter 21),
since rays of intensity are traced from surface to surface. In essence, nodal points are established
on the enclosure’s boundary, from which rays are sent out into predetermined directions. The
ray is then traced as it traverses through internal finite volumes, and this interaction is recorded
(weakening of the ray by depositing energy in the volume, strengthening by emission and in-
scattering), until it hits another surface. The method is very similar to the standard DOM and
carries its disadvantages (nonconservative, susceptible to ray effects, needs iterations for non-
black walls and/or scattering), but uses much more cumbersome beam tracing (equivalent to the
exponential scheme). A solid angle “pencil” is established at the emission point, causing inaccu-
racies as the beam passes through internal volumes. The ray tracing is very similar to that of the
Monte Carlo method. While the DTM avoids the statistical scatter of the Monte Carlo method,
it is less efficient because each ray carries a single piece of statistic (given location, direction,
wavelength), while a statistically chosen bundle in a Monte Carlo simulation carries multiple
statistics (particularly important in nongray, reflecting and/or scattering environments). Still,
the method enjoys some popularity because of its early arrival, its early ability to deal with
irregular geometries, and because it has been incorporated into several important commercial
CFD codes. Cumber [151, 152] has offered several improvements for the method, Coelho and
Carvalho [153] presented a conservative formulation of the DTM, and Versteeg and cowork-
ers [154, 155] have quantified the errors inherent to the method. Two- and three-dimensional
calculations have been performed by several researchers, mostly for furnace and other combus-
tion applications [156–163]. Several comparisons between the DTM and other methods have
also been made. Selçuk and Kayakol [68] compared DTM and S4 solutions for two-dimensional,
rectangular geometries and found that the S4 method gave results of comparable accuracy at
three orders of magnitude less computer time. Similarly, Coelho and coworkers [125] solved
the radiation problem in two-dimensional enclosures with obstacles, using DTM, DOM, FVM,
Monte Carlo, and the zonal method (see Chapter 18); they found DOM and FVM to be the
most economical. Finally, Keramida and colleagues employed the DTM and six-flux methods
to model natural gas-fired furnaces [150], finding the six-flux method to be superior.

YIX Method. In this method, first developed by Tan and Howell [164], the radiative transfer
equation is expressed in integral form [see, for example, equation (10.28)], i.e., incident radiation,
G, and radiative flux, q, can be evaluated at any point (inside the medium, or on the boundaries)
as a triple integral (in distance away from the point, and in solid angle). Integration away
from each point (along discrete ordinates) involves certain geometric functions, which can be
predetermined. While this method has the potential to be more efficient than the DOM and the
FVM, setup work for each problem is significant and generalization is difficult. The method
appears to have been used only by the group that developed it [165–169].
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17.10 CONCLUDING REMARKS

The finite volume method, because of its general applicability, and the ability to generate high-
accuracy solutions with fine meshes, is today probably the most popular method to solve the
RTE in complex situations. To be sure, the method also has its weaknesses: it always requires
an iterative solution in the presence of scattering and/or reflecting walls, and for optically thick
media these iterations tend to converge very slowly, if at all. In addition, the discrete ordinates
method is prone to ray effects and can suffer from false scattering. However, the DOM and FVM
are the only methods (aside from the statistical Monte Carlo method) that, through refinement
of the spatial and directional grids, can be carried to arbitrary levels of accuracy without adding
to its mathematical complexity.

The discrete ordinates method is related to the zonal method of Chapter 18, which was
the preferred RTE solution method until the 1960s. The zonal method also performs poorly in
optically thick media, but it does not suffer from ray effects and false scattering. However, it
cannot be used in the presence of anisotropic scattering, and it is difficult to apply to irregular
geometries. The P1-approximation, on the other hand, is much easier to apply and solve,
and gives very accurate results for optically thick media (where DOM and FVM are difficult
to apply), as well as for hot, radiating media in cold surroundings. But this method fails in
optically thin media surrounded by radiating walls and/or subject to directional irradiation.
Importantly, higher orders of the PN-approximation are mathematically difficult to formulate.
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ed. M. P. Mengüç, Begell House, pp. 193–208, 1996.

137. Liu, J., H. M. Shang, Y. S. Chen, and T. S. Wang: “Analysis of discrete ordinates method with even parity
formulation,” Journal of Thermophysics and Heat Transfer, vol. 11, no. 2, pp. 253–260, 1997.

138. Kang, S. H., and T. H. Song: “Finite element formulation of the first- and second-order discrete ordinates equa-
tions for radiative heat transfer calculation in three-dimensional participating media,” Journal of Quantitative
Spectroscopy and Radiative Transfer, vol. 109, no. 11, pp. 2094–2107, 2008.

139. Becker, R., R. Koch, H.-J. Bauer, and M. F. Modest: “A finite element treatment of the angular dependency of
the even-parity equation of radiative transfer,” ASME Journal of Heat Transfer, vol. 132, p. 023404, 2010.

140. Jeandel, G., P. Boulet, and G. Morlot: “Radiative transfer through a medium of silica fibers oriented in parallel
planes,” International Journal of Heat and Mass Transfer, vol. 36, no. 2, pp. 531–536, 1993.

141. Argento, C., and D. Bouvard: “A ray tracing method for evaluating the radiative heat transfer in porous media,”
International Journal of Heat and Mass Transfer, vol. 39, pp. 3175–3180, 1996.

142. Siegel, R., and C. M. Spuckler: “Approximate solution methods for spectral radiative transfer in high refractive
index layers,” International Journal of Heat and Mass Transfer, vol. 37, pp. 403–413, 1994.

143. Spuckler, C. M., and R. Siegel: “Two-flux and diffusion methods for radiative transfer in composite layers,”
ASME Journal of Heat Transfer, vol. 118, pp. 218–222, 1996.

144. Tremante, A., and F. Malpica: “Analysis of the temperature profile of ceramic composite materials exposed to
combined conduction–radiation between concentric cylinders,” Journal of Engineering for Gas Turbines and Power,
vol. 120, no. 2, pp. 271–275, 1998.

145. Dembele, S., J. X. Wen, and J.-F. Sacadura: “Analysis of the two-flux model for predicting water spray transmit-
tance in fire protection application,” ASME Journal of Heat Transfer, vol. 122, no. 1, pp. 183–186, 2000.

146. Chu, C. M., and S. W. Churchill: “Numerical solution of problems in multiple scattering of electromagnetic
radiation,” Journal of Physical Chemistry, vol. 59, pp. 855–863, 1960.

147. Chin, J. H., and S. W. Churchill: “Anisotropic, multiply scattered radiation from an arbitrary, cylindrical source
in an infinite slab,” ASME Journal of Heat Transfer, vol. 87, pp. 167–172, 1965.

148. Daniel, K. J., N. M. Laurendeau, and F. P. Incropera: “Prediction of radiation absorption and scattering in turbid
water bodies,” ASME Journal of Heat Transfer, vol. 101, pp. 63–67, 1979.

149. Sasse, C., R. Königsdorff, and S. Frank: “Evaluation of an improved hybrid six-flux/zone model for radiative
transfer in rectangular enclosures,” International Journal of Heat and Mass Transfer, vol. 38, pp. 3423–3431, 1995.

150. Keramida, E. P., H. H. Liakos, and M. A. Founti: “Radiative heat transfer in natural gas-fired furnaces,”
International Journal of Heat and Mass Transfer, vol. 43, no. 10, pp. 1801–1809, 2000.

151. Cumber, P. S.: “Improvements to the discrete transfer method of calculating radiative heat transfer,” International
Journal of Heat and Mass Transfer, vol. 38, pp. 2251–2258, 1995.

152. Cumber, P. S.: “Application for adaptive quadrature to fire radiation modeling,” ASME Journal of Heat Transfer,
vol. 121, no. 1, pp. 203–205, 1999.

153. Coelho, P. J., and M. G. Carvalho: “A conservative formulation of the discrete transfer method,” ASME Journal
of Heat Transfer, vol. 119, pp. 118–128, 1997.

154. Versteeg, H. K., J. C. Henson, and W. M. G. Malalasekera: “Approximation errors in the heat flux integral of
the discrete transfer method, part 1: Transparent media,” Numerical Heat Transfer – Part B: Fundamentals, vol. 36,
no. 4, pp. 387–407, 1999.

155. Versteeg, H. K., J. C. Henson, and W. M. G. Malalasekera: “Approximation errors in the heat flux integral of the
discrete transfer method, part 2: Participating media,” Numerical Heat Transfer – Part B: Fundamentals, vol. 36,
no. 4, pp. 409–432, 1999.

156. Carvalho, M. G., T. L. Farias, and P. Fontes: “Multidimensional modeling of radiative heat transfer in scattering
media,” ASME Journal of Heat Transfer, vol. 116, no. 2, pp. 486–488, May 1993.

157. Malalasekera, W. M. G., and E. H. James: “Radiative heat transfer calculations in three-dimensional complex
geometries,” ASME Journal of Heat Transfer, vol. 118, pp. 225–228, 1996.

158. Henson, J. C., and W. M. G. Malalasekera: “Comparison of the discrete transfer and Monte Carlo methods for
radiative heat transfer in three-dimensional nonhomogeneous scattering media,” Numerical Heat Transfer – Part
A: Applications, vol. 32, no. 1, pp. 19–36, 1997.

159. Bressloff, N. W., J. B. Moss, and P. A. Rubini: “CFD prediction of coupled radiation heat transfer and soot
production in turbulent flames,” in Proceedings of Twenty-Sixth Symposium (International) on Combustion, vol. 2,
The Combustion Institute, pp. 2379–2386, 1996.



582 17 THE METHOD OF DISCRETE ORDINATES (SN-APPROXIMATION)

160. Visona, S. P., and B. R. Stanmore: “3-D modelling of NOx formation in a 275 MW utility boiler,” Journal of the
Institute of Energy, vol. 69, pp. 68–79, 1996.

161. Beeri, Z., C. A. Blunsdon, and W. M. G. Malalasekera: “Comprehensive modeling of turbulent flames with the
coherent flame-sheet model — part II: High-momentum reactive jets,” Journal of Energy Resources Technology,
vol. 118, pp. 72–76, 1996.

162. Yuan, J., V. Semião, and M. G. Carvalho: “Predictions of particulate formation, oxidation and distribution in a
three-dimensional oil-fired furnace,” Journal of the Institute of Energy, vol. 70, pp. 57–70, 1997.

163. Novo, P. J., P. J. Coelho, and M. G. Carvalho: “Parallelization of the discrete transfer method,” Numerical Heat
Transfer – Part B: Fundamentals, vol. 35, no. 2, pp. 137–161, 1999.

164. Tan, Z. M., and J. R. Howell: “A new numerical method for radiation heat transfer in nonhomogeneous
participating media,” Journal of Thermophysics and Heat Transfer, vol. 4, no. 4, pp. 419–424, 1990.

165. Hsu, P.-F., Z. M. Tan, and J. R. Howell: “Radiative transfer by the YIX method in nonhomogeneous, scattering,
and nongray media,” Journal of Thermophysics and Heat Transfer, vol. 7, no. 3, pp. 487–495, 1993.

166. Hsu, P.-F., and J. C. Ku: “Radiative heat transfer in finite cylindrical enclosures with nonhomogeneous partici-
pating media,” Journal of Thermophysics and Heat Transfer, vol. 8, no. 3, pp. 434–440, 1994.

167. Hsu, P.-F., and J. T. Farmer: “Benchmark solutions of radiative heat transfer within nonhomogeneous partic-
ipating media using the Monte Carlo and YIX method,” ASME Journal of Heat Transfer, vol. 119, pp. 185–188,
1997.

168. Hsu, P.-F., and Z. M. Tan: “Radiative and combined-mode heat transfer within L-shaped nonhomogeneous and
nongray participating media,” Numerical Heat Transfer – Part A: Applications, vol. 31, no. 8, pp. 819–835, 1997.

169. Tan, Z. M., P.-F. Hsu, S. H. Wu, and C. Y. Wu: “Modified YIX method and pseudoadaptive angular quadrature
for ray effects mitigation,” Journal of Thermophysics and Heat Transfer, vol. 14, no. 3, pp. 289–296, 2000.

Problems

17.1 Consider a gray, isothermal and isotropically scattering medium contained between large, isothermal,
gray plates at temperatures T1 and T2, and emittances ε1 and ε2, respectively. Determine the radiative
flux between the plates using the S2-approximation.

17.2 Consider a large, isothermal (temperature Tw), gray and diffuse (emittance ε) wall adjacent to a
semi-infinite gray absorbing/emitting and linear-anisotropically scattering medium. The medium is
isothermal (temperature Tm). Determine the radiative flux as a function of distance away from the
plate using the S2-approximation.

17.3 Consider parallel, black plates, spaced 1 m apart, at constant temperatures T1 and T2. Due to pressure
variations, the (gray) absorption coefficient is equal to

κ = κ1 + κ1x; κ0 = 0.01 cm−1; κ1 = 0.0002 cm−2,

where x is measured from plate 1. The medium does not scatter radiation. Determine, for radiative
equilibrium, the nondimensional heat flux Ψ = q/σ(T4

1 − T4
2) by the exact method, and the S2-

approximation.

17.4 Black spherical particles of 100µm radius are suspended between two cold and black parallel plates
1 m apart. The particles produce heat at a rate of π/10 W/particle, which must be removed by thermal
radiation. The number of particles between the plates is given by

NT(z) = N0 + ∆Nz/L, 0 < z < L; N0 = ∆N = 212 particles/cm3.

(a) Determine the local absorption coefficient and the local heat production rate; introduce an
optical coordinate and determine the optical thickness of the entire gap.

(b) If the S2-approximation is to be employed, what are the relevant equations and boundary
conditions governing the heat transfer?

(c) What are the heat flux rates at the top and bottom surfaces? What is the entire amount of energy
released by the particles? What is the maximum particle temperature?

17.5 Two infinitely long, concentric cylinders of radii R1 and R2 with emittances ε1 and ε2 have the same
constant surface temperature Tw. The medium between the cylinders has a constant absorption
coefficient κ and does not scatter; uniform heat generation Q̇ ′′′ takes place inside the medium.
Determine the temperature distribution in the medium and heat fluxes at the wall if radiation is the
only means of heat transfer, using the S2-approximation.
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17.6 An infinite, black, isothermal plate bounds a semi-infinite space filled with black spheres. At any given
distance z away from the plate the particle number density is identical, namely, NT = 6.3662×108 m−3.
However, the radius of the suspended spheres diminishes monotonically away from the surface as

a = ao e−z/L; ao = 10−4 m, L = 1 m.

(a) Determine the absorption coefficient as a function of z (you may make the large-particle as-
sumption).

(b) Determine the optical coordinate as a function of z. What is the total optical thickness of the
semi-infinite space?

(c) Assuming that radiative equilibrium prevails and using the S2-approximation, set up the bound-
ary conditions and solve for heat flux and temperature distribution (as a function of z).

17.7 Consider two parallel black plates, both at 1000 K, that are 2 m apart. The medium between the plates
emits and absorbs (but does not scatter) with an absorption coefficient of κ = 0.05236 cm−1 (gray
medium). Heat is generated by the medium according to the formula

Q̇ ′′′ = CσT4, C = 6.958 × 10−4cm−1,

where T is the local temperature of the medium between the plates. Assuming that radiation is the
only important mode of heat transfer, determine the heat flux to the plates using the (symmetric)
S2-approximation.

17.8 A furnace burning pulverized coal may be approximated by a gray cylinder at radiative equilibrium
with uniform heat generation Q̇ ′′′ = 0.266 W/cm3, bounded by a cold black wall. The gray and
constant absorption and scattering coefficients are, respectively, 0.16 cm−1 and 0.04 cm−1, while the
furnace radius is R = 0.5 m. Scattering may be assumed to be isotropic. Using the S2-approximation:

(a) Set up the relevant equations and their boundary conditions.
(b) Calculate the total heat loss from the furnace (per unit length).
(c) Calculate the radial temperature distribution; what are the centerline and the adjacent-to-wall

temperatures?
(d) Qualitatively, if the extinction coefficient is kept constant, what is the effect of varying the

scattering coefficient on (i) heat transfer rates, (ii) temperature levels?

17.9 Estimate the radial temperature distribution in the sun. You may make the following assumptions:

(i) The sun is a sphere of radius R.
(ii) As a result of high temperatures in the sun, the absorption and scattering coefficients may be

approximated to be constant, i.e., κν, βν = const , f (ν,T, r) (free–free transitions!).
(iii) As a result of high temperatures, radiation is the only mode of heat transfer.
(iv) The fusion process may be approximated by assuming that a small sphere at the center of the

sun releases heat uniformly corresponding to the total heat loss of the sun (i.e., assume the sun
to be concentric spheres with a certain flux at the inner boundary r = ri).

(a) Relate the heat production to the effective sun temperature Teff = 5777 K.
(b) Would you expect the sun to be optically thin, intermediate, or thick? Why? What are the

prevailing boundary conditions?
(c) Find an expression for the temperature distribution (for r > ri) using the S2-approximation.
(d) What is the surface temperature of the sun?

17.10 Repeat Problem 17.9 but replace assumption (iv) by the following: The fusion process may be ap-
proximated by assuming that the sun releases heat uniformly throughout its volume corresponding
to the total heat loss of the sun.
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17.11 Consider a sphere of very hot dissociated gas of radius 5 cm. The gas may be approximated as a
gray, linear-anisotropically scattering medium with κ = 0.1 cm−1, σs = 0.2 cm−1, A1 = 1. The gas
is suspended magnetically in vacuum within a large cold container and is initially at a uniform
temperature T1 = 10,000 K. Using the S2-approximation and neglecting conduction and convection,
specify the total heat loss per unit time from the entire sphere at time t = 0. Outline the solution
procedure for times t > 0.
Hint: Solve the governing equation by introducing a new dependent variable 1(τ) = τ(4πIb − G).

17.12 Consider a gray, isothermal, isotropically-scattering medium contained between large, cold, black
plates. Determine the local radiative heat flux using the S4-method. To this purpose, set up the ana-
lytical solution using the method of successive approximations, i.e., guess a radiative source function,
S(τ), which is to be improved by successive iterations. Carry out one successive approximation.

17.13 Reconsider Problem 17.12 for a similar medium at radiative equilibrium contained between isothermal
black plates at temperatures T1 and T2, respectively.

17.14 A hot gray medium is contained between two concentric black spheres of radius R1 = 10 cm and
R2 = 20 cm. The surfaces of the spheres are isothermal at T1 = 2000 K and T2 = 500 K, respectively.
The medium absorbs, emits with n = 1, κ = 0.05 cm−1, but does not scatter radiation. Determine
the heat flux between the spheres using the S4-approximation. Compare your results with those of
Table 14.2.
Note: This problem requires the numerical solution of four simultaneous simple ordinary differential
equations.

17.15 Repeat Problem 17.2 using the finite volume method. Use the upper and lower hemispheres as solid
angle ranges.

17.16 Repeat Problem 17.10 using the finite volume method. Use the upper and lower hemispheres as solid
angle ranges.

17.17 Repeat Problem 17.12 with the finite volume method, using a total of four solid angle ranges.

(a) Use the solid angle ranges of Example 17.6.
(b) Alternatively, let the z-axis point from plate to plate (with polar angle θ measured from it) and

choose:

Ω1 : 0 ≤ ψ <
π
2
, 0 ≤ θ ≤ π,

Ω2 :
π
2
≤ ψ < π, 0 ≤ θ ≤ π,

Ω3 : π ≤ ψ <
3π
2
, 0 ≤ θ ≤ π,

Ω4 :
3π
2
≤ ψ < 2π, 0 ≤ θ ≤ π.


