
CHAPTER

16
THE METHOD OF
SPHERICAL
HARMONICS
(PN-APPROXIMATION)

16.1 INTRODUCTION

For a gray medium (or on a spectral basis) with known temperature distribution (or for the
case of radiative equilibrium), the general problem of radiative transfer entails determining the
radiative intensity from an integro-differential equation in five independent variables—three
space coordinates and two direction coordinates—a prohibitive task. The method of spherical
harmonics provides a vehicle to obtain an approximate solution of arbitrarily high order (i.e.,
accuracy), by transforming the equation of transfer into a set of simultaneous partial differential
equations (PDEs). The approach was first proposed by Jeans [1] in his work on radiative transfer
in stars. Further description of the method may be found in the books by Kourganoff [2],
Davison [3], and Murray [4] (the latter two dealing with the closely related neutron transport
theory). The spherical harmonics method is identical to the moment method described in Chapter
15, except that moments are taken in such a way as to take advantage of the orthogonality of
spherical harmonics.

The great advantage of the method of spherical harmonics is the conversion of the govern-
ing equation to relatively simple partial differential equations. The drawback of the method
is that low-order approximations are usually only accurate in media with near-isotropic ra-
diative intensity, and accuracy improves only slowly for higher-order approximations while
mathematical complexity increases extremely rapidly. This has prompted several researchers
in the neutron transport community, notably Gelbard [5], to develop an approximate spherical
harmonics method, known as the simplified PN-approximation, or SPN. While more readily taken
to higher order, this method does not approach the exact solution in the limit.

It is a common misconception that the lowest-order P1-approximation fails in optically thin
media: as seen from Fig. 15-2 or Example 16.2 below, when emission from a hot medium is
considered, the P1-approximation goes to the correct optically thin limit but may fail in the
optically thick limit. Rather, the P1-approximation loses accuracy, e.g., when an optically thin
medium acts as a radiation barrier between hot and cold surfaces, in the presence of collimated
irradiation,1 etc.

1See Chapter 19.
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In this chapter we shall first develop the set of partial differential equations for the general
PN-method for one-dimensional plane-parallel media and their boundary conditions.2 Next we
deal in more detail with the most popular P1-approximation for arbitrary geometries. Then
a brief presentation of the P3 and higher-order approximation is given. This is followed by a
description of the SPN scheme and, finally, the chapter concludes with a discussion of a num-
ber of variations on the PN-approximation that attempt to overcome its inaccuracy in strongly
anisotropic situations, most notably the modified differential approximation (MDA), which sepa-
rates radiation emanating from walls from the radiation emanating from within the medium.
While such methods deliver better accuracy, they are no longer the solution to a simple partial
differential equation, but also require the evaluation of some integral correction factors.

16.2 GENERAL FORMULATION OF THE
PN-APPROXIMATION

We may think of the radiative intensity field I(r, ŝ)3 at location r within the medium as the value
of a scalar function on the surface of a sphere of unit radius, surrounding the point r. Any such
function may be expressed in terms of a two-dimensional generalized Fourier series as

I(r, ŝ) =

∞∑
l=0

l∑
m=−l

Im
l (r)Ym

l (ŝ), (16.1)

where the Im
l (r) are position-dependent coefficients and the Ym

l (ŝ) are spherical harmonics, given
by

Ym
n (θ,ψ) =

{
cos(mψ)Pm

n (cosθ), for m ≥ 0,
sin(|m|ψ)Pm

n (cosθ), for m < 0, (16.2)

that satisfy Laplace’s equation in spherical coordinates. Hereθ andψ are the polar and azimuthal
angles describing the direction unit vector ŝ, respectively, and the Pm

l are associated Legendre
polynomials, given by

Pm
n (µ) = (−1)m (1 − µ2)|m|/2

2nn!
dn+|m|

dµn+|m|
(µ2
− 1)n. (16.3)

We may substitute equation (16.1) into the general equation of radiative transfer, equa-
tion (10.24),

ŝ · ∇τI + I = (1 − ω)Ib +
ω
4π

∫
4π

I(ŝ′) Φ(ŝ · ŝ′) dΩ′, (16.4)

where space coordinates have been nondimensionalized using the extinction coefficient, i.e.,
dτ = β ds (as indicated by the subscript τ in ∇τ). Equation (16.4) requires the outgoing intensity
to be specified everywhere along the surface of the enclosure. Equation (16.4) is multiplied by
Yn

k after also expanding the scattering phase function into a series of Legendre polynomials,
equation (12.99), followed by integration over all directions. Exploiting the orthogonality prop-
erties of spherical harmonics [6] leads to infinitely many coupled partial differential equations
in the unknown position-dependent functions Im

l (r).4 Up to this point the above representation
is an exact method for the determination of the intensity field. To simplify the problem an
approximation is now made by truncating the series in equation (16.1) after very few terms. By
doing so, we have replaced the single unknown I (which is a function of space and direction) by

2The reader only interested in the P1-approximation may skip directly to Section 16.5 after reading Section 16.2.
3All relations in this chapter are valid on a spectral basis and, for a gray medium, also for total quantities. For

notational simplicity we omit any subscript used to emphasize the spectral nature of quantities.
4Obviously, a thorough understanding of the method requires the reader to be familiar with the method of separation

of variables and generalized Fourier series, as applied to the solution of linear partial differential equations.
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FIGURE 16-1
Coordinates for the one-dimensional plane-
parallel medium.

1 + 3 + · · ·+ (2N + 1) = (N + 1)2 unknown Im
l that are functions of space only. Therefore, we need

to replace equation (16.4) (a function of space and direction) by (N + 1)2 equations (which are
functions of space only). This is achieved by multiplying equation (16.4) by Ym

k and integrating
over all directions.

The highest value for l retained, N, gives the method its order and its name. Most often
employed is the P1 or differential approximation (l = 0, 1), while the P3-approximation (l = 0, 1, 2, 3)
has been used a few times. It is known from neutron transport theory that approximations of
odd order are more accurate than even ones of next highest order, so that the P2 approximation
is never used. In most early developments and applications the PN-method was derived only
for the one-dimensional plane-parallel case, for example, as in Jeans [1], Kourganoff [2], and
Krook [7]. Detailed derivations of the general three-dimensional case in Cartesian coordinates
have been given by Davison [3] and by Cheng [8,9]. The extension to general coordinate systems
has been given by Ou and Liou [10]. Another general three-dimensional derivation has been
given by Condiff [11], who expanded the intensity in terms of polyadic Legendre polynomials
given by Brenner [12], that is, Legendre functions Pn(ŝ) whose arguments are tensors of order
n (rather than scalars). And, recently, Modest and Yang [13], have formulated the general
three-dimensional PN-approximation for Cartesian geometries in terms of elliptic second-order
partial differential equations, which are readily incorporated into standard CFD codes.

16.3 THE PN-APPROXIMATION FOR A
ONE-DIMENSIONAL SLAB

We shall now develop the general PN-method in some detail for the one-dimensional plane-
parallel medium, in order to (i) shed further light on the general method, and (ii) facilitate the
difficult problem of developing a consistent set of boundary conditions. For such a simple case
the intensity does not depend on azimuthal angle ψ (assuming the polar angle θ is measured
from an axis perpendicular to the plates, as shown in Fig. 16-1), i.e., Im

l = 0 for m , 0. Thus,
equation (16.1) may be simplified to

I(τ, µ) '
N∑

l=0

Il(τ)Pl(µ), (16.5)

where we set µ = cosθ and omitted the superscript “0” from Il since it is no longer necessary.
Equation (16.5) is approximate because the series is truncated beyond l = N, i.e., we assume
Il(τ) = 0 for all l > N. The scattering phase function for such a medium, expanded into Legendre
polynomials, is [see equation (14.12)]

Φ(µ, µ′) =

M∑
m=0

AmPm(µ′)Pm(µ), (16.6)
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where M is the order of approximation for the phase function; and we find∫ 1

−1
Φ(µ, µ′)I(τ, µ′) dµ′ =

N∑
l=0

Il(τ)
M∑

m=0

AmPm(µ)
∫ 1

−1
Pl(µ′)Pm(µ′) dµ′. (16.7)

We may now utilize the orthogonality of Legendre polynomials (see, for example, Abramowitz
and Stegun [14]), to write∫ 1

−1
Pl(µ)Pm(µ) dµ =

2δlm

2m + 1
=

{
0 for m , l,

2
2m + 1 for m = l. (16.8)

Employing this orthogonality relation in equation (16.7) leads to∫ 1

−1
Φ(µ, µ′)I(τ, µ′) dµ′ =

N∑
l=0

2Al

2l + 1
Il(τ)Pl(µ), (16.9)

where it is implied that Al = 0 for l > M. (On the other hand, if M > N, the Al for l = N +1, . . . ,M
disappear and this information about the phase function is lost in the Nth order approximation.)
We may now recast the equation of transfer for the one-dimensional plane-parallel medium as

µ
dI
dτ

+ I(τ) = (1 − ω)Ib(τ) +
ω
2

∫ 1

−1
Φ(µ, µ′)I(τ, µ′) dµ′, (16.10)

or
N∑

l=0

[
dIl

dτ
µPl(µ) + Il(τ)Pl(µ)

]
= (1 − ω)Ib(τ) + ω

N∑
l=0

AlIl(τ)
2l + 1

Pl(µ). (16.11)

To exploit the orthogonality of the Legendre polynomials, we shall use the recursion relation [14]

(2l + 1)µPl(µ) = lPl−1(µ) + (l + 1)Pl+1(µ). (16.12)

Thus, we may recast equation (16.11) as

N∑
l=0

{ I′l (τ)

2l + 1
[
lPl−1(µ) + (l + 1)Pl+1(µ)

]
+ Il(τ)Pl(µ)

}
= (1 − ω)Ib(τ) +

N∑
l=0

ωAlIl(τ)
2l + 1

Pl(µ), (16.13)

where the prime denotes differentiation with respect to τ. Since we have introduced (N +1) new
variables, I0, I1, . . . , IN, we need to convert equation (16.13) into (N + 1) equations independent
of direction. Thus, multiplying by Pk(µ) (k = 0, 1, . . . ,N) and integrating over all µ leads to

k + 1
2k + 3

I′k+1(τ) +
k

2k − 1
I′k−1(τ) +

(
1 −

ωAk

2k + 1

)
Ik(τ) = (1 − ω)Ib(τ)δ0k,

k = 0, 1, . . . ,N, (16.14)

where equation (16.8) has been utilized. Equation (16.14) is a set of (N + 1) simultaneous first-
order ordinary differential equations for the unknown functions I0(τ), I1(τ), . . . , IN(τ).5 As such
it requires a set of (N + 1) boundary conditions for its solution.

16.4 BOUNDARY CONDITIONS FOR THE
PN-METHOD

The equation of radiative transfer, equation (16.4), is a first-order partial differential equation in
intensity, requiring a boundary condition of the type

I(r=rw, ŝ) = Iw(rw, ŝ) for n̂ · ŝ > 0 (16.15)
5Remember that equation (16.5) is truncated beyond l = N, so that IN+1(τ) = 0.
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FIGURE 16-2
Prescribed boundary intensities for PN-method.

everywhere on the surface, that is, the intensity leaving a surface (described by the vector rw)
must be prescribed in some fashion for all outgoing directions n̂ · ŝ > 0 (with n̂ being the outward
surface normal), as shown in Fig. 16-2.

When the PN-approximation is applied [truncating equation (16.1) after l = N] this bound-
ary condition can no longer be satisfied and must be replaced by one that either satisfies
equation (16.15) at selected directions ŝi or satisfies it in an integral sense. Mark [15, 16] and
Marshak [17] proposed two different sets of boundary conditions for the spherical harmonics
method as applied to neutron transport within a one-dimensional plane-parallel medium.

Mark’s Boundary Condition
For a one-dimensional slab of optical thickness τL, equation (16.15) may be rewritten as

I(0, µ) = Iw1(µ), 0 < µ < 1, (16.16a)
I(τL, µ) = Iw2(µ), −1 < µ < 0, (16.16b)

where Iw1 and Iw2 are the prescribed intensities at Surfaces 1 (τ = 0) and 2 (τ = τL).6

The PN-method for such a medium, equation (16.14), requires (N + 1) boundary conditions,
say 1

2 (N + 1) each, at τ = 0 and τ = τL (assuming that N is odd). Noting that the equation

PN+1(µ) = 0 (16.17)

has precisely 1
2 (N + 1) roots µi with values between 0 and 1, Mark suggested replacing the

boundary conditions of equation (16.16) by

I(0, µ = µi) = Iw1(µi), i = 1, 2, . . . , 1
2 (N + 1), (16.18a)

I(τL, µ = −µi) = Iw2(−µi), i = 1, 2, . . . , 1
2 (N + 1), (16.18b)

where the µi are the positive roots of equation (16.17). A detailed explanation for this choice
has been given by Mark [15, 16] and by Davison [3]. For example, for the P1-approximation
for a medium bounded by black walls we get with P2(µ) = 1

2 (3µ2
− 1), µ1 = 1/

√
3 and, from

equation (16.5),

I
(
0, µ=

1
√

3

)
= I0(0) +

I1(0)
√

3
= Ib1, (16.19a)

I
(
τL, µ=−

1
√

3

)
= I0(τL) −

I1(τL)
√

3
= Ib2. (16.19b)

6We include the subscript w here to distinguish the Iwi from the intensity moments Ii defined by equation (16.5).
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One serious drawback of Mark’s boundary conditions is the fact that they are difficult, if not
impossible, to apply to more complicated geometries.

Marshak’s Boundary Conditions
An alternative set of boundary conditions for the one-dimensional plane-parallel PN-approxima-
tion was proposed by Marshak, who suggested that equation (16.16) be satisfied in an integral
sense by setting∫ 1

0
I(0, µ)P2i−1(µ) dµ =

∫ 1

0
Iw1(µ)P2i−1(µ) dµ, i = 1, 2, . . . , 1

2 (N + 1); (16.20a)∫ 0

−1
I(τL, µ)P2i−1(µ) dµ =

∫ 0

−1
Iw2(µ)P2i−1(µ) dµ, i = 1, 2, . . . , 1

2 (N + 1). (16.20b)

Again, the reason for choosing all the Legendre polynomials of odd order has been explained
in detail by Marshak [17] and Davison [3]. Substituting equation (16.5) and assuming diffuse
surfaces, i.e., Iw = Jw/π, leads to

N∑
l=0

Il(0)
∫ 1

0
Pl(µ)P2i−1(µ) dµ =

Jw1

π

∫ 1

0
P2i−1(µ) dµ, i = 1, 2, . . . , 1

2 (N + 1); (16.21a)

N∑
l=0

Il(τL)
∫ 0

−1
Pl(µ)P2i−1(µ) dµ =

Jw2

π

∫ 0

−1
P2i−1(µ) dµ, i = 1, 2, . . . , 1

2 (N + 1). (16.21b)

As an example we again consider the P1-approximation for a medium bounded by black
walls. Then, with P1(µ) = µ,∫ 1

0
I(0, µ)µ dµ =

∫ 1

0

[
I0(0) + I1(0)µ

]
µ dµ =

∫ 1

0
Ib1µ dµ,

or

I0(0) + 2
3 I1(0) = Ib1, (16.22a)

I0(τL) − 2
3 I1(τL) = Ib2. (16.22b)

We note that replacing the factor 2 in Marshak’s boundary condition by a
√

3 converts it to
Mark’s boundary condition.

One advantage of Marshak’s boundary condition is that it may be extended to more general
problems, although not painlessly. Note that the integration in equation (16.20) is carried out
over all directions above the surface (i.e., a hemisphere) with the Legendre polynomials of
equation (16.5) as weight factors. Thus, it appears natural to generalize the boundary condition
to (see Fig. 16-2)∫

n̂·ŝ>0
I(rw, ŝ)Y

m
2i−1(ŝ) dΩ =

∫
n̂·ŝ>0

Iw(ŝ)Y
m
2i−1(ŝ) dΩ,

i = 1, 2, . . . , 1
2 (N + 1), all relevant m, (16.23)

where the Y
m
2i−1(ŝ) are expressed in terms of a local coordinate system, in which polar angle θ′

is measured from the surface normal (i.e., cosθ′ = n̂ · ŝ), and azimuthal angle ψ′ is measured
on the surface, as indicated in Fig. 16-2. The statement “all relevant m′′ rather than −i ≤ m ≤ +i
appears in equation (16.23) since it may provide more boundary conditions than are required.
For example, for a one-dimensional plane-parallel medium there is no azimuthal dependence,
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FIGURE 16-3
Geometry for Example 16.1.

so that all Im
n with m , 0 vanish. and the only “relevant” value for m is m = 0. This leads to

a single boundary condition on each surface for the P1-approximation (as already seen to be
correct), two for the P3-approximation, and so on. Generally, equation (16.23) leads to too many
boundary conditions in multidimensional situations. For example, for the P1-approximation
for a general three-dimensional medium without symmetry, equation (16.23) leads to three
boundary conditions everywhere (i = 1,m = 0,±1), while only one is needed (as explained in
the following section). Davison [3] has shown that the number of superfluous conditions is
always at least one less than the possible m at i = 1

2 (N + 1). Thus, on intuitive grounds it was
accepted practice to satisfy equation (16.23) for all m for i = 1, 2, . . . , 1

2 (N − 1), and for as many
relevant m as possible for i = 1

2 (N + 1). Recently, Modest [18] has shown that a self-consistent
set of boundary conditions is obtained if, for i = 1

2 (N + 1), only the even values for m are chosen,
discarding all odd m.

Example 16.1. Consider the infinite quarter-space τx > 0, τz > 0 bounded by isothermal black surfaces
at T1 and T2 as shown in Fig. 16-3. Develop the boundary conditions for the P1-approximation at both
surfaces (i.e., τx = 0 and τz = 0).

Solution
For the P1-approximation equation (16.1) reduces to

I(τx,τz, θ, ψ) = I0
0 (τx,τz) − I−1

1 (τx,τz) sinψP−1
1 (cosθ) + I0

1 (τx,τz)P0
1 (cosθ) + I1

1 (τx,τz) cosψP1
1 (cosθ).

For this two-dimensional problem it is convenient to measure polar angle θ from the τz-axis, and
azimuthal angle ψ in the τx-τy-plane from the τx-axis. Then I(ψ) = I(−ψ) and, with P0

1 (cosθ) = cosθ,
and P1

1 = P−1
1 (cosθ) = − sinθ,

I(τx, τy, θ, ψ) = I0
0 + I0

1 cosθ − I1
1 cosψ sinθ,

since the term involving sinψ must vanish owing to symmetry. Therefore, equation (16.23) is able to
provide two boundary conditions everywhere on the surface (i = 1 and m = 0, 1), while we need only
one (as to be developed in the next section). Thus, following the discussion of equation (16.23), we
introduce local direction coordinate systems on the surfaces and satisfy equation (16.23) only for m = 0.
For the bottom surface, τz = 0, the problem is simple since the surface normal is parallel to the τz-axis,
from which the polar angle is measured. Thus,∫ 2π

ψ=0

∫ π/2

θ=0

(
I0
0 + I0

1 cosθ − I1
1 cosψ sinθ

)
cosθ sinθ dθ dψ =

∫ 2π

0

∫ π/2

0
Ib1 cosθ sinθ dθ dψ,

or
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I0
0 (τx, 0) + 2

3 I0
1 (τx, 0) = Ib1.

At the vertical surface (τx = 0) P0
1 = cosθ′, where θ′ is the angle between a direction vector and the

surface normal n̂ = ı̂. Thus, with cosθ′ = ŝ · ı̂ and ŝ = sinθ(cosψı̂ + sinψ̂) + cosθk̂, it follows that
cosθ′ = sinθ cosψ and∫ π/2

ψ=−π/2

∫ π

θ=0

(
I0
0 + I0

1 cosθ − I1
1 cosψ sinθ

)
sinθ cosψ sinθ dθ dψ = π

(
I0
0 −

2
3 I1

1

)
= πIb2,

or
I0
0 (0, τz) − 2

3 I1
1 (0, τz) = Ib2.

We shall see in the next section that I0
0 is directly proportional to incident radiation, while I0

1 and I1
1 are

proportional to radiative heat flux into the τy- and τx-directions, respectively.

Davison [3] stated that for low-order approximations Marshak’s boundary conditions would
give superior results, but that for high-order approximations Mark’s boundary conditions
should be more accurate. However, subsequent numerical work by Pellaud [19] and Schmidt
and Gelbard [20] showed Marshak’s boundary condition leads to more accurate results, even in
high-order approximations.

16.5 THE P1-APPROXIMATION

If the series in equation (16.1) is truncated beyond l = 1 (i.e., Im
l ≡ 0 for l ≥ 2), we get the

lowest-order, or P1, approximation, or

I(r, ŝ) = I0
0 Y0

0 + I−1
1 Y−1

1 + I0
1 Y0

1 + I1
1 Y1

1 . (16.24)

From standard mathematical texts, such as MacRobert [21], or directly from equation (16.3) we
find the associated Legendre polynomials as P0

0 = 1,P0
1 = cosθ,P1

1 = P−1
1 = − sinθ, and, using

equation (16.2),
I(r, θ, ψ) = I0

0 + I0
1 cosθ − I−1

1 sinθ sinψ − I1
1 sinθ cosψ. (16.25)

We notice that equation (16.25) has four terms: The first term is independent of direction, the
second is proportional to the z-component of the direction vector ŝ = sinθ cosψı̂ + sinθ sinψ̂+
cosθk̂, the third is proportional to sy and the last to sx.7 Each term is preceded by an unknown
function of the space coordinates, which are to be determined. Equation (16.25) may be written
more compactly by introducing two new functions, a (a scalar) and b (a vector having three
components) as

I(r, ŝ) = a(r) + b(r) · ŝ. (16.26)

The four unknowns—a and the three components of b, or the four components of Im
n —can

be related to physical quantities. Substituting equation (16.26) into the definition for incident
radiation yields

G(r) =

∫
4π

I(r, ŝ) dΩ = a(r)
∫

4π
dΩ + b(r) ·

∫
4π

ŝ dΩ = 4πa(r), (16.27)

since ∫
4π

ŝ dΩ =

∫ 2π

0

∫ π

0

sinθ cosψ
sinθ sinψ

cosθ

 sinθ dθ dψ =

0
0
0

 = 0. (16.28)

7Provided the polar angle is measured from the z-axis, and the azimuthal angle from the x-axis.



16.5 THE P1-APPROXIMATION 503

Similarly, substituting equation (16.26) into the definition for the radiative heat flux gives

q(r) =

∫
4π

I(r, ŝ) ŝ dΩ = a(r)
∫

4π
ŝ dΩ + b(r) ·

∫
4π

ŝŝ dΩ =
4π
3

b(r), (16.29)

since∫
4π

ŝŝ dΩ =

∫ 2π

0

∫ π

0

 sin2θ cos2ψ sin2θ sinψ cosψ sinθ cosθ cosψ
sin2θ sinψ cosψ sin2θ sin2ψ sinθ cosθ sinψ
sinθ cosθ cosψ sinθ cosθ sinψ cos2θ

 × sinθ dθ dψ

=

∫ π

0

π sin2θ 0 0
0 π sin2θ 0
0 0 2π cos2θ

 sinθ dθ

=
4π
3

1 0 0
0 1 0
0 0 1

 =
4π
3
δ, (16.30)

where δ is the unit tensor, and b · δ = b. Therefore, we may rewrite equation (16.26) in terms of
incident radiation and radiative heat flux as

I(r, ŝ) =
1

4π
[G(r) + 3q(r) · ŝ]. (16.31)

We find that, except for a constant factor, I0
0 is the incident radiation, while I1

1 , I−1
1 , and I0

1 are the
x-, y-, and z-components of the radiative heat flux, respectively. The preceding development
is useful to show that equation (16.31) indeed corresponds to the lowest order of the PN-
approximation, equation (16.1). Of course, equation (16.31) should have physical significance
and it should be possible to derive it from physical principles. This was done by Modest [22], who
treated radiation as a “photon gas” with momentum and energy, and derived the intensity field
through quantum statistics. He showed that the average photon velocity (which is proportional
to heat flux) is inversely proportional to optical thickness, and that equation (16.31) holds for a
location a large optical distance away from any points not at thermodynamic equilibrium (sharp
temperature gradients, steps in temperature, etc.).

Now, substituting equation (16.31) into equation (16.4) and assuming linear-anisotropic
scattering,8

Φ(ŝ · ŝ′) = 1 + A1ŝ · ŝ′, (16.32)
leads to∫

4π
I(ŝ′) Φ(ŝ · ŝ′) dΩ′ =

1
4π

∫
4π

(G + 3q · ŝ′)(1 + A1ŝ · ŝ′) dΩ′

=
G
4π

[∫
4π

dΩ′ + A1ŝ ·
∫

4π
ŝ′ dΩ′

]
+

3q
4π
·

[∫
4π

ŝ′ dΩ′ + A1

(∫
4π

ŝ′ŝ′ dΩ′
)
· ŝ

]
= G + A1q · δ · ŝ = G + A1q · ŝ, (16.33)

where equations (16.28) and (16.30) have been employed (and the last step is easily verified
by, say, using Cartesian coordinates and carrying out the dot product). Thus, equation (16.4)

8Because of the orthogonality of spherical harmonics the P1-approximation remains unchanged for nonlinear
anisotropic scattering. The choice of the functional form for intensity, equation (16.31), does not allow such scat-
tering behavior, i.e., the medium must be so optically thick that any nonlinear anisotropically scattered intensity
is smoothed out in the immediate vicinity of the scattering point. In reality, this smoothing implies that a “best”
linear-anisotropic scattering factor A∗1 must be determined.
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becomes

1
4π
∇τ ·

[
ŝ(G + 3q · ŝ)

]
+

1
4π

(G + 3q · ŝ) ' (1−ω)Ib +
ω
4π

(G + A1q · ŝ), (16.34)

where we were able to pull the direction vector ŝ inside the gradient, since direction is indepen-
dent of position. Multiplying equation (16.34) by Y0

0 = 1 and integrating over all solid angles
gives

∇τ · q = (1 − ω)(4πIb − G), (16.35)

where again equations (16.28) and (16.30) have been invoked. Equation (16.35) is, of course,
identical to equation (10.59) since it does not depend on the functional form for intensity.

To obtain additional equations we may multiply equation (16.34) by Ym
1 (m = −1, 0,+1) or

equivalently, by the components of the direction vector ŝ. Choosing the latter and integrating
over all directions leads to

1
4π
∇τ ·

[
G

∫
4π

ŝŝ dΩ + 3q ·
∫

4π
ŝŝŝ dΩ

]
+

1
4π

[
G

∫
4π

ŝ dΩ + 3q ·
∫

4π
ŝŝ dΩ

]
= (1 − ω)Ib

∫
4π

ŝ dΩ +
ω
4π

[
G

∫
4π

ŝ dΩ + A1q ·
∫

4π
ŝŝ dΩ

]
. (16.36)

It is easy to show that
∫

4π ŝŝŝ dΩ = 0 (and, indeed, the integral over any odd multiple of ŝ) and,
therefore, this equation reduces to

1
3
∇τ · (Gδ) + q · δ =

ωA1

3
q · δ,

or
∇τG = − (3 − A1ω) q. (16.37)

Equations (16.35) and (16.37) are a complete set of one scalar and one vector equation in the
unknowns G and q, and are the governing equations for the P1 or differential approximation. The
heat flux may be eliminated from these equations by taking the divergence of equation (16.37)
after dividing by (1 − A1ω/3):

∇τ ·

( 1
1 − A1ω/3

∇τG
)

= −3∇τ · q = −3(1 − ω)(4πIb − G). (16.38)

If A1ω is constant (does not vary across the volume) this equation reduces to

∇
2
τG − (1 − ω) (3 − A1ω) G = −(1 − ω) (3 − A1ω) 4πIb. (16.39)

Equation (16.39) is a Helmholtz equation, closely related to Laplace’s equation, and is elliptic in
nature (see, for example, a standard mathematics text such as Pipes and Harvill [23]). As such,
it requires a single boundary condition specified everywhere on the enclosure surface.

If radiative equilibrium prevails, then ∇ · q = 0, and

∇
2
τG = 0, (16.40)

or
∇

2
τ Ib = 0. (16.41)

In either case we get the elliptic Laplace’s equation with the same boundary condition require-
ments. Once the incident radiation and/or blackbody intensity has been determined, the radia-
tive heat flux is found from equation (16.37) as

q = −
1

3 − A1ω
∇τG. (16.42)
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Equation (16.23) can supply three boundary conditions for the P1-approximation, while equa-
tions (16.39) or (16.40) only require a single one. Thus, following the discussion of Marshak’s
boundary condition, equation (16.23), we choose only the case of m = 0 for the weight function
in equation (16.23), with polar angle measured from the surface normal. Thus,

Y
0
1 (ŝ) = P0

1 (cosθ′) = cosθ′ = ŝ · n̂, (16.43)

where θ′ is the polar angle of ŝ in the local coordinate system as shown in Fig. 16-2. Physically,
that is, without reference to the general PN-approximation, this choice of boundary condition
implies that the directional distribution of the outgoing intensity along the enclosure wall is
satisfied in an integral sense, by requiring the normal heat flux to be continuous (from enclosure
surface into the participating medium). Then the boundary condition becomes∫

n̂·ŝ>0
Iw(ŝ) ŝ · n̂ dΩ =

1
4π

∫
n̂·ŝ>0

(G + 3q · ŝ) ŝ · n̂ dΩ

=
1

4π

∫ 2π

ψ′=0

∫ π/2

θ′=0

(
G + 3qt1 sinθ′ cosψ′ + 3qt2 sinθ′ sinψ′ + 3qn cosθ′

)
cosθ′ sinθ′ dθ dψ′

=
1
2

∫ π/2

0
(G + 3qn cosθ′) cosθ′ sinθ′ dθ′ =

1
4

(G + 2qn)

or

G + 2q · n̂ = 4
∫

n̂·ŝ>0
Iw(ŝ) ŝ · n̂ dΩ. (16.44)

Here qt1 and qt2 are the two components of the heat flux vector tangential to the surface and
qn = q · n̂ is the normal component.

For an opaque surface which emits and reflects radiation diffusely, Iw(ŝ) = Jw/π, where Jw is
the surface’s radiosity. Substituting this into equation (16.44) leads to

G + 2q · n̂ =
4
π

Jw

∫ 2π

0

∫ π/2

0
cosθ′ sinθ′ dθ′ dψ′ = 4Jw. (16.45)

Recalling equation (5.26),

q · n̂ =
ε

1 − ε
(πIbw − Jw) , (16.46)

equation (16.44) finally becomes

2q · n̂ = 4Jw − G =
ε

2 − ε
(4πIbw − G), (16.47)

where ε is the local surface emittance. Modest [22] has shown that equation (16.47) also holds
if the surface reflectance consists of purely diffuse and purely specular components, i.e., if

ε = 1 − ρd
− ρs. (16.48)

Thus, within the accuracy of the P1, or differential, approximation, the results for enclosures
with diffusely and/or specularly reflecting surfaces are identical. Since equation (16.39) is a
second-order equation in G, it is of advantage to eliminate q · n̂ from the boundary condition
using equation (16.42). Thus,

−
2 − ε
ε

2
3 − A1ω

n̂ · ∇τG + G = 4πIbw (16.49)

is the correct boundary condition to go with equation (16.38) or (16.39). Equation (16.49) is
known as a boundary condition of the third kind (since it incorporates both the dependent variable
and its normal gradient). Appendix F provides subroutine P1sor for the solution to this system
for a two-dimensional (rectangular or axisymmetric-cylindrical) enclosure.
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Summary of the P1-Approximation
For convenience we will summarize here the pertinent equations and boundary conditions that
constitute the P1-approximation for a medium bounded by diffuse, gray walls. This can be
done in two ways: (i) simultaneous first-order PDEs in incident radiation and radiative heat
flux, or (ii) a single elliptic second-order PDE in incident radiation. The former is the preferred
formulation for the case of radiative equilibrium in a gray medium; the latter is more useful if
the temperature field is known (or must be found through iteration).

Simultaneous Equations:

∇ · q = κ(4πIb − G), (16.50a)

∇G = −
(
3β − A1σs

)
q, (16.50b)

r = rw : 2q · n̂ = 4Jw − G =
ε

2 − ε
(4πIbw − G). (16.50c)

Incident Radiation Formulation:

1
3κ
∇ ·

(
1

β − A1σs/3
∇G

)
− G = −4πIb, (16.51a)

r = rw : −
2 − ε
ε

2
3β − A1σs

n̂ · ∇G + G = 4πIbw, (16.51b)

and
q = −

1
3β − A1σs

∇G. (16.52)

Example 16.2. Consider an isothermal, gray slab at temperature T and of optical thickness τL, bounded
by two isothermal black surfaces at temperature Tw. The medium scatters linear-anisotropically. Deter-
mine an expression of the nondimensional heat flux as a function of the optical parameters.

Solution
Since the temperature field is given we use the incident radiation formulation, and we may write
equation (16.39) or equation (16.51a) as

d2G
dτ2 − (1 − ω) (3 − A1ω) G = −(1 − ω) (3 − A1ω) 4n2σT4,

or
G(τ) = C1 coshγτ + C2 sinhγτ + 4n2σT4,

where
γ =

√
(1 − ω) (3 − A1ω).

Because of the symmetry of the problem it is advantageous to place the origin at the center of the slab,
i.e., −τL/2 ≤ τ ≤ +τL/2. Then

dG
dτ

(τ=0) = 0 = γC1 sinh(γ × 0) + γC2 cosh(γ × 0) + 0,

or C2 = 0. Applying equation (16.49) [or (16.51b)] at τ = τL/2, with ε = 1, we get

2
3 − A1ω

dG
dτ

(τL/2) + G(τL/2) = 4n2σT4
w,

or
2γ

3 − A1ω
C1 sinh 1

2γτL + C1 cosh 1
2γτL + 4n2σT4 = 4n2σT4

w,

C1 = −
4n2σ(T4

− T4
w)

cosh 1
2γτL + 2

√
1−ω

3−A1ω
sinh 1

2γτL

,

and
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FIGURE 16-4
Nondimensional wall heat fluxes for a constant-temperature slab with linear-anisotropic scattering.

G(τ) = 4n2σT4
− 4n2σ(T4

− T4
w)

coshγτ

cosh 1
2γτL + 2

√
1−ω

3−A1ω
sinh 1

2γτL

.

The heat flux is determined from equation (16.42) as

Ψ =
q

n2σ(T4 − T4
w)

= −
1

n2σ(T4 − T4
w)

1
3 − A1ω

dG
dτ

=
2 sinhγτ

sinh 1
2γτL + 1

2

√
3−A1ω

1−ω cosh 1
2γτL

.

Some sample results for the heat flux at the wall (τ = τL/2) are given in Fig. 16-4. We note that in this case
the P1-approximation goes to the correct optically thin limit Ψ→ 4τ/τL (emission, but no self-absorption
of emission), but not to the correct optically thick limit (since, as a result of the temperature step at the
wall, there will always be an intensity discontinuity at the wall). In fact, for this problem the results of
the P1-approximation are worst (in absolute magnitude) close to that location.

Example 16.3. Let us look at a gray medium at radiative equilibrium placed between two black
concentric cylinders of radius R1 and R2 that are isothermal at temperatures T1 and T2. For simplicity,
we shall assume that the medium does not scatter (σs = 0), and that its absorption coefficient, κ, is
constant. We desire to find the heat flux from inner to outer cylinder as a function of the ratio R1/R2 and
the optical thickness of the medium, τ12 = τ2 − τ1 = κ(R2 − R1).

Solution
For one-dimensional radiative equilibrium problems such as this, it is advantageous to use the simulta-
neous equation formulation, equations (16.50a) and (16.50b). Then, from equation (16.50a) we have, in
cylindrical coordinates (with ω = 0 and τ = κr),

1
τ

d
dτ

(τq) = 4n2σT4
− G = 0.

If we multiply by τ and integrate, we find

τq = C1 or q =
C1

τ
.

Substituting this expression into equation (16.37) gives

dG
dτ

= −3q = −
3C1

τ
,

or
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Nondimensional heat fluxes between concentric black cylinders at radiative equilibrium.

G = −3C1 ln τ + C2.

The boundary conditions are, from equation (16.47) with ε = 1,

τ = τ1 : 2q · n̂ = 2q = 4n2σT4
1 − G,

τ = τ2 : 2q · n̂ = −2q = 4n2σT4
2 − G,

from which C1 and C2 may be determined as

C1 =
4n2σ(T4

1 − T4
2 )

2
τ1

+
2
τ2

+ 3 ln
τ2

τ1

, C2 = 4n2σT4
2 + C1

( 2
τ2

+ 3 ln τ2

)
.

Heat flux and temperature then follow as

Ψ =
q

n2σ
(
T4

1 − T4
2

) =
2

1 +
τ2

τ1
+

3
2
τ2 ln

τ2

τ1

(
τ2

τ

)
,

Φ =
T4
− T4

2

T4
1 − T4

2

=
1 +

3
2
τ2 ln

τ2

τ

1 +
τ2

τ1
+

3
2
τ2 ln

τ2

τ1

.

The resulting nondimensional heat flux, Ψ, evaluated at the inner cylinder, is shown in Fig. 16-5 for the
case of R2/R1 = 2 together with exact results (Table 14.4), results from the diffusion approximation with
jump boundary condition (Example 15.3) and results from the P3-approximation given by Bayazitoğlu
and Higenyi [24]. As expected, the P1-approximation does well for optically thick media. For the
optically thin case, however, as κ→ 0 the heat flux goes to

Ψ1 →
2

1 + R2/R1

R2

R1
= 2

/(
1 +

R1

R2

)
,

while the correct answer should be Ψ1 → 1, as we know from Chapter 5, equation (5.35). Therefore, for
R1/R2 → 1 the correct optically thin limit is obtained (and the gap between such cylinders becomes a
plane-parallel slab), while for small inner cylinders, R1/R2 � 1, the error becomes larger and may be as
large as 100%!

The P1-approximation is a very popular method since it reduces the (spectral or gray) equa-
tion of transfer from a very complicated integral equation to a relatively simple partial differen-
tial equation, e.g., [25–37]. The method is powerful (allowing nonblack surfaces, nonconstant
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properties, anisotropic scattering, etc.), and the average heat transfer engineer is much better
trained in solving differential equations than integral equations. Furthermore, if overall energy
conservation (also a partial differential equation) is computed, compatibility of the solution
methods is virtually assured. However, it is important to remember that the P1-approximation
may be substantially in error in optically thin media with strongly anisotropic intensity dis-
tributions, in particular in multidimensional geometries with large aspect ratios (i.e., long and
narrow configurations) and/or when surface emission dominates over medium emission. At-
tempts to improve the method’s accuracy, by modifying Marshak’s boundary condition, were
made by Liu and coworkers [38] and by Su [39]. In one-dimensional geometries accuracy can
also be improved by applying the P1-approximation separately to different solid angle ranges,
as done by Mengüç and Subramaniam [40]. Most of the shortcomings of the P1-approximation
are overcome by the modified differential approximation discussed in Section 16.8 below.

16.6 P3- AND HIGHER-ORDER
APPROXIMATIONS

The general PN-approximation for one-dimensional absorbing/emitting, and anisotropically
scattering cylindrical media has been given by Kofink [41], and the P3-approximation for one-
dimensional slabs, concentric cylinders, and concentric spheres has been developed in terms
of moments by Bayazitoğlu and Higenyi [24]. Higher-order solutions, up to P11, for a gray,
anisotropically scattering medium between concentric spheres have been considered by Tong
and Swathi [42] (uniform heat generation) and by Li and Tong [43] (isothermal medium). One-
dimensional fibrous material was considered by Tong and Li [44] and a packed bed by Wu and
Chu [45].

For multidimensional geometries, the process described in equations (16.11) through (16.14)
can also be carried out in three dimensions, as outlined by Davison [3], resulting in a set
of (N + 1)2 simultaneous, first-order partial differential equations in the unknown Im

n . The
general PN-formulation for three-dimensional Cartesian coordinate systems has been derived
by Cheng [8, 9], including Marshak’s boundary conditions for surfaces normal to one of the
coordinates. A three-dimensional problem was solved by Park and coworkers, analyzing
radiative equilibrium in a rectangular box filled with a gray, nonscattering medium [26]. Mengüç
and Viskanta [46, 47] limited their development to the P3-approximation in terms of moments
(rather than spherical harmonics), but considered three-dimensional Cartesian coordinates [46]
as well as axisymmetric cylindrical geometries [47]. The three-dimensional PN-approximation
for arbitrary coordinate systems has been derived by Ou and Liou [10]. With the exception of
Cheng [8], no boundary conditions beyond a reference to equation (16.23) have been given in
these publications.

Recently, Modest and coworkers [13,18,48] outlined a methodology that reduces the (N +1)2

simultaneous equations of the standard PN-formulation to N(N + 1)/2 simultaneous, second-
order elliptic partial differential equations for a given odd order N, allowing for variable prop-
erties, anisotropic scattering, and arbitrary three-dimensional geometries. They further showed
how to extract a completely defined, self-consistent set of boundary conditions from equa-
tion (16.23). The analysis is very tedious, to say the least, and we will present here only the final
result for the (somewhat simpler) case of isotropic scattering. Defining a second-order operator

Lxy =
1
β
∂
∂x

(
1
β
∂
∂y

)
, (16.53)

etc., and eliminating spherical harmonics coefficients Im
n of odd order n, leads to the following

set of second-order PDEs:
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TABLE 16.1
Elliptic PN-approximation coefficients for isotropic scattering

k = 1 k = 2 k = 3

a nm
k

(a) 1
4(2n + 5)(2n + 3)

−
1

2(2n + 3)(2n − 1)
1

4(2n − 1)(2n − 3)

b nm
k

(a) n + m + 1
2(2n + 5)(2n + 3)

−
2m − 1

2(2n + 3)(2n − 1)
−

n −m
2(2n − 1)(2n − 3)

cnm
k −

π2(n + m + 1)
2(2n + 5)(2n + 3)

n2 + n − 1 + m2

(2n + 3)(2n − 1)
−

π2(n −m − 1)
2(2n − 1)(2n − 3)

dnm
k −

π3(n + m + 1)
2(2n + 5)(2n + 3)

−
(2m + 1)(n + m + 1)(n −m)

2(2n + 3)(2n − 1)
π3(n −m − 2)

2(2n − 1)(2n − 3)

enm
k

π4(n + m + 1)
4(2n + 5)(2n + 3)

−
π2(n + m + 1)π2(n −m − 1)

2(2n + 3)(2n − 1)
π4(n −m − 3)

4(2n − 1)(2n − 3)
(a)anm

k = 0 for m ≤ 1, bnm
k = 0 for m = 0;

πk(n) =

k−1∏
j=0

(n + j)

Ym
n : n = 0, 2, . . . ,N − 1, 0 ≤ m ≤ n :

3∑
k=1

{
(Lxx −Lyy)

[
(1 + δm2)anm

k Im−2
n+4−2k +

δm1

2
cnm

k Im
n+4−2k + enm

k Im+2
n+4−2k

]
+(Lxz + Lzx)

[
(1 + δm1)bnm

k Im−1
n+4−2k + dnm

k Im+1
n+4−2k

]
+(Lxy + Lyx)

[
−(1 − δm2)anm

k I−(m−2)
n+4−2k +

δm1

2
cnm

k I−m
n+4−2k + enm

k I−(m+2)
n+4−2k

]
+(Lyz + Lzy)

[
−(1 − δm1)bnm

k I−(m−1)
n+4−2k + dnm

k I−(m+1)
n+4−2k

]
+(Lxx + Lyy − 2Lzz)cnm

k Im
n+4−2k

}
+ [Lzz − (1 − ωδ0n)] Im

n = −(1 − ω)Ibδ0n (16.54a)

and

Y−m
n : n = 0, 2, . . . ,N − 1, 1 ≤ m ≤ n :

3∑
k=1

{
(Lxy + Lyx)

[
(1 + δm2)anm

k Im−2
n+4−2k +

δm1

2
cnm

k Im
n+4−2k − enm

k Im+2
n+4−2k

]
+(Lyz + Lzy)

[
(1 + δm1)bnm

k Im−1
n+4−2k − dnm

k Im+1
n+4−2k

]
+(Lxx −Lyy)

[
(1 − δm2)anm

k I−(m−2)
n+4−2k −

δm1

2
cnm

k I−m
n+4−2k + enm

k I−(m+2)
n+4−2k

]
+(Lxz + Lzx)

[
(1 − δm1)bnm

k I−(m−1)
n+4−2k + dnm

k I−(m+1)
n+4−2k

]
+(Lxx + Lyy − 2Lzz)cnm

k I−m
n+4−2k

}
+ [Lzz − 1] I−m

n = 0. (16.54b)

The necessary constants9 are listed in Table 16.1. For anisotropic scattering, not presented here,

9There is a slight error in the original paper [18], introducing a constant fn, which after correction is fn ≡ 1 and, thus,
has been eliminated from equations (16.54).
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the constants for k = 1 and 3 undergo only minor changes, but for k = 2 [involving two different
anisotropy constants Am from equation (16.6)] the operators become nonsymmetric.

Since the orientation of the Cartesian coordinate system is arbitrary, one would expect to see
equation (16.54) to show similar operators in x, y, and z. The reason that this is not the case is
that the global direction angles (θ,ψ) and, thus, the results for Im

n are tied to the choice of the
coordinate system, i.e., we may write

I(r, ŝ) =

N∑
n

n∑
m=−n

Im
n (r)Ym

n (ŝ) =

N∑
n

n∑
m=−n

I
m
n (r)Y

m
n (ŝ), (16.55)

where the barred values refer to a rotated coordinate system (x, y, z).

Example 16.4. Consider an isothermal medium at temperature T, confined inside a two-dimensional
enclosure as shown in Fig. 16-6. The medium is gray and absorbs and emits, but does not scatter.
Determine the set of governing equations for the P3-approximation.

Solution
For a two-dimensional problem with polar angle θ measured from the z-axis we must have I(θ,ψ) =
I(π − θ,ψ), i.e., all Im

n , for which the accompanying associated Legendre polynomials Pm
n (cosθ) have

an odd-power dependence on cosθ, must vanish. This is the case whenever n + m is odd. Therefore,
Im
n = 0 for n + m = odd and, since the governing equations are cast in terms of even n, terms with odd

m in equations (16.54) vanish. Using this, and eliminating all terms with z-derivatives, we get from
equations (16.54)

Y0
0 : (Lxx −Lyy)e00

1 I2
2 + (Lxy + Lyx)e00

1 I−2
2 + (Lxx + Lyy)c00

1 I0
2 + (Lxx + Lyy)c00

2 I0
0 − I0

0 = −Ib,

Y0
2 : (Lxx −Lyy)e20

2 I2
2 + (Lxy + Lyx)e20

2 I−2
2 + (Lxx + Lyy)c20

2 I0
2 + (Lxx + Lyy)c20

3 I0
0 − I0

2 = 0,

Y2
2 : (Lxx −Lyy)2a22

2 I0
2 + (Lxx + Lyy)c22

2 I2
2 + (Lxx −Lyy)2a22

3 I0
0 − I2

2 = 0,

Y−2
2 : (Lxy + Lyx)2a22

2 I0
2 + (Lxx + Lyy)c22

2 I−2
2 + (Lxy + Lyx)2a22

3 I0
0 − I−2

0 = 0.

For n = 0 the case of k = 3 is not needed, since this leads to nonexistent Im
−2, and, similarly, for n = 2 the

case of k = 1, producing Im
4 , i.e., terms omitted in the P3-approximation. In addition, all Im

n with odd m
and with m > n are dropped. Equations (16.54) are also valid for n = 2,m = ±1, but every term in these
equations vanishes. Thus the above set constitutes the needed four equations for the four unknowns.
The coefficients are evaluated from Table 16.1 as

a22
2 = −

1
2 · 7 · 3

= −
1

42
; a22

3 =
1

4 · 3 · 1
=

1
12

; e00
1 =

1 · 2 · 3 · 4
4 · 5 · 3

=
2
5

; e20
2 = −

3 · 4 · 1 · 2
2 · 7 · 3

= −
4
7

;

c00
1 = −

1 · 2
2 · 5 · 3

= −
1

15
; c00

2 =
−1

3 · (−1)
=

1
3

; c20
2 =

5
7 · 3

=
5

21
; c22

2 =
9

7 · 3
=

3
7

; c20
3 = −

1 · 2
2 · 3 · 1

= −
1
3
.
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FIGURE 16-7
Definition of Euler angles for an arbitrary rotation

Substituting these values into the four governing equations, we find

Y0
0 :

2
5

(Lxx −Lyy)I2
2 +

2
5

(Lxy + Lyx)I−2
2 − (Lxx + Lyy)

( 1
15

I0
2 −

1
3

I0
0

)
− I0

0 = −Ib, (16.56a)

Y0
2 : −

4
7

(Lxx −Lyy)I2
2 −

4
7

(Lxy + Lyx)I−2
2 + (Lxx + Lyy)

( 5
21

I0
2 −

1
3

I0
0

)
− I0

2 = 0, (16.56b)

Y2
2 :

3
7

(Lxx + Lyy)I2
2 − (Lxx −Lyy)

( 1
21

I0
2 −

1
6

I0
0

)
− I2

2 = 0, (16.56c)

Y−2
2 :

3
7

(Lxx + Lyy)I−2
2 − (Lxy + Lyx)

( 1
21

I0
2 −

1
6

I0
0

)
− I−2

2 = 0. (16.56d)

Boundary Conditions
Equation set (16.54) consists of N(N + 1)/2 simultaneous, elliptic PDEs, requiring N(N + 1)/2
boundary conditions everywhere along the domain boundary, which must be determined from
the general Marshak condition, equation (16.23). Unfortunately, equation (16.23) is cast in terms
of a local coordinate system. Thus, in order to obtain a generic boundary condition for arbitrary
geometries, the global spherical harmonics must be rotated into the local coordinate system.
Such rotation, according to Euler’s rotation theorem, may be described using three angles, which
are called Euler angles. In the literature, there are several notation and rotation conventions for
Euler angles. Here, the notation (α, β, γ) is used for three Euler angles following Varshalovich
et al.’s definition [49]. In Varshalovich’s convention, as shown in Fig. 16-7, an arbitrary rotation
is defined by Euler angles (α, β, γ), where the first rotation is by an angle α about the z-axis, the
second is by an angle β about the y′-axis, and the third is by an angle γ about the z′-axis. As
indicated in Fig. 16-7 all three rotations are, following the right-hand rule, in counterclockwise
direction about the center axis. The three rotations can, in general, be carried out by (1) rotating
x-y so that y′ is perpendicular to n̂ (n̂ · ̂′ = 0),

ı̂′ = cosα ı̂ + sinα ̂, ̂′ = − sinα ı̂ + cosα ̂ (16.57)

and
tanα =

ny

nx
, (16.58)

(2) rotating x′-z such that z′ becomes parallel to n̂, or

k̂
′

= sin β ı̂′ + cos β k̂ (16.59)

and n̂ · k̂
′

= 1 gives
(nx cosα + ny sinα) sin β + nz cos β = 1. (16.60)
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(3) The third rotation is arbitrary and serves to place the local x-y-coordinates into convenient
locations.

Example 16.5. Determine the Euler angles for the local coordinate system for the boundary location
indicated in Fig. 16-6.

Solution
To perform the transformation indicated in Fig. 16-6 (with the global z-axis pointing toward the reader),
the local surface normal is determined as

n̂ = − sin δ ı̂ + cos δ ̂ + 0 k̂, (16.61)

and the first rotation angle α follows from

tanα = − tan δ, or α = δ ±
π
2
. (16.62)

If we choose α = δ − π/2 (y′ points into the indicated x-direction), the second rotation angle becomes[
− sin δ cos

(
δ −

π
2

)
+ cos δ sin

(
δ −

π
2

)]
sin β = 1, or β =

3π
2
. (16.63)

This has x′′ pointing out of the paper, and a final (optional) rotation of γ = π/2 rotates x′′′ into the
desired local x-direction.

It can be shown that, for a given rotation, the spherical harmonics of order n are transformed
into a linear combination of spherical harmonics of the same order n. Such an operation can be
represented in the form of a rotation matrix, where each element of this matrix is a function of
Euler angles,

Ym′
n (θ, φ) =

n∑
m=−n

∆n
mm′ (α, β, γ)Y

m
n (θ, φ), (16.64)

where ∆n
mm′ (α, β, γ) is the representation matrix of the rotation operation for the real spherical

harmonics Ym
n of order n. Blanco10 et al. [50] developed a closed-form expression to specify

all the elements based on so-called Wigner-D functions, from which the ∆n matrices can be
obtained in terms of the Euler angles as

∆n
mm′ = sign(m′)Ψm(α)Ψm′ (γ)[dn

|m|,|m′ |(β) + (−1)m′dn
|m|,−|m′ |(β)]

− sign(m)Ψ−m(α)Ψ−m′ (γ)[dn
|m|,|m′ |(β) − (−1)m′dn

|m|,−|m′ |(β)] (16.65)

where sign(0) = 1 and the function Ψm is defined as

Ψm(ξ) =

{
cos mξ, for m ≥ 0,
sin |m|ξ, for m < 0. (16.66)

To determine the ∆n matrices by equation (16.65) the dn matrices are needed, which are modified
versions of the real parts of the Wigner-Dn

mm′ functions, and may be calculated from

dn
mm′ (β) =

(−1)m+m′ (n − |m|)!(n + |m′|)!
1 + δm,0

min(n−m,n+m′)∑
k=max(0,m′−m)

(−1)k
(
cos β

2

)2n−2k−m+m′ (
sin β

2

)2k+m−m′

k!(n −m − k)!(n + m′− k)!(m −m′+ k)!
.

(16.67)
With the rotation of spherical harmonics between local and global coordinates as indicated

by equation (16.64), relationships between Im
n and I

m
n can be revealed accordingly by expressing

10In Blanco’s derivation, a normalization factor is employed. In order to be consistent with the real spherical
harmonics used in the current study, a modification coefficient was included in the transformation.
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intensity in terms of, both, local and global coordinates, as given by equation (16.55). This leads
to

Im
n =

n∑
m′=−n

∆n
mm′ (α, β, γ)I

m′

n , and I
m
n =

n∑
m′=−n

∆̄n
mm′ (−γ,−β,−α)Im′

n , (16.68)

where the bar on the ∆̄n
mm′ implies backward rotation from local to global coordinates, as

indicated by the arguments. Substitution of equation (16.55) into (16.23), and assuming the
surface intensity Iw to be diffuse, reduces the boundary conditions to

N∑
n=0

[∫ 1

0
Pm

n (µ̄)Pm
2i−1(µ̄)dµ̄

]
I

m
n (τw) =

[∫ 1

0
P2i−1(µ̄)dµ̄

]
δm,0 Iw,

i = 1, 2, ..., 1
2 (N + 1), all relevant m. (16.69)

Before these boundary conditions can be applied to equations (16.54) the I
m
n with odd n must be

eliminated. Boundary conditions are usually formulated in terms of local normal and tangential
gradients, and this leads to

Y
0
2i−1 :

N−1
2∑

l=0

p0
2l,2i−1I

0
2l +

∂
∂τx


N−1

2∑
l=1

v0
liI

1
2l


+

∂
∂τy


N−1

2∑
l=1

v0
liI
−1
2l

 − ∂
∂τz


N−1

2∑
l=0

w0
liI

0
2l

 = Iwp0
0,2i−1, m = 0, (16.70a)

Y
m
2i−1 :

N−1
2∑

l=1

pm
2l,2i−1I

m
2l −

∂
∂τx


N−1

2∑
l=0

(1+δm,1)um
li I

m−1
2l −

N−1
2∑

l=1

vm
li I

m+1
2l


+

∂
∂τy


N−1

2∑
l=1

(1−δm,1)um
li I
−(m−1)
2l +

N−1
2∑

l=1

vm
li I
−(m+1)
2l

 − ∂
∂τz


N−1

2∑
l=1

wm
li I

m
2l

 = 0, m > 0, (16.70b)

Y
−m
2i−1 :

N−1
2∑

l=1

pm
2l,2i−1I

−m
2l −

∂
∂τx


N−1

2∑
l=1

(1−δm,1)um
li I
−(m−1)
2l −

N−1
2∑

l=1

vm
li I
−(m+1)
2l


−

∂
∂τy


N−1

2∑
l=0

(1+δm,1)um
li I

m−1
2l +

N−1
2∑

l=1

vm
li I

m+1
2l

 − ∂
∂τz


N−1

2∑
l=1

wm
li I
−m
2l

 = 0, m > 0, (16.70c)

where the pm
n, j are defined as

pm
n, j = pm

j,n =

∫ 1

0
Pm

n (µ̄)Pm
j (µ̄)dµ̄, (16.71)

and the coefficients um
li , v

m
li ,w

m
li are related to them by

um
li =

pm
2l−1,2i−1 − pm

2l+1,2i−1

2(4l+1)
, (16.72a)

vm
li =

π2(2l+m)pm
2l−1,2i−1 − π2(2l−m)pm

2l+1,2i−1

2(4l+1)
, (16.72b)

wm
li =

(2l+m)pm
2l−1,2i−1 + (2l−m+1)pm

2l+1,2i−1

(4l+1)
. (16.72c)
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TABLE 16.2
Half-moments of associated Legendre polynomials, 10−m

× pm
n, j.

m n
∖ j 0 1 2 3 4 5

0 0 1.00000 . . . . .
1 0.50000 0.33333 . . . .
2 0.00000 0.12500 0.20000 . . .
3 –0.12500 0.00000 0.12500 0.14286 . .
4 0.00000 –0.02083 0.00000 0.07031 0.11111 .
5 0.06250 0.00000 –0.03906 0.00000 0.07031 0.09091

1 1 . 0.06667 . . . .
2 . 0.07500 0.12000 . . .
3 . 0.00000 0.07500 0.17143 . .
4 . –0.04167 0.00000 0.14062 0.22222 .
5 . 0.00000 –0.02344 0.00000 0.14062 0.27273

2 2 . . 0.04800 . . .
3 . . 0.07500 0.17143 . .
4 . . 0.00000 0.14062 0.40000 .
5 . . –0.06563 0.00000 0.39375 0.76364

3 3 . . . 0.10286 . .
4 . . . 0.19687 0.56000 .
5 . . . 0.00000 0.55125 1.83273

4 4 . . . . 0.44800 .
5 . . . . 0.99225 3.29891

5 5 . . . . . 3.29891

In equations (16.70) and (16.72) it is implied that coefficients in front of nonsensical I
m
n (i.e.,

|m| > n) and pm
nj with nonsensical subscripts (n < m) are zero. The pm

n, j may be determined
through recursion relationships [18] and are listed in Table 16.2 (scaled by a factor of 10−m) for
up to the P5-approximation.

It remains to rotate the I
m
n in equations (16.70) to global values Im

n , which results in

Y
0
2i−1 :

N−1
2∑

l=0

2l∑
m′=−2l

p0
2l,2i−1∆̄

2l
0,m′ I

m′
2l +

∂
∂τx


N−1

2∑
l=1

2l∑
m′=−2l

v0
li∆̄

2l
1,m′ I

m′
2l


+

∂
∂τy


N−1

2∑
l=1

2l∑
m′=−2l

v0
li∆̄

2l
−1,m′ I

m′
2l

 − ∂
∂τz


N−1

2∑
l=0

2l∑
m′=−2l

w0
li∆̄

2l
0,m′ I

m′
2l

 = Iwp0
0,2i−1, m = 0, (16.73a)

Y
m
2i−1 :

N−1
2∑

l=1

2l∑
m′=−2l

pm
2l,2i−1∆̄

2l
m,m′ I

m′
2l −

∂
∂τx


N−1

2∑
l=0

2l∑
m′=−2l

[
(1+δm,1)um

li ∆̄
2l
m−1,m′ − vm

li ∆̄
2l
m+1,m′

]
Im′
2l


+

∂
∂τy


N−1

2∑
l=1

2l∑
m′=−2l

[
(1−δm,1)um

li ∆̄
2l
−(m−1),m′ + vm

li ∆̄
2l
−(m+1),m′

]
Im′
2l

 − ∂
∂τz


N−1

2∑
l=1

2l∑
m′=−2l

wm
li ∆̄

2l
m,m′ I

m′
2l

 = 0,

m > 0, (16.73b)

Y
−m
2i−1 :

N−1
2∑

l=1

2l∑
m′=−2l

pm
2l,2i−1∆̄

2l
−m,m′ I

m′
2l −

∂
∂τx


N−1

2∑
l=1

2l∑
m′=−2l

[
(1−δm,1)um

li ∆̄
2l
−(m−1),m′ − vm

li ∆̄
2l
−(m+1),m′

]
Im′
2l


−

∂
∂τy


N−1

2∑
l=0

2l∑
m′=−2l

[
(1+δm,1)um

li ∆̄
2l
m−1,m′ + vm

li ∆̄
2l
m+1,m′

]
Im′
2l

 − ∂
∂τz


N−1

2∑
l=1

2l∑
m′=−2l

wm
li ∆̄

2l
−m,m′ I

m′
2l

 = 0,

m > 0. (16.73c)
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Equations (16.73) are a set of (N+2)(N+1)/2 boundary conditions for N(N+1)/2 variables
Im
2l (l = 0, 1, ..., (N−1)/2; m = −2l, ...,+2l), containing normal as well as tangential derivatives, or

N + 1 too many. Commercial PDE solvers generally allow for boundary conditions containing
normal derivatives. In principle, i.e., if the coefficients in front of the Im

2l inside the normal
derivatives form a nonsingular matrix, linear combination of the boundary conditions leads to
a set of “natural” boundary conditions for each variable, or

∂Im
2l

∂τz
= f

Im′
2l′ ,

∂Im′
2l′

∂τx
,
∂Im′

2l′

∂τy
; l′ = 0, ... 12 (N−1); m′ = −2l′, ...,+2l′

 ,
l = 0, ..., 1

2 (N−1),m = −2l, ...,+2l, (16.74)

which can be used with FlexPDE [51] and other commercial programs. Modest [18] has shown
that such a nonsingular matrix can be found only if, for the largest value of i = 1

2 (N+1), only
the even values of m are employed (omitting the N+1 odd values). Therefore, the qualifier “all
relevant m” in equations (16.69), (16.70), and (16.73) may be restated precisely as

All relevant m =

{
i = 1, 2, ..., 1

2 (N − 1), all m,
i = 1

2 (N + 1), all even m,
(16.75)

which supplies a consistent set of N(N + 1)/2 boundary conditions for an equal number of
variables.

Other codes, such as PDE2D [52] or FDEM [53], use derivatives in global coordinates in
the boundary conditions. In that case, the transformation to global Im

n using equation (16.68) is
carried out first, followed by elimination of odd orders. The resulting boundary conditions are
given in [13].

Example 16.6. Determine the necessary boundary conditions for the problem of Example 16.4 for the
surface location indicated in Fig. 16-6. The surface is black and at temperature Tw.

Solution
The boundary conditions are usually expressed in terms of local coordinates (i.e., in terms of gra-
dients into the surface normal and tangential directions), either using local spherical harmonics I

m
n ,

equation (16.70), followed by rotation to global spherical harmonics Im
n , or by directly applying equa-

tion (16.73). We will follow the first track here. With local azimuthal angle ψ defined from the x-axis
in the x–y–plane, for this two-dimensional problem independent of y we must have I(θ,ψ) = I(θ,−ψ)
and, therefore, all I

m
n with negative m vanish. Thus, from equation (16.70), eliminating all terms with

negative m and y-gradients, we obtain

Y
0
1 : p0

01I
0
0 + p0

21I
0
2 +

∂
∂τx

[
v0

11I
1
2

]
−

∂
∂τz

[
w0

01I
0
0 + w0

11I
0
2

]
= Ibwp0

01,

Y
1
1 : p1

21I
1
2 −

∂
∂τx

[
2u1

01I
0
0 + 2u1

11I
0
2 − v1

11I
2
2

]
−

∂
∂τz

[
w1

11I
1
2

]
= 0,

Y
0
3 : p0

03I
0
0 + p0

23I
0
2 +

∂
∂τx

[
v0

12I
1
2

]
−

∂
∂τz

[
w0

02I
0
0 + w0

12I
0
2

]
= Ibwp0

03,

Y
2
3 : p2

23I
2
2 −

∂
∂τx

[
u2

12I
1
2

]
−

∂
∂τz

[
w2

12I
2
2

]
= 0.

The equations for Y
−1
1 and Y

−2
3 contain only I

m
n with negative m and, thus, vanish identically, leaving us

with the proper four boundary conditions for the four unknown I
m
n . The coefficients pm

nj, um
li , vm

li , and wm
li
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are found from Table 16.2 [or, more easily from program pnbcs.f90 in Appendix F] as

p0
01 =

1
2
, p0

21 =
1
8
, p1

21 =
3
4
, p0

03 = −
1
8
, p0

23 =
1
8
, p2

23 =
15
2

;

u1
01 =

−p1
11

2 · 1
= −

1
3
, u1

11 =
p1

11 −p1
31

2 · 5
=

1
10

(2
3
− 0

)
=

1
15
, u2

12 =
p2

13 −p2
33

2 · 5
=

1
10

(
0 −

120
7

)
= −

12
7

;

v0
11 =

2 · 3p0
11 − 2 · 3p0

31

2 · 5
=

3
5

(1
3
− 0

)
=

1
5
, v1

11 =
3 · 4p1

11 − 1 · 2p1
31

2 · 5
=

1
10

(
12 ×

2
3
− 0

)
=

4
5
,

v0
12 =

2 · 3p0
13 − 2 · 3p0

33

2 · 5
=

3
5

(
0 −

1
7

)
= −

3
35

;

w0
01 =

1 · p0
11

1
=

1
3
, w0

11 =
2p0

11 + 3p0
31

5
=

1
5

(2
3
− 0

)
=

2
15
, w1

11 =
3p1

11 + 2p1
31

5
=

1
5

(
3 ×

2
3

+ 0
)

=
2
5
,

w0
02 =

1 · p0
13

1
= 0, w0

12 =
2p0

13 + 3p0
33

5
=

1
5

(
0 +

3
7

)
=

3
35
, w2

12 =
4p2

13 + 1 · p2
33

5
=

1
5

(
0 +

120
7

)
=

24
7
.

Therefore, after normalization with the leading term,

Y
0
1 : I

0
0 +

1
4

I
0
2 +

2
5
∂I

1
2

∂τx
−

2
3
∂I

0
0

∂τz
−

4
15
∂I

0
2

∂τz
= Ibw, (16.76a)

Y
1
1 : I

1
2 +

∂
∂τx

[8
9

I
0
0 −

8
45

I
0
2 +

16
15

I
2
2

]
−

8
15
∂I

1
2

∂τz
= 0, (16.76b)

Y
0
3 : I

0
0 − I

0
2 +

24
35
∂I

1
2

∂τx
+

24
35
∂I

0
2

∂τz
= Ibw, (16.76c)

Y
2
3 : I

2
2 +

8
35
∂I

1
2

∂τx
−

16
35
∂I

2
2

∂τz
= 0. (16.76d)

Next, the local I
m
n must be converted to global Im

n with equation (16.68). For n = 0 this simply gives

I
0
0 = I0

0 , i.e., I0
0 is nondirectional and does not vary with rotation, and we will drop the unnecessary

superscript from I0. Remembering that, in global coordinates, Im
n with odd m vanish (as opposed to

negative m in local coordinates), for n = 2 this leads to

I
0
2 = ∆̄2

0,−2I−2
2 + ∆̄2

0,0I0
2 + ∆̄2

0,2I2
2 ,

I
1
2 = ∆̄2

1,−2I−2
2 + ∆̄2

1,0I0
2 + ∆̄2

1,2I2
2 ,

I
2
2 = ∆̄2

2,−2I−2
2 + ∆̄2

2,0I0
2 + ∆̄2

2,2I2
2 .

The necessary ∆̄2
m,m′ (−γ=− π2 ,−β=− 3π

2 ,−α= π
2 − δ) are determined via backward rotation from equa-

tion (16.65) with

Ψm

(
−
π
2

)
=


−1, m = 2

0, 1
1, 0
−1, −1

0, −2

, Ψm′

(
π
2
− δ

)
=


− cos 2δ, m′ = 2

sin δ, 1
1, 0

cos δ, −1
sin 2δ, −2

,

and cos( β2 ) = sin( β2 ) = cos(− 3π
4 ) = − 1

√
2
. The d2

mm′ follow from equation (16.67) after some painful algebra
(or, more easily, by manipulating program Delta.f90 in Appendix F). Finally,

I
0
2 = −3 sin 2δ I−2

2 −
1
2

I0
2 − 3 cos 2δ I2

2 ,

I
1
2 = −2 cos 2δ I−2

2 + 2 sin 2δ I2
2 ,

I
2
2 =

1
2

sin 2δ I−2
2 −

1
4

I0
2 +

1
2

cos 2δ I2
2 .
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Sticking this into equation (16.76) delivers the desired local boundary conditions as

Y
0
1 : I0 −

3
4

sin 2δ I−2
2 −

1
8

I0
2 −

3
4

cos 2δ I2
2 −

4
5
∂
∂τx

[
cos 2δ I−2

2 − sin 2δ I2
2

]
−

2
15

∂
∂τz

[
5I0 − 6 sin 2δ I−2

2 − I0
2 − 6 cos 2δ I2

2

]
= Iw,

Y
1
1 : −2 cos 2δ I−2

2 + 2 sin 2δ I2
2 +

8
45

∂
∂τx

[
5I0 − I2 + 6 sin 2δ I−2

2 + 6 cos 2δ I2
2

]
+

48
45

∂
∂τz

[
cos 2δ I−2

2 − sin 2δ I2
2

]
= 0,

Y
0
3 : I0 + 3 sin 2δ I−2

2 +
1
2

I0
2 + 3 cos 2δ I2

2 −
48
35

∂
∂τx

[
cos 2δ I−2

2 − sin 2δ I2
2

]
−

24
35

∂
∂τz

[
3 sin 2δ I−2

2 +
1
2

I0
2 + 3 cos 2δ I2

2

]
= Iw,

Y
2
3 :

1
2

sin 2δ I−2
2 −

1
4

I0
2 +

1
2

cos 2δ I2
2 −

16
35

∂
∂τx

[
cos 2δ I−2

2 − sin 2δ I2
2

]
−

4
35

∂
∂τz

[
2 sin 2δ I−2

2 − I0
2 + 2 cos 2δ I2

2

]
= 0.

Once all Im
n for even n have been determined, the remaining Im

n (odd n) may be determined
from relations given in Modest and Yang [13]. Normally, only incident radiation G = 4πI0 and
radiative flux are of interest, the latter being related to the Im

1 : comparing equations (16.24),
(16.25), and (16.31) and noting that higher-order terms drop out because of the orthogonality of
spherical harmonics [14], leads to

q(r) =

∫
4π

I(r, ŝ) ŝ dΩ =
4π
3


−I1

1
−I−1

1
I0
1

 , (16.77)

where the Im
1 are given by [13]

I0
1 = −

∂I0

∂τz
−

2
5
∂I0

2

∂τz
+

3
5
∂I1

2

∂τx
+

3
5
∂I−1

2

∂τy
, (16.78a)

I1
1 = +

∂I0

∂τx
−

1
5
∂I0

2

∂τx
−

3
5
∂I1

2

∂τz
+

6
5
∂I2

2

∂τx
+

6
5
∂I−2

2

∂τy
, (16.78b)

I−1
1 = +

∂I0

∂τy
−

1
5
∂I0

2

∂τy
−

3
5
∂I−1

2

∂τz
−

6
5
∂I2

2

∂τy
+

6
5
∂I−2

2

∂τx
. (16.78c)

Since equation (16.1) is valid for any coordinate system orientation, equations (16.77) and (16.78)
are valid for both the global coordinate system (x-y-z, Im

n ) as well as a local coordinate system at
a boundary (x-y-z, I

m
n ).

Finally, for nonblack surfaces the boundary radiosity Jw = πIw must be related to the wall’s
emissive power and/or net radiative flux. From equations (16.1) and (16.77) we have

qn =
επ

1 − ε
[Ibw − Iw] =

4π
3

I
0
1, (16.79)

where ε is the surface’s emittance, and with I
0
1 transformed to global Im

1 through equation (16.68).
If the temperature of the surface, Tw, is specified, Iw is determined from

Iw = Ibw −
4
3

(1
ε
− 1

)
I

0
1. (16.80)
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For three-dimensional geometries, it is obvious that anything but low-order approximations
quickly become extremely cumbersome to deal with. Already the P3-approximation may result
in as many as six simultaneous partial differential equations (depending on the symmetry),
and it includes cross-derivatives, which do not ordinarily occur in engineering problems (and
which complicate numerical solutions). In addition, complicated boundary conditions need to
be developed from equation (16.73). As a result of this complexity, very few multidimensional
problems have been solved by the P3-approximation, and apparently none by higher orders.
First results using the new elliptic formulation of equations (16.54) and (16.73) have been
reported by Modest and coworkers [13, 18, 48]. We shall limit ourselves here to a simple
example for a one-dimensional plane-parallel slab.

Example 16.7. Consider an isothermal medium at temperature T, confined between two large, parallel
black plates that are isothermal at the (same) temperature Tw. The medium is gray and absorbs and
emits, but does not scatter. Determine an expression for the heat transfer rates within the medium using
the P3-approximation. Employ the results from the previous three examples.

Solution
For such a one-dimensional problem it is, generally, advantageous to choose τz as the (nondimensional)
space coordinate between the plates, as was done in Example 16.2, since this will make all Im

n vanish with
m , 0. However, for demonstrative purposes, and to utilize results from the previous three examples,
we will choose the global coordinate system of Fig. 16-6, i.e., the problem becomes one-dimensional in
the y-direction, with the bottom surface corresponding to δ = 0, and the top to δ = π. Since now we
have no x-dependence we must have I(θ,ψ) = I(θ, π − ψ), which implies that we will not have any odd
positive or even negative m terms in equation (16.56a). Together with n + m = even (no z-dependence)
that reduces the set of equations developed in Example 16.4 to

Y0
0 :

d2

dτ2
y

(2
5

I2
2 +

1
15

I0
2 −

1
3

I0

)
+I0 = Ib,

Y0
2 :

d2

dτ2
y

(4
7

I2
2 +

5
21

I0
2 −

1
3

I0

)
−I0

2 = 0,

Y2
2 :

d2

dτ2
y

(3
7

I2
2 +

1
21

I0
2 −

1
6

I0

)
−I2

2 = 0,

and all terms vanish for the Y−2
2 -equation, i.e., we now have three equations in three unknowns (since

I−2
2 = 0).

To exploit the symmetry of the problem, we choose the origin for τy to be at the midpoint between
the two plates. Then the first derivatives of all three unknowns will be zero at the midpoint:

τy = 0 :
dI0

dτy
=

dI0
2

dτy
=

dI2
2

dτy
= 0.

The necessary second set of boundary conditions follows from Example 16.6 with δ = 0 at τy = −τL/2
(and τL is the total optical thickness of the medium) as

Y
0
1 : I0 −

1
8

I0
2 −

3
4

I2
2 −

2
15

d
dτy

[
5I0 − I0

2 − 6I2
2

]
= Ibw,

Y
0
3 : I0 +

1
2

I0
2 + 3I2

2 −
12
35

d
dτy

[
I0
2 + 6I2

2

]
= Ibw,

Y
2
3 : −

1
4

I0
2 +

1
2

I2
2 +

4
35

d
dτy

[
I0
2 − 2I2

2

]
= 0,

with all terms in the Y
1
1 boundary condition vanishing. While the given set of three simultaneous

ordinary differential equations in I0, I0
2 , and I2

2 , together with their boundary conditions, can be solved
as they are, we do know from Section 16.3 that, for a one-dimensional problem, there should be only
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a single Im
n for every n (i.e., I0

n). Inspecting the governing equations and boundary conditions, we find
that I0

2 and I2
2 always occur in one of two combinations, viz.

I2 = −
1
2

(
I0
2 + 6I2

2

)
,

K2 = I0
2 − 2I2

2 ,

where the factor − 1
2 was included for convenience (i.e., I2 just so happens to be I0

2 for the case that the
z-axis points from plate to plate). Then

Y0
0 : −

2
15

I′′2 −
1
3

I′′0 + I0 = Ib,

Y0
2 + 6Y2

2 : −
11
21

I′′2 −
2
3

I′′0 + I2 = 0,

Y0
2 − 2Y2

2 :
1
7

K′′2 − K2 = 0,

where the primes have been introduced as shorthand for d/dτy. The boundary conditions at τy = −τL/2
follow as

Y
0
1 : I0 +

1
4

I2 −
2
3

I′0 −
4
15

I′2 = Ibw,

Y
0
3 : I0 − I2 +

24
35

I′2 = Ibw,

Y
2
3 :

1
2

K2 +
4
35

K′2 = 0.

It follows that K2 ≡ 0, since both its governing equation and its boundary conditions are homogeneous.
I2 can be eliminated from the remaining equations: first we eliminate I′′2 from the first two equations,
leading to

−
9

55
I′′0 + I0 −

14
55

I2 = Ib,

or
I2 = −

9
14

I′′0 +
55
14

(I0 − Ib) .

Differentiating twice and eliminating I′′2 from the Y0
0 equation, we obtain

3
35

I (iv)
0 −

6
7

I′′0 + I0 = Ib.

The general solution to the above equation (keeping in mind that Ib = const) is

I0(τy) = Ib + (Ibw − Ib)[C1 coshλ1τy + C2 coshλ2τy + C3 sinhλ1τy + C4 sinhλ2τy],

where the constant factor (Ibw − Ib) was included to make the Ci dimensionless. The λ1 and λ2 are the
positive roots of the equation

3
35
λ4
−

6
7
λ2 + 1 = 0,

or λ1 = 1.1613 and λ2 = 2.9413. With τy = 0 placed at the midpoint between the two plates I′0(0) =
I′′′0 (0) = 0 and C3 = C4 = 0. The two needed boundary conditions at one of the plates, say at τ = −τL/2,
are found by again eliminating I2, or

Y
0
1 : I0 +

1
4

[
−

9
14

I′′0 +
55
14

(I0 − Ib)
]
−

2
3

I′0 −
4

15

[
−

9
14

I′′′0 +
55
14

I′0
]

= Ibw,

Y
0
3 : I0 −

[
−

9
14

I′′0 +
55
14

(I0 − Ib)
]

+
24
35

[
−

9
14

I′′′0 +
55
14

I′0
]

= Ibw,

leading to
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Ibw − Ib =
111
56

(I0 − Ib) −
12
7

I′0 −
9
56

I′′0 +
6
35

I′′′0 ,

Ibw − Ib = −
41
14

(I0 − Ib) +
132
49

I′0 +
9
14

I′′0 −
108
245

I′′′0 .

Now, substituting the solution for I0 into these boundary conditions leads to

1 = a1C1 + a2C2 = b1C1 + b2C2,

where
ai =

(111
56
−

9
56
λ2

i

)
coshλi

τL

2
+

(12
7
λi −

6
35
λ3

i

)
sinhλi

τL

2
, i = 1, 2,

bi = −
(41

74
−

9
14
λ2

i

)
coshλi

τL

2
−

(132
49
λi −

108
245

λ3
i

)
sinhλi

τL

2
, i = 1, 2.

Finally, we get

C1 =
b2 − a2

a1b2 − a2b1
, C2 =

a1 − b1

a1b2 − a2b1
.

The heat flux through the medium is determined from equations (16.77) and (16.78) as

q(τy) = −
4π
3

I−1
1 = −

4π
3

 ∂I0

∂τy
−

1
5
∂I0

2

∂τy
−

6
5
∂I2

2

∂τy

 = −
4π
3

(
∂I0

∂τy
+

2
5
∂I2

∂τy

)
.

Substituting for I2 we obtain

q(τy) = −
4π
3

(
I′0 −

9
35

I′′′0 +
11
7

I′0
)
,

and the heat flux may be expressed in nondimensional form as

Ψ =
q(τy)

n2σ(T4
w − T4)

= −
12
35

10I′0 − I′′′0

Ibw − Ib
= −

12
35

2∑
i=1

(10λi − λ
3
i )Ci sinhλiτy,

where, for simplicity, it was assumed that the medium is gray, or Ib = n2σT4/π.
The nondimensional heat flux at the top surface (τy = τL/2) is shown in Fig. 16-8, as a function of

optical depth of the slab. The results are compared with those of the P1- or differential approximation
(Example 16.2), and with the exact result,

Ψ = 1 − 2E3(τL),

which is readily found from equation (14.35). For this particular example the P1-approximation is very
accurate (maximum error ∼15%) and, as to be expected, the P3-approximation performs even better
(maximum error ∼7%).

It should be clear from the above example that P3- and higher-order PN-approximations
quickly become very tedious, even for simple geometries. However, P3 results can be sub-
stantially more accurate than P1 results, particularly in optically thin media and/or geome-
tries with large aspect ratios. Another example, shown in Fig. 16-5, depicts nondimensional
heat flux through a gray, nonscattering medium at radiative equilibrium, confined between
infinitely long, concentric, black and isothermal cylinders, in which the P3-solution of Bayaz-
itoğlu and Higenyi [24] is compared with the P1-solution (Example 16.3). Observe that the
P3-approximation introduces roughly half the error of the P1-method, which appears to be ap-
proximately true for all problems. One outstanding advantage of the P3-method is that, once the
problem has been formulated (setting up the governing equations suitable for a numerical solu-
tion), the increase in computer time required (compared with the P1-method) is relatively minor.
In addition, P3-calculations are also usually very grid-compatible with conduction/convection
calculations, if one must account for combined modes of heat transfer. Three additional two-
dimensional examples will be presented in the final section of this chapter, comparing results
from different orders and different schemes of the spherical harmonics method.
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FIGURE 16-8
Nondimensional wall heat fluxes for an isothermal slab; comparison of P1- and P3-approximations with the exact
solution.

16.7 SIMPLIFIED PN-APPROXIMATION

As noted in the previous section, higher-order PN-formulations for anything but one-dimensional
slabs become extremely cumbersome mathematically, and they also introduce cross-derivatives,
which make a numerical solution considerable more involved. Facing these mathematical diffi-
culties Gelbard [5] introduced the Simplified PN-Approximation some 50 years ago, as an intuitive
three-dimensional extension to the one-dimensional slab PN-formulation, equation (16.14), and
its Marshak boundary conditions, equations (16.21). Gelbard formulated his set of simplified-PN
or SPN equations, such that they reduced to the standard PN-approximation for a one-dimensio-
nal slab and some other narrow circumstances, but the method lacked any theoretical founda-
tion, which impeded its acceptance. Theoretical justifications were found many years later by
Larsen et al. [54] (showing SPN to be an asymptotic correction to the diffusion approximation
of Section 15.2) and by Pomraning [55] (showing the SPN to be asymptotically related to the
PN-equations for the slab geometry). A fine review of the SPN-method has recently been given
by McClarren [56].

While the developments of Larsen and Pomraning provide theoretical credentials to the
method, they are rather tedious, and we will here only provide the intuitive development of
Gelbard, further developed for radiative heat transfer applications by Modest [57]. Depending
on whether k is odd or even, Gelbard made the following substitutions in equations (16.14) and
(16.21):

k odd : Ik(τ)→ Ik(τx, τy, τz), I′k =
dIk

dτ
→ ∇τ · Ik, (16.81a)

k even : Ik(τ)→ Ik(τx, τy, τz), I′k =
dIk

dτ
→ ∇τIk, (16.81b)

i.e., for every odd k the Ik becomes a vector and differentiation is replaced by the divergence
operator, while even Ik remain scalars and their differentiation is replaced by the gradient
operator. Substituting equations (16.81) into equation (16.14) leads to

k = 0, 2, . . . ,N − 1 (even) :
k + 1

2k + 3
∇τ · Ik+1 +

k
2k − 1

∇τ · Ik−1 + αkIk = αkIbδ0k, (16.82a)

k = 1, 3, . . . ,N (odd) :
k + 1
2k + 3

∇τIk+1 +
k

2k − 1
∇τIk−1 + αkIk = 0, (16.82b)
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where

αk = 1 −
ωAk

2k + 1
. (16.82c)

Solving equation (16.82b) for Ik and substituting the result into (16.82a) produces a set of simul-
taneous elliptic partial differential equations in the unknown scalars Ik (k even):

k = 0,2, . . . ,N − 1 (even) :

(k + 1)(k + 2)
(2k + 3)(2k + 5)

∇τ ·

( 1
αk+1
∇τIk+2

)
+

(k + 1)2

(2k + 3)(2k + 1)
∇τ ·

( 1
αk+1
∇τIk

)
+

k2

(2k − 1)(2k + 1)
∇τ ·

( 1
αk−1
∇τIk

)
+

k(k − 1)
(2k − 1)(2k − 3)

∇τ ·

( 1
αk−1
∇τIk−2

)
= αk(Ik − Ibδ0k). (16.83)

Similarly, sticking equations (16.81) into the PN boundary conditions, equations (16.21), gives
us a consistent set of conditions for the SPN-equations:

N−1∑
k even

Ik

1∫
0

Pk(µ)P2i−1(µ)dµ +

N∑
k odd

n̂ · Ik

1∫
0

Pk(µ)P2i−1(µ)dµ =
Jw

π

1∫
0

P2i−1(µ)dµ,

i = 1, 2, . . . , 1
2 (N + 1), (16.84)

or, with the definition of the Legendre polynomial half-moments pm
n, j given by equation (16.71),

N−1∑
k even

p0
k,2i−1Ik +

N∑
k odd

p0
k,2i−1n̂ · Ik =

p0
0,2i−1

π
Jw, i = 1, 2, . . . , 1

2 (N + 1). (16.85)

Again, eliminating the odd Ik with equation (16.82b), this set of boundary conditions reduces to

N−1∑
k even

p0
k,2i−1Ik −

N∑
k odd

p0
k,2i−1

αk

[
k

2k − 1
n̂ · ∇τIk−1 +

k + 1
2k + 3

n̂ · ∇τIk+1

]
=

p0
0,2i−1

π
Jw

i = 1, 2, . . . , 1
2 (N + 1). (16.86)

No direct formula for intensity is derived, but one may assume a series of the form

I(r, ŝ) = I0(r) + I1(r) · ŝ + I2(r)P0
2(ŝ) + . . . , (16.87)

which is no longer a complete series of orthogonal functions and, therefore, is not guaranteed
to approach the exact answer in the limit. However, assuming this to be an orthogonal set, we
can obtain incident radiation G and radiative flux q from their definitions as

G(r) =

∫
4π

I(r, ŝ) dΩ = 4πI0(r), (16.88)

q(r) =

∫
4π

I(r, ŝ) ŝ dΩ =
4π
3

I1(r) = −
4π
3α1

[
∇τI0 +

2
5
∇τI2

]
. (16.89)

While equations (16.83) and (16.86) form a self-consistent set of (N + 1)/2 simultaneous
elliptic partial differential equations and their boundary conditions, the problem can be further
simplified by recognizing that the combination of variables

Jk =
k + 1
2k + 1

Ik +
k + 2
2k + 5

Ik+2 (16.90)
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appears repeatedly in both the governing equations and boundary conditions. In addition,
inspection of Table 16.2 shows that p0

n, j = 0 if n + j = even, with the exception of n = j. Thus we
may rewrite equations (16.83) as

k = 0, 2, . . . ,N − 1 (even) :
k + 1
2k + 3

∇τ ·

( 1
αk+1
∇τ Jk

)
+

k
2k − 1

∇τ ·

( 1
αk−1
∇τ Jk−2

)
= αk(Ik − Ibδ0k), (16.91)

and boundary conditions (16.86) as

p0
2i−1,2i−1

α2i−1
n̂ · ∇τ J2i−2 =

N−1
2∑

k=0

p0
2k,2i−1I2k −

p0
0,2i−1

π
Jw, i = 1, 2, . . . , 1

2 (N + 1). (16.92)

The Ik on the right-hand sides may be eliminated by inverting equation (16.90), starting with
k = N − 1 (and noting that IN+1 ≡ 0). This results in individual partial differential equations for
each Jk, in which Jl (l , k) occur only as source terms without derivatives. Once the Jk have
been determined, incident radiation and radiative flux are obtained from equations (16.88) and
(16.89) as

G(r) = 4π
[
J0(r) −

2
3

J2(r) +
24
55

J4(r) − + . . .
]
, (16.93)

q(r) = −
4π
3α1
∇τ J0(r). (16.94)

We will demonstrate this by looking in more detail at the SP1- and SP3-approximations
(even orders, such as SP2, have also been formulated [58], but—based on the development
shown here—appear to be as inappropriate as for the standard PN-method).

SP1-Approximation

With N = 1 we obtain a single equation and a single boundary condition from equations (16.91)
and (16.92), i.e.:
Governing equation:

k = 0 :
1
3
∇τ ·

( 1
α1
∇τ J0

)
= α0(I0 − Ib); (16.95)

Boundary condition:

i = 1 :
p0

1,1

α1
n̂ · ∇τ J0 = p0

0,1(I0 − Jw/π). (16.96)

With p0
0,1 = 1

2 and p0
1,1 = 1

3 from Table 16.2, and I0 = J0 from equation (16.90), we obtain

1
3
∇τ ·

( 1
α1
∇τ J0

)
= α0(J0 − Ib), (16.97)

with boundary condition
1

3α1
n̂ · ∇τ J0 =

1
2

(J0 − Jw/π). (16.98)

Not surprisingly, comparison with equations (16.38) and (16.49) and using G = 4πI0 = 4πJ0
shows that the SP1-approximation is identical to the P1-method.
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SP3-Approximation

Setting N = 3 we get two simultaneous equations and two boundary conditions:
Governing equations:

k = 0 :
1
3
∇τ ·

( 1
α1
∇τ J0

)
= α0(I0 − Ib) = α0

(
J0 −

2
3

J2 − Ib

)
, (16.99a)

k = 2 :
3
7
∇τ ·

( 1
α3
∇τ J2

)
+

2
3
∇τ ·

( 1
α1
∇τ J0

)
= α2I2 =

5
3
α2 J2, (16.99b)

or, subtracting 2× equation (16.99a),

k = 2 :
3
7
∇τ ·

( 1
α3
∇τ J2

)
=

(5
3
α2 +

4
3
α0

)
J2 − 2α0(J0 − Ib). (16.99c)

Boundary conditions:

i = 1 :
p0

1,1

α1
n̂ · ∇τ J0 = p0

0,1(I0 − Jw/π) + p0
2,1I2, (16.100a)

i = 2 :
p0

3,3

α3
n̂ · ∇τ J2 = p0

0,3(I0 − Jw/π) + p0
2,3I2. (16.100b)

With p0
2,1 = p0

2,3 = 1
8 , p0

3,3 = 1
7 , p0

0,3 = − 1
8 , and eliminating the Ik, the boundary conditions become

i = 1 :
1

3α1
n̂ · ∇τ J0 = 1

2 (J0 −
2
3 J2 − Jw/π) + 1

8
5
3 J2 = 1

2 (J0 − Jw/π) − 1
8 J2, (16.100c)

i = 2 :
1

7α3
n̂ · ∇τ J2 = − 1

8 (J0 −
2
3 J2 − Jw/π) + 1

8
5
3 J2 = − 1

8 (J0 − Jw/π) + 7
24 J2. (16.100d)

Unlike the regular P3-approximation, SP3 has only two, and nearly separated, elliptic partial
differential equations: equations (16.99a) and (16.100c) for J0 and equations (16.99c) and (16.100d)
for J2, the only connection being the other Jk appearing in source terms.

Example 16.8. Repeat Examples 16.4, 16.6, and 16.7 using the SP3-approximation.

Solution
For a nonscattering medium without z-dependence equations (16.99) reduce to

1
3

(Lxx + Lyy)J0 − J0 = −
2
3

J2 − Ib,

1
7

(Lxx + Lyy)J2 − J2 = −
2
3

(J0 − Ib),

where we have used the operators defined in equation (16.53) for better comparison with the equivalent
P3 set of Example 16.4.

The boundary conditions for a general location simplify to

1
3
∂J0

∂τz
=

1
2

(J0 − Ib) −
1
8

J2,

1
7
∂J2

∂τz
= −

1
8

(J0 − Ib) +
7
24

J2.

Finally, for the one-dimensional case with only y-dependence, and again taking advantage of the
symmetry by placing τy = 0 at the midplane, the equations and boundary conditions further reduce to

1
3

J′′0 − J0 = −
2
3

J2 − Ib,

1
7

J′′2 − J2 = −
2
3

(J0 − Ib),
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τy = 0 : J′0 = J′2 = 0,

τy = −τL/2 :
1
3

J′0 =
1
2

(J0 − Ibw) −
1
8

J2,

1
7

J′2 = −
1
8

(J0 − Ibw) +
7
24

J2.

The set of two simultaneous equations is readily reduced to one, by solving the first for J2:

J2 =
3
2

(J0 − Ib) −
1
2

J′′0 ,

then substituting for J2 and J′′2 in the second, or

1
7

[3
2

J′′0 −
1
2

J(iv)
0

]
−

[3
2

(J0 − Ib) −
1
2

J′′0
]

= −
2
3

(J0 − Ib),

or
3
35

J(iv)
0 −

6
7

J′′0 + J0 = Ib.

Similarly, we eliminate J2 from the boundary conditions:

τy = 0 : J′0 = J′′′0 = 0,

τy = −τL/2 :
1
3

J′0 =
1
2

(J0 − Ibw) −
1
8

[3
2

(J0 − Ib) −
1
2

J′′0
]
,

1
7

[3
2

J′0 −
1
2

J′′′0

]
= −

1
8

(J0 − Ibw) +
7
24

[3
2

(J0 − Ib) −
1
2

J′′0
]
,

leading to

τy = −τL/2 : Ibw − Ib =
5
8

(J0 − Ib) −
2
3

J′0 +
1
8

J′′0

Ibw − Ib = −
5
2

(J0 − Ib) +
12
7

J′0 +
7
6

J′′0 −
4
7

J′′′0 .

Since the governing fourth-order equation is exactly the same as the one for I0 in Example 16.7, the
solution is also the same,

J0(τy) = Ib + (Ibw − Ib)[C1 coshλ1τy + C2 coshλ2τy],

(here given right away without the C3 and C4, which are eliminated through the τy = 0 boundary
condition). Again,

C1 =
b2 − a2

a1b2 − a2b1
, C2 =

a1 − b1

a1b2 − a2b1
,

but with the ai and bi replaced by

ai =
(5

8
+

1
8
λ2

i

)
coshλi

τL

2
+

2
3
λi sinhλi

τL

2
, i = 1, 2,

bi =
(
−

5
2

+
7
6
λ2

i

)
coshλi

τL

2
−

(12
7
λi −

4
7
λ3

i

)
sinhλi

τL

2
, i = 1, 2.

The heat flux through the medium is determined from equation (16.89) as

q(τy) = −
4π
3

(
I′0 +

2
5

I′2
)

= −
4π
3

J′0.

Substituting for J0 we may express the heat flux for a gray medium again in nondimensional form as

Ψ =
q(τy)

n2σ(T4
w − T4)

= −
4
3

2∑
i=1

Ciλi sinhλiτy.

As mentioned in the beginning of this section, for a one-dimensional slab the SPN-method reduces to
the regular PN solution. Therefore, the solution here must be identical to that of Example 16.4, which
can be shown to be true after considerable algebra.
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FIGURE 16-9
Radiative intensity within an arbi-
trary enclosure.

16.8 THE MODIFIED DIFFERENTIAL
APPROXIMATION

As indicated earlier, the P1- or differential approximation enjoys great popularity because of its
relative simplicity and because of its compatibility with standard methods for the solution of
the (overall) energy equation. The fact that the P1-approximation may become very inaccurate
in optically thin media—and thus of limited use—has prompted a number of investigators
to seek enhancements or modifications to the differential approximation to make it reasonably
accurate for all conditions [59–70]. We shall briefly describe here the so-called modified differential
approximation.

The directional intensity at any given point inside the medium is due to two sources: ra-
diation originating from a surface (due to emission and reflection), and radiation originating
from within the medium (due to emission and in-scattering). The contribution due to radiation
emanating from walls may display very irregular directional behavior, especially in optically
thin situations (due to surface radiosities varying across the enclosure surface, causing irradia-
tion to change rapidly over incoming directions). Intensity emanating from inside the medium
generally varies very slowly with direction because emission and isotropic scattering result in an
isotropic radiation source. Only for highly anisotropic scattering may the radiation source—and,
therefore, at least locally also the intensity—display irregular directional behavior.

In what they termed the modified differential approximation (MDA) Olfe [59–62] and Glatt
and Olfe [71] separated wall emission from medium emission in simple black and gray-walled
enclosures with gray, nonscattering media, evaluating radiation due to wall emission with
exact methods, and radiation from medium emission with the differential (or P1) approxima-
tion. While very accurate, their model was limited to nonscattering media in simple, mostly
one-dimensional enclosures. Wu and coworkers [63] demonstrated, for one-dimensional plane-
parallel media, that the MDA may be extended to scattering media with reflecting bound-
aries. Finally, Modest [64] showed that the method can be applied to three-dimensional linear-
anisotropically scattering media with reflecting boundaries. While until recently only used in
conjunction with the P1-approximation, higher order PN- and SPN-methods can also benefit from
this approach, as recently shown by Modest and Yang [13], who demonstrated the accuracy of
a modified P3-approach.

Consider an arbitrary enclosure as shown in Fig. 16-9. The equation of transfer is, from
equation (16.4),

dI
dτs

(r, ŝ) = ŝ · ∇τI = S(r, ŝ) − I(r, ŝ), (16.101)
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where, for linear-anisotropic scattering with a phase function given by equation (16.32), the
radiative source term is, from equation (16.33),

S(r, ŝ) = (1 − ω)Ib(r) +
ω
4π

[G(r) + A1q(r) · ŝ]. (16.102)

For diffusely reflecting walls, equations (16.101) and (16.102) are subject to the boundary condi-
tion

I(rw, ŝ) =
Jw

π
(rw) = Ibw(rw) −

1 − ε
πε

q · n̂(rw), (16.103)

where Jw is the surface radiosity related to Ibw and qw = q · n̂ through equation (16.46).
We now break up the intensity at any point into two components: one, Iw, which may be

traced back to emission from the enclosure wall (but may have been attenuated by absorption
and scattering in the medium, and by reflections from the enclosure walls), and the remainder,
Im, which may be traced back to the radiative source term (i.e., radiative intensity released
within the medium into a given direction by emission and scattering). Thus, we write

I(r, ŝ) = Iw(r, ŝ) + Im(r, ŝ) (16.104)
and let Iw satisfy the equation

dIw

dτs
(r, ŝ) = −Iw(r, ŝ), (16.105)

leading to

Iw(r, ŝ) =
Jw

π
(rw) e−τs , (16.106)

as indicated in Fig. 16-9. Since for Iw no radiative source within the medium is considered, the
radiosity in equation (16.106) is the one caused by wall emission only (with attenuation within
the medium). The radiosity variation along the enclosure wall may be determined by invoking
the definition of the radiosity as the sum of emission plus reflected irradiation, or

Jw(r) = επIbw(r) + (1 − ε)
∫

ŝ·n̂<0
Iw(r, ŝ) |ŝ · n̂| dΩ

= επIbw(r) + (1 − ε)
∫

A
Jw(rw)

cosθ cosθ′

πS2 e−τs dA, (16.107)

as also indicated in Fig. 16-9. The surface integral representation of equation (16.107) is obtained
by invoking the definition of solid angle, equation (1.29), or dΩ = cosθ′ dA/S2, equivalent to
the definition of view factors in Chapter 4.

Equation (16.107) is the standard integral equation for the radiosity in an enclosure without
a participating medium, except for the attenuation factor e−τs , and may be solved by standard
methods such as breaking up the enclosure surface into N small subsurfaces of constant radiosity.
Assuming that the attenuation term may be approximated by the value between node centers
leads to

Ji = εiπIbi + (1 − εi)
N∑

j=1

Jj e−τi j Fi− j, i = 1, 2, . . . ,N, (16.108)

where the Fi− j are the view factors between the subsurfaces.
It remains to calculate the contribution to the intensity from within the medium. Assuming

that the P1-approximation adequately represents intensity emanating from within the medium,
we write, using equation (16.31),

Im(r, ŝ) '
1

4π
[Gm(r) + 3qm(r) · ŝ], (16.109)
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where Gm and qm are medium-related incident radiation and heat flux, respectively, defined by

Gm(r) =

∫
4π

Im(r, ŝ) dΩ, (16.110)

qm(r) =

∫
4π

Im(r, ŝ) ŝ dΩ. (16.111)

Substituting equations (16.105) and (16.109) into equation (16.101) we get

dIm

dτs
= ŝ · ∇τIm ' (1 − ω)Ib +

ω
4π

[
Gw+Gm + A1(qw+qm)·ŝ

]
− Im, (16.112)

where the wall-related incident radiation and heat flux are defined as

Gw(r) =

∫
4π

Iw(r, ŝ) dΩ =
1
π

∫
4π

Jw(rw) e−τs dΩ, (16.113)

qw(r) =

∫
4π

Iw(r, ŝ) ŝ dΩ =
1
π

∫
4π

Jw(rw) e−τs ŝ dΩ. (16.114)

After integrating equation (16.112) over all solid angles, we have

∇τ · qm = (1 − ω)4πIb + ω(Gw + Gm) − Gm. (16.115)

If equation (16.112) is multiplied by ŝ before integration over all directions, we get

∇τGm = A1ω(qw + qm) − 3qm. (16.116)

Equations (16.115) and (16.116) are a complete set of equations for the unknowns Gm and qm.
[For higher-order PN-approximations, additional equations would need to be generated by
multiplying equation (16.112) by successively higher-order harmonics before integration.] The
necessary boundary conditions for equations (16.115) and (16.116) are found by making an
energy balance for medium-related radiation at a point on the surface

qm · n̂ = ε

∫
ŝ·n̂<0

Im(r, ŝ) ŝ · n̂ dΩ, (16.117)

which, after substituting equation (16.109) for Im, leads to Marshak’s boundary condition for a
cold surface,

2
(2
ε
− 1

)
qm · n̂ + Gm = 0. (16.118)

[For a more detailed derivation of these relations see the similar development of the P1-
approximation, equations (16.34) through (16.37).] Equations (16.115) and (16.116), together
with boundary condition (16.118), constitute a set of equations for the determination of the
medium-related incident radiation and heat flux, with enclosure wall-related incident radiation
and heat flux given by equations (16.113), (16.114), and (16.107). Finally, the total values for
incident radiation and heat flux are given by

G = Gw + Gm, (16.119)
q = qw + qm. (16.120)

This solution will reduce to the correct solution for the optically thin limit (where the medium-
related contribution vanishes), and to the unmodified P1-approximation for the optically thick
limit. For nonscattering or isotropically scattering media, the method requires the solution to a
Helmholtz equation (similar to the ordinary P1-approximation), and the additional evaluation of
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FIGURE 16-10
Intensities for a one-dimensional
plane-parallel slab.

a scalar surface integral for every point in the medium (Gw); whereas, for anisotropic scattering,
Gw as well as a vector surface integral (qw) must be evaluated. In addition, for the determination
of radiosities, a surface integral equation must be solved (or view factors evaluated). If the
extinction coefficient is independent of temperature, the Gw (and qw) integrals do not depend
on medium temperature and, thus, may be evaluated once and for all (i.e., they will not enter any
iterative process if the temperature field of the medium is to be determined). If the extinction
coefficient is temperature dependent, a solution for Gw and qw, based on gross estimates for
the temperature field [in order to calculate the optical distances τi j in equation (16.108)], still
will result in the correct optically thin and thick limits and, therefore, can be expected to be of
reasonable accuracy everywhere in between.

Example 16.9. Consider a one-dimensional, gray, absorbing/emitting and isotropically scattering slab
with refractive index n = 1 at radiative equilibrium, contained between two isothermal black walls at
temperatures T1 and T2, respectively. Determine the radiative heat flux between the plates using the
modified differential approximation.

Solution
Measuring optical distance τ =

∫ z

0 β dz perpendicular to the plates, as shown in Fig. 16-10, one may
readily determine the wall-related intensity as

Iw(τ, µ) =


σT4

1

π
e−τ/µ, 0 < µ ≤ 1,

σT4
2

π
e(τL−τ)/µ, −1 ≤ µ < 0,

leading to

Gw(τ) = 2π
∫ 1

−1
Iw dµ = 2σT4

1 E2(τ) + 2σT4
2 E2(τL − τ),

qw(τ) = 2π
∫ 1

−1
Iw dµ = 2σT4

1 E3(τ) − 2σT4
2 E3(τL − τ).

Substituting these expressions into equation (16.116) with A1 = 0 and qm = q − qw gives

dGm

dτ
= −3q + 6

[
σT4

1 E3(τ) − σT4
2 E3(τL − τ)

]
.

Since q = const, due to radiative equilibrium, this equation is readily integrated, and

Gm = C − 3qτ − 6
[
σT4

1 E4(τ) + σT4
2 E4(τL − τ)

]
.

The constants C and q may be found from the boundary conditions, equation (16.118), or

τ = 0 : 2qm + Gm = 2q − 2σT4
1 + 4σT4

2 E3(τL) + C − 2σT4
1 − 6σT4

2 E4(τL) = 0,

τ = τL : −2qm + Gm = −2q + 4σT4
1 E3(τL) − 2σT4

2 + C − 3qτL − 6σT4
1 E4(τL) − 2σT4

2 = 0.

Subtracting the second boundary condition from the first yields the nondimensional heat flux as

Ψ =
q

σ(T4
1 − T4

2 )
=

1 + E3(τL) − 3
2 E4(τL)

1 + 3τL/4
.
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Comparison with exact values from Table 14.1 as well as those from the ordinary differential approximation
(ODA), given in Example 15.5, shows that the ODA has a maximum error of ≈ 3.3%, compared with ≈
1.3% for the MDA (both near τL = 1). This comparison, however, in no way demonstrates the power
of the present method, since this problem is one of the very few in which the ordinary differential
approximation actually reduces to the correct optically thin limit.

Example 16.10. Consider a one-dimensional, gray, absorbing/emitting, nonscattering slab between two
isothermal black plates, both at temperature Tw. The medium has a refractive index of n = 1 and is
isothermal at Tm. Determine the radiative heat flux between the plates using the MDA.

Solution
The wall-related heat flux follows immediately from the previous example as

qw(τ) = 2σT4
w[E3(τ) − E3(τL − τ)].

For a nonscattering medium equations (16.115) and (16.116) contain no wall-related terms, and

d2Gm

dτ2 = −3
dqm

dτ
= −3(4σT4

m − Gm),

or
Gm(τ) = C1 e−

√
3τ + C2 e+

√
3τ + 4σT4

m = C
[
e−
√

3τ + e−
√

3(τL−τ)
]

+ 4σT4
m,

where, in the last equation, we have used the fact that Gm(τ) = Gm(τL − τ), as a result of symmetry. The
medium-related heat flux follows as

qm = −
1
3

dGm

dτ
=

C
√

3

[
e−
√

3τ
− e−

√
3(τL−τ)

]
.

Applying the boundary condition at τ = 0, we obtain

2qm + Gm =
2
√

3
C

(
1 − e−

√
3τL

)
+ C

(
1 + e−

√
3τL

)
+ 4σT4

m = 0,

and

qm(τ) = −
4σT4

m

[
e−
√

3τ
− e−

√
3(τL−τ)

]
2 +
√

3 − (2 −
√

3) e−
√

3τL
.

The total heat flux is evaluated as q = qw + qm. At the lower surface we have

q(0) = [1 − 2E3(τL)] σT4
w −

4
(
1 − e−

√
3τL

)
2 +
√

3 − (2 −
√

3) e−
√

3τL
σT4

m.

This example illustrates a remaining weakness of the MDA: While q goes to the correct optically thin
limit (q→ 0), for the optically thick limit the term due to medium emission goes to the value predicted by
the ODA, which is not equipped to handle temperature jumps within optically thick media. The result
is not included in Fig. 16-8 since it may lie anywhere between the exact and the P1 results, depending
on the values of Tw and Tm.

Some multidimensional MDA examples have been given by [26, 28, 61, 64, 70–74], proving
their excellent accuracy under all conditions (even when the P1-approximation fails).

16.9 COMPARISON OF METHODS

To better understand the strengths and weaknesses of the various spherical harmonics methods
we will present a few example results for three two-dimensional problems, i.e., a square en-
closure with a purely scattering medium, a square enclosure with prescribed temperature and
absorption coefficient fields, and a (realistic) axisymmetric flame.

Purely Scattering Medium We consider a square enclosure filled with a purely scattering
medium, with gray and spatially constant scattering coefficient σs (or, equivalently, a gray
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Comparison of various PN and SPN levels for surface heat fluxes in a purely scattering square enclosure; optically
intermediate case τL = 1.0.

medium at radiative equilibrium with constant extinction coefficient β). All four walls are black,
and the bottom wall is at Tw > 0, while the other three walls are at 0 K. This type of problem has
often been employed to show how so-called ray effects can adversely affect solutions obtained
with the discrete ordinates method, which is the topic of the next chapter (see also Fig. 17-7).
Figure 16-11 shows the normalized incoming irradiation H∗ = H/σT4

w (which must always be
positive), for the top, side, and bottom walls for an optically intermediate case of τL = σsL = 1,
comparing results from P1, P3, SP3, SP5, and their modified versions to exact results obtained
with the statistical Monte Carlo method (PMC, see Chapter 21). It is observed than none of
the PN and SPN schemes gives very satisfactory results, even leading to physically impossible
negative irradiation at the bottom wall. The modified versions (the scheme being applied to all
(S)PN levels) give very good results for all cases, for this surface-driven problem; the modifying
scheme provides much greater improvements than going to a higher-order method. Careful
observation shows that higher-order SPN retain the character of the P1 solution with only slight
improvement. More detailed results are given in [13, 57], showing that the performance of
the straight PN and SPN methods of all orders is very poor for optically thin situations, while
modified P1 (and higher orders) give essentially exact answers.

Medium with Variable Gray Properties. Next we will consider a square enclosure with the
following nondimensional field [18, 57, 75]:

Ib = 1 + 5r2(2 − r2), (16.121a)

κ = Ck

[
1 +

15
4

(2 − r2)2
]
, (16.121b)

with
r2 = x2 + y2; −1 ≤ x ≤ +1, −1 ≤ y ≤ +1, (16.121c)

i.e., the blackbody intensity (Planck function) is normalized with its minimum value (obtained
at the center and the four corners), with a maximum value of Ib = 6 at a distance of r = 1 from
the centerline. The absorption coefficient, normalized in terms of length units, has a maximum
value of κ = 16Ck at x = y = 0, and rapidly diminishes away from the center to a minimum
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Square enclosure with variable properties: (a) incident radiation and radiative source for optically thin case (Ck = 0.01);
(b) radiative flux along bottom wall (y = −1).

value of κ = Ck at the four corners. Thus the problem is radially one-dimensional, except
for the conditions at the four perpendicular walls, which are assumed cold and black. The
optical thickness of the square enclosure is τD = 18

√
2Ck along a diagonal, and τL = 23.5Ck

along an x = 0 or y = 0 line, respectively. Here we present the solutions for incident radiation
and divergence of radiative flux for the case of Ck = 0.01 (optically thin conditions) in Fig. 16-
12a. Again, we compare several levels of the PN-approximation, with corresponding results
from the SPN-methods, and against exact Monte Carlo results. Since there is no wall emission,
there are no modified PN/SPN results. It is observed that none of the methods can predict
the double maximum for incident radiation, but P3 considerably outperforms P1, and P5 gives
better answers than P3. While SP3 and SP5 are improvements over the P1 results, their character
remains similar to P1. For intermediate and large optical thickness [57] all orders and methods
rapidly become more accurate. All methods predict the divergence of the radiative flux well,
with P1 lagging a bit in accuracy; this remains true for larger optical thickness. Figure 16-12b
shows radiative fluxes along the cold bottom wall for which, as expected, P1 gives the worst
results for the optically thick case (Ck = 1), because of the step in temperature at the wall.
It is seen that P3 and P5 always give accurate results, while wall fluxes for P1 may display
inaccuracies in multidimensional geometries. SPN solutions display P1 character, i.e., lag in
accuracy considerably behind their PN counterpart.

Axisymmetric Nongray Flame As a final example we consider a realistic application in
the form of an axisymmetric methane jet flame investigated in several studies [76, 77]. The
flame is a scaled-up version of the much studied (but very small and, therefore, only weakly
radiating) Sandia Flame D [78]. Figure 16-13a shows temperature and concentration contours
for the flame, with extreme temperature and concentration gradients in the radial (and, to a
lesser extent, the axial) direction, which are accompanied by similar gradients in absorption
coefficient and blackbody intensity. In addition, the absorption coefficient of absorption gases
is strongly nongray, i.e., the flame is optically thin-to-transparent across parts of the spectrum,
and optically thick in other parts, and the concentration of water vapor peaks at an earlier axial
location than temperature and carbon dioxide (because of formation of CO before reaction to
CO2 takes place). All this adds up to extreme challenges for the RTE solver (be it a spherical
harmonics solver or one of the methods discussed in the following chapters) as well as the
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FIGURE 16-13
Two-dimensional axisymmetric methane jet flame with variable nongray properties: (a) contour maps of temperature
and species mass fractions; (b) radiative source at fixed axial location (x = 1.0 m) as calculated by several methods.

spectral model. Figure 16-13b shows the negative radiative source, ∇ · q for one axial location
(with off-axis maximum temperature) as calculated by the P1, SP3, and SP5 methods together
with the the Full Spectrum Correlated-k (FSCK) spectral model (to be discussed in Section 20.10),
and compared to exact Monte Carlo calculations. We note in passing that the FSCK spectral
model incurs very little error, so that differences between the (S)PN solutions and Monte Carlo
results are errors attributable to the (S)PN methods, which—for this extremely challenging
case—peak at 35% (P1), 25% (SP3), and 20% (SP5), respectively.
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Problems

16.1 Consider a gray medium at radiative equilibrium contained within a long black cylinder with a surface
temperature of T(r = R, z) = Tw(z). Find the relevant boundary conditions for the P1-approximation
directly from equation (16.23), i.e., in a manner similar to the development in Example 16.1.

16.2 Consider a gray, isotropically scattering medium at radiative equilibrium contained between large,
isothermal, gray plates at temperatures T1 and T2, and emittances ε1 and ε2, respectively. Determine
the radiative heat flux between the plates using the P1-approximation. Compare the result with the
exact answer from Table 14.1.

16.3 Consider a large, isothermal (temperature Tw), gray and diffuse (emittance ε) wall adjacent to a
semi-infinite gray absorbing/emitting and linear-anisotropically scattering medium. The medium is
isothermal (temperature Tm). Determine the radiative heat flux as a function of distance away from
the plate using the P1-approximation with (i) Marshak’s, (ii) Mark’s boundary conditions.

16.4 Consider parallel, gray-diffuse plates, that are isothermal at temperatures T1 and T2, and with emit-
tances ε1 and ε2, respectively. The plates are separated by a gray, linear-anisotropically scattering
medium of thickness L, which is at radiative equilibrium. Using the P1-approximation, determine
the temperature distribution within, and the heat flux through, the medium. Compare the heat
flux with the exact answer given by Table 14.1 (for isotropic scattering, and optical thicknesses of
τL = βL = 0, 0.1, 0.5, 1, 2, and 5). Show that the radiative heat flux can be obtained from the expression
given in Example 16.3, by letting R2 = R1 + L→∞.

16.5 Black spherical particles of 100µm radius are suspended between two cold and black parallel plates
1 m apart. The particles produce heat at a rate of π/10 W/particle, which must be removed by thermal
radiation. The number of particles between the plates is given by

NT(z) = N0 + ∆Nz/L, 0 < z < L; N0 = ∆N = 212 particles/cm3.

(a) Determine the local absorption coefficient and the local heat production rate; introduce an
optical coordinate and determine the optical thickness of the entire gap.

(b) Assuming the P1-approximation to be valid, what are the relevant equations and boundary
conditions governing the heat transfer?

(c) What are the heat flux rates at the top and bottom surfaces? What is the entire amount of energy
released by the particles? What is the maximum particle temperature?

16.6 Consider parallel, black plates spaced 1 m apart, at constant temperatures T1 = 1000 K and T2 = 300 K,
respectively, separated by a gray, nonscattering medium at radiative equilibrium. The absorption
coefficient of the medium depends on its temperature according to a power law, κ = κ0(T/T0)n

(κ0 = 1 m−1, T0 = 300 K, and n is an arbitrary, positive constant).

(a) Using the P1-approximation, outline how to determine the radiative heat flux through, and tem-
perature field within, the medium (i.e., the result may contain unsolved implicit relationships).

(b) Write a small computer program to quantify the results for n = 0, 0.5, 1, and 4. Compare with
results obtained for a constant κ [evaluated at an average temperature Tav = 0.5× (300+1000) =
650 K].
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16.7 A gas/soot/coal mixture, which may be approximated as a gray, nonscattering medium with κ =
1.317 m−1, is burning inside a spherical container of diameter D = 1 m, which has black and cold
walls. During combustion the coal particles release heat uniformly at a rate ofQ̇ ′′′ = 2.885 MW/m3 (per
total volume of container). The mixture remains at radiative equilibrium throughout the combustion
process. Set up the necessary equations and boundary conditions to find the medium’s temperature
distribution and total heat loss rate, assuming the P1-approximation to hold.

16.8 Given the soot distribution of Problem 12.16, it is found that soot is generated where combustion
takes place, i.e., the local heat release due to combustion may be written as Q̇ ′′′(z) = Q̇ ′′′0 [1 − (z/L)2],
Q̇ ′′′0 = 105 W/m3. Assuming the soot to be nonscattering and gray (with properties evaluated at
λ = 3µm) and conduction/convection to be negligible, and the walls to be cold and black, determine
the temperature distribution within the medium using the P1/differential approximation.

16.9 Two infinitely long concentric cylinders of radii R1 and R2 with emittances ε1 and ε2 both have the
same constant surface temperature Tw. The medium between the cylinders has a constant absorption
coefficient κ and does not scatter; uniform heat generation Q̇ ′′′ takes place inside the medium.
Determine the temperature distribution in the medium and heat fluxes at the wall if radiation is the
only means of heat transfer by using the P1-approximation.

16.10 An infinite, black, isothermal plate bounds a semi-infinite space filled with black spheres. At any given
distance, z, away from the plate the particle number density is identical, namely NT = 6.3662×108 m−3.
However, the radius of the suspended spheres diminishes monotonically away from the surface as

a = ao e−z/L; ao = 10−4 m, L = 1 m.

(a) Determine the absorption coefficient as a function of z (you may make the large-particle as-
sumption).

(b) Determine the optical coordinate as a function of z. What is the total optical thickness of the
semi-infinite space?

(c) Assuming that radiative equilibrium prevails and that the differential approximation is valid,
set up the boundary conditions.

(d) Solve for heat flux and temperature distribution (as a function of z).

16.11 Consider two parallel black plates both at 1000 K, which are 2 m apart. The medium between the
plates emits and absorbs (but does not scatter) with an absorption coefficient of κ = 0.05236 cm−1

(gray medium). Heat is generated by the medium according to the formula

Q̇ ′′′ = CσT4, C = 6.958 × 10−4 cm−1,

where T is the local temperature of the medium between the plates. Assuming that radiation is the
only important mode of heat transfer, determine the heat flux to the plates.

16.12 A furnace burning pulverized coal may be approximated by a gray cylinder at radiative equilibrium
with uniform heat generation Q̇ ′′′ = 0.266 W/cm3, bounded by a cold black wall. The gray and
constant absorption and scattering coefficients are, respectively, 0.16 cm−1 and 0.04 cm−1, while the
furnace radius is R = 0.5 m. Scattering may be assumed to be isotropic. Using the P1-approximation:

(a) Set up the relevant equations and their boundary conditions.
(b) Calculate the total heat loss from the furnace (per unit length).
(c) Calculate the radial temperature distribution; what are the centerline and adjacent-to-wall

temperatures, respectively?
(d) Qualitatively, keeping the extinction coefficient constant, what is the effect of varying the

scattering coefficient on (i) heat transfer rates, (ii) temperature levels?

16.13 The coal particles of Problem 12.3 are burnt in a long cylindrical combustion chamber of R = 1 m
radius. The combustor walls are gray and diffuse, with εw = 0.8, and are at 800 K. Since it is well
stirred, combustion results in uniform heat generation throughout ofQ̇ ′′′ = 720 kW/m3. Determine the
maximum temperature in the combustor, using the P1/differential approximation, assuming radiation
is the only mode of heat transfer (use κ = 4.5 m−1 and σs = 0.5 m−1 if the results of Problem 12.3 are
not available).
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16.14 Estimate the radial temperature distribution in the sun. You may make the following assumptions:

(i) The sun is a sphere of radius R.
(ii) As a result of high temperatures in the sun the absorption and scattering coefficients may be

approximated to be constant, i.e., κν, βν = const , f (ν,T, r) (free–free transitions!).
(iii) Due to high temperatures, radiation is the only mode of heat transfer.
(iv) The fusion process may be approximated by assuming that a small sphere at the center of the

sun releases heat uniformly corresponding to the total heat loss of the sun (i.e., assume the sun
to be concentric spheres with a certain heat flux at the inner boundary r = ri).

(a) Relate the heat production to the effective sun temperature TSHMeff = 5777 K.
(b) Would you expect the sun to be optically thin, intermediate, or thick? Why? What are the

prevailing boundary conditions?
(c) Find an expression for the temperature distribution (for r > ri).
(d) What is the surface temperature of the sun?

16.15 Repeat Problem 16.14 but replace assumption (iv) by the following: The fusion process may be
approximated by assuming that the sun releases heat uniformly throughout its volume corresponding
to the total heat loss of the sun.

16.16 Consider a sphere of very hot dissociated gas of radius 5 cm. The gas may be approximated as a
gray, linear-anisotropically scattering medium with κ = 0.1 cm−1, σs = 0.2 cm−1, A1 = 1. The gas
is suspended magnetically in vacuum within a large cold container and is initially at a uniform
temperature T1 = 10,000 K. Using the P1-approximation and neglecting conduction and convection,
specify the total heat loss per unit time from the entire sphere at time t = 0. Outline the solution
procedure for times t > 0.
Hint: Solve the governing equation by introducing a new dependent variable 1(τ) = τ(4πIb − G).

16.17 A spherical test bomb of 1 m radius is coated with a nonreflective material and cooled. Inside the
sphere is nitrogen mixed with spherical particles at a rate of 108 particles/m3. The particles have
a radius of 300µm, are diffuse-gray with ε = 0.5, and generate heat at a rate of 150 W/cm3 of
particle volume. Using absorption and scattering coefficients found in Problem 12.12, determine
the temperature distribution inside the bomb, using the P1-approximation and two simplified phase
functions:

(i) isotropic scattering, and
(ii) linear-anisotropic back scattering with A1 = −1.

In particular, what is the gas temperature at the center and at the wall? How much do the two
scattering treatments differ from one another?

16.18 A revolutionary new fuel is ground up into small particles, magnetically confined to remain within
a spherical cloud of radius R. This cloud of particles has a constant, gray absorption coefficient,
does not scatter, and releases heat uniformly at Q̇ ′′′ (W/m3). The cloud is suspended in a vacuum
chamber, enclosed by a large, isothermal chamber (at Tw). Heat transfer is solely by radiation, i.e.,
∇ · q =

(
1/r2

)
d
(
r2q

)
/dr = Q̇ ′′′.

(a) Assuming the P1-approximation to be valid, set up the necessary equations and boundary
conditions to determine the heat transfer rates, and temperature distribution within the spherical
cloud.

(b) Determine the maximum temperature in the cloud.

16.19 Repeat Problem 16.5 using subroutine P1sor and/or program P1-2D. How do the answers change for
a quadratic enclosure (side walls also cold and black)?

16.20 Repeat Problem 16.6 using subroutine P1sor and/or program P1-2D. How do the answers change
for a quadratic enclosure (side walls also black, with a linear surface temperature variation from
T(x = 0) = T1 to T(x = L) = T2)?
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16.21 Consider a gray, isotropically scattering medium at radiative equilibrium contained between large,
isothermal, gray plates at temperatures T1 and T2, and emittances ε1 and ε2, respectively. Determine
the radiative heat flux between the plates using the P3-approximation. Compare the results with the
answer from Problem 16.2.

16.22 Do Problem 16.3 using the P3-approximation with Marshak’s boundary condition.

16.23 A hot gray medium is contained between two concentric black spheres of radius R1 = 10 cm and
R2 = 20 cm. The surfaces of the spheres are isothermal at T1 = 2000 K and T2 = 500 K, respectively.
The medium absorbs and emits with n = 1, κ = 0.05 cm−1, but does not scatter radiation. Determine
the heat flux between the spheres using the modified differential approximation (MDA).
Note: This problem requires the numerical solution of a simple ordinary differential equation.

16.24 Repeat Problem 16.23 for concentric cylinders of the same radii. Compare your result with those of
Fig. 16-5.
Note: This problem requires the numerical solution of a simple ordinary differential equation.




