
CHAPTER

14
EXACT SOLUTIONS

FOR
ONE-DIMENSIONAL

GRAY MEDIA

14.1 INTRODUCTION

The governing equation for radiative transfer of absorbing, emitting, and scattering media was
developed in Chapter 10, resulting in an integro-differential equation for radiative intensity
in five independent variables (three space coordinates and two direction coordinates). The
problem becomes even more complicated if the medium is nongray (which introduces an
additional variable, such as wavelength or frequency) and/or if other modes of heat transfer are
present (which make it necessary to solve simultaneously for overall conservation of energy,
to which intensity is related in a nonlinear way). Consequently, exact analytical solutions
exist for only a few extremely simple situations. The simplest case arises when one considers
thermal radiation in a one-dimensional plane-parallel gray medium that is either at radiative
equilibrium (i.e., radiation is the only mode of heat transfer) or whose temperature field is
known. Analytical solutions for such simple problems have been studied extensively, partly
because of the great importance of one-dimensional plane-parallel media, partly because the
simplicity of such solutions allows testing of more general solution methods, and partly because
such a solution can give qualitative indications for more difficult situations.

In the present chapter we develop some analytical solutions for one-dimensional plane-
parallel media and also include a few solutions for one-dimensional cylindrical and spherical
media (without development). In general, we shall assume the medium to be gray, and all
radiative intensity-related quantities are total, i.e., frequency-integrated quantities, for example,
Ib =

∫
∞

0 Ibν dν = n2σT4/π. Most relations also hold, on a spectral basis, for nongray media,
except for those that utilize the statement of radiative equilibrium, ∇ · q = 0 (since this relation
does not hold on a spectral basis).

14.2 GENERAL FORMULATION FOR A
PLANE-PARALLEL MEDIUM

The governing equation for the intensity field in an absorbing, emitting, and scattering medium
is, from equation (10.24),

ŝ · ∇I = κIb − βI +
σs

4π

∫
4π

I(ŝ i) Φ(ŝi, ŝ) dΩi, (14.1)
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FIGURE 14-1
Coordinates for radiative intensities in a one-dimensional plane-parallel medium: (a) upward directions, (b) downward
directions.

which describes the change of radiative intensity along a path in the direction of ŝ. The formal
solution to equation (14.1) is given by equation (10.28) as

I(r, ŝ) = Iw(ŝ) e−τs +

∫ τs

0
S(τ′s, ŝ) e−(τs−τ′s) dτ′s, (14.2)

where S is the radiative source term, equation (10.25),

S(τ′s, ŝ) = (1 − ω)Ib(τ′s) +
ω
4π

∫
4π

I(τ′s, ŝ i) Φ(ŝ, ŝi) dΩi, (14.3)

and τs =
∫ s

0 β(s) ds is optical thickness or optical depth based on extinction coefficient1 measured
from a point on the wall (τ′s = 0) toward the point under consideration (τ′s = τs), in the direction
of ŝ. For a plane-parallel medium the change of intensity is illustrated in Fig. 14-1a, measuring
polar angle θ from the direction perpendicular to the plates (z-direction), and azimuthal angleψ
in a plane parallel to the plates (x-y-plane): Radiative intensity of strength Iw(ŝ) = Iw(θ,ψ) leaves
the point on the bottom surface into the direction of θ,ψ, toward the point under consideration,
P. This intensity is augmented by the radiative source (by emission and by in-scattering, i.e.,
scattering of intensity from other directions into the direction of P). The amount of energy
S(τ′s, θ, ψ) dτ′s is released over the infinitesimal optical depth dτ′s and travels toward P. Since
this energy also undergoes absorption and out-scattering along its path from τ′s to τs, only the
fraction e−(τs−τ′s) actually arrives at P. In general, the intensity leaving the bottom wall may vary
across the bottom surface, and radiative source and medium properties may vary throughout
the medium, i.e., in the directions parallel to the plates as well as normal to them.

We shall now assume that both plates are isothermal and isotropic, i.e., neither temperature
nor radiative properties vary across each plate and properties may show a directional depen-
dence on polar angle θ, but not on azimuthal angle ψ. Thus, the intensity leaving the bottom
plate at a certain location is the same for all azimuthal angles and, indeed, for all positions on
that plate; it is a function of polar angle θ alone. We also assume that the temperature field
and radiative properties of the medium vary only in the direction perpendicular to the plates.
This assumption implies that the radiative source at position Q, S(τ′, θ), is identical to the one at

position Qs, S(τ′s, θ), or any horizontal position with identical z-coordinate τ′ =
∫ z′

0 β dz (based
on extinction coefficient). Therefore, radiative source, S(τ, θ), and radiative intensity, I(τ, θ),
both depend only on a single space coordinate plus a single direction coordinate. The radiative

1We use here the notation τs to describe optical depth along s so that we will be able to use the simpler τ for optical
depth perpendicular to the plates, i.e., τ =

∫ z

0 β dz.
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source term may be simplified for the one-dimensional case to

S(τ′, θ) = (1 − ω)Ib(τ′) +
ω
4π

∫ 2π

ψi=0

∫ π

θi=0
I(τ′, θi) Φ (θ,ψ, θi, ψi) sinθi dθi dψi. (14.4)

For isotropic scattering, Φ ≡ 1, and we find immediately from the definition for incident radiation,
G [equation (10.32)], that

S(τ′) = (1 − ω)Ib(τ′) +
ω
4π

G(τ′). (14.5)

In other words, the source term does not depend on direction, that is, the radiative source due
to isotropic emission and isotropic in-scattering is also isotropic.

If the scattering is anisotropic, we may write, from equation (12.99),2

Φ(ŝ · ŝi) = 1 +

M∑
m=1

AmPm(ŝ · ŝi), (14.6)

where it is assumed that the series may be truncated after M terms. Measuring the polar angle
from the z-axis and the azimuthal angle from the x-axis (in the x-y-plane) for both ŝ and ŝ i, we
get the direction vectors

ŝ = sinθ(cosψı̂ + sinψ̂) + cosθk̂, (14.7)

ŝ i = sinθi(cosψi ı̂ + sinψi ̂) + cosθik̂, (14.8)
and

Φ(θ,ψ, θi, ψi) = 1 +

M∑
m=1

AmPm[cosθ cosθi + sinθ sinθi cos(ψ − ψi)]. (14.9)

Using a relationship between Legendre polynomials [1], one may separate the directional de-
pendence in the last relationship by

Pm[cosθ cosθi + sinθ sinθi cos(ψ − ψi)] = Pm(cosθ)Pm(cosθi)

+ 2
m∑

n=1

(m − n)!
(m + n)!

Pm
n (cosθ)Pm

n (cosθi) cos m(ψ − ψi), (14.10)

where the Pm
n are associated Legendre polynomials. Thus, the scattering phase function may be

rewritten as

Φ(θ,ψ, θi, ψi) = 1 +

M∑
m=1

AmPm(cosθ)Pm(cosθi)

+ 2
M∑

m=1

m∑
n=1

Am
(m − n)!
(m + n)!

Pm
n (cosθ)Pm

n (cosθi) cos m(ψ − ψi). (14.11)

For a one-dimensional plane-parallel geometry, the intensity does not depend on azimuthal
angle, and we may carry out the ψi-integration in equation (14.4). This integration leads to a
one-dimensional scattering phase function of

Φ(θ, θi) =
1

2π

∫ 2π

0
Φ(ŝ · ŝ i) dψi = 1 +

M∑
m=1

AmPm(cosθ)Pm(cosθi), (14.12)

2In Chapter 12 we used Θ to denote the angle between the incoming and scattered ray and, therefore, cos Θ = ŝ · ŝi.
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since
∫ 2π

0 cos m(ψ − ψi) dψi = 0. The radiative source then becomes

S(τ′, θ) = (1 − ω)Ib(τ′) +
ω
2

∫ π

0
I(τ′, θi) Φ(θ, θi) sinθi dθi. (14.13)

For linear-anisotropic scattering, with

Φ(ŝ · ŝ i) = 1 + A1P1(ŝ · ŝ i) = 1 + A1ŝ · ŝi, M = 1, (14.14)

and, using the definitions for incident radiation and radiative heat flux, equations (10.32) and
(10.52), respectively, equation (14.13) reduces to

S(τ′, θ) = (1 − ω)Ib(τ′) +
ω
4π

[
G(τ′) + A1q(τ′) cosθ

]
. (14.15)

We may now simplify the equation of radiative transfer, equation (14.1), using the geometric
relations τs = τ/ cosθ and τ′s = τ′/ cosθ (see Fig. 14-1a),

1
β

dI
ds

=
dI
dτs

= cosθ
dI
dτ

= (1 − ω)Ib − I +
ω
2

∫ π

0
I(τ, θi) Φ(θ, θi) sinθi dθi. (14.16)

Similarly, the expression for intensity, equation (14.2), may be simplified to

I+(τ, θ) = I1(θ) e−τ/ cosθ +

∫ τ

0
S(τ′, θ) e−(τ−τ′)/ cosθ dτ′

cosθ
, 0 < θ <

π
2
, (14.17)

where the intensity is denoted by I+ since equation (14.17) is limited to directions with wall
intensities emanating from the lower wall, at τ = 0 (“positive” directions). Here the radiative
source S(τ′, θ) is given by equation (14.5) for isotropic scattering (or no scattering with ω = 0), by
equation (14.15) for linear-anisotropic scattering, and by equations (14.12) and (14.13) for general
anisotropic scattering.

A similar relationship is readily developed for intensity emanating from the top wall (trav-
eling into “negative” directions). With τ′s = − (τL − τ′)/ cosθ and τs = − (τL − τ)/ cosθ (keeping
in mind that cosθ < 0 for “negative” directions, θ > π/2) we obtain (see Fig. 14-1b)

I−(τ, θ) = I2(θ) e(τL−τ)/ cosθ +

∫ τ

τL

S(τ′, θ) e(τ′−τ)/ cosθ dτ′

cosθ

= I2(θ) e(τL−τ)/ cosθ
−

∫ τL

τ
S(τ′, θ) e(τ′−τ)/ cosθ dτ′

cosθ
,

π
2
< θ < π, (14.18)

where I2(θ) is the intensity leaving the wall at τ = τL (Wall 2). It is customary (and somewhat
more compact) to rewrite equations (14.16) through (14.18) in terms of the direction cosine
µ = cosθ, or

µ
dI
dτ

+ I = (1 − ω)Ib +
ω
2

∫ 1

−1
I(τ, µi) Φ(µ, µi) dµi = S(τ, µ), (14.19)

I+(τ, µ) = I1(µ) e−τ/µ +

∫ τ

0
S(τ′, µ) e−(τ−τ′)/µ dτ′

µ
, 0 < µ < 1, (14.20a)

I−(τ, µ) = I2(µ) e(τL−τ)/µ
−

∫ τL

τ
S(τ′, µ) e(τ′−τ)/µ dτ′

µ
, −1 < µ < 0. (14.20b)



458 14 EXACT SOLUTIONS FOR ONE-DIMENSIONAL GRAY MEDIA

For heat transfer purposes the incident radiation, G, and radiative heat flux, q, are of interest.
From the definition of incident radiation, equation (10.32), it follows that

G(τ) =

∫ 2π

0

∫ π

0
I(τ, θ) sinθ dθ dψ = 2π

∫ +1

−1
I(τ, µ) dµ

= 2π
[∫ 0

−1
I−(τ, µ) dµ +

∫ +1

0
I+(τ, µ) dµ

]
= 2π

[∫ 1

0
I−(τ,−µ) dµ +

∫ 1

0
I+(τ, µ) dµ

]
= 2π

{∫ 1

0
I1(µ) e−τ/µ dµ +

∫ 1

0
I2(−µ) e−(τL−τ)/µ dµ

+

∫ 1

0

[∫ τ

0
S(τ′, µ) e−(τ−τ′)/µ dτ′ +

∫ τL

τ
S(τ′,−µ) e−(τ′−τ)/µ dτ′

]
dµ
µ

}
. (14.21)

Similarly, for the radiative heat flux for a plane-parallel medium, equation (10.52),

q(τ) =

∫ 2π

0

∫ π

0
I(τ, θ) cosθ sinθ dθ dψ = 2π

∫ +1

−1
I(τ, µ)µ dµ

= 2π
{∫ 1

0
I1(µ) e−τ/µµ dµ −

∫ 1

0
I2(−µ) e−(τL−τ)/µµ dµ

+

∫ 1

0

[∫ τ

0
S(τ′, µ) e−(τ−τ′)/µ dτ′ −

∫ τL

τ
S(τ′,−µ) e−(τ′−τ)/µ dτ′

]
dµ

}
. (14.22)

During a large part of this chapter we shall study the solution to equations (14.21) and (14.22) for
a number of different situations. We shall assume either that the temperature across the medium
and, therefore, Ib(τ) is known or that radiative equilibrium prevails, dq/dτ = 0. In either case we
are interested in the direction-integrated form of the equation of transfer, equation (14.1), which
has been given by equation (10.59) as

∇ · q = κ(4πIb − G), (14.23)

or, for the present one-dimensional case after division by extinction coefficient β (and remem-
bering that κ/β = 1 − σs/β),

dq
dτ

= (1 − ω)(4πIb − G). (14.24)

We note in passing that, up to this point, all relations, and in particular equations (14.21), (14.22),
and (14.24), hold on a total basis for a gray medium and on a spectral basis for any medium. If
radiative equilibrium prevails, then dq/dτ = 0 or, in the presence of a heat source,3

dq
dτ

=
Q̇ ′′′

β
(τ), (14.25)

where Q̇ ′′′ is local heat generation per unit time and volume. Equation (14.25) is valid only for
total radiative heat flux and may, therefore, in this form be applied only to gray media. For
such a case we see that the incident radiation is closely related to the blackbody intensity (and,
therefore, temperature) by

4πIb(τ) = G(τ) +
Q̇ ′′′

κ
(τ). (14.26)

3Such heat sources are often used to couple the radiation problem with overall energy conservation.
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14.3 PLANE LAYER OF A
NONSCATTERING MEDIUM

Enclosure with Black Bounding Surfaces
Since this is the most basic of cases, we shall rederive the relationships for this simple problem.
From equation (14.3), with ω = 0, it follows that S(τ′, ŝ) = Ib(τ′); for black bounding surfaces,
the intensity leaving the lower plate is I1(θ) = Ib1 and the intensity leaving the top plate is
I2(θ) = Ib2. Thus, for this simple case, neither radiative source nor boundary intensities are
direction-dependent. Equations (14.17) and (14.18) may then be rewritten as

I+(τ, θ) = Ib1 e−τ/cosθ +

∫ τ

0
Ib(τ′) e−(τ−τ′)/cosθ dτ′

cosθ
, 0 < θ <

π
2
, (14.27a)

I−(τ, θ) = Ib2 e(τL−τ)/cosθ
−

∫ τL

τ
Ib(τ′) e(τ′−τ)/cosθ dτ′

cosθ
,

π
2
<θ<π. (14.27b)

Making the substitution µ = cosθ transforms this to

I+(τ, µ) = Ib1 e−τ/µ +
1
µ

∫ τ

0
Ib(τ′) e−(τ−τ′)/µ dτ′, 0 < µ < 1, (14.28a)

I−(τ, µ) = Ib2 e(τL−τ)/µ
−

1
µ

∫ τL

τ
Ib(τ′) e(τ′−τ)/µ dτ′, −1 < µ < 0. (14.28b)

From the definition for incident radiation it follows, from equation (14.21), that

G(τ) = 2π
[∫ 0

−1
I−(τ, µ) dµ +

∫ 1

0
I+(τ, µ) dµ

]
= 2π

[
Ib1

∫ 1

0
e−τ/µ dµ + Ib2

∫ 1

0
e−(τL−τ)/µ dµ

+

∫ τ

0
Ib(τ′)

∫ 1

0
e−(τ−τ′)/µ dµ

µ
dτ′ +

∫ τL

τ
Ib(τ′)

∫ 1

0
e−(τ′−τ)/µ dµ

µ
dτ′

]
. (14.29)

Taking advantage of the fact that wall intensities and radiative sources do not depend on
direction, we have taken these terms out of the direction integrals and reversed the order of
integration for the terms describing medium emission.

A similar relationship may be established for radiative heat flux, from equation (14.22), as

q(τ) = 2π
[
Ib1

∫ 1

0
e−τ/µµ dµ − Ib2

∫ 1

0
e−(τL−τ)/µµ dµ

+

∫ τ

0
Ib(τ′)

∫ 1

0
e−(τ−τ′)/µ dµ dτ′ −

∫ τL

τ
Ib(τ′)

∫ 1

0
e−(τ′−τ)/µ dµ dτ′

]
. (14.30)

We see that none of the important parameters G, q, and Ib depends on direction, and that direction
µ enters equations (14.29) and (14.30) only as a dummy integration variable. We may write these
equations in more compact form by introducing the exponential integral of order n,

En(x) =

∫
∞

1
e−xt dt

tn =

∫ 1

0
µn−2 e−x/µ dµ. (14.31)

Since exponential integrals are of great importance in radiative transfer, a sketch of them is
shown in Fig. 14-2, and a somewhat more detailed discussion is given in Appendix E. For
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General behavior of exponential integrals En(x).

our present purposes, we note that exponential integrals behave somewhat like “generalized
negative exponentials” and that

En(0) =

∫
∞

1

dt
tn =

1
n − 1

, (14.32)

d
dx

En(x) = −En−1(x); or En(x) =

∫
∞

x
En−1(x) dx. (14.33)

Substituting equation (14.31) into equations (14.29) and (14.30) then leads to

G(τ) = 2π
[
Ib1E2(τ) + Ib2E2(τL − τ) +

∫ τ

0
Ib(τ′)E1(τ − τ′) dτ′ +

∫ τL

τ
Ib(τ′)E1(τ′ − τ) dτ′

]
,

(14.34)

q(τ) = 2π
[
Ib1E3(τ) − Ib2E3(τL − τ) +

∫ τ

0
Ib(τ′)E2(τ − τ′) dτ′ −

∫ τL

τ
Ib(τ′)E2(τ′ − τ) dτ′

]
.

(14.35)

Medium with Specified Temperature Field

If radiative heat transfer is not so dominant that conduction and/or convection can be neglected,
the problem of finding the temperature distribution and heat fluxes is always nonlinear. For the
simplest case of a gray medium with constant properties, the incident radiation, as calculated
from equation (14.21), is proportional to temperature to the fourth power, while the conductive
and/or convective terms are proportional to temperature itself. Therefore, the temperature
field must always be determined through an iterative procedure. In general, this involves
guessing a temperature field, which is then used to determine incident radiation G [from
equation (14.34)] and divergence of radiative heat flux ∇ · q [from equation (14.24)]. This
radiative source term is then substituted into the equation for overall conservation of energy,
equation (10.72), from which an improved temperature field is determined. This process is then
repeated until the temperature field has converged to within specified criteria. The treatment of
combined radiation together with conduction and/or convection is discussed in more detail in
Chapter 22. There are also some important industrial applications where outright knowledge
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of the temperature field may be assumed, for example, swirling combustion chambers that are
essentially isothermal as a result of very strong convection.

For a gray medium equations (14.34) and (14.35) give the total incident radiation G and
radiative flux q. The radiative source term then follows from

dq
dτ

= (1 − ω)(4πIb − G). (14.36)

For a nongray medium equations (14.34) and (14.35) provide only spectral values, Gλ and
qλ, and the total radiative source must be found through integration of

dq
dz

=

∫
∞

0
κλ(4πIbλ − Gλ) dλ. (14.37)

Medium at Radiative Equilibrium

If other modes of heat transfer are negligible, or are not considered, the temperature distribution
is unknown and must be determined from the statement of radiative equilibrium, dq/dz = 0.
This is a total (spectrally integrated) heat flux and, to make the problem tractable, we will
limit ourselves to a gray medium [i.e., equations (14.34) and (14.35) deal with total properties,
or Ib = n2σT4/π]. We find q(τ) = const and, from equation (14.26), G = 4πIb = 4n2σT4.
Equation (14.34) now becomes an integral equation governing the temperature distribution
within the medium, or

T4(τ) =
1
2

[
T4

1 E2(τ) + T4
2 E2(τL−τ) +

∫ τL

0
T4(τ′)E1(|τ′−τ|) dτ′

]
. (14.38)

Since the heat flux,

q(τ) = 2n2σT4
1 E3(τ) − 2n2σT4

2 E3(τL − τ)

+ 2
∫ τ

0
n2σT4(τ′)E2(τ−τ′) dτ′ − 2

∫ τL

τ
n2σT4(τ′)E2(τ′−τ) dτ′, (14.39)

does not vary across the medium, it may be evaluated at any location, conveniently chosen as
τ = 0:

q = n2σT4
1 − 2n2σT4

2 E3(τL) − 2
∫ τL

0
n2σT4(τ′)E2(τ′) dτ′. (14.40)

The difference between equations (14.40) and (14.39) is that equation (14.40) is only valid for
radiative equilibrium, and equation (14.39) is valid for the more general case of any gray
medium between black plates. For an overall solution the temperature field is found first by
solving the integral equation (14.38), after which knowledge of the temperature field is used
to determine radiative heat flux from equation (14.39). Unfortunately, no closed-form solution
exists to integral equations such as (14.38); a solution has to be found by numerical and/or
approximate means. Before proceeding to a solution it is advantageous to reduce the number
of parameters in equations (14.38) and (14.39) to a minimum. We introduce a nondimensional
emissive power or temperature

Φb(τ) =
T4(τ) − T4

2

T4
1 − T4

2

, (14.41)

and a nondimensional radiative heat flux

Ψb =
q

n2σ(T4
1 − T4

2 )
. (14.42)
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FIGURE 14-3
Nondimensional temperature distribution
for a gray medium at radiative equilibrium
between isothermal plates.

If we substitute these expressions into equations (14.38) and (14.39) and use equations (14.32)
and (14.33), we find that

Φb(τ) =
1
2

[
E2(τ) +

∫ τL

0
Φb(τ′)E1(|τ − τ′|) dτ′

]
, (14.43)

Ψb(τ) = 2
[
E3(τ) +

∫ τ

0
Φb(τ′)E2(τ−τ′) dτ′ −

∫ τL

τ
Φb(τ′)E2(τ′−τ) dτ′

]
, (14.44)

or

Ψb = 1 − 2
∫ τL

0
Φb (τ′)E2(τ′) dτ′. (14.45)

Besides the independent variable τ, only one parameter, the medium’s optical thickness τL,
appears in the governing equations for Φb and Ψb: Once Φb has been determined for a given τL,
the temperature field and radiative heat flux may be determined for any combination of surface
temperatures. Equation (14.43) is a Fredholm integral equation and is readily solved by any of the
methods described in Section 5.6. The numerical solution to equations (14.43) and (14.45) was
first given by Heaslet and Warming [2]. Figure 14-3 shows the nondimensional temperature
field for a range of optical thicknesses. Some representative nondimensional fluxes are given in
Table 14.1.

Examination of Fig. 14-3 shows that, for radiative equilibrium, there may be a temperature
discontinuity at the walls.4 In the limiting case of a transparent medium, τL → 0, we have Φb = 1

2
or T4

→ (T4
1 + T4

2 )/2 = const, with corresponding temperature jumps at the boundaries (strictly
speaking, a transparent or nonparticipating medium, τL = 0, could have any temperature distri-
bution since it would not enter the calculations). The temperature slip decreases as the optical
thickness increases until it vanishes for τL →∞. In that optically thick limit the nondimensional
emissive power profile becomes linear. The situation is not unlike conduction in a rarefied gas:
When the mean free path for collision (absorption) is very large, molecules (photons) travel
between plates without interference with an average energy equal to the average of surface

4This discontinuity must, of course, vanish if heat is transferred by conduction and/or convection in addition to
radiation.
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TABLE 14.1
Nondimensional radiative heat flux for radiative equilibrium between parallel black plates,
Ψb = q/n2σ(T 4

1
− T 4

2
), from Heaslet and Warming [2].

Optical Optical
thickness, τL Ψb thickness, τL Ψb

0.0 1.0000 0.8 0.6046
0.1 0.9157 1.0 0.5532
0.2 0.8491 1.5 0.4572
0.3 0.7934 2.0 0.3900
0.4 0.7458 2.5 0.3401
0.5 0.7040 3.0 0.3016
0.6 0.6672 5.0 0.2077

For τL � 1, Ψb =
4/3

1.42089 + τL

temperatures (emissive powers). If the mean free path becomes very small compared with
physical dimensions, the conductive flux obeys Fourier’s law and the diffusion limit is reached.

Gray, Diffuse Boundaries
If the walls are not black, but are gray, diffuse emitters and reflectors, the entire development
of this section still holds, except that the fluxes leaving the bottom and top plates are no longer
πIb1 and πIb2, but must be replaced by the radiosities J1 and J2, respectively:

G(τ) = 2J1E2(τ) + 2J2E2(τL − τ) + 2π
∫ τ

0
Ib(τ′)E1(τ − τ′) dτ′ + 2π

∫ τL

τ
Ib(τ′)E1(τ′ − τ) dτ′,

(14.46)

q(τ) = 2J1E3(τ) − 2J2E3(τL − τ) + 2π
∫ τ

0
Ib(τ′)E2(τ − τ′) dτ′ − 2π

∫ τL

τ
Ib(τ′)E2(τ′ − τ) dτ′.

(14.47)

The radiosities, accounting for emission as well as diffuse reflection, may be related to the Planck
function through equation (5.26) as

qw · n̂ =
εw

1 − εw
(πIbw − Jw) , (14.48)

or

τ = 0 : q1 =
ε1

1 − ε1

(
n2σT4

1 − J1

)
, (14.49a)

τ = τL : q2 = −
ε2

1 − ε2

(
n2σT4

2 − J2

)
. (14.49b)

Medium with Specified Temperature Field

For nonblack surfaces the equations for incident radiation and radiative flux are coupled through
the radiosity. First, sticking equations (14.49) into equation (14.47) one can determine the
unknown radiosities, after which incident radiation is calculated. The radiative source term is
then evaluated as for black surfaces.



464 14 EXACT SOLUTIONS FOR ONE-DIMENSIONAL GRAY MEDIA

Example 14.1. A gray, nonscattering medium with refractive index n = 1 is contained between two
parallel, gray plates. The medium is isothermal at temperature Tm, with constant absorption coefficient
κ. The two plates are both isothermal at temperature Tw, have the same gray-diffuse emittance ε, and are
spaced a distance L apart. Determine the radiative heat flux between the plates as well as its divergence.

Solution
The radiative heat flux is determined from equation (14.47) with τ = κz,

q(τ) = 2JwE3(τ) − 2JwE3(τL − τ) + 2σT4
m

∫ τ

0
E2(τ − τ′) dτ′ − 2σT4

m

∫ τL

τ
E2(τ′ − τ) dτ′

= 2JwE3(τ) − 2JwE3(τL − τ) + 2σT4
m

[
E3(τ − τ′)

∣∣∣∣∣τ
0

+ E3(τ′ − τ)
∣∣∣∣∣τL

τ

]
= (Jw − σT4

m) 2 [E3(τ) − E3(τL − τ)] ,

where we have made use of the symmetry of the problem, i.e., J1 = J2 = Jw, and πIbm = σT4
m =

const. The necessary relationship between surface flux, temperature, and radiosity has been given by
equation (14.48), or for the plane slab at τ = 0,

q(0) =
ε

1 − ε
(σT4

w − Jw) = (Jw − σT4
m) [1 − 2E3(τL)] .

Solving for Jw, we find

Jw =
σT4

w + (1/ε − 1) [1 − 2E3(τL)] σT4
m

1 + (1/ε − 1)[1 − 2E3(τL)]
,

and
q(τ)

σ(T4
w − T4

m)
=

2 [E3(τ) − E3(τL − τ)]
1 + (1/ε − 1)[1 − 2E3(τL)]

.

The divergence of the flux may be evaluated by first calculating the incident radiation from equa-
tion (14.53) and then using equation (14.36). While this method is preferable for numerical and/or
multidimensional calculations, it is more convenient here simply to differentiate the above expression
for the heat flux. Thus,

dq
dτ

(τ)
/
σ(T4

w − T4
m) = −

2[E2(τ) + E2(τL − τ)]
1 + (1/ε − 1)[1 − 2E3(τL)]

.

If Tw > Tm, then dq/dτ is always negative: The flux is positive at τ = 0 (going into the medium), zero at
the midplane, and turning more and more negative as the τ = τL plate is approached.

Medium at Radiative Equilibrium

We will again limit our discussion to a gray medium. Replacing πIbi = n2σT4
i by Ji in the

nondimensionalized equations for radiative equilibrium, equations (14.41) and (14.42), and
setting q1 = q2 = q = const transforms equation (14.45) into

q
J1 − J2

= Ψb = 1 − 2
∫ τL

0
Φb(τ′)E2(τ′) dτ′,

and from equation (14.49)

J1 − J2 = n2σ(T4
1 − T4

2 ) −
( 1
ε1

+
1
ε2
− 2

)
q.

Thus,

q = Ψb(J1 − J2) = Ψb

[
n2σ(T4

1 − T4
2 ) −

( 1
ε1

+
1
ε2
− 2

)
q
]
,

or
Ψ =

q
n2σ(T4

1 − T4
2 )

=
Ψb

1 + Ψb

( 1
ε1

+
1
ε2
− 2

) . (14.50)
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Similarly, for the nondimensional temperature distribution one obtains

Φ(τ) =
T4(τ) − T4

2

T4
1 − T4

2

=

Φb(τ) +
( 1
ε2
− 1

)
Ψb

1 + Ψb

( 1
ε1

+
1
ε2
− 2

) . (14.51)

Example 14.2. A gray, nonscattering medium with refractive index n = 1 and an absorption coefficient
κ = 0.1 cm−1 is contained between two isothermal cylinders. The inner cylinder is hot (T1 = 2000 K) and
highly reflective (ε1 = 0.1); the outer cylinder is a strong absorber (α2 = ε2 = 0.9), and it must be kept
relatively cool (T2 ≤ 400 K). The gap between the two cylinders is 25 cm. Assuming that conductive
and convective heat transfer can be neglected as compared to radiation, and assuming that the cylinders
have large diameters (D1 � 25 cm), determine the necessary cooling rate for the outer cylinder to avoid
overheating.

Solution
Since the thickness of the medium is small as compared with the diameters of the cylinders, we may
model the gap as a one-dimensional plane-parallel slab of optical thickness τL = 0.1 cm−1

× 25 cm = 2.5.
Thus, from Table 14.1 Ψb = 0.3401 and from equation (14.50)

Ψ =
q

σ(T4
1 − T4

2 )
=

0.3401

1 + 0.3401
(

1
0.1 + 1

0.9 − 2
) = 0.0830,

and

qmin = Ψσ
(
T4

1 − T4
2,max

)
= 0.0830 × 5.670 × 10−12(20004

− 4004) W/cm2 = 7.52 W/cm2.

14.4 PLANE LAYER OF A SCATTERING
MEDIUM

Isotropic Scattering

For isotropic scattering the source function is found from equation (14.5) as

S(τ) = (1 − ω)Ib (τ) +
ω
4π

G(τ), (14.52)

and the Ib (τ′) in equations (14.46) and (14.47) must be replaced by S(τ′):

G(τ) = 2J1E2(τ) + 2J2E2(τL − τ) + 2π
∫ τ

0
S(τ′)E1(τ − τ′) dτ′ + 2π

∫ τL

τ
S(τ′)E1(τ′ − τ) dτ′, (14.53)

q(τ) = 2J1E3(τ) − 2J2E3(τL − τ) + 2π
∫ τ

0
S(τ′)E2(τ − τ′) dτ′ − 2π

∫ τL

τ
S(τ′)E2(τ′ − τ) dτ′. (14.54)

Medium with Specified Temperature Field

In the presence of isotropic scattering equation (14.53) becomes an integral equation for the
unknown G(τ). Defining a general nondimensional function similar to equation (14.41),

Φ(τ) =
πS(τ) − J2

J1 − J2
, (14.55)
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equation (14.53) may be simplified to

Φ(τ) = (1 − ω)
πIb(τ) − J2

J1 − J2
+
ω
2

[
E2(τ) +

∫ τL

0
Φ(τ)E1(|τ′ − τ|) dτ′

]
. (14.56)

Equation (14.56) reduces to equation (14.43) for the case of ω → 1 (purely scattering medium).
For such a medium thermal radiation is decoupled from the temperature field (since there is no
emission), and radiative equilibrium prevails regardless of the temperature distribution. This
behavior is also seen from equation (14.24), which states that dq/dτ = 0 if ω = 1, regardless of
Ib(τ).

Similarly, equation (14.54) may be nondimensionalized as

Ψ(τ) =
q(τ)

J1 − J2
= 2

[
E3(τ) +

∫ τ

0
Φ(τ′)E2(τ − τ′) dτ′ −

∫ τL

τ
Φ(τ′)E2(τ′ − τ) dτ′

]
. (14.57)

Once a solution for Φ(τ) has been obtained, the radiative flux is determined from equation (14.57),
and incident radiation and radiative source term are found through equation (14.55).

Medium at Radiative Equilibrium

In the case of radiative equilibrium in a gray medium (and assuming no internal heat generation
takes place) equation (14.26) further simplifies the source function to

S(τ) = (1 − ω)Ib (τ) +
ω
4π

G(τ) = Ib(τ). (14.58)

Thus all relations developed in the previous section on radiative equilibrium are equally valid
for isotropically scattering media with optical thickness τ =

∫ z

0 β dz based on the extinction
coefficient rather than the absorption coefficient. For a gray medium at radiative equilibrium
there is no distinction between absorption and isotropic scattering: Any energy absorbed at
τ must be reemitted isotropically at the same location, although at different wavelengths; any
isotropically scattered energy is simply redirected isotropically (without change of wavelength).
Since a gray medium is “colorblind” it cannot distinguish between emission and isotropic
scattering. However, for the purely scattering case, ω→ 1, there is no emission and, therefore,
Ib no longer enters the calculations. For this extreme case the T4(τ) in equations (14.41) and
(14.51) should be replaced by G(τ)/4n2σ.

Anisotropic Scattering

For demonstrative purposes we will only consider the case of a gray slab at radiative equilibrium
with linear-anisotropic scattering. The source function is then given by equation (14.15), which
reduces to

S(τ, µ) = Ib(τ) +
A1ω
4π

qµ. (14.59)

Therefore, equations (14.21) and (14.22) become

G(τ)
4π

= Ib(τ) =
J1

2π
E2(τ) +

J2

2π
E2(τL − τ) +

1
2

∫ τ

0
Ib(τ′)E1(τ − τ′) dτ′

+
1
2

∫ τL

τ
Ib(τ′)E1(τ′ − τ) dτ′ +

A1ω
8π

q [E3(τL − τ) − E3(τ)] , (14.60)

q(τ) = q = 2J1E3(τ) − 2J2E3(τL − τ) + 2π
[∫ τ

0
Ib(τ′)E2(τ − τ′) dτ′

−

∫ τL

τ
Ib(τ′)E2(τ′ − τ) dτ′

]
+

A1ω
2

q
[2
3
− E4(τ) − E4(τL − τ)

]
. (14.61)
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FIGURE 14-4
(a) Nondimensional temperature profiles, and (b) nondimensional heat flux rates; for a slab at radiative equilibrium.

In nondimensional form these relations reduce to

Φb(τ) =
πIb(τ) − J2

J1 − J2
=

1
2

{
E2(τ) +

∫ τL

0
Φb(τ′)E1(|τ − τ′|) dτ′

+
A1ω

4
Ψb [E3(τL − τ) − E3(τ)]

}
, (14.62)

Ψb =
q

J1 − J2
= 2

{
E3(τ) +

∫ τ

0
Φb(τ′)E2(τ − τ′) dτ′ −

∫ τL

τ
Φb(τ′)E2(τ′−τ) dτ′

+
A1ω

4
Ψb

[2
3
− E4(τ) − E4(τL−τ)

]}
. (14.63)

The problem of radiative equilibrium in a one-dimensional, plane-parallel, anisotropically scat-
tering medium has been solved by Modest and Azad [3]. They considered full Mie-anisotropic
scattering for a number of particulate clouds, whose relevant parameters have been given in
Chapter 12, Table 12.1. Figure 14-4 shows representative results for radiative heat fluxes and
temperature distributions in Clouds 1 and 2. Also included are results for linear-anisotropic
scattering (approximating the phase functions as indicated in Fig. 12-6), using the exact rela-
tions, equations (14.62) and (14.63), as well as the differential approximation (to be discussed in
the following two chapters). It was observed that approximating a complicated phase function
by a linear-anisotropic one (after removing forward- and backward-scattering peaks) always
leads to accurate results for heat transfer applications.

14.5 RADIATIVE TRANSFER IN
SPHERICAL MEDIA

In a plane-parallel medium, if the temperature field (as well as any radiative property) varies
only in the direction normal to the plates, the problem is one-dimensional. If the polar angle
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FIGURE 14-5
Coordinates for a one-dimensional spherical medium.

θ is measured from the direction normal to the plates, the radiative intensity depends only on
the spatial coordinate z and polar angle θ (but not on azimuthal angle ψ, because of symmetry).
A similar situation exists in a one-dimensional spherical medium. Let the temperature field
vary only in the radial direction r, but not with polar angle θs or azimuthal angle ψs (where
the subscripts s have been added to emphasize that these angles specify position in a spherical
coordinate system, and are independent of angles θ and ψ, which are employed to describe
direction). If the polar direction angle θ is measured from the radial position vector as shown in
Fig. 14-5, then the radiative intensity depends only on polar angle θ and—owing to symmetry—
not on azimuthal angleψ. However, unlike in the plane layer of Fig. 14-1, in spherical symmetry
the polar angle changes as a beam travels in the direction of ŝ through the medium (with θ
steadily decreasing with increasing path length s). Therefore, with intensity depending on
radial location r and direction angle θ, the left-hand side of equation (14.1) must be expressed5

as

ŝ · ∇I =
dI
ds

=
∂I
∂r

dr
ds

+
∂I
∂θ

dθ
ds
. (14.64)

From inspection of Fig. 14-5, we find that cosθ = dr/ds. Also, from the law of sines,

sinθ
r′ dθs

=
sinθ′

r dθs
or r sinθ = r′ sinθ′ = const (14.65)

along s. Differentiating this relation gives

dr sinθ + r cosθ dθ = 0, or
dθ
dr

= −
tanθ

r
. (14.66)

Substituting both relations into equation (14.64) leads to

dI
ds

= cosθ
∂I
∂r

(r, θ) −
sinθ

r
∂I
∂θ

(r, θ), (14.67)

or, if the shorthand µ = cosθ is preferred,

dI
ds

= µ
∂I
∂r

(r, µ) +
1 − µ2

r
∂I
∂µ

(r, µ), (14.68)

where we have used dµ = − sinθ dθ. Substituting equation (14.68) into equations (14.1) and
(14.3), we obtain, with τ =

∫ r

0 β dr,

µ
∂I
∂τ

(τ, µ) +
1 − µ2

τ
∂I
∂µ

(τ, µ) = S(τ, µ) − I(τ, µ), (14.69)

5While this expression is also valid for a one-dimensional plane layer (with r replaced by z), the polar angle does
not change along a path through the slab, or dθ/ds = 0.
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where the radiative source for linear-anisotropic scattering has been given by equation (14.15).
The problem of one-dimensional heat transfer through a spherical medium was first con-

sidered by Sparrow and coworkers [4], who investigated radiative equilibrium in a gray non-
scattering medium contained between concentric black spheres. They assumed that there was
uniform heat generation within the medium and that both surfaces had identical and constant
temperatures. Ryhming [5] considered the same problem, but without heat generation and with
the two surfaces at different temperatures T1 and T2. The condition of black walls was relaxed
by Viskanta and Crosbie [6], who considered a nonscattering, gray, heat-generating medium
between two gray, isothermal spheres of radius R1 and R2, respectively (and at temperatures T1
and T2, and with gray diffuse emittances ε1 and ε2). They found that the temperature field, in
terms of emissive power Eb, may be calculated from

Eb(τ) = J1 + (J2 − J1) Φ(τ) +
Q̇ ′′′

κ
Φs(τ). (14.70)

Here J1 and J2 are the radiosities of the two spherical surfaces, and Q̇ ′′′ is the (uniform) heat
generation within the medium. Φ(τ) is the nondimensional emissive power for a medium
without heat generation, determined from

Φ(τ) =
Eb(τ)− J1

J2− J1
=

1
2τ

[
1(τ) +

∫ τ2

τ1

K(τ, t) Φ(t) dt
]
, (14.71)

1(τ) = τ2E2(τ2−τ) −
√
τ2

2−τ
2
1 E2

(√
τ2

2−τ
2
1 +

√
τ2−τ2

1

)
+ E3(τ2 − τ) − E3

(√
τ2

2−τ
2
1 +

√
τ2−τ2

1

)
, (14.72)

K(τ, t) =
[
E1(|τ − t|) − E1

(√
τ2

2−τ
2
1 +

√
τ2−τ2

1

)]
t. (14.73)

Φs(τ) is the nondimensional emissive power for a medium with uniform heat generation, but
with both surfaces having the same radiosity, J1, obtained from

Φs(τ) =
Eb− J1

Q̇ ′′′/κ
=

1
4

+
1

2τ

∫ τ2

τ1

K(τ, t) Φs(t) dt. (14.74)

Once the functions Φ(τ) and/or Φs(τ) have been determined, the radiative heat fluxes can be
calculated from

τ2q(τ) = (J1 − J2)τ2
1 Ψ(τ) +

Q̇ ′′′

κ

[
τ3

3
− τ2

1 Ψs(τ)
]
, (14.75)

where

Ψ(τ) =
2
τ2

1

[
h(τ) +

∫ τ2

τ1

H(τ, t) Φ(t) dt
]
, (14.76)

Ψs(τ) =
1
τ2

1

[
τ3

3
− 2

∫ τ2

τ1

H(τ, t) Φs(t) dt
]
, (14.77)

h(τ) = − ττ2E3(τ2 − τ) −
√

(τ2
2−τ

2
1)(τ2−τ2

1) E3

(√
τ2

2−τ
2
1 +

√
τ2−τ2

1

)
+ (τ2−τ)E4(τ2−τ) −

(√
τ2

2−τ
2
1 +

√
τ2−τ2

1

)
E4

(√
τ2

2−τ
2
1 +

√
τ2−τ2

1

)
+ E5(τ2−τ) − E5

(√
τ2

2−τ
2
1 +

√
τ2−τ2

1

)
, (14.78)

H(τ, t) =
[
τ sgn(τ−t)E2(|τ−t|) −

√
τ2−τ2

1 E2

(√
τ2−τ2

1 +
√

t2−τ2
1

)
+ E3(|τ−t|) − E3

(√
τ2−τ2

1 +
√

t2−τ2
1

)]
t, (14.79)
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TABLE 14.2
Values of nondimensional flux functions for radiative equilibrium between concentric
spheres, from Viskanta and Crosbie [6].

Ψ Ψs
τ2 R1/R2 = 0.1 R1/R2 = 0.5 R1/R2 = 0.9 R1/R2 = 0.5
0 1.0000 1.0000 1.0000 0.0000

0.1 0.9970 0.9900 0.9946 0.0321
0.5 0.9844 0.9488 0.9728 0.1678
1.0 0.9680 0.8976 0.9459 0.3525
2.0 0.8006 0.8944 0.7619
5.0 0.8316 0.5797 0.7625 2.1552

10.0 0.6839 0.3834 0.6077
20.0 0.2250 0.4312

where sgn(t) = t/|t| = ±1, depending on the sign of t. Solutions to Φ, Ψ, Φs, and Ψs have been
tabulated by Viskanta and Crosbie [6] for a number of radius ratios R1/R2 and optical thicknesses
τ2. Their results for the nondimensional flux functions Ψ and Ψs are given in Table 14.2. As for
the plane slab, the statement of radiative equilibrium,

1
τ2

d
dτ

(τ2q) =
Q̇ ′′′

κ
, (14.80)

implies that Ψ and Ψs are constants, and equations (14.76) and (14.77) may be evaluated for any
arbitrary value of τ.

It remains to eliminate the radiosities J1 and J2 from equation (14.75) for the case of nonblack
boundaries. Similar to the development for parallel plates, equations (14.48) through (14.50),
we have

τ = τ1 : q1 =
ε1

1 − ε1

(
n2σT4

1 − J1

)
, (14.81a)

τ = τ2 : −q2 =
ε2

1 − ε2

(
n2σT4

2 − J2

)
. (14.81b)

Performing an energy balance (i.e., stating that energy coming in at Sphere 1, plus energy
generated in the volume between spheres, equals energy going out at Sphere 2), we obtain

4πR2
1q1 + Q̇ ′′′

4
3
π(R3

2 − R3
1) = 4πR2

2q2,

or

q2 =
(
τ1

τ2

)2
q1 +

1
3

Q̇ ′′′

κ

τ3
2 − τ

3
1

τ2
2

. (14.82)

Substituting equation (14.82) into (14.81) leads to( 1
ε1
− 1

)
q1 +

( 1
ε2
− 1

) (τ1

τ2

)2
q1 +

1
3

Q̇ ′′′

κ

τ3
2 − τ

3
1

τ2
2

 = n2σ(T4
1 − T4

2 ) − (J1 − J2),

or

(J1 − J2)τ2
1 = n2σ(T4

1 − T4
2 )τ2

1 −

[
1
ε1
− 1 +

(
τ1

τ2

)2 ( 1
ε2
− 1

)]
τ2q −

1
3

Q̇ ′′′

κ

( 1
ε2
− 1

) (
τ1

τ2

)2
(τ3

2 − τ
3
1),

(14.83)

which may be employed to eliminate the radiosities from equation (14.75).
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More recently, a few investigators have considered somewhat more involved situations. The
governing integral equations for an isotropically scattering spherical medium were first stated by
Pomraning and Siewert [7]. These equations were used by Thynell and Özişik [8] to investigate
the gray isotropically scattering solid sphere with gray, diffusely reflecting boundary. Their
analysis applied to any given temperature fields or variable internal heat generation. Finally,
the problem of nondiffuse reflectance at the outer face, obeying Fresnel’s laws, was investigated
by Wu and Wang [9] for an isothermal, isotropically scattering, solid sphere.

Example 14.3. A gray, nonscattering medium with refractive index n = 1 and an absorption coefficient
κ = 0.1 cm−1 is contained between two concentric isothermal spheres with radii R1 = 25 cm and R2 =
50 cm. The inner sphere is hot (T1 = 2000 K) and highly reflective (ε1 = 0.1); the outer sphere is a strong
absorber (α2 = ε2 = 0.9), which must be kept relatively cool (T2 = 400 K). Assuming that conductive and
convective heat transfer can be neglected as compared with radiation, determine the necessary cooling
rate.

Solution
We have the situation of one-dimensional radiative equilibrium between concentric spheres, and equa-
tion (14.75) applies with Q̇ ′′′ = 0. With R1/R2 = 25/50 = 0.5 and τ2 = κR2 = 0.1× 50 = 5 we obtain, from
Table 14.2, Ψ = 0.5797. The radiosities are eliminated with equation (14.83) so that

τ2q = σ(T4
1 − T4

2 )τ2
1Ψ −

[
1
ε1
− 1 +

(
τ1

τ2

)2 ( 1
ε2
− 1

)]
τ2q Ψ,

or

τ2q
τ2

1σ(T4
1−T4

2 )
=

q1

σ(T4
1−T4

2 )
=

Ψ

1 +

[
1
ε1
− 1 +

(
τ1

τ2

)2 ( 1
ε2
− 1

)]
Ψ

=
0.5797

1 +
[

1
0.1 − 1 + 0.52

(
1

0.9 − 1
)]

0.5797
= 0.0930.

This result should be compared with the value of 0.0830 found in Example 14.2 for the identical situation
between parallel plates. The flux density at the inner sphere then turns out to be

q1 = 0.0930σ(T4
1 − T4

2 )

= 0.0930 × 5.670 × 10−12 (20004
− 4004) W/cm2 = 8.42 W/cm2.

14.6 RADIATIVE TRANSFER IN
CYLINDRICAL MEDIA

We shall now briefly consider the case of a one-dimensional cylindrical medium, with tempera-
ture and radiative properties varying only in the radial direction r, but not with axial position z
or azimuthal angle ψc (where we have again added the subscript c to emphasize that this angle
specifies position in the cylindrical coordinate system, and is independent of azimuthal direction
angleψ). For this geometry it is advantageous to place the direction coordinate system such that
polar angle θ is measured from the positive z-axis, while the azimuthal angle ψ is measured in
the r-ψc-plane perpendicular to it, as shown in Fig. 14-6. Measuring the azimuthal angle from
the radial coordinate as indicated in the figure, we recognize that radiative intensity may vary
with radial position r and both direction angles θ and ψ. Therefore, similar to equation (14.64),
we have

ŝ · ∇I =
dI
ds

=
∂I
∂r

dr
ds

+
∂I
∂θ

dθ
ds

+
∂I
∂ψ

dψ
ds
. (14.84)

From symmetry, it follows that I(r, θ, ψ) = I(r, θ,−ψ) = I(r, π−θ,ψ). Inspecting Fig. 14-6, we find

cosψ =
dr

ds sinθ
, or

dr
ds

= sinθ cosψ, (14.85)
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FIGURE 14-6
Coordinates for a one-dimensional cylindrical medium.

where ds sinθ is the projection of ds into the r-ψc-plane. Traveling along a beam in the direction
of ŝ we see that, similar to the spherical case, the azimuthal angle ψ steadily decreases (instead
of θ in the spherical case, see Fig. 14-5). Therefore, replacing θ by ψ in equation (14.66), we find

dψ
dr

= −
tanψ

r
, or

dψ
ds

=
dψ
dr

dr
ds

= −
sinθ sinψ

r
. (14.86)

On the other hand, traveling along ŝ, we see that the angle with the z-axis remains unchanged,
or dθ/ds = 0. Sticking these relations into equation (14.84) yields

dI
ds

= sinθ
[
cosψ

∂I
∂r

(r, θ, ψ) −
sinψ

r
∂I
∂ψ

(r, θ, ψ)
]
. (14.87)

The equation of transfer appropriate for the one-dimensional cylindrical medium follows then
from equations (14.1) and (14.3) as

sinθ
[
cosψ

∂I
∂τ

(τ, θ, ψ) −
sinψ
τ

∂I
∂ψ

(τ, θ, ψ)
]

= S(τ, θ, ψ) − I(τ, θ, ψ), (14.88)

where again τ =
∫ r

0 β dr. This relationship can also be found from the left-hand side of equa-
tion (14.84) by recognizing (cf. Fig. 14-6) that

ŝ = sinθ cosψ êr + sinθ sinψ êψc + cosθ êz, (14.89a)
ψ + ψc = const along ŝ, (14.89b)

and using, for cylindrical coordinates,

∇ =
∂
∂r

êr +
1
r
∂
∂ψc

êψc +
∂
∂z

êz,

with dψc = −dψ and ∂I/∂z = 0. The general form for the radiative source function is given by
equation (14.3); for linear-anisotropic scattering, equation (14.15) remains valid with êr ·ŝ = cosθ
(valid for slab and sphere, cf. Figs. 14-1 and 14-5) replaced by êr · ŝ = sinθ cosψ (valid for the
cylinder, cf. Fig. 14-6), or

S(τ, θ, ψ) = (1 − ω) Ib(τ) +
ω
4π

[
G(τ) + A1q(τ) sinθ cosψ

]
. (14.90)
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TABLE 14.3
Nondimensional heat loss from a gray, nonscattering, isothermal cylinder, Ψ = q(τR)/(n2σT 4−

Jw).
τR Ψ τR Ψ
0.1 0.1770 1.0 0.8143
0.2 0.3172 1.5 0.9047
0.3 0.4299 2.0 0.9458
0.4 0.5213 2.5 0.9662
0.5 0.5960 3.0 0.9772
0.6 0.6573 3.5 0.9836
0.7 0.7080 4.0 0.9877
0.8 0.7500 4.5 0.9904
0.9 0.7850 5.0 0.9923

The problem of one-dimensional heat transfer through a cylindrical medium was first con-
sidered by Heaslet and Warming [10]. They investigated the case of an isotropically scattering
medium contained within an isothermal black cylindrical container. Two cases were treated: (i)
radiative equilibrium with uniform heat generation within the medium, and (ii) an isothermal
medium. While they displayed a few graphical results, no tabulated results were given.

The solution for a one-dimensional, gray, linear-anisotropically scattering cylinder with
arbitrary, but specified, temperature distribution has been given by Azad and Modest [11],
using a different approach. We list here their solution for the simple case of no scattering
(ω = 0), for which

q(τ) =
[
n2σT4(τR) − Jw

]
F(τ, τR)

−

∫ τ

0

d
dτ′

(n2σT4)
τ′

τ
F(τ′, τ) dτ′ −

∫ τR

τ

d
dτ′

(n2σT4) F(τ, τ′) dτ, (14.91)

with

F(τ, τ′) = −
4
π

∫ π

0

∫ π/2

0
exp

− τ
sinθ

cosψ +

√(
τ′

τ

)2
− sin2ψ


 sin2θ cosψ dθ dψ. (14.92)

Equation (14.91) is very similar to the equivalent expression for the one-dimensional slab, equa-
tion (14.39) (after integration by parts): Instead of the relatively simple (and widely tabulated)
exponential integral E3(τ′ − τ) we have another, somewhat more complicated geometric func-
tion, F(τ, τ′). For an isothermal cylinder equation (14.91) may be evaluated in explicit form
at τ = τR, with F(τR, τR) expressed in terms of modified Bessel functions. Some representative
results of equation (14.91) for τ = τR have been tabulated in Table 14.3.

Thermal radiation between concentric cylinders was first treated by Kesten [12], who con-
sidered a nonscattering, gray gas with known temperature distribution. The case of a gray,
isotropically scattering medium at radiative equilibrium between concentric cylinders has been
studied by Pandey and Cogley [13] and Loyalka [14]. The governing equations become rather
involved and will not be reproduced here. Because of this complexity, both solutions are not
quite exact: Pandey and Cogley used some approximate geometric functions, while Loyalka
used a simple variational approach to solve the governing integral equation. Comparison with
the “exact” Monte Carlo solution6 by Perlmutter and Howell [15] shows that Loyalka’s results
may essentially be taken as exact. Some representative results for the nondimensional radiative

6For a discussion of the Monte Carlo method, see Chapter 21.
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TABLE 14.4
Nondimensional radiative heat transfer between concentric cylinders at radiative equilib-
rium, Ψ = q(τ1)/(J1 − J2).

Optical Ψ
Thickness Radius Ratio R1/R2
τ2 − τ1 0.1 0.5 0.9

0.1 0.9893 0.9677 0.9462
0.5 0.9464 0.8476 0.7688
1.0 0.8937 0.7225 0.6167
2.0 0.7956 0.5446 0.4371
3.0 0.7105 0.4313 0.3367
4.0 0.6377 0.3549 0.2727
5.0 0.5763 0.3010 0.2291
6.0 0.5250 0.2615 0.1976
7.0 0.4810 0.2308 0.1738
8.0 0.4429 0.2060 0.1549
9.0 0.4102 0.1864 0.1398

10.0 0.3821 0.1703 0.1278

heat flux in terms of surface radiosities,

Ψ =
q(τ1)

J1 − J2
, (14.93)

are given in Table 14.4.
For nonblack walls the radiosities may be eliminated from equation (14.93) in precisely the

same fashion as was done for concentric spheres. From equation (14.83), with A1/A2 = R1/R2 =

τ1/τ2 and Q̇ ′′′ = 0,

J1 − J2 = n2σ(T4
1 − T4

2 ) −
[ 1
ε1
− 1 +

τ1

τ2

( 1
ε2
− 1

)]
q1,

and
q1

n2σ(T4
1 − T4

2 )
=

Ψ

1 +
[ 1
ε1
− 1 +

τ1

τ2

( 1
ε2
− 1

)]
Ψ

. (14.94)

Example 14.4. Repeat Example 14.3 for the case of concentric cylinders.

Solution
With τ2 = 5 and τ1 = 2.5 we have τ2 − τ1 = 2.5 and, after interpolating (somewhat nonlinearly) between
values from Table 14.4 for τ2 − τ1 = 2.0 and τ2 − τ1 = 3.0, Ψ ' 0.48. Thus,

q1

σ(T4
1 − T4

2 )
=

0.48

1 +
[

1
0.1 − 1 + 0.5

(
1

0.9 − 1
)]

0.48
= 0.0898,

and
q1 = 0.0898 × 5.670 × 10−12 (20004

− 4004) = 8.13 W/cm2.

We observe that, for identical conditions, the heat loss is greatest between concentric spheres,
followed by concentric cylinders, and finally by parallel plates. Also, from Tables 14.2 and 14.4
we see that heat loss increases with decreasing radius ratio R1/R2. This observation may be
explained by the fact that, per unit area, the surface of an (inner) sphere exchanges heat with
a larger area on the (outer) sphere (A2/A1 = R2

2/R
2
1) than is the case for concentric cylinders

(A2/A1 = R2/R1) or parallel plates (A2/A1 = 1). The same argument applies to decreasing radius
ratios.
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14.7 NUMERICAL SOLUTION OF THE
GOVERNING INTEGRAL EQUATIONS

The governing integral equations may be solved with several analytical and/or numerical tech-
niques, which will not be discussed in this text in any detail.

An example of analytical techniques is the use of Chandrasekhar’s X- and Y-functions, based
on the principle of invariance, which is described in some detail in Chandrasekhar’s book [16].
For example, Heaslet and Warming [2] expressed the nondimensional temperature Φb in equa-
tion (14.43) in terms of moments of these X- and Y-functions. The moments are determined
by numerical quadrature, using tabulated values for Chandrasekhar’s X- and Y-functions.
Case’s normal-mode expansion technique [17, 18] is to linear integral equations what separation-
of-variables is to partial differential equations. The technique was originally developed for
neutron transport theory, and has been applied to radiative heat transfer by Ferziger and Sim-
mons [19, 20] and Siewert and Özişik [21–27]. A detailed account may be found in the book
by Özişik [28]. Siewert and coworkers [29,30] have further developed Case’s normal-mode ap-
proach, by finding solutions in terms of power series. This approach, known as the FN-method,
was also originally applied to neutron transport, and only later to thermal radiation [31].

Numerical solutions to the governing integral equations may be found by a variety of meth-
ods. The simplest such method is the standard numerical quadrature as discussed in Section 5.6.
Since integrands often contain singularities [cf. equation (14.43)], these must be removed before
quadrature can be applied [2]. The problem of singularities may also be overcome by approxi-
mating the unknown variable in functional form, which allows the analytical evaluation of such
integrals. For example, Özişik and coworkers [32–35] solved the governing integral equation
for several plane-parallel problems with the Galerkin method [36]. In this method, the unknown
dependent variable [say, Φ(τ) in equation (14.43)] is approximated by a series of independent
functions ϕi(τ), that is,

Φ(τ) = C1 ϕ1(τ) + C2 ϕ2(τ) + · · · =

N∑
i=1

Ci ϕi(τ), (14.95)

where the Ci are unknown constants. These are determined by multiplying the governing
equation by each of the functionsϕi(τ), followed by integration over the entire domain, resulting
in N simultaneous algebraic equations for the unknown constants. Most often the independent
functions in equation (14.95) are chosen to be powers in the independent variable, for example,
ϕi(τ) = τi−1 (i = 1, 2, . . .), although Legendre polynomials have also been used [37], in order to
exploit the orthogonality properties of such polynomials. The Galerkin method offers results of
great accuracy even for series truncated after very few terms, albeit at the price of very tedious
analytical or numerical integrations. For more general geometries the use of the related finite
element method becomes more practical, as applied by Reddy and Murty [38].

A somewhat simpler method is the point collocation method together with approximating the
unknown variable by piecewise-continuous splines. In this method the unknown dependent
variable, say Φ(τ), is approximated by a spline function involving N + 1 nodal values Φi =
Φ(τi), i = 0, 1, 2, . . . ,N. For example, if standard cubic splines are employed [39],

Φ = Φi + Bi (τ−τi) + Ci (τ−τi)2 + Di (τ−τi)3,

τi ≤ τ ≤ τi+1, i = 0, 1, . . . ,N − 1, (14.96)

where the constants Bi, Ci, and Di depend on all values of Φi and are readily found through
standard software packages resident on most computers. More sophisticated splines, such
as B-splines [40–42] or Chebyshev polynomials [43], result in more complicated expressions.
Equation (14.96) is now substituted into the governing integral equation, and the piecewise
integrals are evaluated analytically. Applying the governing equation to the N + 1 nodal points
(point collocation) results in N+1 simultaneous, linear algebraic equations for the unknown Φi.
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25. Özişik, M. N., and C. E. Siewert: “On the normal-mode expansion technique for radiative transfer in a scattering,

absorbing and emitting slab with specularly reflecting boundaries,” International Journal of Heat and Mass Transfer,
vol. 12, pp. 611–620, 1969.
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Problems

14.1 The gap between two parallel black plates at T1 and T2, respectively, is filled with a particle-laden
gas. Radiative equilibrium prevails, and the particle loading is a fixed volume fraction, with particles
manufactured from two different materials (one a specular reflector, the other a diffuse reflector, both
having the same ε). Sketch the nondimensional heat flux Ψ = q/σ(T4

1 − T4
2 ) vs. particle size (but

keeping volume fraction constant).

14.2 Consider radiative equilibrium in a one-dimensional, gray, nonscattering, plane-parallel medium
bounded by isothermal black plates at temperatures T1 and T2. To make a simple closed-form
solution possible for the determination of the heat flux between the plates, it has been proposed to
replace the radiative-equilibrium slab by a constant temperature slab, with its temperature evaluated
at T4

av = 1
2 (T4

1 + T4
2 ). Under what optical conditions is this a good idea, if ever?

To determine this compare the different “exact” solutions for various optical thicknesses, say, τL = 0,
1, 5.

14.3 Consider a space enclosed by infinite, diffuse-gray parallel plates filled with a gray nonscattering
medium. The surfaces are isothermal (both at Tw), and there is uniform and constant heat generation
within the medium per unit volume, Q̇ ′′′. Conduction and convection are negligible so that∇·q = Q̇ ′′′.
Set up the integral equations describing temperature and heat flux distribution in the enclosure, i.e.,
show that

Φ(τ) =
σT4
− Jw

Q̇ ′′′/4κ
= 1 +

1
2

∫ τL

0
Φ(τ′)E1 (|τ − τ′|) dτ′,

Ψ(τ) =
q

Q̇ ′′′/κ
= τ −

τL

2
.

14.4 A semi-infinite, gray, isotropically scattering medium, originally at a temperature of 0 K, is subjected
to collimated irradiation with a constant heat flux q0 normal to its nonreflecting surface. Set up the
integral relationships governing steady-state temperature and radiative heat flux within the medium,
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assuming radiative equilibrium. Hint: Collimated irradiation with heat flux q0 has the radiative
intensity

I0(θ,ψ) =


q0

2π sinθ δθ
, 0 ≤ θ < δθ, 0 ≤ ψ ≤ 2π,

0, elsewhere.

14.5 Two large, isothermal gray plates at T1 = 2000 K, T2 = 1000 K with ε = ε1 = ε2 = 0.5 are separated by
a gap of width L = 1 m filled with purely (isotropically) scattering particles. If the heat flux between
the plates has been measured as 223.3 kW/m2, what is the medium’s scattering coefficient?

14.6 Consider two parallel, black, isothermal plates spaced 1 m apart with T1 = 2000 K and T2 = 1000 K.
The medium between the plates is gray and at radiative equilibrium with a nonconstant absorption
coefficient of

κ = κ0 + κ′1z; κ0 = 10−2 cm−1, κ′1 = 2 × 10−4 cm−2.

The medium does not scatter.

(a) What is the heat flux between the plates?
(b) What is the temperature at the medium’s center (z = 1

2 L)?

14.7 An infinite, black, isothermal plate bounds a semi-infinite space filled with black spheres. At any given
distance, z, away from the plate the particle number density is identical, namely NT = 6.3662×108 m−3.
However, the radius of the suspended spheres diminishes monotonically away from the surface as

a = a0 e−z/L; a0 = 10−4 m, L = 1 m.

(a) Determine the absorption coefficient as a function of z (you may make the large-particle as-
sumption).

(b) Determine the optical coordinate as a function of z. What is the total optical thickness of the
semi-infinite space?

(c) Assuming that radiative equilibrium prevails, determine the heat loss from the plate.

14.8 The radiative heat transfer between two isothermal, black plates at temperatures T1 and T2 and
separated by a nonparticipating gas is to be minimized. Enough of a black material is available to
place a 1 mm thick radiation shield between the plates. Alternatively, the same amount of material
could be used in the form of small spheres of 0.1 mm radius to be suspended between the plates.
Which possibility results in lower heat flux, assuming conduction and convection to be negligible?

14.9 Two infinite, isothermal plates at temperatures T1 and T2 are separated by a cold, gray medium of
optical thickness τL = κL (no scattering).

(a) Calculate the radiative heat flux at the bottom plate and the top plate, and the net radiative
energy going into the gray medium, assuming that both plates are black.

(b) Repeat (a), but assume that both plates have the same temperature T, and that both plates are
gray with equal emittance ε (diffuse emission and reflection).

14.10 A semi-infinite, absorbing–emitting, nonscattering medium at uniform temperature is in contact with
a gray-diffuse wall at Tw and with emittance εw.

(a) The medium is gray, and has a constant absorption coefficient. Determine the net radiative heat
flux at the wall.

(b) Let the medium be nongray with nonconstant absorption coefficient κλ, and the wall be nongray
and nondiffuse with spectral, directional emittance ε′λ. How would this affect the wall heat flux?

14.11 A 1 m thick, isothermal slab bounded by two cold black plates has a temperature of 3000 K, and a
nongray absorption coefficient that can be approximated by

κλ =

{
0, λ < 2µm,

0.20 cm−1, λ > 2µm.

Calculate the total heat loss by radiation from the slab (in W/cm2).
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14.12 Consider (a) two parallel plates, (b) two concentric spheres, and (c) two concentric cylinders. The
bottom/inner surface needs to dissipate a heat flux of 30 W/cm2 and has a gray-diffuse emittance
ε1 = 0.5. The top/outer surface is at T2 = 1000 K with ε2 = 0.8. The medium in between the surfaces
is gray and nonscattering (κ = 0.1 cm−1), has a thickness of L = 5 cm, and is at radiative equilibrium.
Determine the temperature at the bottom/inner surface necessary to dissipate the supplied heat for
the three different cases (the radii of the inner cylinder and sphere are R1 = 5 cm). Discuss the results.

14.13 Consider a very hot sphere of a nongray gas of radius R = 1 m in 0 K surroundings that have
been evacuated. The gas has a single absorption–emission band in the infrared, with an absorption
coefficient

κη =

{
0, η < 3000 cm−1 = η0,
κ0 e−(η−η0)/ω, η > 3000 cm−1,

where κ0 = 1 cm−1, ω = 200 cm−1. During cool-down the sphere is always isothermal, and remains
of constant size (i.e., constant density ρ = 1000 g/m3). The heat capacity of the gas is cp = 1 kJ/kg K.
Determine the time required to cool the gas from Ti = 6000 K to Te = 1000 K. Sketch qualitatively the
behavior of Ψ = q/σT4 vs. T.
Hint: To make an analytical solution possible, you may make the following assumptions:

(a) Ein(x) =
∫ 1

0 (1−e−xξ) dξ/ξ = E1(x)+ ln x+γE ' ln x+γE (for sufficiently large x; see also Appendix
E).

(b) Wien’s distribution may be used.

14.14 It is proposed to construct a high-temperature heating element by guiding hot combustion gases
through a silicon carbide tube. The outside of the SiC tube then radiates heat toward the load. Such
devices are known as “radiant tubes.” For the design of such a radiant tube you may make the
following assumptions:

(a) The combustion gas inside the radiant tube is essentially gray and isothermal with κ = 0.2 cm−1

and Tgas = 2000 K.
(b) The silicon carbide tube wall is essentially isothermal and of negligible thickness, with a gray-

diffuse emittance of 0.8 on both sides.
(c) The long tube is contained in a large furnace with a background temperature of 1000 K.

Determine the necessary tube diameter to achieve a radiant heating rate of 100 kW per m length of
tube.


