
CHAPTER

11
RADIATIVE
PROPERTIES OF
MOLECULAR GASES

11.1 FUNDAMENTAL PRINCIPLES

Radiative transfer characteristics of an opaque wall can often be described with good accuracy
by the very simple model of gray and diffuse emission, absorption, and reflection. The radiative
properties of a molecular gas, on the other hand, vary so strongly and rapidly across the
spectrum that the assumption of a “gray” gas is almost never a good one [1]. In the present
chapter a short development of the radiative properties of molecular gases is given. Other
elaborate discussions can be found, for example, in the book by Goody and Yung [2], in the
monograph by Tien [3], and in the very recent treatise of Taine and Soufiani [4].

Most of the earlier work was not in the area of heat transfer but rather was carried out
by astronomers, who had to deal with light absorption within Earth’s atmosphere, and by
astrophysicists, who studied the spectra of stars. The study of atmospheric radiation was
apparently initiated by Lord Rayleigh [5] and Langley [6] in the late nineteenth century. The
radiation spectra of stars started to receive attention in the early twentieth century, for example
by Eddington [7] and Chandrasekhar [8, 9]. The earliest measurements of radiation from hot
gases were reported by Paschen, a physicist, in 1894 [10], but his work was apparently ignored
by heat transfer engineers for many years [11].

The last few decades have seen much progress in the understanding of molecular gas
radiation, in particular the radiation from water vapor and carbon dioxide, which is of great
importance in the combustion of hydrocarbon fuels, and which also dominates atmospheric
radiation with its thermodynamic implications on Earth’s atmosphere. The combination of
the two, i.e., the man-made strong increases in the atmosphere’s CO2 content, giving rise to
“global warming,” is perhaps the most pressing problem facing mankind today. Much of the
pioneering work since the late 1920s was done by Hottel and coworkers [12–19] (measurements
and practical calculations) and by Penner [20] and Plass [21, 22] (theoretical basis).

When a photon (or an electromagnetic wave) interacts with a gas molecule, it may be either
absorbed, raising the molecule’s energy level, or scattered, changing the direction of travel of the
photon. Conversely, a gas molecule may spontaneously lower its energy level by the emission
of an appropriate photon. As will be seen in the next chapter on particle properties (since every
molecule is, of course, a very small particle), the scattering of photons by molecules is always
negligible for heat transfer applications. There are three different types of radiative transitions
that lead to a change of molecular energy level by emission or absorption of a photon: (i)
transitions between nondissociated (“bound”) atomic or molecular states, called bound–bound
transitions, (ii) transitions from a “bound” state to a “free” (dissociated) one (absorption) or
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304 11 RADIATIVE PROPERTIES OF MOLECULAR GASES

from “free” to “bound” (emission), called bound–free transitions, and (iii) transitions between
two different “free” states, free–free transitions.

The internal energy of every atom and molecule depends on a number of factors, primarily
on the energies associated with electrons spinning at varying distances around the nucleus,
atoms within a molecule spinning around one another, and atoms within a molecule vibrat-
ing against each other. Quantum mechanics postulates that the energy levels for atomic or
molecular electron orbit as well as the energy levels for molecular rotation and vibration are
quantized; i.e., electron orbits and rotational and vibrational frequencies can only change by
certain discrete amounts. Since the energy contained in a photon or electromagnetic wave is
directly proportional to frequency, quantization means that, in bound–bound transitions, photons
must have a certain frequency (or wavelength) in order to be captured or released, resulting in
discrete spectral lines for absorption and emission. Since, according to Heisenberg’s uncertainty
principle, the energy level of an atom or molecule cannot be fixed precisely, this phenomenon
(and, as we shall see, some others as well) results in a slight broadening of these spectral lines.

Changing the orbit of an electron requires a relatively large amount of energy, or a high-
frequency photon, resulting in absorption–emission lines at short wavelengths between the
ultraviolet and the near-infrared (between 10−2 µm and 1.5µm). Vibrational energy level
changes require somewhat less energy, so that their spectral lines are found in the infrared
(between 1.5µm and 10µm), while changes in rotational energy levels call for the least amount
of energy and, thus, rotational lines are found in the far infrared (beyond 10µm). Changes in vi-
brational energy levels may (and often must) be accompanied by rotational transitions, leading
to closely spaced groups of spectral lines that, as a result of line broadening, may partly overlap
and lead to so-called vibration–rotation bands in the infrared. Similarly, electronic transitions in
molecules (as opposed to atoms) are always accompanied by vibrational and rotational energy
changes, generally in the ultraviolet to the near-infrared.

If the initial energy level of a molecule is very high (e.g., in very high-temperature gases),
then the absorption of a photon may cause the breaking-away of an electron or the breakup of the
entire molecule because of too strong vibration, i.e., a bound–free transition. The postabsorption
energy level of the molecule depends on the kinetic energy of the separated part, which is
essentially not quantized. Therefore, bound–free transitions result in a continuous absorption
spectrum over all wavelengths or frequencies for which the photon energy exceeds the required
ionization or dissociation energy. The same is true for the reverse process, emission of a photon
in a free–bound transition (often called radiative combination).

In an ionized gas free electrons can interact with the electric field of ions resulting in a free–free
transition (also known as Bremsstrahlung, which is German for brake radiation); i.e., the release
of a photon lowers the kinetic energy of the electron (decelerates it), or the capture of a photon
accelerates it (inverse Bremsstrahlung). Since kinetic energy levels of electrons are essentially not
quantized, these photons may have any frequency or wavelength.

Bound–free and free–free transitions generally occur at very high temperatures (when disso-
ciation and ionization become substantial). The continuum radiation associated with them is
usually found at short wavelengths (ultraviolet to visible). Therefore, these effects are of impor-
tance only in extremely high-temperature situations. Most engineering applications occur at
moderate temperature levels, with little ionization and dissociation, making bound–bound tran-
sitions most important. At combustion temperatures the emissive power has its maximum in
the infrared (between 1µm and 6µm), giving special importance to vibration–rotation bands. In
this book we will focus our discussion on the most important case of bound–bound transitions.

11.2 EMISSION AND ABSORPTION
PROBABILITIES

There are three different processes leading to the release or capture of a photon, namely, sponta-
neous emission, induced or stimulated emission (also called negative absorption), and absorption. The
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absorption and emission coefficients associated with these transitions may, at least theoretically,
be calculated from quantum mechanics. Complete descriptions of the microscopic phenomena
may be found in books on statistical mechanics [23,24] or spectroscopy [25,26]. An informative
(rather than precise) synopsis has been given by Tien [3] that we shall essentially follow here.

Let there be nu atoms or molecules (per unit volume) at a nondegenerate higher energy
state u and nl at a lower energy state l. “Nondegenerate” means that, if there are several states
with identical energies (degeneracy), each state is counted separately. The difference of energy
between the two states is hν. The number of transitions from state u to state l by release of a
photon with energy hν (spontaneous emission) must be proportional to the number of atoms or
molecules at that level. Thus (

dnu

dt

)
u→l

= −Aulnu, (11.1)

where the proportionality constant Aul is known as the Einstein coefficient for spontaneous emission.
Spontaneous emission is isotropic, meaning that the direction of the emitted photon is random,
resulting in equal emission intensity in all directions. Quantum mechanics postulates that, in
addition to spontaneous emission, incoming radiative intensity (or photon streams) with the
appropriate frequency may induce the molecule to emit photons into the same direction as the
incoming intensity (stimulated emission). Therefore, the total number of transitions from state
u to state l may be written as (

dnu

dt

)
u→l

= −nu

(
Aul + Bul

∫
4π

Iν dΩ

)
, (11.2)

where Iν is the incoming intensity, which must be integrated over all directions to account for
all possible transitions, and Bul is the Einstein coefficient for stimulated emission. Finally, part of
the incoming radiative intensity may be absorbed by molecules at energy state l. Obviously, the
absorption rate will be proportional to the strength of incoming radiation as well as the number
of molecules that are at energy state l, leading to(

dnl

dt

)
l→u

= nlBlu

∫
4π

Iν dΩ, (11.3)

where Blu is the Einstein coefficient for absorption. The three Einstein coefficients may be related
to one another by considering the special case of equilibrium radiation. Equilibrium radiation
occurs in an isothermal black enclosure, where the radiative intensity is everywhere equal to
the blackbody intensity Ibν and where the average number of molecules at any given energy
level is constant at any given time, i.e., the number of transitions from all upper energy levels u
to all lower states l is equal to the ones from l to u, or

1u

(
dnu

dt

)
u→l

+ 1l

(
dnl

dt

)
l→u

= −1unu

(
Aul + Bul

∫
4π

Ibν dΩ

)
+ 1lnlBlu

∫
4π

Ibν dΩ = 0, (11.4)

where 1u and 1l are the degeneracies of the upper and lower energy state, respectively, i.e.,
the number of different arrangements with which a molecule can obtain this energy level. At
local thermodynamic equilibrium the number of particles at any energy level is governed by
Boltzmann’s distribution law [23], leading to

nl/nu = e−El/kT
/
e−Eu/kT = ehν/kT, (11.5)

where Eu and El are the energy levels associated with states u and l, respectively. Thus, the
blackbody intensity may be evaluated from equation (11.4) as

Ibν =
1

4π
Aul/Bul(

1lBlu/1uBul
)

ehν/kT − 1
. (11.6)



306 11 RADIATIVE PROPERTIES OF MOLECULAR GASES

Comparison with Planck’s law, equation (1.9), shows that all three Einstein coefficients are
dependent upon another, namely,

Aul =
8πhν3

c2
0

Bul, 1uBul = 1lBlu. (11.7)

The Einstein coefficients are universal functions for a given transition and, therefore, the rela-
tionships between them hold also if local thermodynamic equilibrium does not prevail (i.e., the
energy level populations do not obey Boltzmann’s distribution, equation (11.5).

The one remaining independent Einstein coefficient is clearly an indicator of how strongly
a gas is able to emit and absorb radiation. This is most easily seen by examining the number of
induced transitions (by absorption and emission) in a single direction (or within a thin pencil
of rays). If

d
dΩ

(
1

dn
dt

)
l↔u

= (1lnlBlu − 1unuBul)Iν (11.8)

is the net number of photons removed from the pencil of rays per unit time and per unit volume,
then—since each photon carries the energy hν—the change of radiative energy per unit time,
per unit area and distance, and per unit solid angle is

−hν
d

dΩ

(
1

dn
dt

)
l↔u

= −(1lnlBlu − 1unuBul)hνIν. (11.9)

This relation is equivalent to equation (10.1), except that in reality the spectral line associated
with a transition between an upper energy state u and a lower energy state l is “broadened,” i.e.,
transitions occur across a (very small) range of frequencies, and equation (11.9) captures all of
these transitions. Accounting for this slight spread in frequencies (and recalling the definition
of intensity, Section 1.6), we have

d
ds

∫
∆ν

Iν dν = −(1lnlBlu − 1unuBul)hνIν = −

∫
∆ν

(1lnlB′lu − 1unuB′ul)hνIν dν, (11.10)

i.e., the Einstein probabilities are not defined for a single transition frequency, but rather are
spread over a small but finite frequency range ∆ν due to broadening, with [27]

A′ul = Aulφν, B′ul = Bulφν, B′lu = Bluφν, (11.11)

and φν(ν) is a normalized line shape function (assumed here to be equal for all three probabilities),∫
∆ν
φν(ν) dν = 1. (11.12)

The exact shape of line broadening will be discussed in detail in Section 11.4. Using equa-
tion (11.11) we can rewrite equation (11.10) as

d
ds

∫
∆ν

Iν dν = −(1lnlBlu − 1unuBul)
∫

∆ν
hνφνIν dν. (11.13)

This relation gives the absorption of an entire line, and we define the line strength or line intensity
as

Sν = (1lnlBlu − 1unuBul)
∫

∆ν
hνφν dν = (1lnlBlu − 1unuBul)hν. (11.14)

In the last expression of equation (11.14) the (line-center) frequency has been taken out of the
integral, since ν varies very little across a narrow spectral line. By the definition of the absorption
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coefficient the line strength is the (linear) absorption coefficient integrated across a line. On a
spectral basis across ∆ν, this becomes

Sν =

∫
∆ν
κν dν, and κν = Sνφν, (11.15)

so that
dIν
ds

= −κνIν, (11.16)

which is, of course, identical to equation (10.1). The absorption coefficient as defined here
is often termed the effective absorption coefficient since it incorporates stimulated emission (or
negative absorption). Sometimes a true absorption coefficient is defined from∫

∆ν
κν dν = 1lnlBluhν. (11.17)

Since stimulated emission and absorption always occur together and cannot be separated, it is
general practice to incorporate stimulated emission into the absorption coefficient, so that only
the effective absorption coefficient needs to be considered.1 Examination of equation (11.14)
shows that the absorption coefficient is proportional to molecular number density. Therefore,
as mentioned earlier, a number of researchers take the number density out of the definition for
κν either in the form of density or pressure, by defining a mass absorption coefficient or a pressure
absorption coefficient, respectively, as

κρν ≡
κν
ρ
, κpν ≡

κν
p
, (11.18)

and similarly for Sν. If a mass or pressure absorption coefficient is used, then a ρ or p must, of
course, be added to equation (11.16).2

The negative of equation (11.1) gives the rate at which molecules emit photons of strength hν
randomly into all directions (into a solid angle of 4π) and per unit volume. Thus, multiplying
this equation by −hν and dividing by 4π gives isotropic energy emitted per unit time, per unit
solid angle, per unit area and distance along a pencil of rays or, in short, the change of intensity
per unit distance due to spontaneous emission:

d
ds

∫
∆ν

Iν dν = −hν
d

dΩ

(
dn
dt

)
u→l

= 1unuAulhν/4π. (11.19)

This is the emission of an entire line and, on a spectral basis across ∆ν this becomes

dIν
ds

= 1unuA′ulhν/4π = jν, (11.20)

and jν is called the emission coefficient, which is related to the absorption coefficient through
equations (11.7), (11.14), and (11.15), leading to

jν = κν
2hν3

c2
0

nu

nl − nu
, (11.21)

1Since it is experimentally impossible to distinguish stimulated emission from absorption, its existence had initially
been questioned. Equation (11.6) is generally accepted as proof that stimulated emission does indeed exist: Without it
Bul → 0 and the blackbody intensity would be governed by Wien’s distribution, equation (1.18), which is known to be
incorrect.

2Thus, depending on what spectral variable is employed (wavelengthλ, wavenumber η, or frequency ν), a spectrally
integrated absorption coefficient may appear in nine different variations. Often the only way to determine which
definition has been used is to carefully check the units given.
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At local thermodynamic equilibrium energy levels are populated according to Boltzmann’s
distribution, equation (11.5), and the emission coefficient and equation (11.20) reduce to

dIν
ds

= jν = κνIbν, (11.22)

which represents the augmentation of directional intensity due to spontaneous emission, as
given by equation (10.10).

11.3 ATOMIC AND MOLECULAR
SPECTRA

We have already seen that the emission or absorption of a photon goes hand in hand with
the change of rotational and/or vibrational energy levels in molecules, or with the change of
electron orbits (in atoms and molecules). This change, in turn, causes a change in radiative
intensity resulting in spectral lines. In this section we discuss briefly how the position of spectral
lines within a vibration–rotation band can be calculated, since it is these bands that are of great
importance to the heat transfer engineer. More detailed information as well as discussion of
electronic spectra, and bound–free and free–free transitions may be found in more specialized
books on quantum mechanics [24,25,28] or spectroscopy [26,29–31], in the book on atmospheric
radiation by Goody and Yung [2], or in the monographs on gas radiation properties by Tien [3]
and Taine and Soufiani [4].

Since every particle moves in three-dimensional space, it has three degrees of freedom: It
can move in the forward–backward, left–right, and/or upward–downward directions. If two or
more particles are connected with each other (diatomic and polyatomic molecules), then each of
the atoms making up the molecule has three degrees of freedom. However, it is more convenient
to say that a molecule consisting of N atoms has three degrees of freedom for translation, and
3N − 3 degrees of freedom for relative motion between atoms. These 3N − 3 degrees of internal
freedom may be further separated into rotational and vibrational degrees of freedom. This fact is
illustrated in Fig. 11-1 for a diatomic molecule and for linear and nonlinear triatomic molecules.
The diatomic molecule has three internal degrees of freedom. Obviously, it can rotate around
its center of gravity within the plane of the paper or, similarly, perpendicularly to the paper
(with the rotation axis lying in the paper). It could also rotate around its own axis; however,
neither one of the atoms would move (except for rotating around itself). Thus, the last degree of
freedom must be used for vibrational motion between the two atoms as indicated in the figure.
The situation gets rapidly more complicated for molecules with increasing number of atoms. For
linear triatomic molecules (e.g., CO2, N2O, HCN) there are, again, only two rotational modes.
Since there are six internal degrees of freedom, there are four vibrational modes, as indicated in
Fig. 11-1. However, two of these vibrational modes are identical, or degenerate (except for taking
place in perpendicular planes). In contrast, a nonlinear triatomic molecule has three rotational
modes: In this case rotation around the horizontal axis in the plane of the paper is legitimate,
so that there are only three vibrational degrees of freedom. Depending on the axis of rotation,
a polyatomic molecule may have different moments of inertia for each of the three rotational
modes. If symmetry is such that all three moments of inertia are the same, the molecule is
classified as a spherical top (e.g., CH4). It is called a symmetric top, if two are the same (e.g., NH3,
CH3Cl, C2H6, SF6), and an asymmetric top, if all three are different (e.g., H2O, O3, SO2, NO2, H2S,
H2O2).

Rotational Transitions
To calculate the allowed rotational energy level from quantum mechanics using Schrödinger’s
wave equation (see, for example, [23,24]), we generally assume that the molecule consists of point
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(a) (b) (c)

Vibrational degrees of freedom

Rotational degrees of freedom

FIGURE 11-1
Rotational and vibrational degrees of freedom for (a) diatomic, (b) linear triatomic, and (c) nonlinear triatomic molecules.

masses connected by rigid massless rods, the so-called rigid rotator model. The solution to this
wave equation dictates that possible energy levels for a linear molecule are limited to

E j =
~2

2I
j( j + 1) = hc0Bj( j + 1), j = 0, 1, 2, . . . ( j integer), (11.23)

where ~ = h/2π is the modified Planck’s constant, I is the moment of inertia of the molecule,
j is the rotational quantum number, and the abbreviation B has been introduced for later
convenience. Allowed transitions are ∆ j = ±1 and 0 (the latter being of importance for a
simultaneous vibrational transition); this expression is known as the selection rule. In the case of
the absorption of a photon ( j→ j + 1 transition) the wavenumbers of the resulting spectral lines
can then be determined3 as

η = (E j+1 − E j)/hc0 = B( j + 1)( j + 2) − Bj( j + 1)
= 2B( j + 1), j = 0, 1, 2, . . . . (11.24)

The results of this equation produce a number of equidistant spectral lines (in units of wavenum-
ber or frequency), as shown in the sketch of Fig. 11-2.

The rigid rotator model turns out to be surprisingly accurate, although for high rotation rates
( j � 0) a small correction factor due to the centrifugal contribution (stretching of the “rod”)
may be considered. Not all linear molecules exhibit rotational lines, since an electric dipole
moment is required for a transition to occur. Thus, diatomic molecules such as O2 and N2
never undergo rotational transitions, while symmetric molecules such as CO2 show a rotational
spectrum only if accompanied by a vibrational transition [3]. Evaluation of the spectral lines
of nonlinear polyatomic molecules is always rather complicated and the reader is referred to
specialized treatises such as the one by Herzberg [30].

3In our discussion of surface radiative transport we have used wavelength λ as the spectral variable throughout,
largely to conform with the majority of other publications. However, for gases frequency ν or wavenumber η are
considerably more convenient to use [see, for example, equation (11.24)]. Again, to conform with the majority of the
literature, we shall use wavenumber throughout this part.
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FIGURE 11-2
Spectral position and energy levels for a rigid ro-
tator.

Vibrational Transitions
The simplest model of a vibrating diatomic molecule assumes two point masses connected by a
perfectly elastic massless spring. Such a model leads to a harmonic oscillation and is, therefore,
called the harmonic oscillator. For this case the solution to Schrödinger’s wave equation for the
determination of possible vibrational energy levels is readily found to be

Ev = hνe(v + 1
2 ), v = 0, 1, 2, . . . (v integer), (11.25)

where νe is the equilibrium frequency of harmonic oscillation or eigenfrequency, and v is the
vibrational quantum number. The selection rule for a harmonic oscillator is ∆v = ±1 and, thus,
one would expect a single spectral line at the same frequency as the harmonic oscillation, or at
a wavenumber

η = (Ev+1 − Ev)/hc0 = (νe/c0)(v + 1 − v) = νe/c0, (11.26)

as indicated in Fig. 11-3. Unfortunately, the assumption of a harmonic oscillator leads to con-
siderably less accurate results than the one of a rigid rotator. This fact is easily appreciated by
looking at Fig. 11-4, which depicts the molecular energy level of a diatomic molecule vs. inter-
atomic distance: When atoms move toward each other repulsive forces grow more and more
rapidly, while the opposite is true when the atoms move apart. The heavy line in Fig. 11-4 shows
the minimum and maximum distances between atoms for any given vibrational energy state
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FIGURE 11-3
Spectral position and energy levels for a harmonic oscillator.
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FIGURE 11-4
Energy level vs. interatomic distance.

(showing also that the molecule may dissociate if the energy level becomes too high). In a per-
fectly elastic spring, force increases linearly with displacement, leading to a symmetric quadratic
polynomial for the displacement limits as also indicated in the figure. If a more complicated
spring constant is included in the analysis, this results in additional terms in equation (11.25);
and the selection rule changes to ∆v = ±1,±2,±3, . . ., producing several approximately equally
spaced spectral lines. The transition corresponding to ∆v = ±1 is called the fundamental, or the
first harmonic, and usually is by far the strongest one. The transition corresponding to ∆v = ±2 is
called the first overtone or second harmonic, and so on. For example, CO has a strong fundamental
band at η0 = 2143 cm−1 and a much weaker first overtone band at η0 = 4260 cm−1 (see the data
in Table 11.3 in Section 11.10).

In the literature the vibrational state of a molecule is identified by the values of the vibrational
quantum numbers. For example, the vibrational state of a nonlinear, triatomic molecule, such
as H2O, with its three different vibrational modes, is identified as (v1v2v3). The case is a little bit
more complicated for molecules with degeneracies. For example, the linear CO2 molecule has
three different vibrational modes, the second one being doubly degenerate (see Fig. 11-1); its
vibrational state is defined by

(
v1v2

l2 v3

)
or (v1v2l2v3), where 0 ≤ l2 ≤ v2 is an angular momentum

quantum number, describing the rotation of the molecule caused by different vibrations in
perpendicular planes. More details on these issues are given by Taine and Soufiani [4] and by
Herzberg [30].

Combined Vibrational–Rotational Transitions
Since the energy required to change the vibrational state is so much larger than that needed for
rotational changes, and since both transitions can (and indeed often must) occur simultaneously,
this requirement leads to many closely spaced lines, also called a vibration–rotation band,
centered around the wavenumber η = νe/c0, which is known as the band origin or band center.

For the simplest model of a rigid rotator combined with a harmonic oscillator, assuming
both modes to be independent, the combined energy level at quantum numbers j, v is given by

Evj = hνe(v + 1
2 ) + Bv j( j + 1), v, j = 0, 1, 2, . . . . (11.27)

Since the small error due to the assumption of a totally rigid rotator can result in appreciable
total error when a large collection of simultaneous vibration–rotation transition is considered,
allowance has been made in the above expression for the fact that Bv (or the molecular moment
of inertia) may depend on the vibrational energy level. The allowed transitions (∆v = ±1
combined with ∆ j = ±1, 0) lead to three separate branches of the band, namely P (∆ j = −1), Q
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Typical spectrum of vibration–rotation bands.

(∆ j = 0) and R (∆ j = +1) branches, with spectral lines at wavenumbers

ηP = η0 − (Bv+1 + Bv) j + (Bv+1 − Bv) j2, j = 1, 2, 3, . . . (11.28a)

ηQ = η0 + (Bv+1 − Bv) j + (Bv+1 − Bv) j2, j = 1, 2, 3, . . . (11.28b)

ηR = η0 + 2Bv+1 + (3Bv+1 − Bv) j + (Bv+1 − Bv) j2, j = 0, 1, 2, . . . (11.28c)

where j is the rotational state before the transition. It is seen that there is no line at the band origin.
If Bv+1 = Bv = const, then the Q-branch vanishes and the two remaining branches yield equally
spaced lines on both sides of the band center. If Bv+1 < Bv (larger moment of inertia I at higher
vibrational level), then the R-branch will, for sufficiently large j, fold back toward and beyond
the band origin. In that case all lines within the band are on one side of a limiting wavenumber.
Those bands, where this occurs close to the band center (i.e., for small j where the line strength is
strong), are known as bands with a head. A sketch of a typical vibration–rotation band spectrum
is shown in Fig. 11-5. Note that in linear molecules the Q-branch often does not occur as a
result of forbidden transitions [3]. Many more complicated combined transitions are possible,
since every molecule has a number of rotational and vibrational energy modes, any number
of which could undergo a transition simultaneously. An example is given in Fig. 11-6, which
shows a calculated spectrum of the 4.3µm CO2 band (a collection of many different vibrational
transitions together with their rotational lines), generated from the HITRAN database [32]. It is
apparent that this band has no Q-branch.

Electronic Transitions
Electronic energy transitions, i.e., changing the orbital radius of an electron, requires a sub-
stantially larger amount of energy than vibrational and rotational transitions, with resulting
photons in the ultraviolet and visible parts of the spectrum. Transitions of interest in heat
transfer applications (i.e., at wavelengths above 0.25µm) generally occur only at very high
temperatures (above several thousand degrees Kelvin) and/or in the presence of large numbers
of free electrons (such as fluorescent lights). At extreme temperatures atoms and molecules
may also become ionized through a bound–free absorption event, or an ion and electron can
recombine (free–bound emission). In addition, a free electron colliding with a molecule may
absorb or emit a photon (free–free transition). If the gas is monatomic, radiation can alter only
electronic energy states. Still, this results in some 914 lines for monatomic nitrogen and 682 for
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FIGURE 11-6
Pressure-based spectral absorption coefficient for small amounts of CO2 in nitrogen; 4.3µm band at p = 1.0 bar,
T = 296 K.

monatomic oxygen [33], contributing to heat transfer in high-temperature applications, such as
the air plasma in front of a hypersonic spacecraft entering Earth’s atmosphere. As an example
Fig. 11-7 shows the absorption coefficient of atomic nitrogen at T = 10,860 K, as encountered in
the shock layer of the Stardust spacecraft [34]. Many of the monatomic lines are extremely strong
(with absorption coefficients near 106 m−1), and continuum radiation (bound–free and free–free
transitions) is substantial. In this part of the spectrum otherwise radiatively inert molecules, e.g.,
diatomic nitrogen, also emit and absorb photons, leading to simultaneous electronic–vibration–
rotation bands. For comparison, the absorption coefficient for N2 is also included in Fig. 11-7,
consisting of 5 electronic bands, each containing many vibration–rotation subbands. At tem-
peratures above 10,000 K N2 is nearly completely dissociated, making its absorption coefficient
small in comparison to that of monatomic N. At lower temperatures, nearly all molecules are
at the lowest electronic energy level, and only the bands with η > 50,000 cm−1, or λ < 0.2µm
remain (of no importance in most engineering applications).

Strength of Spectral Lines within a Band
In equation (11.14) we related the spectral absorption coefficient to the Einstein coefficients
Blu and Bul before knowing how such a transition takes place. We now want to develop
equation (11.14) a little further to learn how the strength of individual lines (and, through it,
the absorption coefficient) varies across vibration–rotation bands, and how they are affected by
variations in temperature and pressure.

For a combined vibrational (from vibrational quantum number v to v ± 1) and rotational
(from rotational quantum number j to j or j± 1) transition, the line intensity or line strength may
be rewritten in terms of wavenumber (i.e., after division by c0) as

Sη = (nl1lBlu − nu1uBul)hη, (11.29)

where η is the associated transition wavenumber from equations (11.28). Using equations (11.5)
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and (11.7) this becomes

Sη =
nl1uAul

8πc0η2

(
1 − e−hc0η/kT

)
. (11.30)

The number of molecules at the lower energy state, nl, may be related to the total number of
particles per unit volume, n, through [23]

nl

n
=

e−El/kT

Q(T)
, n =

p
kT
, (11.31)

where Q(T) is the rovibrational partition function (a summation over all the possible rotational and
vibrational energy levels of the molecule). Substituting this into equation (11.30) and relating
the Einstein coefficient to matrix elements of the molecule’s electric dipole moment [20], <ul,
leads to

Sη =
8π3η

3hc0k
|<ul|

2 p
Q(T)T

(
1 − e−hc0η/kT

)
e−El/kT. (11.32)

The rovibrational partition function Q(T) and dipole elements |<ul|
2 can, at least in principle,

be calculated from quantum mechanics through very lengthy and complex calculations. For
example, much of Penner’s book [20] is devoted to this subject.

To gain some insight into the relative strengths of lines within a vibration–rotation band,
we will look at the case of a rigid rotator–harmonic oscillator, with the additional assumptions
that the bandwidth is small compared with the wavenumber at the band center and that only
the P and R branches are important. For such a case the evaluation of the |<ul|

2 is relatively
straightforward [20], and equation (11.32) may be restated as

SPj = Cj e−hc0Bv j( j+1)/kT, j = 1, 2, 3, . . . (11.33a)

SRj = C( j + 1) e−hc0Bv j( j+1)/kT, j = 0, 1, 2, . . . (11.33b)

where Erj = hc0Bv j( j + 1) is the rotational contribution to the lower energy state from equa-
tion (11.23) (i.e., before transition for absorption of a photon; after transition for emission),
and C collects the coefficients in equation (11.32), as well as the vibrational contribution to the
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lower energy state. Examination of equations (11.33) shows that line strength first increases
linearly with increasing j (as long as hc0Bv j( j + 1)/kT � 1), levels off around j '

√
kT/hc0Bv,

then drops off exponentially with large values of j. It is apparent that the band widens with
temperature, and lines farther away from the band center become most important. An example
is given in Fig. 11-6 for the calculated spectrum of the 4.3µm CO2 band, generated from the
HITRAN database [32]. At room temperature the 4.3µm band is dominated by the 0000→ 0001
vibrational transition, centered at 2349 cm−1. It is clear that this band has no Q-branch, and that
the line strengths of the P- and R-branches closely follow equation (11.33).

Temperature and pressure dependence As seen from equation (11.32) the linear line strength
Sη is directly proportional to the pressure of the absorbing/emitting gas; therefore, pressure-
based line strength Spη and density-based line strength Sρη are functions of temperature only.
The temperature dependence comes from three contributions: (i) from the partition function
Q(T), (ii) from the stimulated emission term, exp(−hc0η/kT), and (iii) from the lower energy state
El. Evaluation of the partition function is extremely difficult, and approximations need to be
made. To a good degree of accuracy rotational and vibrational contributions can be separated,
i.e., Q(T) ' Qv(T)Qr(T). The vibrational partition function can then be determined, assuming a
harmonic oscillator, as [30]

Qv(T) =
∏

k

(
1 − e−hc0ηk/kT

)−1k
, (11.34)

where the product is over all the different vibrational modes with their harmonic oscillation
wavenumbers ηk [= νe/c0 in equation (11.25)], and 1k is the degeneracy of the vibrational mode.
The rotational partition function depends on the symmetry of the molecule and on the moments
of inertia for rotation around two (linear molecule) or three (nonlinear molecule) axes. For
moderate to high temperatures, i.e., when 2IkT/~2

� 1 [23, 30],

Linear molecules (Ix = Iy = I): Qr(T) =
1
σ

2IkT
~2 ∝ T, (11.35a)

Nonlinear molecules: Qr(T) =
1
σ

∏
i=x,y,z

(
2IikT
~2

)1/2

∝ T3/2, (11.35b)

where σ is a symmetry number, or the number of distinguishable rotational modes. Examining the
separate contributions to the temperature dependence we note that, at moderate temperatures,
the rotational partition function causes the line strength to decrease with temperature as 1/T
or 1/T3/2, while the influences of the vibrational partition function and of stimulated emission
are very minor (but may become important for T> 1000 K). The influence of the lower energy
state El can be negligible or dramatic, depending on the size of El: for small values of El (low
vibrational levels) exp(−El/kT) ' 1 and further raising the temperature will not change this
value. On the other hand, large values of El (associated with high vibrational levels) make
line strengths very small at low temperatures, but produce sharply increasing line strengths
at elevated temperatures (when more molecules populate the higher vibrational levels), giving
rise to so-called “hot lines” and “hot bands.” An example of the temperature dependence of the
spectral absorption coefficient (including effects of line broadening and spacing) will be given
in the next section, in Fig. 11-11.

11.4 LINE RADIATION

In the previous two sections we have seen that quantum mechanics postulates that a molecular
gas can emit or absorb photons at an infinite set of distinct wavenumbers or frequencies.
We already observed that no spectral line can be truly monochromatic; rather, absorption or
emission occurs over a tiny but finite range of wavenumbers. The results are broadened spectral
lines that have their maxima at the wavenumber predicted by quantum mechanics. In this
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section we will briefly look at line strengths, the causes of line broadening and at line shapes,
i.e., the variation of line strength with wavenumber for an isolated line. More detailed accounts
may be found in more specialized works [2, 3, 20, 26]. The effects of line overlap, which usually
occurs in vibration–rotation bands in the infrared, will be discussed in Section 11.8, “Narrow
Band Models.”

Numerous phenomena cause broadening of spectral lines. The four most important ones are
natural line broadening, collision broadening, Stark broadening, and Doppler broadening, with collision
and, to a lesser extent, Doppler broadening dominating in most engineering applications. These
models have been developed for isolated lines, i.e., interaction between overlapping lines is not
considered, and was found to be accurate for low-to-moderate pressures. However, at elevated
pressures (roughly 10 bar) collisional interference (or line mixing) effects should be accounted
for [35, 36].

Natural Line Broadening
Every excited molecule will have its energy levels decay spontaneously to a lower state by
emitting a photon, even if the molecule is completely undisturbed. According to Heisenberg’s
uncertainty principle no energy transition can occur with precisely the same amount of energy,
thus causing the energy of emitted photons to vary slightly and the spectral lines to be broadened.
The mechanism of decay for that of spontaneous emission is the same as that for collision
broadening as discussed in the next section, resulting in identical line shapes. However, the
average time for spontaneous decay is much larger than the average time between molecular
collisions. Therefore, natural line broadening is generally not important from an engineering
point of view, and its effect is invariably small compared to collision broadening. Its small effect
may be accounted for by adding a line half-width γN to the collision line half-width γC discussed
below.

Collision Broadening
As the name indicates, collision broadening of spectral lines is attributable to the frequency of
collisions between gas molecules. The shape of such a line can be calculated from the electron
theory of Lorentz∗ or from quantum mechanics [2, 37] as

κη =
S
π

γC

(η − η0)2 + γ2
C

= SφLη(γC, η − η0), S ≡
∫

∆η
κη dη, (11.36)

where S is the line-integrated absorption coefficient or line strength, γC is the so-called line half-
width in units of wavenumber (half the line width at half the maximum absorption coefficient),
and η0 is the wavenumber at the line center. The line shape function is a normalized Lorentz
profile, such that ∫

∆η
φLη(η) dη = 1. (11.37)

The line shape function is not dimensionless, but has the units of reciprocal spectral variable.
In equation (11.37) this is reciprocal wavenumber (or cm), since κη is expressed in terms of
wavenumber. The shape of a collision-broadened line is identical to that of natural line broad-
ening, and the combined effect is generally termed Lorentz broadening with a line half-width
γL. The spectral distribution of a Lorentz line is shown in Fig. 11-8 (together with the shape
of Doppler- and Voigt-broadened lines). Since molecular collisions are proportional to the

∗A biographical footnote for Hendrik A. Lorentz may be found in Section 2.6.
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Spectral line shape for Lorentz (collision),
Doppler, and Voigt broadening (for equal line
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number density of molecules (n ∝ ρ ∝ p/T) and to the average molecular speed (vav ∝
√

T), it is
not surprising that the half-width for a pure gas can be calculated from kinetic theory [2] as

γC =
2
√
π

D2p

c0
√

mkT
= γC0

(
p
p0

)(T0

T

)n
, (11.38)

where D is the effective diameter of the molecule, m is its mass, p is total gas pressure, T is absolute
temperature, and the subscript “0” denotes a reference state. The collisional diameter depends
on the temperature of the gas and the value for the exponent n must, in general, be found from
experiment. If the absorbing–emitting gas is part of a mixture, the fact that collisions involving
only nonradiating gases do not cause broadening, and that the nonradiating gases have different
molecular diameters, must be accounted for, and equation (11.38) must be generalized to

γC =

√
2
π

∑
i

σ2
i pi

c0
√

kT

( 1
m

+
1

mi

)1/2
=

∑
i

γC0,i

(
pi

p0

)(T0

T

)ni

, (11.39)

where pi and mi are partial pressure and molecular mass of the various broadening gases
(including the radiating gas), respectively, and σi is the effective collisional diameter with
species i. Temperature-dependent broadening coefficients for some absorbing gases have been
tabulated by Rosenmann et al. [38] (CO2), Delaye et al. [39] (H2O), and Hartmann et al. [40], all
for mixtures containing N2, O2, CO2, and H2O.

Stark Broadening
Stark broadening occurs if the radiative transition occurs in the presence of a strong electric
field. The electrical field may be externally applied, but it is most often due to an internal field,
such as the presence of ions and free electrons in a high-temperature plasma. At low-enough
pressures Stark broadened lines are symmetric and have Lorentzian shape, equation (11.36).
Line widths depend strongly on free electron number density, ne, and free electron temperature,
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Te, and may be calculated as [26, 41]

γS = γS0

(Te

T0

)n(ne

n0

)
, (11.40)

where again the subscript “0” denotes a reference state. The Stark effect can also result in a shift
in the line’s spectral position.

Doppler Broadening
According to the Doppler effect a wave traveling toward an observer appears slightly com-
pressed (shorter wavelength or higher frequency) if the emitter is also moving toward the
observer, and slightly expanded (longer wavelength or lower frequency) if the emitter is mov-
ing away. This is true whether the wave is a sound wave (for example, the pitch of a whistle of
a train passing an observer) or an electromagnetic wave. Thus,

ηobs = ηem

(
1 +

v · ŝ
c

)
, (11.41)

where v is the velocity of the emitter and ŝ is a unit vector pointing from the emitter to the
observer. Assuming local thermodynamic equilibrium, so that Maxwell’s velocity distribution
applies, the probability for a relative velocity v = v · ŝ between an emitting/absorbing molecule
and an observer is

p (v) =
( m

2πkT

)1/2
exp

(
−

mv2

2kT

)
, (11.42)

where m is the mass of the radiating molecule. For small v this leads to a Doppler shift in observed
wavenumber of

η − η0 = η0
v
c
. (11.43)

Substituting equation (11.43) into (11.42) one can calculate the line profile as [20]

κη = SφDη(γD, η − η0) = S

√
ln 2

γD

√
π

exp

−(ln 2)
(
η − η0

γD

)2 , (11.44)

where γD is the Doppler line half-width, given by

γD =
η0

c0

√
2kT
m

ln 2. (11.45)

Note that, unlike during collision and natural line broadening, the Doppler line width depends
on its spectral position. The different line shapes are compared in Fig. 11-8. For equal overall
strength, the Doppler line is much more concentrated near the line center.

Combined Effects
In most engineering applications collision broadening, which is proportional to p/

√
T, is by far

the most important broadening mechanism. Only at very high temperatures (when, owing to
the distribution of the Planck function, transitions at large η are most important; and/or through
the opposing temperature dependencies of γL and γD) and/or low pressures may Doppler broad-
ening, with its proportionality to η

√
T, become dominant. Figure 11-9 shows typical line half-

widths for CO2 and water vapor in their 2.7µm bands as a function of temperature. It is seen
that at low pressures (p = 0.1 bar) Doppler broadening always dominates. At higher pressures
(p ≥ 1 bar) collision broadening dominates, unless extremely high temperatures (T > 2000 K)
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FIGURE 11-9
Lorentz and Doppler line half-widths for the 2.7µm bands of CO2 and H2O.

are encountered. Even then the lines retain their Lorentz shape in the all-important line wings
(since in gas columns line centers tend to be opaque, regardless of line shape, radiative behavior
is usually governed by the strengths of the line wings). A study by Wang and Modest [42]
quantifies the conditions under which combined pressure–Doppler broadening must be con-
sidered. Combined broadening behavior is also encountered in low-pressure plasmas, where
both Doppler and Stark broadening can be substantial, especially for monatomic gases.

If combined effects need to be considered, it is customary to assume collision and Doppler
broadening to be independent of one another (which is not strictly correct). In that case a
collision-broadened line would be displaced by the Doppler shift, equation (11.43), and averaged
over its probability, equation (11.42). This leads to the Voigt profile [2],

κη =
SγL

π3/2

∫ +∞

−∞

e−x2 dx(
η − η0 −

xγD
√

ln 2

)2

+ γ2
L

, x = v

√
m

2kT
. (11.46)

No closed-form solution exists for the Voigt profile. It has been tabulated in the meteorologi-
cal literature in terms of the parameter 2γL/γD. How the shape of the Voigt profile changes from
pure Doppler broadening (γL/γD = 0) to pure collision broadening (γL/γD →∞) is also shown in
Fig. 11-8 (for constant line half-widths). Several fast algorithms for the calculation of the Voigt
profile have also been reported [43–46]. A Fortran subroutine voigt is given in Appendix F, that
calculates the Voigt κη as a function of S, γL, γD, and |η−η0| based on the Humlı́c̆ek algorithm [46].

Example 11.1. The half-width of a certain spectral line of a certain gas has been measured to be 0.05 cm−1

at room temperature (300 K) and 1 atm. When the line half-width is measured at 1 atm and 3000 K, it
turns out that the width has remained unchanged. Estimate the contributions of Doppler and collision
broadening in both cases.

Solution
As a first approximation we assume that the widths of both contributions may be added to give the total
line half-width (this is a fairly good approximation if one makes a substantially larger contribution than
the other). Therefore, we may estimate

γC1 + γD1 ≈ γ1 = γ2 ≈ γC2 + γD2
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and, from equations (11.38) and (11.45),

γC2

γC1

=

√
T1

T2
=

1
√

10
,

γD2

γD1

=

√
T2

T1
=
√

10.

Eliminating the Doppler widths from these equations we obtain

γ2 =
γC1
√

10
+
√

10γD1 =
γC1
√

10
+
√

10(γ1 − γC1),

γC1

γ1
=

√
10
9

(
√

10 −
γ2

γ1

)
= 0.76,

and
γC2

γ2
=

1
9

(
√

10
γ1

γ2
− 1

)
= 0.24.

We see that at room temperature, collision broadening is about three times stronger than Doppler
broadening, while exactly the reverse is true at 3000 K.

Radiation from Isolated Lines
Combining equations (11.16) and (11.22) gives the complete equation of transfer for an absorbing–
emitting (but not scattering) medium,

dIη
ds

= κη(Ibη − Iη), (11.47)

where the first term of the right-hand side represents augmentation due to emission and the
second term is attenuation due to absorption. Let us assume we have a layer of an isothermal
and homogeneous gas of thickness L. Then neither Ibη nor κη is a function of location and the
solution to the equation of transfer is

Iη(X) = Iη(0) e−κηX + Ibη

(
1 − e−κηX

)
, (11.48)

where the optical path length X is equal to L if a linear absorption coefficient is used (geometric
path length), or equal to L multiplied by partial density (density path length) or pressure (pressure
path length) of the radiating gas if either mass or pressure absorption coefficient is used. Thus,
the difference between entering and exiting intensity, integrated over the entire spectral line, is

I(X) − I(0) =

∫
∆η

[Iη(X) − Iη(0)] dη ≈ [Ibη − Iη(0)]
∫

∆η

(
1 − e−κηX

)
dη, (11.49)

where the assumption has been used that neither incoming nor blackbody intensity can vary
appreciably over the width of a single spectral line. The integrand of the factor

W =

∫
∆η

(
1 − e−κηX

)
dη (11.50)

is the fraction of incoming radiation absorbed by the gas layer at any given wavenumber, and
it is also the fraction of the total emitted radiation that escapes from the layer (not undergoing
self-absorption). W is commonly called the equivalent line width since a line of width W with
infinite absorption coefficient would have the identical effect on absorption and emission; the
dependence of the increase of W with increasing optical path X is sometimes called the curve
of growth. The equivalent line width for a Lorentz line may be evaluated by substituting
equation (11.36) into equation (11.50) to yield

W = 2πγLx e−x[I0(x) + I1(x)] = 2πγLL (x), (11.51)
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where
γL ≡ γC + γN, x ≡ SX/2πγL, (11.52)

the I0 and I1 are modified Bessel functions, and L(x) is called the Ladenburg–Reiche function,
after the authors who originally developed it [47]. For simpler evaluation, equation (11.51) may
be approximated as reported by [2] as

L(x) ' x
[
1 +

(
πx
2

)5/4
]−2/5

, (11.53)

with a maximum error of approximately 1% near x = 1. Asymptotic values for W are easily
obtained as

W = SX, x� 1, (11.54a)

W = 2
√

SXγL, x� 1. (11.54b)

Comparing equation (11.52) with equation (11.36), evaluated at half-height (|η−η0| = γL), shows
that x is the nondimensional optical thickness of the gas layer, κηX, at that location. Therefore, the
parameter x gives an indication of the strength of the line. For a weak line (x� 1) little absorption
takes place so that every position in the gas layer receives the full irradiation, resulting in a linear
absorption rate (with distance). In the case of a strong line (x � 1) the radiation intensity has
been appreciably weakened before exiting the gas layer, resulting in locally lesser absorption
and causing the square-root dependence of equation (11.54b).

11.5 NONEQUILIBRIUM RADIATION

There are many radiation applications, in which local thermal equilibrium cannot be assumed,
such as in the plasma generated during atmospheric entry of spacecraft, ballistic ranges, high-
speed shock tubes, arc jets, etc. When a gas is not in thermal equilibrium, its state cannot
be described by a single temperature [48], and the populations of internal energy states do
not follow Boltzmann distributions, equation (11.5). The thermodynamic state may then be
described using a multitemperature approach (i.e., a Boltzmann distribution is assumed for each
internal mode with a specific temperature) [49]. Alternatively, level population distributions
may be calculated directly, taking into account collisional and radiative processes. This is known
as the Collisional–Radiative model (CR) [50, 51] or, if infinitely fast reaction rates are assumed,
the Quasi-Steady State (QSS) approximation [49]. Most often the more closely spaced energy
levels for translation, rotation, vibration, and free electrons are assumed to have individual
equilibrium distributions with up to four different temperatures (Tt,Tr,Tv,Te), while the widely
spaced electronic energy levels are modeled using the QSS/CR approach. Once all energy state
distributions have been determined, the emission is given by equation (11.20). Relating it to the
absorption coefficient one may define a nonequilibrium Planck function, from equation (11.21),
as (in terms of wavenumbers)

Ine
bη =

jη
κη

= 2hc2
0η

3 nu

nl − nu
. (11.55)

An example is given in Fig. 11-10, showing the nonequilibrium Planck function for diatomic
CN (a strongly radiating ablation product from thermal protection systems) [52]. In this graph a
two-temperature model was adopted with Tt = Tr = 15,000 K and Tv = Tel = Te = 10,000 K (with
electronic energy levels in equilibrium at Tel), and only Doppler broadening was considered. The
ultraviolet CN band (1 ↔ 3 electronic transition) is shown, including many vibration–rotation
subbands. For example, the lines labeled ∆v = vu − vl = −2 imply that the vibrational energy of
the upper (electronic) level is two levels lower than that of the lower (electronic) energy state,
and so on. The nonequilibrium Planck function displays line structure similar to that of the
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FIGURE 11-10
Nonequlibrium Planck function for CN for a two-temperature model (electronic, vibrational, and electron states at
equilibrium with Tv, rotational and translational states with Tr).

absorption coefficient. This can be better understood by looking at the special case of negligible
stimulated emission and no line overlap (both good approximations for the present case). Then
[cf. equation (11.31)]

Ine
bη (Tv,Tr)

Ibη(Tv)
=

nu

nl
ehc0η/kTv =

[Qvr,l/Qvr,u]ne(Tv,Tr)
[Qvr,l/Qvr,u](Tv)

exp
[Eru − Erl

k

( 1
Tv
−

1
Tr

)]
, (11.56)

where Qvr is the rovibrational partition function (depending on temperature only), and Er is
the rotational energy level. Note that u and l refer to the upper and lower states of the total
transition, always determined by the electronic level, i.e., Eru−Erl is the rotational energy change
for a given transition (spectral line), which can be negative (lines below the equilibrium Planck
function in Fig. 11-10).

As can be appreciated from the discussion in this section, and on electronic transitions
in Section 11.3, radiation in high-temperature nonequilibrium plasmas is considerably more
complicated than usually encountered in engineering, and is beyond the scope of the present
text. The reader is referred to the literature dedicated to such problems [49, 53].

11.6 HIGH-RESOLUTION
SPECTROSCOPIC DATABASES

During the past 40 years or so, due to the advent of high-resolution spectroscopy (mostly
FTIR spectrometers), it has become possible to measure strengths and positions of individual
spectral lines. A first collection of spectral data was assembled in the late 1960s by the Air
Force Cambridge Research Laboratories for atmospheric scientists, including low-temperature
data for the major constituents of the Earth’s atmosphere, and was published in 1973 as an Air
Force report [54]. With contributions from many researchers across the world this grew into
the HITRAN database (an acronym for HIgh resolution TRANsmission molecular absorption),
first published in 1987 [55]. The database is maintained by the Harvard–Smithsonian Center
for Astrophysics, with periodic updates [32, 56–59]. The latest version at present is HITRAN
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2008 [32], which includes detailed information on 39 species with a total of about 2.7 million
lines.

As the popularity of HITRAN grew, the need for a database valid at elevated temperatures
became obvious. A first attempt was made by the group around Taine in France, who augmented
HITRAN 1986 data for water vapor and carbon dioxide through theoretical calculations [60,61].
A development by the HITRAN group resulted in a first version of HITEMP (1995) [62] for H2O,
CO2, CO, and OH, using theoretical models. Comparison with experiment [63–66] indicated
that HITEMP 1995 greatly overpredicted CO2 emissivities above 1000 K, while agreement for
H2O was acceptable. More accurate and extensive calculations for CO2 were carried out in
Russia, resulting in several versions of the CDSD-1000 database [67, 68] (with the 2008 version
containing 4 million lines), which were shown to agree well with experiment. The latest version
of CDSD, called CDSD-4000 [69], aims to be accurate up to 4000 K, and has 628 million lines,
requiring 23 GB of storage. Several extensive high-temperature collections were developed for
H2O: the Ames database [70] includes 300 million lines, SCAN [71] contains 3 billion, and the BT2
collection [72] has 500 million lines; building up on the Ames database, Perez et al. [73] rejected
lines from the Ames collection that remain weak below 3000 K, and combined it with well-
established lines from HITRAN 2001 and HITEMP 1995, culminating in a manageable collection
with 1.3 million lines. Finally, in 2010 a new version of HITEMP was released [74], designed
for temperatures up to 3000 K. Citing best agreement against experimental data, HITEMP 2010
incorporates and extends CDSD 2008 for CO2 (11 million lines) and a slimmed-down version
of BT2 for H2O (111 million lines). HITEMP 2010 also includes data for three diatomic gases
(CN, CO, and OH) with their relatively few lines. Approximate high-temperature data for
methane (up to 2000 K) are available from [75]. An example calculation is given in Fig. 11-11,
showing a small part of the artificial spectrum of the 4.3µm CO2 band, generated from the
HITRAN database [32], assuming Lorentz broadening, and containing more than 1,500 spectral
lines. The top frame of Fig. 11-11 shows the pressure-based absorption coefficient of CO2 at
low partial pressure in air at a total pressure of 10 mbar. Because of the relatively low total
pressure, the lines are fairly narrow, resulting in little overlap. If the total pressure is raised
to 1 bar, shown in the center frame, lines become strongly broadened, leading to substantial
line overlap, and a smoother variation in the absorption coefficient (with considerably lower
maxima and higher minima). At the high temperatures usually encountered during combustion
the spectral lines narrow considerably [see equation (11.38)], decreasing line overlap; at the same
time the strengths of the lines that were most important at low temperature decrease according
to equation (11.35) and finally, at high temperatures “hot lines,” that were negligible at room
temperature, become more and more important. To be valid up to 3000 K HITEMP 2010 [74] lists
more than 22,000 spectral lines for this small wavenumber range. The result is a fairly erratic
looking absorption coefficient as depicted in the bottom frame of Fig. 11-11. If high temperatures
are combined with low total pressures (not shown), the spectral behavior of the absorption
coefficient resembles high-frequency electronic noise. Fortunately, heat transfer calculations in
media at low total pressure are rare (they are important, though, in meteorological applications
dealing with the low-pressure upper atmosphere).

Similar efforts have been made by the plasma radiation community. RAD/EQUIL is perhaps
the earliest attempt, including contributions from atomic lines and continua, and approximate
models for molecules, but only for thermodynamic equilibrium conditions [76]. The NonEQui-
librium AIr Radiation (NEQAIR) model [77] was originally developed for the study of radiative
properties of nonequilibrium, low density air plasmas. The updated NEQAIR96 model [78]
includes spectral line data for spontaneous emission, stimulated emission, and absorption for
14 monatomic and diatomic species, as well as bound–free and free–free transition data for
atoms. Nonequilibrium electronic level populations are determined using the QSS approxima-
tion (cf. Section 11.5). Since the creation of NEQAIR various improvements have been made by
Laux [79] and others, leading to the SPECAIR database [80]. In Japan the SPRADIAN database
was assembled [81], which was recently updated in cooperation with KAIST [82]. A new High-
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temperature Aerothermodynamic RAdiation model (HARA) developed by Johnston [50, 83]
utilizes comprehensive and updated atomic line data obtained from the National Institute of
Standards and Technology (NIST) online database [84] and the Opacity Project [85], as well as
atomic bound-free cross-sections from the TOPbase [86]. Since the above databases are generally
stand-alone programs, incorporating several other tools, such as primitive RTE solvers, Sohn
et al. [87] extracted the relevant data from NEQAIR96 to form an efficient radiative property
module. This database has very recently been updated for high-speed retrieval rates and to
incorporate the state-of-the-art data in HARA [88].

11.7 SPECTRAL MODELS FOR
RADIATIVE TRANSFER CALCULATIONS

A single spectral line at a certain spectral position is fully characterized by its strength (the
intensity, or integrated absorption coefficient) and its line half-width (plus knowledge of the
broadening mechanism, i.e., collision and/or Doppler broadening). However, a vibration–
rotation band has many closely spaced spectral lines that may overlap considerably. While
the absorption coefficients for individual lines may simply be added to give the absorption
coefficient of an entire band at any spectral position,

κη =
∑

j

κη j, (11.57)

the resulting function tends to gyrate violently across the band (as seen in Figs. 11-6 and 11-11),
unless the lines overlap very strongly. This tendency, plus the fact that there may be literally
millions of spectral lines, makes radiative transfer calculations a truly formidable task, if the
exact relationship is to be used in the spectral integration for total intensity [equation (10.28)],
total radiative heat flux [equation (10.52)], or the divergence of the heat flux [equation (10.59)].
This has prompted the development of a number of approximate spectral models. Exact and ap-
proximate methods may be loosely put into four groups (in order of decreasing complexity and
accuracy): (1) line-by-line calculations, (2) narrow band calculations, (3) wide band calculations,
and (4) global models.

Line-By-Line Calculations With the advent of powerful computers and the necessary high-
resolution spectroscopic databases, a number of spectrally resolved or “line-by-line calculations”
have been performed, a few for actual heat transfer calculations, e.g., [89–91], some to prepare
narrow band model correlations, e.g., [92, 93], and others to validate global spectral models,
e.g., [94–96]. Such calculations rely on very detailed knowledge of every single spectral line,
taken from one of the high-resolution spectroscopic databases described in Section 11.6. Because
of strongly varying values of the absorption coefficient (see Fig. 11-11), the spectral radiative
transfer problem must be solved for up to one million wavenumbers, followed by integration
over the spectrum. While such calculations may be the most accurate to date, they require vast
amounts of computer resources. This is and will remain undesirable, even with the availability of
powerful computers, since radiative calculations are usually only a small part of a sophisticated,
overall fire/combustion code. In addition, high-resolution gas property data (resolution of
better than 0.01 cm−1), which are required for accurate line-by-line calculations, are generally
found from theoretical calculations and mostly still remain to be validated against experimental
data. In particular, temperature and pressure dependence of spectral line broadening is very
complicated and simply not well enough understood to extrapolate room temperature data to
the high temperatures important in combustion environments. For these reasons it is fair to
assume that, for the foreseeable future, line-by-line calculations will only be used as benchmarks
for the validation of more approximate spectral models.

Narrow Band Models When calculating spectral radiative fluxes from a molecular gas one
finds that the gas absorption coefficient (and with it, the radiative intensity) varies much more
rapidly across the spectrum than other quantities, such as blackbody intensity, etc. It is, therefore,
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in principle possible to replace the actual absorption coefficient (and intensity) by smoothened
values appropriately averaged over a narrow spectral range. A number of such “narrow band
models” were developed some 40–50 years ago, and will be examined in the following section.
In principle, narrow band calculations can be as accurate as line-by-line calculations, provided
an “exact” narrow band average can be found. The primary disadvantages of such narrow
band models are that they are difficult to apply to nonhomogeneous gases and the fact that
heat transfer calculations, based on narrow band data and using general solution methods, are
limited to nonscattering media within a black-walled enclosure.

An alternative to the “traditional” narrow band models is the so-called “correlated k-distribu-
tion.” In this method it is observed that, over a narrow spectral range, the rapidly oscillating
absorption coefficient κη attains the same value many times (at slightly different wavenumbers
η), each time resulting in identical intensity Iη and radiative flux (provided the medium is
homogeneous, i.e., has an absorption coefficient independent of position). Since the actual
wavenumbers are irrelevant (across the small spectral range), in the correlated k-distribution
method the absorption coefficient is reordered, resulting in a smooth dependence of absorption
coefficient vs. artificial wavenumber (varying across the given narrow range). This, in turn,
makes spectral integration very straightforward. k-distributions are relatively new, and are still
undergoing development. While attractive, they also are difficult to apply to nonhomogeneous
media.

Wide Band Models Wide band models make use of the fact that, even across an entire
vibration–rotation band, blackbody intensity does not vary substantially. In principle, wide
band correlations are found by integrating narrow band results across an entire band, resulting
in only slightly lesser accuracy. Wide band model calculations have been very popular in the
past, due to the facts that the necessary calculations are relatively simple and that much better
spectral data were not available. However, it is well recognized that wide band correlations
have a typical correlational accuracy of ±30%, and in some cases may be in error by as much
as 70%; substantial additional but unquantified errors may be expected due to experimental
inaccuracies. One of the attractions of the correlated k-distributions is that they can be readily
adapted to wide band calculations.

Global Models In heat transfer calculations it is generally only the (spectrally integrated)
total radiative heat flux or its divergence that are of interest. Global models attempt to calculate
these total fluxes directly, using spectrally integrated radiative properties. Most early global
methods employ the total emissivities and absorptivities of gas columns, but more recently
full-spectrum correlated k-distributions have also been developed.

During the remainder of this chapter we will discuss the smoothing of spectral radiative
properties of molecular gases over narrow bands and wide bands, as well as the evaluation
of total properties. Actual heat transfer calculations using these data will be deferred until
Chapter 20 (i.e., until after the discussion of particulate properties and of solution methods for
the radiative transfer equation). Global models require manipulation of the RTE and, thus, will
also be deferred to Chapter 20.

11.8 NARROW BAND MODELS

Examination of the formal solution to the equation of radiative transfer, equation (10.28), shows
that all spectral integrations may be reduced to four cases, namely,∫

∞

0
κηI(b)η dη and

∫
∞

0
I(b)η

[
1 − exp

(
−

∫ X

0 κη dX
)]

dη, (11.58)

where I(b)η denotes that either Ibη or Iη can occur, and X is the optical path length introduced
in equation (11.48). It is clear from inspection of Fig. 1-5 that the Planck function will never
vary appreciably over the spectral range of a few lines, considering that adjacent lines are very
closely spaced (measured in fractions of cm−1). Local radiation intensity Iη, on the other hand,
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FIGURE 11-12
Typical spectral line arrangement for (a) Elsasser and (b) statistical model.

may vary just as strongly as the absorption coefficient, since emission within the gas takes
place at those wavenumbers where κη is large [see equation (10.10)]. However, if we limit our
consideration to nonscattering media bounded by black (or no) walls, the formal solution of the
radiative equation of transfer, equation (10.29), shows that all spectral integrations involve only
the Planck function, and not the local intensity. For such a restricted scenario4 we may simplify
expressions (11.58), with extremely good accuracy, to∫

∞

0
Ibη

{
1

∆η

∫ η+∆η/2

η−∆η/2
κη dη′

}
dη (11.59a)

and ∫
∞

0
Ibη

{
1

∆η

∫ η+∆η/2

η−∆η/2

[
1 − exp

(
−

∫ X

0 κη dX
)]

dη′
}

dη. (11.59b)

The expressions within the large braces are local averages of the spectral absorption coefficient
and of the spectral emissivity, respectively, indicated by an overbar:5

κη(η) =
1

∆η

∫ η+∆η/2

η−∆η/2
κη dη′, (11.60)

εη(η) =
1

∆η

∫ η+∆η/2

η−∆η/2

[
1 − exp

(
−

∫ X

0 κη dX
)]

dη′. (11.61)

One can expect the spectral variation of κ and ε to be relatively smooth over the band, making
spectral integration of radiative heat fluxes feasible.

To find spectrally averaged or “narrow band” values of the absorption coefficient and the
emissivity, some information must be available on the spacing of individual lines within the
group and on their relative strengths. A number of models have been proposed to this purpose,
of which the two extreme ones are the Elsasser model, in which equally spaced lines of equal
intensity are considered, and the statistical models, in which the spectral lines are assumed to
have random spacing and/or intensity. A typical spectral line arrangement for these two extreme
models is shown in Fig. 11-12. The main distinction between the two models is the difference
in line overlap. Both models will predict the same narrow band parameters for optically thin
situations or nonoverlap conditions (since overlap has no effect), as well as for optically very
strong situations (since no beam can penetrate through the gas, regardless of the overlapping

4If the Monte Carlo method is employed as the solution method, this restriction is not necessary, since integration
over local intensity is avoided even for reflecting walls/scattering media; see Section 21.3.

5It should be understood that the definition of κ in equation (11.60) is not sufficient since ε , 1− exp(−κs). This fact
will be demonstrated in Example 11.2.
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characteristics). Under intermediate conditions the Elsasser model will always predict a higher
emissivity/absorptivity than the statistical models, since regular spacing always results in less
overlap (for the same average absorption coefficient) [3]. The deviation between the models is
never more than 20%. In the following we will limit our discussion to lines of Lorentz shape,
since collision broadening generally dominates at the relatively high pressures encountered in
heat transfer applications. Discussion on models for Doppler and Voigt line shapes can be found
in the meteorological literature, e.g., [2].

The Elsasser Model
We saw earlier in this chapter that diatomic molecules and linear polyatomic molecules have
only two, identical rotational modes, resulting in a single set of lines (consisting of two or
three branches, as shown in Fig. 11-2 and Fig. 11-5). For these gases one may expect spectral
lines with nearly constant spacing and slowly varying intensity, in particular if the Q-branch is
unimportant (or “forbidden”) and if the folding back of the R-branch gives also only a small
contribution.

Summing up the contributions from infinitely many Lorentz lines on both sides of an arbi-
trary line with center at η0, we get

κη =

∞∑
i=−∞

S
π

γL

(η − η0 − id)2 + γ2
L

, (11.62)

where d is the (constant) spacing between spectral lines.6 This series may be evaluated in closed
form, as was first done by Elsasser, resulting in [97]

κη =
S
d

sinh 2β
cosh 2β − cos(z − z0)

, (11.63)

where
β ≡ πγL/d, z ≡ 2πη/d. (11.64)

From equation (11.60), the average absorption coefficient is simply

κη =
S
d
. (11.65)

This also follows without integration from the fact that S is each line’s contribution to the inte-
grated absorption coefficient [see equation (11.36)], and that the lines are spaced d wavenumbers
apart, i.e., for every d wavenumbers S is added to the integrated absorption coefficient. The
spectrally averaged emissivity may be evaluated from equation (11.61) as

εη = 1 −
1

2π

∫ π

−π
exp

(
−

2βx sinh 2β
cosh 2β − cos z

)
dz, (11.66)

where, since the absorption coefficient is a periodic function, one full period was chosen for the
averaging wavenumber range and, thus, the arbitrary location z0 could be eliminated. As one
may see from its definition, equation (11.64), β is the line overlap parameter: β gives an indication of
how much the individual lines overlap each other, and x, already defined in equation (11.52), is
the line strength parameter. At this point we may also define another nondimensional parameter,
the narrow band optical thickness τ = κX, so that we now have three characterizing parameters,
namely,

x =
SX

2πγL

, β = π
γL

d
, τ =

S
d

X = 2βx. (11.67)

6Since we are using wavenumber here, the value for d is measured in units of wavenumbers, cm−1. If we were to
use frequency or wavelength, the definition and units of d would correspondingly change.
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Equation (11.66) cannot be solved in closed form, but an accurate approximate expression,
known as the Godson approximation, has been given [2]:

εη ≈ erf
(√
π

2
W
d

)
= erf

(√
π

2
S
d

X e−x[I0(x) + I1(x)]
)

= erf
(√
πβL(x)

)
(11.68)

where erf is the error function and is tabulated in standard mathematical texts [98]. The Godson
approximation is reasonably accurate for small-to-moderate line overlap (β < 1). For larger
values of β, and for hand calculations it is desirable to have simpler expressions. We can
distinguish among three different limiting regimes:

weak lines (x� 1) :
strong overlap (β > 1) : εη = 1 − exp

(
−

S
d

X
)

= 1 − e−τ, (11.69a)

strong lines (x� 1) : εη = erf


√
π

S
d
γL

d
X

 = erf
(√
τβ

)
, (11.69b)

no overlap (β� 1) : εη =
W
d

= 2βL(x), (11.69c)

where the W/d in equation (11.69c) can possibly be further simplified using equations (11.54a)
and (11.54b). These relations are summarized in Table 11.1.

The Statistical Models
In the statistical models it is assumed that the spectral lines are not equally spaced and of equal
strength but, rather, are of random strength and are randomly distributed across the narrow
band. This assumption can be expected to be an accurate representation for complex molecules
for which lines from different rotational modes overlap in an irregular fashion. In several early
studies Goody [99] and Godson [100] showed that any narrow band model with randomly
placed spectral lines, with arbitrary strengths and line shape (i.e., Lorentzian or other) leads to
the same expression for the spectrally averaged emissivity,

εη = 1 − exp
(
−

W
d

)
, (11.70)

where W is an average over the N lines contained in the spectral interval,

W =
1
N

N∑
i=1

Wi, (11.71)

and d is the average line spacing, defined as

d =
∆η

N
. (11.72)

A number of statistical models have been developed, in which lines are placed at random
across ∆η with random strengths picked from different probability distributions. We will limit
our brief discussion to three different models, which excel due to their simplicity and/or their
success to model actual spectral distributions.

The simplest statistical model is the uniform statistical model, in which all lines have equal
strengths, or

Uniform statistical model: S = S = const. (11.73)
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A more realistic representation must allow for varying lines strengths, given by a probability
density function p(S). The properties of the narrow band are then found by averaging line
properties with the probability density function. A frequently used such probability distribution
is the exponential form proposed by Goody [99],

Goody model: p(S) =
1

S
exp

(
−

S

S

)
, 0 ≤ S < ∞, (11.74)

which is popular due to its simplicity. However, Malkmus [101] recognized that in many cases
this exponential intensity distribution severely underpredicts the number of low-strength lines.
He modified the physically plausible 1/S distribution proposed by Godson [100] to obtain an
exponential-tailed 1/S distribution, now known as the Malkmus model:

Malkmus model: p(S) =
1
S

exp
(
−

S

S

)
, 0 ≤ S < ∞. (11.75)

All three distribution functions, equations (11.73), (11.74), and (11.75), have identical average
line strengths S.

Finding the average equivalent line width W for the uniform statistical model is trivial, since
every equivalent line width from equation (11.73) is identical, and W = W (single line). For the
Goody and Malkmus model the sum in equation (11.71) can, for a large statistical sample, be
replaced by an integral:

W −→
N→∞

∫
∞

0
p(S)W(S) dS =

∫
∞

0
p(S)

∫ +∞

−∞

(
1 − e−κη(S)X

)
dη dS. (11.76)

Substituting equations (11.74) and (11.75) and carrying out the integrations leads to, for Lorentz
lines,

Uniform statistical model:
W
d

= 2π
γL

d
L
(

SX
2πγL

)
= 2βL(x) = 2βL(τ/2β), (11.77)

Goody model:
W
d

=
S
d

X
/(

1 +
SX
πγL

)1/2

= τ
/
(1 + τ/β)1/2 , (11.78)

Malkmus model:
W
d

=
πγL

2d

(1 +
4SX
πγL

)1/2

− 1

 =
β

2

[
(1 + 4τ/β)1/2

− 1
]
, (11.79)

where L(x) is the Ladenburg–Reiche function given by equation (11.51). In these models the
narrow band parameters γL/d and S/d are either found by fitting experimental data, or from high-
resolution spectral data, such as the HITRAN database [32]. In the latter case, it is desirable to
have the models yield exact results in the limits of weak lines (x � 1) as well as strong lines
(x� 1). In the weak line limit we have, for all three models,

weak lines (x� 1) :
W
d
→

S
d

X = 2βx = τ, (11.80)

while the models lead to slightly different strong line limits, i.e.,

strong lines (x� 1) :

Uniform statistical:
W
d
→

2
√
γLSX

d
= 2β(2x/π)1/2 = 2(τβ/π)1/2, (11.81a)

Goody/Malkmus:
W
d
→

√
πγLSX

d
= β(2x)1/2 = (τβ)1/2. (11.81b)
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TABLE 11.1
Summary of effective line widths and narrow band emissivities for Lorentz lines.

Weak line Strong line No overlap All regimes

x� 1 x� 1 β� 1

Single line, W SX 2
√

SXγL 2πγLL(τ/2β)

W
d

τ 2
√
τβ/π 2βL(τ/2β)

Elsasser model
W
d

τ 2
√
τβ/π 2βL(τ/2β)

εη 1 − e−τ erf
(√
τβ

) W
d

erf
(√π

2
W
d

)
Statistical models

W
d

(S = const) τ 2
√
τβ/π 2βL(τ/2β)

W
d

(Goody) τ
√
τβ τ

/√
1 + τ/β

W
d

(Malkmus) τ
√
τβ

β
2

[√
1 + 4τ/β − 1

]
εη 1 − e−τ 1 − exp

(
−W/d

) W
d

1 − exp
(
−W/d

)
Definitions:

x =
SX

2πγL

; β = π
γL

d
; τ =

S
d

X = 2βx; L(x) ' x
[
1 +

(
πx
2

)5/4
]−2/5

Satisfying these two conditions requires [2]

S
d

=
1

∆η

N∑
i=1

Si,
γL

d
=

Cγ
∆η

[∑N
i=1(SiγLi)1/2

]2∑N
i=1 Si

, (11.82)

with Cγ = 1 for the uniform statistical model, and Cγ = 4/π for the Goody and Malkmus models;
the latter two models will always have some weak lines, resulting in a smaller value for W/d,
even in the strong line limit (based on average line strength). The results from the statistical
models have also been summarized in Table 11.1.

The narrow band emissivities from all four models are compared in Fig. 11-13 as a function of
the optical path of an average spectral line (i.e., average absorption coefficient S/2πγL multiplied
by distance X). Note that all predictions are relatively close to each other, although the statistical
models may predict up to 20% lower emissivities for optically thick situations. The Goody and
Malkmus models more or less coincide for small values of β, giving somewhat lower emissivities
than the uniform statistical model because of their different strong line behavior. For optically
thin situations (x < 1) the uniform statistical and Goody’s model move toward the Elsasser
model, with lower emissivities predicted by the Malkmus model. Note that the Elsasser lines
were drawn from numerical evaluations of equation (11.66), not from equation (11.68), which
would show serious error for the β = 1 line.

Example 11.2. The following data are known at a certain spectral location for a pure gas at 300 K and
0.75 atm: The mean line spacing is 0.6 cm−1, the mean line half-width is 0.03 cm−1, and the mean line
strength (or integrated absorption coefficient) is 0.08 cm−2 atm−1. What is the mean spectral emissivity
for geometric path lengths of 1 cm and 1 m, if the gas is diatomic (such as CO), or if the gas is polyatomic
(such as water vapor)?
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Mean spectral emissivities for Lorentz lines as a function of average optical depth (S/d)X.

Solution
Since the units of the given line strength tell us that a pressure absorption coefficient has been used,
we need to employ a pressure path length X = ps. For a path length of 1 cm we get X = 0.75 atm ×
1 cm = 0.75 cm atm and x = SX/2πγ = 0.08 cm−2 atm−1

× 0.75 cm atm/(2π 0.03 cm−1) = 1/π, while the
overlapping parameter turns out to be β = πγ/d = π × 0.03 cm−1/0.6 cm−1 = π/20, and τ = 2βx =
2(π/20)(1/π) = 0.1. For a diatomic gas for which the Elsasser model should be more accurate, we can
use either equation (11.68) or (since β� 1) equation (11.69c). Evaluating the Ladenburg–Reiche function
from (11.53) gives

L
( 1
π

)
=

1
π

[
1 + 0.55/4

]−2/5
= 0.2766,

and
εη = erf

(
√
π
π
20

0.2766
)

= erf (0.0770) = 0.0867 ' 2
π
20

0.2766 = 0.0869 = 8.7%.

If the gas is polyatomic we may want to use one of the statistical models. Choosing the Malkmus model,
equation (11.79), we obtain

εη = 1 − exp

−1
2
π
20

(1 +
4 × 0.1
(π/20)

)1/2

− 1


 = 0.0670.

If the path length is a full meter, we have X = 75 cm atm and x = 100/π while β is still β = π/20
and now τ = 10. Thus we are in the strong-line region. For the diatomic gas, from equation (11.69b)
εη = erf[

√
10(π/20)] = erf(1.2533) = 0.924. For the polyatomic gas, again using equation (11.79), we get

εη = 0.692.
In the first two cases, using the simple relation ε = 1 − exp(−κs) actually would have given fairly

good results (0.095) because the gas is optically thin resulting in essentially linear absorption at every
wavenumber. For the larger path we would have gotten 1 − e−10

≈ 1. Thus, using an average value
for the absorption coefficient makes the gas opaque at all wavenumbers rather than only near the line
centers.

Example 11.3. For a certain polyatomic gas the line-width-to-spacing ratio and the average absorption
coefficient for a vibration–rotation band in the infrared are known as(S

d

)
η
≈

(S
d

)
0
e−2|η−η0 |/ω,

(S
d

)
0

= 10 cm−1, (11.83)

ω = 50 cm−1,
γ

d
≈ 0.1 ≈ const.
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Find an expression for the averaged spectral emissivity and for the total band absorptance, defined by

A ≡
∫

band
εη dη =

∫
∞

0

(
1 − e−κηX

)
dη,

for a path length of 20 cm.

Solution
Calculating the optical thickness τ0 = (S/d)0X = 10 × 20 = 200, the overlap parameter β = π/10, and the
line strength x0 = τ0/2β = 1000/π, we find that this band falls into the “strong-line” regime everywhere
except in the (unimportant) far band wings. Since we have a polyatomic molecule with exponential
decay of intensity, one of the statistical models should provide the best answer. As seen from Fig. 11-13,
all three statistical models give very similar results, and the (more appropriate) Goody and Malkmus
models go to the same strong line limit, equation (11.81b), or

εη = 1 − e−W/d
≈ 1 − exp

(
−
√
τβ

)
,

since τ/β� 1. Substituting yields the spectral emissivity,

εη = 1 − exp
(
−
√
τ0β e−|η−η0 |/ω

)
.

Integrating this equation over the entire band gives the total band absorptance,

A =

∫
∞

0

[
1 − exp

(
−
√
τ0β e−|η−η0 |/ω

)]
dη.

Realizing that this integral has two symmetric parts and setting ln z = −(η − η0)/ω, we have

A = 2ω
∫ 1

0

[
1 − exp

(
−
√
τ0βz

)] dz
z
.

This integral may be solved in terms of exponential integrals7 as given, for example, in Abramowitz
and Stegun [98]. This leads to

A = 2ω
(
E1(

√
τ0β) + ln(

√
τ0β) + γE

)
= 264.7 cm−1,

where γE = 0.57721 . . . is Euler’s constant.

Most available narrow band property data, such as the RADCAL database [102, 103], have
been correlated with the Goody model. The correlation by Malkmus is a relative latecomer, but
is today recognized as the best model for polyatomic molecules. While commonly used in the
atmospheric sciences this correlation was widely ignored by the heat transfer community for
many years. Taine and coworkers [92, 93, 104] have generated artificial narrow band properties
from HITRAN 1992 line-by-line data. Employing the Malkmus model with a resolution of
25 cm−1 they observed a maximum 10% error between line-by-line and narrow band absorptivi-
ties. Using two narrow spectral ranges of H2O and CO2 Lacis and Oinas [105] showed that (for a
resolution of 10 cm−1, and for total gas pressures above 0.1 atm) the correlational accuracy of the
Malkmus model can be improved to better than 1% if the model parameters are found through
least square fits of the HITRAN 1992 line-by-line data. Soufiani and Taine [106] have assembled
the Malkmus-correlated EM2C narrow band database (25 cm−1 resolution) for various gases,
using the HITRAN 1992 database together with some proprietary French high-temperature ex-
tensions. However, to date very few experimental narrow band data have been correlated with
the Malkmus model: Phillips has measured and correlated the 2.7µm H2O band [107] and the
4.3µm CO2 band [108], both between room temperature and 1000 K. Both the RADCAL and the
EM2C databases are included in Appendix F.

More recently, two generalizations of the Malkmus model have been developed, a multi-
scale model for nonhomogeneous gases [109] (see also below) and a generalized model more
appropriate for Doppler-dominated regimes [110].

7Exponential integrals are discussed in some detail in Appendix E.



334 11 RADIATIVE PROPERTIES OF MOLECULAR GASES

Gas Mixtures
Experimental data for narrow band properties, such as line overlap (γ/d) and average absorp-
tion coefficient (S/d), are usually given from correlations of measurements performed on a
homogeneous column involving a single absorbing gas species. In practical applications, on the
other hand, radiative properties of mixtures that contain several absorbing gas species, such as
CO2, H2O, CO, etc., are generally required. Over large portions of the spectrum spectral lines
from different species do not overlap each other, and the expressions given in Table 11.1 remain
valid. However, there are regions of the spectrum where spectral line overlap is substantial and
must be accounted for. For example, the two most important combustion gases, water vapor
and CO2, both have strong bands in the vicinity of 2.7µm. Mixture values for (γ/d) and (S/d)
are found from their definitions, equation (11.82), by setting∑

i

Si =
∑

n

∑
i

Sni;
∑

i

√
Siγi =

∑
n

∑
i

√
Sniγni, (11.84)

where the subscript n identifies the gas species. Comparing equation (11.82) for the mixture
and its individual components readily leads to

(S
d

)
mix

=
∑

n

(S
d

)
n

;
(γ

d

)
mix

(S
d

)
mix

=

∑
n

√(γ
d

)
n

(S
d

)
n

2

. (11.85)

Expressions in Table 11.1 together with equation (11.85) can then be used to evaluate the trans-
missivity of a gas mixture. Other expressions for mixture values of (γ/d) and (S/d) have been
discussed by Liu and coworkers [111].

Taine and Soufiani [4] pointed out that there is no physical reason why there should be any
significant correlation between the spectral variation of absorption coefficients of different gas
species. If one treats the absorption coefficients of the M species as statistically independent ran-
dom variables, the transmissivity of a mixture can be evaluated as the product of the individual
species’ transmissivities,

τη,mix = 1 − εη,mix =

M∏
m=1

τη,m. (11.86)

For example, comparing the mixture transmissivity of a room temperature water vapor–carbon
dioxide mixture for the overlapping 2.7µm region, calculated directly from the HITRAN
database and from equation (11.86), they found them to be virtually indistinguishable.

Nonhomogeneous Gases
Up to this point in calculating narrow band emissivities we have tacitly assumed that the gas
is isothermal, and has constant total and partial pressure of the absorbing gas everywhere, i.e.,
we replaced the integral

∫ X

0 κ dX in equation (11.61) by κX. We now want to expand our results
to include nonhomogeneous gases. For the Elsasser model the solution to equation (11.66)
is possible, but too cumbersome to allow a straightforward solution if properties are path-
dependent. For the more important statistical models the same is true, especially if not only
line strength, S, but also the line overlap parameter, β, varies along the path. Instead, one
resorts to approximations. The best known and most widely used approximation is known
as the Curtis–Godson two parameter scaling approximation [2, 112], which has been fairly
successful. Other scaling approximations have been developed, e.g., the one by Lindquist and
Simmons [113]. In the Curtis–Godson approximation the values of τ and β used in equation
(11.66), or (11.68) (Elsasser model) and equations (11.70) plus (11.77) through (11.79) (statistical
models) are replaced by path-averaged values τ̃ and β̃. The proper values (scaling) for τ̃ and
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β̃ are found by satisfying both the optically thin and optically thick limits. Thus, we find from
equations (11.54a) and (11.54b), for a single line “i”,

x� 1 : Wi =

∫ X

0
Si(X) dX, (11.87)

x� 1 : Wi = 2

√∫ X

0
Si(X)γLi(X) dX. (11.88)

For many lines, from equation (11.71),

x� 1 : W =
1
N

N∑
i=1

∫ X

0
Si(X) dX =

∫ X

0
S(X) dX. (11.89)

Now, from equation (11.69a) or (11.80),

τ̃ =
W
d

=

∫ X

0

(
S
d

)
dX. (11.90)

For strong lines we obtain

x� 1 : W =
2
N

N∑
i=1

√∫ X

0
Si(X)γLi(X) dX. (11.91)

If one assumes Si and γLi to be separable, i.e., they can be written as, e.g., Si (X) = Si0 fs(X), where
Si0 is a different constant for each line, and fs(X) is a function of the path (but the same for each
line), one can—after some manipulation—rewrite equation (11.91) as [4]

x� 1 : W
2

=
( 2

N

)2 ∫ X

0

 N∑
i=1

√
Si(X)γLi(X)


2

dX. (11.92)

Comparing with equation (11.54b) [or (11.81)], and utilizing equation (11.82) we obtain(
W
d

)2

=
4/π
Cγ

τ̃β̃ =
4
d2

∫ X

0
S(X)γL(X) dX (11.93)

or

β̃ =
1
τ̃

∫ X

0

S
d
β dX. (11.94)

Equations (11.68) and (11.77) through (11.79) may now be used with τ̃ and β̃ to calculate narrow
band emissivities for nonhomogeneous paths.

The accuracy of various scaling approximations was tested by Hartmann and coworkers [93,
104] for various nonhomogeneous conditions in CO2–N2 and H2O–N2 mixtures. It was found
that the Malkmus model together with the Curtis–Godson scaling approximation generally
gave the most accurate results, except in the presence of strong (total) pressure gradients. More
recently a multiscale Malkmus model was developed by Bharadwaj and Modest [109] to improve
its accuracy for nonhomogeneous paths. In this scheme it is assumed that high-temperature
spectral lines (coming from elevated vibrational energy levels, i.e., with larger lower level
energy El) are uncorrelated from lower temperature lines. This implies that transmissivities of
the individual “scales” are multiplicative [equation (11.86)]. Separating the gas accordingly into
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scales and applying equation (11.75) to each scale m as well as the Curtis–Godson approximation
leads to

W
d

=
∑

m

β̃m

2

(1 +
4τ̃m

β̃m

)1/2

− 1

 , (11.95)

with τ̃m and β̃m from equations (11.90) and (11.94). Bharadwaj and Modest also outlined how
scales are to be defined, whether using experimental data or data from spectroscopic databases.
Testing the method with various nonhomogeneous CO2–H2O–N2 mixtures, they found the 2-
scale Malkmus model to be a factor of 2 to 5 more accurate than the standard Curtis–Godson
approach.

11.9 NARROW BAND k-DISTRIBUTIONS

As in the case of “traditional” narrow band models (i.e., Elsasser and statistical models), we will
start by looking at a homogeneous medium (constant temperature, pressure, and concentra-
tions), i.e., a medium whose absorption coefficient is a function of wavenumber alone. In such
a medium the spectral intensity depends on geometry, the Planck function, Ibη, emittance of
bounding surfaces, εη, the absorption and scattering coefficients of suspended particles, κpη and
σsη, and finally the absorption coefficient of any absorbing gas. Over a small spectral interval,
such as a few tens of wavenumbers, the Planck function and nongaseous radiation properties
remain essentially constant. Thus, across such a small spectral interval the intensity varies with
gas absorption coefficient alone. On the other hand, Fig. 11-11 shows that the gas absorption co-
efficient varies wildly even across a very narrow spectrum, attaining the same value for κη many
times, each time producing the identical intensity field within the medium. Thus, carrying out
line-by-line calculations across such a spectrum would be rather wasteful, repeating the same
calculation again and again. It would, therefore, be advantageous to reorder the absorption
coefficient field into a smooth, monotonically increasing function, assuring that each intensity
field calculation is carried out only once.

This reordering idea was first reported in the Western literature by Arking and Grossman
[114], but they give credit to Kondratyev [115], who in turn credits a 1939 Russian paper. Other
early publications on k-distributions are by Goody and coworkers [116], Lacis and Oinas [105],
and Fu and Liou [117], all in the field of meteorology (atmospheric radiation). In the heat
transfer area most of the work on k-distributions again is due to the group around Taine and
Soufiani in France [106, 118–120].

The narrow band average of any spectral quantity that depends only on the gaseous ab-
sorption coefficient, such as intensity Iη, transmissivity τη, etc., can be rewritten in terms of a
k-distribution f (k) as follows (here expressed for transmissivity τη):

τη(X) =
1

∆η

∫
∆η

e−κηX dη =

∫
∞

0
e−kX f (k) dk. (11.96)

The nature of k-distributions and how to evaluate them is best illustrated by looking at a
very small part of the spectrum with very few lines. Figure 11-14a shows a fraction of the CO2
15µm band at 1 bar and 296 K and, to minimize irregularity, with only the strongest 10 lines
considered (two of them having their centers slightly outside the depicted spectral range). It
is seen that the absorption coefficient goes through a number of minima and maxima; between
any two of these the integral may be rewritten as∫

e−κηX dη =

∫ κη,max

κη,min

e−κηX

∣∣∣∣∣∣ dη
dκη

∣∣∣∣∣∣ dκη.

The absolute value sign comes from the fact that, where dκη/dη < 0, we have changed the
direction of integration (always from κη,min to κη,max). Therefore, integration over the entire
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FIGURE 11-14
Extraction of k-distributions from spectral absorption coefficient data: (a) simplified absorption coefficient across a
small portion of the CO2 15µm band (p = 1.0 bar, T = 296 K); (b) corresponding k-distribution f (k) and cumulative
k-distribution k(1).

range ∆η gives f (k) as a weighted sum of the number of points where κη = k,

f (k) =
1

∆η

∑
i

∣∣∣∣∣∣ dη
dκη

∣∣∣∣∣∣
i

. (11.97)

Mathematically, this can be put into a more elegant form as

f (k) =
1

∆η

∫
∆η
δ(k − κη) dη, (11.98)

where δ(k − κη) is the Dirac-delta function defined by

δ(x) = lim
δε→0

 0, |x| > δε,
1

2δε
, |x| < δε, (11.99a)

or ∫
∞

−∞

δ(x) dx = 1. (11.99b)

The k-distribution of the absorption coefficient in Fig. 11-14a is shown as the thin solid line in
Fig. 11-14b. Even for this minuscule fraction of the spectrum with only three dominant lines, f (k)
shows very erratic behavior: wherever the absorption coefficient has a maximum or minimum
f (k) → ∞ since |dκη/dη| = 0 at those points (6 in the present case); and wherever a semistrong
line produces a wiggle in the absorption coefficient f (k) has a strong maximum. Thankfully,
the k-distribution itself is not needed during actual calculations. Introducing the cumulative
k-distribution function 1(k) as

1(k) =

∫ k

0
f (k) dk, (11.100)

we may rewrite the transmissivity (or any other narrow band-averaged quantity) as

τη(X) =

∫
∞

0
e−kX f (k) dk =

∫ 1

0
e−k(1)Xd1, (11.101)
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FIGURE 11-15
CO2 k-distributions for the three cases depicted in Fig. 11-11.

with k(1) being the inverse function of 1(k), which is shown in Fig. 11-14b as the thick solid line.
Sticking equation (11.100) into (11.98) leads to

1(k) =

∫ k

0
f (k) dk =

1
∆η

∫
∆η

∫ k

0
δ(k − κη) dk dη =

1
∆η

∫
∆η

H(k − κη) dη, (11.102)

where H(k) is Heaviside’s unit step function,

H(x) =
{

0, x < 0,
1, x > 0. (11.103)

Thus, 1(k) represents the fraction of the spectrum whose absorption coefficient lies below the
value of k and, therefore, 0 ≤ 1 ≤ 1 [this can also be seen by setting X = 0 in equations (11.96) or
(11.101), leading to τη = 1]. 1 acts as a nondimensional wavenumber (normalized by ∆η), and
the reordered absorption coefficient k(1) is a smooth, monotonically increasing function, with
minimum and maximum values identical to those of κη(η).

In actual reordering schemes values of k are grouped over small ranges k j ≤ k < k j+δk j = k j+1,
as depicted in Fig. 11-14, so that

d1(k j) = f (k j)δk j '
1

∆η

∑
i

∣∣∣∣∣∣ δηδκη
∣∣∣∣∣∣
i

δk j =
1

∆η

∑
i

δηi(k j), (11.104)

where the summation over i collects all the occurrences where k j < κη < k j+1, as also indicated
in the figure. If the absorption coefficient is known from line-by-line data, the k-distribution is
readily calculated from equation (11.104).

The k-distributions for the three cases in Fig. 11-11 are shown in Fig. 11-15. Because of
the many maxima and minima in the absorption coefficient these functions show very erratic
behavior, as expected. Numerically, one can never obtain the singularities f (k) → ∞, and they
appear as sharp peaks [strongly dependent on the spacing used for η and δk in equation (11.104)].
Inaccurate evaluation of f (k) (such as its peaks) has little influence on k(1), which is much easier
to determine accurately. This, and the fact that 1(k) represents the fraction of wavenumbers with
kη ≤ k, suggests a very simple method to evaluate f (k)δk and 1(k): the wavenumber range ∆η
is broken up into N intervals δη of equal width. The absorption coefficient at the center of each
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interval is evaluated and, if k j ≤ κη < k j+1, the value of f (k j)δk j is incremented by 1/N. After all
intervals have been tallied f (k j)δk j contains the fraction of wavenumbers with k j ≤ κη < k j+1,
and

1(k j+1) =

j∑
j′=1

f (k j′ )δk j′ = 1(k j) + f (k j)δk j. (11.105)

The k(1) for the three cases in Fig. 11-11 are shown in Fig. 11-16.
Program nbkdistdb in Appendix F is a Fortran code that calculates such a 1(k) distribution

directly from a spectroscopic database, while nbkdistsg determines a single k-distribution from
a given array of wavenumber–absorption coefficient pairs. As an example for the determina-
tion of k-distributions, the instructions to nbkdistdb show how to obtain the distributions of
Figs. 11-15 and 11-16.

The k-distribution can be found more easily if accurate narrow band transmissivity data are
available: inspection of equation (11.96) shows that τη is the Laplace transform of f (k), i.e.,

f (k) = L −1
{τη(X)}, (11.106)

where L −1 indicates inverse Laplace transform. This was first recognized by Domoto [121],
who also found an analytical expression for the k-distribution based on the Malkmus model,
equation (11.79):

f (k) =
1
2

√
κβ

πk3 exp
[
β

4

(
2 −

κ
k
−

k
κ

)]
, κ =

S
d

. (11.107)

The cumulative k-distribution can also be determined analytically as

1(k) =
1
2

erfc


√
β

2


√
κ
k
−

√
k
κ

 +
1
2

eβ erfc


√
β

2


√
κ
k

+

√
k
κ

 , (11.108)

where erfc is the complementary error function [98] and, by convention, erfc(−∞) = 2.

Example 11.4. A certain diatomic gas is found to have an absorption coefficient that obeys Elsasser’s
model across a narrow band of width ∆η = 10 cm−1. The gas conditions are such that mean absorption
coefficient (S/d) and overlap parameter β are known for the N = ∆η/d lines across the narrow band.
Determine the narrow band k-distribution of the gas.
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Solution
From equation (11.64) the absorption coefficient may be written as

κη =
S
d

sinh 2β

cosh 2β − cos
(
2β
η − ηc

γ

) , ηl < η < ηl + ∆η, (11.109)

where ηl is the minimum wavenumber of the narrow band and ηc is the line center position of any one
line in the band. Because of the periodic nature of an Elsasser band (see Fig. 11-12a), there will be exactly
2N wavelengths where

kmin =
S
d

sinh 2β
cosh 2β + 1

< k = κη < kmax =
S
d

sinh 2β
cosh 2β − 1

with identical |dκη/dη| each time. Therefore, from equation (11.97) or (11.98)

f (k) =
1

∆η

∫
δ(k−κη)

∣∣∣∣∣∣ dη
dκη

∣∣∣∣∣∣
k=κη

dκη =
2N
∆η

∣∣∣∣∣∣ dη
dκη

∣∣∣∣∣∣
k=κη

.

But ∣∣∣∣∣∣dκηdη

∣∣∣∣∣∣ =
S
d

sinh 2β[
cosh 2β − cos

(
2β
η − ηc

γ

)]2

2β
γ

sin
(
2β
η − ηc

γ

)
=

κ2
η

S
d

sinh 2β

2β
γ

sin
(
2β
η − ηc

γ

)
,

and

sin
(
2β
η − ηc

γ

)
= sin

(
cos−1

[
cosh 2β −

S
d

sinh 2β
κη

])
=

√
1 −

[
cosh 2β −

S
d

sinh 2β
κη

]2

.

Therefore,

f (k) =
2
d
γ

2β

S
d

sinh 2β

k2

/√
1 −

[
cosh 2β −

S
d

sinh 2β
k

]2

=
1
π

S
d

sinh 2β

k

√
k2 −

(
k cosh 2β −

S
d

sinh 2β
)2
.

Integrating f (k) according to equation (11.101) we obtain (using integration tables),

1(k) = 1 −
1
π

cos−1

[
cosh 2β −

S
d

sinh 2β
k

]
or, after inversion,

k =
S
d

sinh 2β
cosh 2β − cosπ(1 − 1)

. (11.110)

This is, of course, just equation (11.109) with 2β(η − ηc)/γ replaced by π(1 − 1): the k-distribution recog-
nizes that, in the Elsasser scheme, the same structure is repeated 2N times (of that N times as a mirror
image), and a single half-period is stretched across the entire reordered range 0 ≤ 1 ≤ 1. The present
k-distribution can also be obtained by precalculating an array of absorption coefficients across ∆η from
equation (11.109) and using subroutine nbkdistsg in Appendix F.

Comparing equation (11.101) with the first expression in equation (11.96), we note that the
integration in equation (11.101) is equivalent in difficulty to the integration over half of a single
line. Given that a narrow spectral range can contain thousands of little overlapping lines, we
conclude that the CPU time savings over line-by-line calculations can be enormous! However,
the generation of the necessary k-distributions from the large number of spectral lines contained
in the various spectroscopic databases is tedious and time consuming. A first database of
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narrow band k-distributions for CO2 and H2O was offered by Soufiani and Taine [106] as part
of their EM2C narrow band database. It contains k-distribution data for fairly wide spectral
intervals (larger than 100 cm−1; 17 bands for CO2 and 44 for H2O), and are valid for atmospheric
pressure and temperatures up to 2500 K. Each k-distribution is defined by 7 k-values, to be used
with a 7-point Gaussian quadrature for spectral integration. Like their Malkmus parameter
counterparts they are generated from the HITRAN 1992 database plus proprietary extensions
(cf. p. 333). A more accurate, highly compact database, also for CO2 and H2O, was generated by
Wang and Modest [122], valid for total pressures between 0.1 bar and 30 bar, and temperatures
between 300 K and 2500 K. The spectrum is divided into 248 narrow bands for all gases (allowing
the determination of mixture k-distributions from those of individual species). Nested Gauss–
Chebychev quadrature with up to 128 quadrature points is used to guarantee 0.5% accuracy for
all absorption coefficient and emissivity calculations, and to allow for variable order spectral
quadrature. The original Wang and Modest database employed the CDSD-1000 database [67]
(for CO2) and HITEMP 1995 [62] (for H2O). This Narrow Band K-Distribution for InfraRed
(NBKDIR) database has since then been augmented to include additional species (CO, CH4, and
C2H4), and is continuously updated to incorporate the newest spectroscopic data; at the time of
print all k-distributions have been obtained from HITEMP 2010 [74] (H2O, CO2, and CO) and
HITRAN 2008 [32], (CH4 and C2H4). Both EM2C and NBKDIR are included in Appendix F.

Gas Mixtures
k-distributions for mixtures can, in principle, be calculated directly, simply by adding the linear,
spectral absorption coefficients of all components in the mixture before applying the reordering
process, equation (11.104). Since assembling k-distributions is a tedious, time-consuming affair,
it is desirable to obtain them from databases. However, determining an exact k-distribution for a
mixture from those of individual species is in general impossible, because k-distributions never
retain any information pertaining to the spectral location of individual absorption lines. Only
in two simple situations is exact manipulation of k-distributions feasible: (1) a gas “mixing”
with itself, i.e., changing the concentration of the absorbing gas species, and (2) adding a gray
(across the given narrow band) material to the nongray absorbing gas.

Variable Mole Fraction of a Single Absorbing Gas Consider a gas whose absorption coeffi-
cient is linearly dependent on its partial pressure, i.e., a gas whose line broadening is unaffected
by its own partial pressure. This is always true for molecules that have the same size as the sur-
rounding broadening gas (such as CO2 in air), and for all gases whenever Doppler broadening
dominates. Then

κxη(T, p, x; η) = xκη(T, p; η), (11.111)

where κη is the absorption coefficient of the pure gas and x is its mole fraction in a mixture.
Comparing the two k-distributions

f (T, p; k) =
1

∆η

∫
∆η
δ(k − κη) dη, (11.112)

fx(T, p, x; kx = xk) =
1

∆η

∫
∆η
δ(kx − κxη) dη, (11.113)

we see that they both are populated by exactly the same spectral locations (i.e., kx = κxη wherever
k = κη), so that

fx(T, p, x; kx) d(xk) = f (T, p; k) dk
or

fx(T, p, x; kx) =
1
x

f (T, p; kx/x). (11.114)
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Integrating equation (11.114) leads to

1(T, p; k) =

∫ k

0
f (T, p; k) dk =

∫ kx

0
fx(T, p, x; kx) dkx = 1x(T, p, x; kx), (11.115)

i.e., the k vs. 1 behavior is independent of mole fraction. In a k vs. 1 plot the lines are simply
vertically displaced by a multiplicative factor of x, or

kx(1) = xk(1), (11.116)

as demonstrated in Fig. 11-17 for a k-distribution based on the Malkmus model, equation (11.108)
(using an unrealistically large overlap parameter of β = 10 for better visibility).

Single Absorbing Gas Mixed with Gray Medium Consider a gas that is mixed with a gray
medium (say, particles), with constant absorption coefficient κp. Then

κpη(T, p, κp; η) = κη(T, p, η) + κp. (11.117)

Proceeding as in the previous paragraph we obtain

fp(T, p, κp; kp) =
1

∆η

∫
∆η
δ(kp − [κxη + κp]) dη

=
1

∆η

∫
∆η
δ([kp − κp] − κxη) dη

= f (T, p; k = kp − κp) (11.118)
and

1(T, p; k) = 1p(T, p, κp; kp = k + κp), (11.119)

i.e., the k vs. 1 behavior is also independent of any gray additions. In a k vs. 1 plot the lines are
simply vertically displaced by a constant amount of κp,

kp(1) = κp + k(1), (11.120)

as also shown in Fig. 11-17.
Multispecies Mixtures Several approximate mixing models for k-distributions have been

proposed that rely on assumptions about the statistical relationships between the absorption
lines of the individual species, mostly by Solovjov and Webb [123] (full spectrum models only),
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such as their convolution, superposition, multiplication, and hybrid approaches, and by Modest
and Riazzi [124], exploiting the uncorrelatedness between species. All of these approaches
produce a single mixture k-distribution, but rely on different assumptions and methodologies
to achieve their goal. It was found that the approach of Modest and Riazzi results in negligible
errors for all conditions tested (low to moderate pressures). Very recently, Pal and Modest [125]
found that their methodology works equally well at very high pressures (up to 30 bar), even
though broadened spectral lines overlap much more strongly. Consequently, we will present
here only the Modest and Riazzi mixing scheme.

Earlier it was shown how the idea of uncorrelated absorption coefficients can be used to
obtain the transmissivity of a mixture, as given by equation (11.86). Through simple mathemat-
ical manipulation, it is possible to extend this logic to the mixing of cumulative k-distributions.
We begin by recalling that the definition of the transmissivity, in terms of the k-distribution
for a single absorbing species, is also the definition of the Laplace transform of f (k) [121],
equation (11.106). Using this and the product of transmissivities model, the transmissivity
of a mixture of M species may be expressed as the product of the Laplace transforms of the
component k-distributions, or

τ̄η,mix = L [ fmix(k)] =

M∏
m=1

τη,m =

M∏
i=m

L [ fm(k)]. (11.121)

In terms of the cumulative k-distributions, the transmissivity of an individual component is
given by

τ̄m =

∫ 1

0
e−kmLd1m, (11.122)

and for a binary mixture this becomes

τ̄mix = L [ fmix(k)] =

∫ 1

0
e−k1Ld11

∫ 1

0
e−k2Ld12 =

∫ 1

11=0

∫ 1

12=0
e−[k1(11)+k2(12)]Ld12 d11. (11.123)

Using the integral property of the Laplace transform we obtain

L

[∫ k

0
fmix(k)

]
= L [1mix(k)] =

(∫ 1

11=0

∫ 1

12=0
e−[k1(11)+k2(12)]Ld12 d11

)
1
L

=

∫ 1

11=0

∫ 1

12=0

e−[k1(11)+k2(12)]L

L
d12 d11, (11.124)

or, when the inverse transform is taken, with H being the Heaviside step function,

1mix(kmix) =

∫ 1

11=0

∫ 1

12=0
H[kmix − (k1 + k2)]d12 d11 =

∫ 1

11=0
12(kmix − k1) d11. (11.125)

In the second, once integrated expression, it is assumed that 1m(k < km,min) = 0 (i.e., all absorption
coefficients are above km,min) and 1m(k > km,max) = 1 (i.e., all absorption coefficients are below
km,max). This relation may also be readily extended to a mixture of M species,

1mix(kmix) =

∫ 1

11=0
....

∫ 1

1M=0
H[kmix − (k1 + .... + kM)]d1M....d11. (11.126)

This integral may be evaluated by multiple Gaussian quadrature, leading to a single mixture k-
distribution at specific k-values while using the component k-distributions stored at quadrature
points with their associated weights. The k-values for this new mixture distribution must be



344 11 RADIATIVE PROPERTIES OF MOLECULAR GASES

η, cm
-1



τ

(τ
)

3400 3600 3800 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.02

τ
mix

τ
mix

-0.02

Error

(exact)

Eq. (11.122)

A
b
so

lu
te

 E
rr

o
r

50% CO2 - 50% H2O

T=1200K, p=1bar, L=100cm

FIGURE 11-18
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predetermined and chosen such that they cover the entire range of values of all component
species. Carrying out mixing with this model consistently outperforms the models of Solovjov
and Webb [123] (by a factor of 10 or more). Its accuracy is demonstrated in Fig. 11-18 for a mixture
of water vapor and carbon dioxide in the 2.7µm region (where both gases heavily overlap), with
absolute errors mostly below 0.005 (roughly the same as obtained by direct multiplication of
transmissivities). The mixing scheme described here is incorporated into the NBKDIR database
in Appendix F, i.e., NBKDIR allows for the retrieval of mixture k-distributions.

Example 11.5. Consider a mixture of two diatomic gases, both having absorption coefficients, κ1η and
κ2η, that obey Elsasser’s model across a narrow band of width ∆η = 10 cm−1. The following is known
for the two gases:

Gas 1 : d1 = 0.2500 cm−1, γ1 = 0.0250 cm−1,
S1

d1
= 1 cm−1; β1 = π

γ1

d1
=
π
10

= 0.314;

Gas 2 : d2 = 0.1429 cm−1, γ2 = 0.0050 cm−1,
S2

d2
= 2 cm−1; β2 = π

γ2

d2
=

7π
200

= 0.110.

Determine the narrow band k-distribution for this mixture.

Solution
The individual k-distributions for the two component gases are given from the previous example as

ki =
(S

d

)
i

sinh 2βi

cosh 2βi − cosπ(1 − 1i)
; i = 1, 2. (11.127)

The k-distribution of the mixture is immediately found from the rightmost expression in equation (11.125)
as

1mix(kmix) =

∫ 1

11=0
12(kmix − k1) d11, kmin = k1 min + k2 min ≤ kmix ≤ kmax = k1 max + k2 max, (11.128)

where k1 is obtained from equation (11.127), while 12 is found from its inverse, or

12(k) =


0, k < k2 min,

1 −
1
π

cos−1

[
cosh 2β2 −

(S
d

)
2

sinh 2β2

k

]
, k2 min < k < k2 max,

1, k > k2 max.

The integration in equation (11.128) is best carried out numerically. Here care must be taken that the
argument of cos−1 does not fall outside its allowable range (between −1 and +1). The same holds true
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for the mixing of any two k-distributions, i.e., 12 ≡ 0 for kmix − k1 ≤ k2 min, and 12 ≡ 1 for kmix − k1 ≥

k2 max. The result of a simple trapezoidal rule integration is shown in Fig. 11-19. Frame (a) shows the
absorption coefficients for the mixture and the two component gases, and Frame (b) the corresponding
k-distributions. The mixture k-distribution is calculated in two ways: “exactly,” using the absorption
coefficient in Fig. 11-19a, or equation (11.109) (with random and different η1 for each gas), and with
equation (11.128). Semilog plots are employed to better separate the various absorption coefficients and
k-distributions. It is apparent that both mixture k-distributions virtually coincide (in fact, transmissivities
calculated with both k-distributions coincide to within 5 digits).

Nonhomogeneous Gases
Correlated-k Like the statistical models the k-distribution is not straightforward to apply to
nonhomogeneous paths. However, it was found that for many important situations the k-
distributions are essentially “correlated,” i.e., if k-distributions k(1) are known at two locations
in a nonhomogeneous medium, then the absorption coefficient can essentially be mapped from
one location to the other (documented to some extent by Lacis and Oinas [105]). This implies
that all the values of η that correspond to one value of κ and 1 at one location, more or less map
to the same value of 1 (but a different κ) at another location [105, 117]: pressure changes affect
all lines equally (causing more or less broadening by higher/lower total pressure p, increasing
line strengths uniformly by changes in partial pressure of the absorbing gas, pa). We may then
write, with good accuracy,

τη(0→ X) =
1

∆η

∫
∆η

exp
(
−

∫ X

0 κη dX
)

dη '
∫ 1

0
exp

(
−

∫ X

0 k(X, 1) dX
)

d1. (11.129)

This assumption of a correlated k-distribution has proven very successful in the atmospheric
sciences, where temperatures change only from about 200 K to 320 K, but pressure changes can
be very substantial [105, 116, 117].

Scaled-k A more restrictive, but mathematically precise condition for correlation of k-distri-
butions is to assume the dependence on wavenumber and location in the absorption coefficient
to be separable, i.e.,

κη(η,T, p, pa) = kη(η)u(T, p, pa), (11.130)
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where kη(η) is the absorption coefficient at some reference condition, and u(T, p, pa) is a non-
dimensional function depending on local conditions of the gas, but not on wavenumber. This
is commonly known as the scaling approximation. Substituting this into equation (11.129) gives

τη(0→ X) =
1

∆η

∫
∆η

exp
(
−kη(η)

∫ X

0 u dX
)

dη =
1

∆η

∫
∆η

exp
(
−kηX

)
dη , (11.131)

where X is now a path-integrated value for X. Comparing with equation (11.96), we find that
in this case there is only a single k-distribution, based on the reference absorption coefficient kη,
and

τη(0→ X) =

∫ 1

0
e−k(1)Xd1; X =

∫ X

0
u dX. (11.132)

As for homogeneous media equations (11.129) and (11.132) provide reordered absorption coef-
ficients, which can be used in arbitrary radiation solvers without restrictions. At first glance,
equation (11.129) looks superior to equation (11.132), since the assumption of a scaled absorp-
tion coefficient is more restrictive. However, in practice one needs to approximate an actual
absorption coefficient, which is neither scaled nor correlated: if the scaling method is employed,
the scaling function u(T, p, pa) and its reference state for kη can be freely chosen and, thus, op-
timized for a problem at hand. On the other hand, if the correlated-k method is used, the
absorption coefficient is simply assumed to be correlated (even though it is not), and the inherent
error cannot be minimized. Following Modest and Zhang [126] and assuming constant total
pressure, reference state temperature T0 and partial pressure pa0 may be chosen from

pa0 =
1
V

∫
V

pa dV, (11.133)

κη(T0, x0)Ibη(T0) =
1
V

∫
V
κη(T, x)Ibη(T) dV, (11.134)

where κη =
∫

∆η
κη dη/∆η is the average absorption coefficient, i.e., volume-averaged partial

pressure and a mean temperature based on average emission from the volume. For the scaling
function Modest and Zhang suggest equating exact and approximate radiation leaving from a
homogeneous slab of the length under consideration, or∫ 1

0
exp

[
−k(T, pa, 1)L

]
d1 =

∫ 1

0
exp

[
−k(T0, pa0, 1)u(T, p, pa)L

]
d1. (11.135)

Correlated-k and scaled-k are about equally efficient numerically: both require evaluation
of the local k-distribution k(T, pa, 1) everywhere along the path. As an illustration a simple (yet
severe) example is shown in Fig. 11-20, showing transmissivity through, and emissivity from,
a slab of hot gas at 1000 K adjacent to a cold slab at 300 K. Both layers are at the same total
and partial pressures, and are of equal width [127]. The transmissivity for a blackbody beam
Ibη(Th = 1000 K), through such a double layer is, from Chapter 10,

τη =
Iη(L)tr

Ibη(Th)
=

1
∆η

∫
∆η

exp[−κη(Th, x)Lh − κη(Tc, x)Lc] dη, (11.136)

while the emissivity is defined here as the intensity of emitted radiation exiting the cold layer,
as compared to the Planck function of the hot layer. Employing equation (10.29) this is readily
evaluated as

εη =
Iη(L)em

Ibη(Th)
=

1
∆η

∫
∆η

[
e−κη(Tc,x)Lc − e−κη(Tc,x)Lc−κη(Th,x)Lh +

Ibη(Tc)
Ibη(Th)

(
1 − e−κη(Tc,x)Lc

)]
dη. (11.137)
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FIGURE 11-20
Narrow band transmissivities and emissivities for two-temperature slab, as calculated by the LBL, scaled-k, and
correlated-k methods: (a) 2.7µm band of CO2 with pCO2 = 0.1 bar, (b) 6.3µm band of H2O with pH2O = 0.2 bar.

Note that, while transmissivities are more regularly shown in the narrow band literature, the
emissivity is generally more descriptive of heat transfer problems. Figure 11-20a shows these
narrow band transmissivities and emissivities for the 2.7µm band of CO2 for a partial pressure
of pCO2 = 0.1 bar, as calculated by the LBL, scaled-k, and correlated-k methods, using the
original HITEMP 1995 database [62], and all for a resolution of ∆η = 5 cm−1 (lines) and 25 cm−1

(symbols). Both correlated and scaled k-distributions predict transmissivity very accurately
with the exception of small discrepancies near the minima at 3600 cm−1 and 3700 cm−1. Similar
errors also show up in the emissivity, but are somewhat amplified. This amplification was
observed for all bands studied (i.e., the effect is not limited to regions of small emissivities,
as in this figure). For both, transmissivity and emissivity, results from the two k-distributions
are virtually identical, although correlated-k performs slightly better for the 2.7µm band (in
the case of the 4.3µm band, not shown, roles are reversed and scaled-k slightly outperforms
correlated-k). Figure 11-20b shows transmissivities and emissivities for the wide 6.3µm water
vapor band. Conditions are the same as for Fig. 11-20a, except that pH2O = 0.2 bar and only a
∆η = 25 cm−1 resolution is shown (a resolution of 5 cm−1 results in a very irregular shape which,
while the k-distributions follow this behavior accurately, makes them difficult to compare).
Again, both k-distributions predict transmissivities rather accurately, and the slight errors are
somewhat amplified in the emissivities. And, again, both k-distributions give virtually the
same results, with scaled-k being a little more accurate for this band. In summary, one may
say that both models perform about equally well; this implies that—for narrow bands and for
temperatures not exceeding 1000 K—the absorption coefficients for water vapor and carbon
dioxide are relatively well correlated. Note also that the present case, with a sharp step in
temperature, is rather extreme; accuracy can be expected to be significantly better in more
realistic combustion systems.

Unfortunately, for nonhomogeneous media with even more extreme temperature gradients
the correlation between k-distributions at different temperatures breaks down. The reason
for this is that different lines can have vastly different temperature dependence through the
exponential term in equations (11.32): at low temperatures lines near the band center are
strongest (with largest κη), while at high temperatures lines away from the band center exhibit
the largest κη. Since the correlated k-distribution pairs values of equal absorption coefficients,
this results in pairing wrong spectral values in hot and cold regions. This is not only true for
wide spectral ranges, but also on a narrow band level, since a vibration–rotation band consists of
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many slightly displaced subbands, generated by different levels of vibrational energies (different
Bv), some of which undergo transitions only at elevated temperatures [large values for El in
equation (11.32)], known as “hot lines.” For more detail the reader may want to consult the
monograph by Taine and Soufiani [4]. The lack of correlation in nonisothermal media was
first recognized by Rivière and coworkers [118–120], who devised the so-called “fictitious gas
technique”: starting with a high-resolution database, they grouped lines according to the values
of their lower energy levels, E j = hcBv j( j + 1) (i.e., according to their temperature dependence),
found the k-distribution for each of the fictitious gases and, in a further approximation, estimated
the gas transmissivity as the product of the transmissivities of the fictitious gases,

τη =

n1∏
i=1

∫ 1

0
exp

[
−

∫ X

0 ki(1,X) dX
]

d1, (11.138)

where n1 is the number of fictitious gases. A very similar approach was taken by Bharadwaj and
Modest [109], employing the fictitious gas approach applied to k-distributions obtained from
the Malkmus model. Unfortunately, these methods can only supply the mean transmissivity
for a gas layer, i.e., they lose all the advantages of the k-distributions, and are limited in their
application in the same way as the statistical narrow band models.

Comparison of k-Distributions and Statistical
Models
The k-distribution method has a number of important advantages over the statistical narrow
band models, although the statistical models, in particular the Malkmus model combined with
the Curtis–Godson scaling approximation, outperform k-distributions in a couple of respects:

1. Perhaps the greatest advantage that k-distributions have is that they formulate radiative
properties in terms of a (reordered) absorption coefficient. This implies that radiative
heat transfer rates may be calculated using any desired solution method for the radiative
transfer equation. If based on exact line-by-line property data, the method is essentially
exact (for a homogeneous medium). Statistical narrow band models, on the other hand,
calculate gas column transmissivity, and heat transfer rates can only be determined in
terms of these transmissivities.

2. Statistical narrow band models are, due to the transmissivity approach, limited to ap-
plication in black enclosures without scattering. No such restriction is necessary for k-
distributions (as long as wall reflectance and scattering properties remain constant across
the narrow band).

3. The k-distribution method is valid for spectral lines of any shape; statistical narrow band
models, on the other hand, are generally limited to Lorentz lines (although some formu-
lations for Doppler and Voigt profiles exist). This is not unimportant, since in combustion
applications the lines often have Voigt profiles as seen from Fig. 11-9.

4. Statistical narrow band models return an explicit expression for averaged transmissivity,
while the k-distribution requires integration (quadrature) over the (reordered) narrow
spectrum. On the other hand, the narrow band is limited to several tens of wavenumbers
for statistical models (to avoid significant changes in statistical parameters, such as S
and d), but can span several hundreds of wavenumbers for k-distributions (only limited
by changes in Planck function and, if present, spectral variations of wall emittances and
scattering properties).

5. Neither method treats nonhomogeneous paths to complete satisfaction. In fields with
moderate temperature gradients and moderate-to-strong pressure variations the correlated-
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absorptance.

k approach performs extremely well, while the Curtis–Godson approximation loses ac-
curacy in the presence of strong pressure variations. On the other hand, in fields with
extreme temperature fields all methods have some problems; under such conditions only
the correlated-k, fictitious-gas approach performs well. However, the fictitious-gas ap-
proach calculates gas layer transmissivities only, i.e., it is under the same limitations as
the statistical methods.

11.10 WIDE BAND MODELS

The heat transfer engineer is usually only interested in obtaining heat fluxes or divergences of
heat fluxes integrated over the entire spectrum. Therefore, it is desirable to have models that
can more readily predict the total absorption or emission from an entire band as was done in
Example 11.3. These models are known as wide band models since they treat the spectral range
of the entire band.

It is theoretically possible to use quantum mechanical relations, such as equations (11.33), to
accurately predict the radiative behavior of entire bands. This has been attempted by Greif and
coworkers [128, 129] in a series of papers. While such calculations are more accurate, they tend
to be too involved, so simpler methods are sought for practical applications.

The Box Model
In this very simple model the band is approximated by a rectangular box of width ∆ηe (the
effective band width) and height κ as shown in Fig. 11-21. With these assumptions we can
calculate the total band absorptance for a homogeneous gas layer as

A ≡
∫

band
εη dη =

∫
∞

0

(
1 − e−κηX

)
dη = ∆ηe

(
1 − e−κX

)
, (11.139)

where both ∆ηe and κmay be functions of temperature and pressure. The box model was devel-
oped by Penner [20] and successfully applied to diatomic gases. However, the determination
of the effective band width is something of a “black art.” Once ∆ηe has been found (by using
the somewhat arbitrary criterion given by Penner [20] or some other means), κ may be related
to the band intensity α, defined as

α ≡

∫
∞

0
κη dη =

∫
∞

0

(S
d

)
η

dη, (11.140)

leading to
κ = α/∆ηe. (11.141)

If the molecular gas layer forms a radiation barrier between two surfaces of unequal temperature,
then a suitable choice for the effective band width can give quite reasonable results. However,
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FIGURE 11-22
Band shapes for exponential wide band model.

if emission from a hot gas is considered, then the results become very sensitive to the correct
choice of ∆ηe. Nevertheless, the box model—because of its great simplicity—enjoys considerable
popularity for use in heat transfer models (see Chapter 20).

Example 11.6. Calculate the effective band width ∆ηe for which the box model predicts the correct total
band absorptance for Example 11.3.

Solution
Integrating equation (11.83) over the entire band gives α = (S/d)0 × ω = 500 cm−2 and κX = αX/∆ηe =
10,000 cm−1/∆ηe. Equation (11.139) then, with A = 264.7 cm−1, results in ∆ηe = 264.7 cm−1 by trial and
error. ∆ηe is seen to be substantially larger than ω and essentially equal to A, because the band in
this example is optically very thick. Even in the band wings far away from the band center the band is
optically opaque (τ� 1). This result must be accounted for in the choice of ∆ηe. For optically thick gases
finding the correct ∆ηe is equivalent to finding A itself. Drawing a box seemingly best approximating
the actual band shape can lead to large errors!

The Exponential Wide Band Model
The exponential wide band model, first developed by Edwards and Menard [130], is by far the
most successful of the wide band models. The original model has been further developed in
a series of papers by Edwards and coworkers [131–134]. The word “successful” here implies
that the model is able to correlate experimental data for band absorptances with an average
error of approximately ±20% (but with maximum errors as high as 50% to 80%). We present
here the latest version of Edwards, together with its terminology (based on Goody’s narrow
band model), followed by a short discussion of newer models by Felske and Tien [135] (Goody’s
model) and Wang [136] (Malkmus’ model). For a more exhaustive discussion on Edwards’
model the reader may want to consult Edwards’ monograph on gas radiation [1].

Since it is known from quantum mechanics that the line strength decreases exponentially in
the band wings far away from the band center,8 Edwards assumed that the smoothed absorption
coefficient S/d has one of the following three shapes, as shown in Fig. 11-22:

with upper limit head
S
d

=
α
ω

e−(ηu−η)/ω, (11.142a)

symmetric band
S
d

=
α
ω

e−2|ηc−η|/ω, (11.142b)

with lower limit head
8This fact is easily seen by letting j� 1 in equations (11.28a) and (11.33a) for the P-branch, and in equations (11.28c)

and (11.33b) for the R-branch.
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TABLE 11.2
Exponential wide band correlation for an isothermal gas.

β ≤ 1 0 ≤ τ0 ≤ β A∗ = τ0 Linear regime

β ≤ τ0 ≤ 1/β A∗ = 2
√
τ0β − β Square root regime

1/β ≤ τ0 < ∞ A∗ = ln(τ0β) + 2 − β Logarithmic regime

β ≥ 1 0 ≤ τ0 ≤ 1 A∗ = τ0 Linear regime

1 ≤ τ0 < ∞ A∗ = ln τ0 + 1 Logarithmic regime

α, β, and ω from Table 11.3 and equations (11.144) through (11.147), τ0 = αX/ω.

S
d

=
α
ω

e−(η−ηl)/ω, (11.142c)

where α is the integrated absorption coefficient or the band strength parameter (or area under the
curves in Fig. 11-22), which was defined in equation (11.140), and ω is the band width parameter,9

giving the width of the band at 1/e of maximum intensity. The band can be expected to be
fairly symmetric if, during rotational energy changes, the B does not change too much [recall
equations (11.28a) through (11.28c)]. ηc is then the wavenumber connected with the vibrational
transition. On the other hand, if the change in B is substantial, then either the R- or the P-branch
may fold back, leading to bands with upper or lower head. Thus, the wavenumbers ηu and
ηl are the wavenumbers where this folding back occurs, and not the band center. The sharp
exponential apex is, of course, not very realistic. The rationale is that, if the band center is
optically thick, then it is opaque no matter what the shape, while if it is thin, then only the total
α is of importance. Edwards and Menard [130] proceeded to evaluate the band absorptance
using the general statistical model by substituting expressions (11.142) into equation (11.78) and
carrying out the integration in an approximate fashion. Since equation (11.78) contains the line
overlap parameter β and the optical thickness τ, the authors were able to describe the total band
absorptance as a function of three parameters, namely,

A∗ = A/ω = A∗(α, β, τ0), (11.143)

where τ0 is the optical thickness at the band center (symmetric band) or the band head. Their
results are summarized in Table 11.2.10

Example 11.7. Determine the total band absorptance of the previous two examples by the exponential
wide band model.

Solution
From Example 11.3 we have τ0 = 200 and β = π/10. Thus, since τ0 > 1/β, we find from Table 11.2
A∗ = ln(τ0β) + 2 − β = ln(200 × π/10) + 2 − π/10 = 5.826 and A = A∗ω = 5.826 × 50 = 291.3 cm−1.
The difference between the two results is primarily due to the fact that in Example 11.3 we treated the
optically thin band wings as optically thick.

The parameters α, β, and ω are functions of temperature and must be determined exper-
imentally. Values for the most important combustion gases—H2O, CO2, CO, CH4, NO, and

9The band width parameter ω, as used here, applies only to the wide band correlation. If equations (11.142) are
used for spectral (i.e., narrow band) calculations, Edwards [1] suggests increasing the value of ω by 20% for better
agreement between wide band model and band-integrated narrow band model calculations.

10In the original version the parameters C1 = α, C3 = ω, and C2 =
√

4C1C3β∗ were used, where β∗ is the value of β for
a gas mixture at a total pressure of 1 atm with zero partial pressure of the absorbing gas. Also, limits between regimes
were slightly different, using A itself rather than τ0.
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SO2—for a reference temperature of T0 = 100 K are given in Table 11.3. Most of these correlation
data are based on work by Edwards and coworkers and are summarized in [1]. Data for the
purely rotational band of H2O have been taken from the more modern work of Modak [137].
Values for other bands and other gases may be found in the literature, e.g., for H2O, CO2, and
CH4 [1, 131, 134, 138–142], for CO [1, 131, 134, 143–145], for SO2 [1, 134, 146], for NH3 [147], for
NO [148], for N2O [149], and for C2H2 [150] (in the older of these references the parameters for
the slightly different original model are given; in a number of papers a pressure path length
has been used instead of a density path length). The temperature dependence of the band
correlation parameters for vibration–rotation bands is given by Edwards [1] as

α(T) = α0
Ψ(T)
Ψ(T0)

, (11.144)

β(T) = β∗Pe = β∗0

√
T0

T
Φ(T)
Φ(T0)

Pe, (11.145)

ω(T) = ω0

√
T
T0
, (11.146)

and

Pe =

[
p
p0

(
1 + (b − 1)

pa

p

)]n

, (p0 = 1 atm, T0 = 100 K), (11.147)

where

Ψ(T) =

1 − exp

− m∑
k=1

uk(T)δk




m∏
k=1

∞∑
vk=v0,k

(vk + 1k + |δk| − 1)!
(1k − 1)! vk!

e−uk(T)vk

m∏
k=1

∞∑
vk=0

(vk + 1k − 1)!
(1k − 1)! vk!

e−uk(T)vk

, (11.148)

Φ(T) =

 m∏
k=1

∞∑
vk=v0,k

√
(vk + 1k + |δk| − 1)!

(1k − 1)! vk!
e−uk(T)vk


2

m∏
k=1

∞∑
vk=v0,k

(vk + 1k + |δk| − 1)!
(1k − 1)! vk!

e−uk(T)vk

, (11.149)

and

uk(T) = hcηk/kT, v0,k =

{
0 for δk ≥ 0,
|δk| for δk ≤ 0. (11.150)

In these rather complicated expressions the vk are vibrational quantum numbers, δk is the change
in vibrational quantum number during transition (±1 for a fundamental band, etc.), and the
1k are statistical weights for the transition (degeneracy = number of ways the transition can
take place). Values for the ηk, δk, and 1k are given in Table 11.3. The effective pressure Pe
gives the pressure dependence of line broadening due to collisions of absorbing molecules with
other absorbing molecules and with nonabsorbing molecules that may be present (for example,
nitrogen and other inert gases contained in a mixture). Note that the definition for Pe is slightly
different here from equation (11.39) (this was done for empirical reasons, to achieve better
agreement with experimental data). For the case of nonnegative δk or v0,k = 0 (the majority of
gas bands listed in Table 11.3), the series in the expression for Ψ and the denominator of Φ may
be simplified [98] to

∞∑
vk=0

(vk + 1k + δk − 1)!
(1k − 1)!vk!

e−ukvk =
(1k + δk − 1)!

(1k − 1)!
(
1 − e−uk

)−1k−δk . (11.151)
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TABLE 11.3
Wide band model correlation parameters for various gases.

Band Location Vibr. Quantum Step Pressure Parameters Correlation Parameters
λ ηc (δk) n b α0 β∗0 ω0

[µm] [cm−1] [cm−1/(g/m2)] [cm−1]

H2O m = 3, η1 = 3652 cm−1, η2 = 1595 cm−1, η3 = 3756 cm−1, 1k = (1, 1, 1)

71µma ηc = 140 cm−1 (0, 0, 0) 1 8.6
√

T0
T + 0.5 5.455 0.143 69.3

6.3µm ηc = 1600 cm−1 (0, 1, 0) 1 8.6
√

T0
T + 0.5 41.2 0.094 56.4

(0, 2, 0) 0.2
2.7µm ηc = 3760 cm−1 (1, 0, 0) 1 8.6

√
T0
T + 0.5 2.3 0.132b,c 60.0b

(0, 0, 1) 23.4

1.87µm ηc = 5350 cm−1 (0, 1, 1) 1 8.6
√

T0
T + 0.5 3.0 0.082 43.1

1.38µm ηc = 7250 cm−1 (1, 0, 1) 1 8.6
√

T0
T + 0.5 2.5 0.116 32.0

CO2 m = 3, η1 = 1351 cm−1, η2 = 666 cm−1, η3 = 2396 cm−1, 1k = (1, 2, 1)

15µm ηc = 667 cm−1 (0, 1, 0) 0.7 1.3 19.0 0.062 12.7

10.4µmd ηc = 960 cm−1 (−1, 0, 1) 0.8 1.3 2.47×10−9 0.040 13.4

9.4µmd ηc = 1060 cm−1 (0,−2, 1) 0.8 1.3 2.48×10−9 0.119 10.1

4.3µm ηu = 2410 cm−1 (0, 0, 1) 0.8 1.3 110.0 0.247 11.2

2.7µm ηc = 3660 cm−1 (1, 0, 1) 0.65 1.3 4.0 0.133 23.5

2.0µm ηc = 5200 cm−1 (2, 0, 1) 0.65 1.3 0.060 0.393 34.5

CO m = 1, η1 = 2143 cm−1, 11 = 1

4.7µm ηc = 2143 cm−1 (1) 0.8 1.1 20.9 0.075 25.5

2.35µm ηc = 4260 cm−1 (2) 0.8 1.0 0.14 0.168 20.0

CH4 m = 4, η1 = 2914 cm−1, η2 = 1526 cm−1, η3 = 3020 cm−1, 1k = (1, 2, 3, 3)

7.7µm ηc = 1310 cm−1 (0, 0, 0, 1) 0.8 1.3 28.0 0.087 21.0

3.3µm ηc = 3020 cm−1 (0, 0, 1, 0) 0.8 1.3 46.0 0.070 56.0

2.4µm ηc = 4220 cm−1 (1, 0, 0, 1) 0.8 1.3 2.9 0.354 60.0

1.7µm ηc = 5861 cm−1 (1, 1, 0, 1) 0.8 1.3 0.42 0.686 45.0

NO m = 1, η1 = 1876 cm−1, 11 = 1

5.3µm ηc = 1876 cm−1 (1) 0.65 1.0 9.0 0.181 20.0

SO2 m = 3, η1 = 1151 cm−1, η2 = 519 cm−1, η3 = 1361 cm−1, 1k = (1, 1, 1)

19.3µm ηc = 519 cm−1 (0, 1, 0) 0.7 1.28 4.22 0.053 33.1

8.7µm ηc = 1151 cm−1 (1, 0, 0) 0.7 1.28 3.67 0.060 24.8

7.3µm ηc = 1361 cm−1 (0, 0, 1) 0.65 1.28 29.97 0.493 8.8

4.3µm ηc = 2350 cm−1 (2, 0, 0) 0.6 1.28 0.423 0.475 16.5

4.0µm ηc = 2512 cm−1 (1, 0, 1) 0.6 1.28 0.346 0.589 10.9

a For the rotational band α = α0 exp
(
−9(
√

T0/T − 1)
)
, β∗ = β∗0

√
T0/T.

b Combination of three bands, all but weak (0, 2, 0) band are fundamental bands, α0 = 25.9 cm−1/(g/m2).
c Line overlap for overlapping bands from equation (11.154).
d “Hot bands,” very weak at room temperature, exponential growth in strength at high temperatures.

α = α0
Ψ
Ψ0
, ω = ω0

√
T
T0
, β = β∗Pe = β∗0

√
T0
T

Φ
Φ0

Pe, Pe =
[ p

p0

(
1 + (b − 1) pa

p

)]n
.

Ψ from equations (11.144) and (11.148), Φ from equation (11.149), T0 = 100 K, p0 = 1 atm.
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If v0,k , 0, then v0,k terms need to be subtracted from the above result.
Because of the low reference temperature of T0 = 100 K, the values for u0,k are relatively

large, so both Φ0 and Ψ0 are very simple to evaluate and, for v0,k = 0,

Ψ0 ≈

m∏
k=1

(1k + δk − 1)!
(1k − 1)!

, Φ0 ≈ 1. (11.152)

If only one of the vibrational modes undergoes a transition (only one δk , 0), then all other modes
cancel out of the expression for Ψ; and if the transition results in a fundamental band (single
transition with δk = 1), then Ψ ≡ 1. This implies that, for a fundamental band, α(T) = α0 =
const. Unfortunately, the temperature dependence of the broadening mechanism is always
more complicated, and Φ must generally be evaluated from equation (11.149).

If several bands overlap each other (e.g., the three H2O bands situated around 2.7µm),
then also the individual lines overlap lines from other bands, resulting in an effective overlap
parameter β that is larger than for any of the individual bands. The band strength and overlap
parameter for overlapping bands are calculated [1] from

α =

J∑
j=1

α j, (11.153)

β =
1
α

 J∑
j=1

√
α jβ j


2

, (11.154)

where J is the number of overlapping bands.
When the exponential wide band model was first presented by Edwards and Menard, the

temperature dependence for the broadening parameter was not calculated by quantum statis-
tics but was rather correlated from experimental data that, because of their scatter, generally
resulted in fairly simple formulae; but extrapolation to higher temperatures tended to be very
inaccurate. Most of the bands listed in Table 11.3 are fundamental bands, not because calcu-
lations for these bands are simpler, but because fundamental bands tend to be much stronger
than overtones or combined-mode bands, often making them the only important ones for heat
transfer calculations.

To facilitate hand calculations, the temperature dependence of band strength parameters α
(for nonfundamental bands) and overlap parameters β∗ are shown in graphical form in Fig. 11-
23 for water vapor. A similar plot is given in Fig. 11-24 for the important bands of carbon
dioxide, and Fig. 11-25 shows the temperature dependence of the line overlap parameter for the
fundamental bands of methane and carbon monoxide (with α = α0 = const). For more accurate
computer calculations the subroutines wbmh2o, wbmco2, wbmch4, wbmco, wbmno, and wbmso2 are
given in Appendix F. Alternatively, very accurate polynomial fits for these functions have been
given by Lallemant and Weber [151].

Example 11.8. Consider a water vapor–air mixture at 3 atm and 600 K, with 5% water vapor by volume.
What is the most important H2O band and what is its total band absorptance for a path of 10 cm?

Solution
At 600 K the Planck function has its maximum around 5µm. Since total emission will depend on
the blackbody intensity [see equation (11.58)], we seek a band with large α in the vicinity of 5µm.
Inspection of Table 11.3 shows that the strongest vibration–rotation band for water vapor lies at 6.3µm
and is, therefore, the band we are interested in. From the table we find α = α0 = 41.2 cm−1/(g/m2),
β = β∗0

√
T0/T(Φ/Φ0)Pe with β∗0 = 0.094, and ω = ω0

√
T/T0 = 56.4

√
600/100 = 138.15 cm−1. To evaluate the

effective broadening pressure we find n = 1 and b = 8.6
√

100/600+0.5 = 4.01 and with a volume fraction
x = pa/p the effective pressure becomes Pe = {(p/1 atm)[1+(b−1)x]}n = 3[1+3.01×0.05] = 3.452. Estimating
the temperature dependence of the line overlap parameter from Fig. 11-23 leads to β∗/β∗0 ' 0.65 and
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FIGURE 11-23
Temperature dependence of the line overlap parameter, β∗, and band strength parameter, α, for water vapor.
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FIGURE 11-24
Temperature dependence of line overlap parameter, β∗, and band strength parameter, α, for carbon dioxide.

β = 0.094 × 0.65 × 3.452 = 0.211. Since all values for α in Table 11.3 are based on a mass absorption
coefficient, we must calculate X as X = ρas, where ρa is the partial density of the absorbing gas (not the
density of the gas mixture). For our water vapor with a partial pressure of pa = 0.05 × 3 = 0.15 atm and
a molecular weight of M = 18 g/mol, we get from the ideal gas law

ρa =
Mpa

RuT
=

18 g/mol × 0.15 atm
8.3145 J/mol K × 600 K

1.0132 × 105 J/m3

1 atm
= 54.84 g/m3

and X = 54.84 × 0.1 = 5.48 g/m2. Finally, from τ0 = αX/ω we get τ0 = 41.2 × 5.48/138.15 = 1.634. Since
the value of τ0 lies between the values of β and 1/β we are in the square-root regime and

A∗ = 2
√
τ0β − β = 2

√

1.634 × 0.211 − 0.211 = 0.964

or A = 0.964 × 138.15 = 133 cm−1.
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FIGURE 11-25
Temperature dependence of the line overlap parameter, β∗, for the fundamental bands of methane and carbon monoxide.

The calculation of exact values for Φ and Ψ for nonfundamental bands is rather tedious and
is best left to computer calculations with the subroutines given in Appendix F.

While the correlation in Table 11.2 is simple and straightforward (aside from the temperature
dependence of α and β), it is often preferable to have a single continuous correlation formula.
A simple analytical expression can be obtained for the high-pressure limit, i.e., when the lines
become very wide from broadening resulting in very strong overlap, or β → ∞, leading to
κη = (S/d)η and

A∗ = E1(τ0) + ln τ0 + γE = Ein(τ0), β→∞, (11.155)

where E1(τ) is known as an exponential integral function, which is discussed in some detail in
Appendix E. Felske and Tien [135] have given a formula for all ranges of β, based on results
from the numerical quadrature of equation (11.78):

A∗ = 2E1


√

τ0β

1 + β/τ0

 + E1

1
2

√
τ0/β

1 + β/τ0

 − E1

1 + 2β
2

√
τ0/β

1 + β/τ0


+ ln

(
τ0β

(1 + β/τ0)(1 + 2β)

)
+ 2γE, (11.156)

or, more compactly,

A∗ = 2 Ein(w) + Ein
(

w
2β

)
− Ein

([ 1
2β

+ 1
]
w
)
, w =

(
W
d

)
0,Goody

=
τ0√

1 + τ0/β
. (11.157)

A previous, somewhat simpler expression by Tien and Lowder [152] is known today to be
seriously in error for small values of β [135, 153], and is not recommended.

Edwards’ wide band model, given in Table 11.2, as well as the continuous correlation
by Felske and Tien, are based on equation (11.70) together with Goody’s statistical model,
equation (11.78), the best narrow band model available at the time of Edwards and Menard’s
[130] original paper. Since then it has been found that the Malkmus model introduced in 1967,
equation (11.79), describes the radiative behavior of most gases better than Goody’s model [104].
It was shown by Wang [136] that an exact closed-form solution for the band absorptance can be
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found, if equation (11.142) is combined with Malkmus’ narrow band model, leading to

A∗ = eβ
[
E1(β + w) − E1(β)

]
+ ln(1 + w/β) + Ein(w), w =

(
W
d

)
0,Malkmus

=
β

2

[√
1 + 4τ0/β − 1

]
.

(11.158)

Results from Wang’s model, equation (11.158), are compared in Fig. 11-26 with those of Edwards
and Menard, Table 11.2, and Felske and Tien, equation (11.156). The agreement between all three
models is good. However, the band absorptance based on Malkmus’ model, equation (11.158),
is always slightly below that predicted by Goody’s model, equation (11.156). Both the Felske
and Tien and the Wang models go to the correct strong-overlap limit (β→∞), equation (11.155),
while the older Edwards and Menard model shows its more approximate character, substantially
overpredicting band absorptances for large β, particularly for intermediate values of τ0.

A considerable number of other band correlations are available in the literature, based on
numerous variations of the Elsasser and statistical models. An exhaustive discussion of the older
(up to 1978) correlations and their accuracies (as compared with numerical quadrature results
based on the plain Elsasser and the general statistical models) has been given by Tiwari [154].

Example 11.9. Repeat Example 11.8, using the Felske and Tien and the Wang models.

Solution
All relations developed for Edwards and Menard’s model, equations (11.144) through (11.147), are
equally valid for these two models, as are the data in Table 11.3. Thus, we have again τ0 = 1.634 and β =
0.211. Sticking these numbers into equations (11.156) and (11.158) (or, rather, using the Fortran functions
ftwbm and wangwbm, or the stand-alone program wbmodels, all supplied in Appendix F) gives

A∗FT = 0.6916, A∗Wang = 0.6427.

As expected, the results are fairly close to each other, with the Malkmus-based Wang correlation pre-
dicting an about 7% lower band absorptance. Both values are significantly lower than those predicted
by Edwards and Menard’s model, which—as inspection of Fig. 11-26 shows—considerably overpredicts
band absorptances for strong line overlap (large β) at intermediate optical thicknesses τ0.
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Wide Band Model for Nonhomogeneous Gases

As indicated in the previous section on narrow band models, the spectral emissivity for a
nonhomogeneous path (with varying temperature and/or gas pressures) [cf. equation (11.61)] is

εη = 1 − exp
(
−

∫ X

0 κη dX
)
, (11.159)

from which we may calculate the total band absorptance as

A =

∫
∞

0
εη dη =

∫
∞

0

[
1 − exp

(
−

∫ X

0 κη dX
)]

dη. (11.160)

Here we have replaced the geometric path s by X in case a linear absorption coefficient is not
used, but rather one based on density (as was done for the correlation parameters in Table
11.3) or pressure. Since we would still like to use the simple wide band model, appropriate
path-averaged values for the correlation parameters α, β, and ω must be found. Attempts
at such scaling were made by Chan and Tien [155], Cess and Wang [156], and Edwards and
Morizumi [157], and are summarized by Edwards [1]. The average value for α follows readily
from the weak line limit (linear regime in Table 11.2) as

α̃ ≡
1
X

∫ X

0

∫
∞

0
κη dη dX =

1
X

∫ X

0

∫
∞

0

(S
d

)
η

dη dX =
1
X

∫ X

0
α dX. (11.161)

The definition of an average value for ω is

ω̃ ≡
1
α̃X

∫ X

0
ωα dX, (11.162)

while the averaged value for β is found by comparison with the square root regime in Table 11.2
as

β̃ ≡
1

ω̃α̃X

∫ X

0
βωα dX. (11.163)

There is little theoretical justification for the choice of ω̃ and β̃,11 but comparison with spectral
calculations using equations (11.90), (11.94), and (11.78) showed that they give excellent results
[157].

Example 11.10. Reconsider Example 11.8, but assume that the water vapor–air mixture temperature
varies linearly between 400 K and 800 K over its path of 10 cm. How does this affect the total band
absorptance for the 6.3µm band?

Solution
We may express the temperature variation as T = 400 K(1 + s′/s), where s′ is distance along path s, and
the density variation as

ρa = ρ600
600 K

T
= 6ρ600

T0

T
=

3
2ρ600

1 + s′/s
.

Thus,

X =

∫ s

0
ρa ds′ = 6ρ600

∫ s

0

(T0

T

)
ds′ =

3
2
ρ600s

∫ 1

0

dξ
1 + ξ

= 3
2 X600 ln 2 = 1.040 X600 = 5.702 g/m2.

The path-averaged band strength becomes

α̃ =
1
X

∫ s

0
αρa ds =

1
X
α0X = α0 = 41.2 cm−1/(g/m2),

11Note that there are two different definitions for β̃, one for narrow band calculations and the present one for the
wide band model.
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since the 6.3µm band is a fundamental band and α is independent of temperature. For the averaged ω̃
we get, from ω = ω0

√
T/T0 = ω0

√
4
√

1 + s′/s,

ω̃ =
1
α̃X

∫ s

0
ωαρa ds′ =

6ω0ρ600

X

∫ s

0

√
T
T0

T0

T
ds′ =

3ω0ρ600s
X

∫ 1

0

dξ
√

1 + ξ

=
3ω0X600

X
× 2

√
1 + ξ

∣∣∣∣∣1
0

= 6
(√

2 − 1
) X600

X
ω0 =

6
(√

2 − 1
)

3
2 ln 2

× 56.4 cm−1

= 134.8 cm−1.

And, finally, the overlap parameter is obtained from

β̃ =
1

ω̃α̃X

∫ s

0
βωαρa ds′ =

6ρ600

ω̃X

∫ s

0

(
β∗0Pe

β∗

β∗0

) ω0

√
T
T0

 (T0

T

)
ds′

= 6 β∗0 Pe
ω0

ω̃

X600

X

∫ 1

0

β∗

β∗0

√
T0

T
dξ′.

Inspection of Fig. 11-23 reveals that the integrand varies between 0.59/
√

4 ' 0.30 (at 400 K), to 0.66/
√

6 '
0.27 (at 600 K), back to 0.80/

√
8 ' 0.29 (at 800 K); i.e., the integrand is relatively constant. Keeping in

mind the inherent inaccuracies of the wide band model, the integral may be approximated by using an
average value of 0.28. Then

β̃ ' 0.28 × 6β∗0Pe
ω0

ω̃

X600

X
=

0.28×6β∗0Pe

6
(√

2 − 1
) =

0.28×0.09427×3.4515
√

2 − 1
= 0.220.

The effective optical thickness at the band center is now

τ0 = α̃X/ω̃ = 41.2 × 5.702/134.8 = 1.743.

Again we are in the square root regime and

A∗ = 2
√
τ0β̃ − β̃ = 2

√

1.743×0.220 − 0.220 = 1.018 and A = 137 cm−1.

Thus, although the temperature varied considerably over the path (by a factor of two) values for α, β,
and ω changed only slightly, and the final value for the band absorptance changed by less than 3%.
In view of the accuracy of the wide band correlation, the assumption of an isothermal gas can often
lead to satisfactory results. This has been corroborated by Felske and Tien [158], who suggested a
linear average for temperature, and a second independent linear average for density (as opposed to
density evaluated at average temperature). They found negligible discrepancy for a large number of
nonisothermal examples.

Wide Band k-Distributions
Wide band models allow us to determine the radiative emission (or the absorption of incoming
radiation) from a volume of gas over an entire vibration–rotation band with a single calcula-
tion; but they are inherently less accurate than narrow band models, and they have the same
limitations, i.e., they are difficult to apply to nonhomogeneous gases, and they cannot be used
at all in enclosures that have nonblack walls and/or in the presence of scattering particles.

The k-distribution method, on the other hand, smoothes the spectrum by simply reordering
it, rather than supplying an effective transmissivity, and, therefore, it can readily be applied
to nonblack walls as well as to scattering media. For a homogeneous medium the method is
essentially exact, even for an entire vibration–rotation band, except for the assumption that the
Planck function, Ibη, is invariable across the band. This has prompted a number of researchers
to generate wide band k-distributions based on exponential wide band correlation data. The
first such k-distribution was generated by Wang and Shi [159], using the Malkmus narrow band
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model together with exponentially decaying average line strength. In order to obtain a finite-
range reordered wavenumber, 0 ≤ 1 ≤ 1, as was done for narrow band k-distributions, they
truncated the exponentially decaying band wings [see Fig. 11-22 and equation (11.142b)]. This
resulted in an analytical expression for the wide band k-distribution, F(k). However, evalua-
tion of the reordered wavenumber, 1(k) =

∫
F dk, and its inversion to k(1) required numerical

integration. Marin and Buckius [160] took a very similar approach but used the exponential
wide band model together with both the Malkmus model and also the Goody model; they also
provided approximate, explicit expressions for water vapor and carbon dioxide [161–163]. Lee
et al. [164,165] were able to find the k-distribution directly from wide band correlations, using a
rather obscure version of Edwards’ model. This approach was further refined by Parthasarathy
et al. [166], using Wang’s wide band model [136]. Denison and Fiveland [167] also provided
closed-form approximations for the cumulative k-distribution, based on Edwards’ original wide
band model given in Table 11.2. Comparison with narrow band calculations has shown that
results from this model have very respectable accuracy [168].

The band absorptance for a vibration–rotation band is given by equation (11.139). Assuming
a symmetric band, such as given by equation (11.142b), and reordering according to Section 11.9
leads to

A = 2
∫
∞

0

(
1 − e−κηX

)
d|η − ηc| = 2

∫
∞

0

(
1 − e−κX

)
F(κ) dκ = 2

∫
∞

0

(
1 − e−κ(1)X

)
d1, (11.164)

where the k-distribution

F(κ) =

∫
∞

0
δ(κ − κη) dη, (11.165)

is defined over an unbounded (wide band) spectral range ∆η → ∞ and, thus, 1 is also un-
bounded [cf. equations (11.98) and (11.101)] and equivalent to |η − ηc|. The reordered band can
also be regarded as symmetrical, if desired (with 1 going into both directions away from ηc).
Nondimensionalizing equation (11.164) gives

A∗ =
A
ω

= 2
∫
∞

0

(
1 − e−κ

∗τ0
)

F∗(κ∗) dκ∗ =

∫
∞

0

(
1 − e−κ

∗(1∗)τ0
)

d1∗,

τ0 =
α
ω

X, κ∗ =
κω
α
, F∗ =

αF
ω2 , 1

∗ = 2
1

ω
. (11.166)

Differentiating equation (11.166) with respect to τ0, and using Wang’s expression for band
absorptance, equation (11.158), yields

dA∗

dτ0
=

1
τ0

1 − exp

β2
1 −

√
1 +

4τ0

β



 = 2

∫
∞

0
e−κ

∗τ0κ∗F∗(κ∗) dκ∗. (11.167)

Comparing both sides of this equation it is apparent that F∗(κ∗) is related to the inverse Laplace
transform of dA∗/dτ0,

2κ∗F∗(κ∗) = L −1
(

dA∗

dτ0

)
. (11.168)

Using Wang’s model an analytical expression can be obtained for the inverse [166]:

F∗(κ∗) =
1

4κ∗

erfc


√
β

2

(
√
κ∗ −

1
√
κ∗

) − eβ erfc


√
β

2

(
√
κ∗ +

1
√
κ∗

)
 . (11.169)

The cumulative k-distribution 1∗, or reordered wavenumber, must be found and inverted nu-
merically from ∫

∞

κ∗
F∗(κ∗) dκ∗ =

1
2
1∗ =

1

ω
. (11.170)
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FIGURE 11-27
Nondimensional reordered absorption coefficient κ∗ for an exponential wide band vs. nondimensional cumulative
k-distribution 1∗.

Figure 11-27 shows the resulting reordered, nondimensional absorption coefficient κ∗ vs. ar-
tificial, normalized wavenumber 1∗. For large values of β there is strong line overlap and
κη ' (S/d)η, and essentially no reordering is necessary. For that case F∗ approaches F∗ → 1/2κ∗

for κ∗ < 1 and F∗ → 0 for κ∗ > 1, leading to κ∗ → e−1∗ , 1∗ & 0.1.12 For smaller values of β, or
less line overlap, but with identical average absorption coefficient the maximum value of the
spectral absorption coefficient increases, and fewer spectral positions will have intermediate
values, making the distribution more and more compressed toward small 1∗, with larger values
near 1∗ = 0.

Example 11.11. The water vapor–air mixture of Example 11.8 is contained in a nonblack furnace of
varied dimensions mixed with soot and scattering particles. In order to make accurate predictions of
the radiative heat flux possible across the 6.3µm water vapor band, determine a reordered correlated
k-distribution for this mixture.

Solution
For the water vapor–air mixture of Example 11.8 we have for the 6.3µm band α = 41.2 cm−1/(g/m2),
ω = 138.15 cm−1, β = 0.211, and ρa = 54.84 g/m3. Obtaining a reordered, nondimensional absorption
coefficient κ∗ = κ∗(1∗) from equation (11.170) [by utilizing the Fortran subroutine wbmkvsg given in
Appendix F], we get from equation (11.166)

κ(1) = κ(|η − ηc|) =
ρaα

ω
κ∗

(
21
ω

)
=
ρaα

ω
κ∗

(
2|η − ηc|

ω

)
,

where we have replaced the α in equation (11.166) by ρaα in order to obtain a linear, rather than
density-based, absorption coefficient [see equation (11.18)], which is generally preferred for spectral
calculations. This equivalent spectral absorption coefficient for the 6.3µm water vapor band, centered
at ηc = 1600 cm−1, is shown in Fig. 11-28, and is compared with the spectral narrow band average
absorption coefficient, (S/d)η for the same conditions. Since, for β = 0.211, there is relatively little line
overlap, average values (S/d)η must come from strongly varying κη with values much larger and much
smaller than the average; thus the abundance of large κ (near η = ηc) with a quick drop-off away from
the band center.

Figure 11-28 makes the band appear less wide than indicated by the band width parameter
ω. This was done for mathematical convenience: as Fig. 11-11 shows, a band with small β

12By convention erfc(x) = 0 for x→ +∞, and erfc(x) = 2 for x→ −∞ [98].
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Reordered absorption coefficient for Example 11.11.

contains many strong lines separated by small κ; we have simply chosen to collect all the large
values of κ near the band center.

The wide band k-distribution presented here requires numerical integration of equation (11.170)
and its inversion to obtain the reordered absorption coefficient k(1); the reordered absorption
coefficient recovers the total band absorptance as defined by exponential wide band model
parameters. On the other hand, in the work of Marin and Buckius [161–163] explicit (albeit
cumbersome) expressions are given for k(1), which approximate the wide band k-distributions
obtained from the HITEMP 1995 database [62]. While probably more accurate below 1000 K
(the limit of applicability of HITEMP), the Marin and Buckius formulation depends strongly on
the arbitrary and nonphysical choice for the cutoff wavenumber (chosen to find a best fit with
HITEMP-generated k-distributions).

11.11 TOTAL EMISSIVITY AND MEAN
ABSORPTION COEFFICIENT

Total Emissivity
In less sophisticated, more practical engineering treatment it is usually sufficient to evaluate
the emission from a hot gas (usually considered isothermal) that reaches a wall. The total
emissivity is defined as the portion of total emitted radiation over a path X that is not attenuated
by self-absorption, divided by the maximum possible emission or, from equation (11.48) and
considering only emission within the gas,

ε ≡

∫
∞

0 Ibηεη dη∫
∞

0 Ibη dη
=

∫
∞

0 Ibη

(
1 − e−κηX

)
dη∫

∞

0 Ibη dη
=

N∑
i=1

(
πIbη0

σT4

)
i

∫
∆ηband

(
1 − e−κηX

)
dη =

N∑
i=1

(
πIbη0

σT4

)
i
Ai,

(11.171)

where two simplifying assumptions have been made: (i) The spectral width of each of the N
bands is so narrow that the Planck function varies only negligibly over this range, and (ii) the
bands do not overlap. While the first assumption is generally very good (with the exception of
pure rotational bands such as the one for water vapor listed in Table 11.3), bands do sometimes
overlap (for example, the 2.7µm bands in a water vapor–CO2 mixture).

If two or more bands of the species contained in a gas mixture overlap, the emission from
the mixture will be smaller than the sum of the individual contributions (because of increased
self-absorption). This problem has been dealt with, in an approximate fashion, by Hottel and
Sarofim [11]. They argued that the transmissivities of species a and b over the overlapping
region ∆η are independent from one another, that is,

τa+b =
1

∆η

∫
∆η

e−κηaX e−κηbX dη ≈
1

∆η

∫
∆η

e−κηaX dη
1

∆η

∫
∆η

e−κηbX dη = τa τb. (11.172)
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If we define the total emissivity for a single band as

εi ≡

(
πIbη0

σT4

)
i
Ai, (11.173)

then this expression leads to the total emissivity of two overlapping bands, or

εa+b = εa + εb − εaεb. (11.174)

This equation is only accurate if both bands fully overlap. If the overlap is only partial, then
the correction term, εaεb, should be calculated based on the fractions of band emissivity that
pertain to the overlap region (i.e., a quantity that is not available from wide band correlations).
An approximate way of dealing with this problem has been suggested by Felske and Tien [158].

A total absorptivity for the gas may be defined in the same way as equation (11.171).
However, as for surfaces, in the absorptivity the absorption coefficient must be evaluated at the
temperature of the gas, while the Planck function is based on the blackbody temperature of the
radiation source.

It is clear from equation (11.171) that the total emissivity is equal to the sum of band
absorptances multiplied by the weight factor (πIbη0/σT4). Since the band absorptance is roughly
proportional to the band strength parameter α (exactly proportional for small values of optical
path X), comparison of the factors [α(πIbη0/σT4)]i gives an idea of which bands need to be
considered for the calculation of the total emissivity.

Example 11.12. What is the total emissivity of a 20 cm thick layer of pure CO at 800 K and 1 atm?

Solution
For these conditions CO has a single important absorption band in the infrared. Comparing αIbη0 for
the 4.7µm and 2.35µm bands (see Table 11.3) we find with (η0/T)4.3 = 2143 cm−1/800 K = 2.679 cm−1/K
and (η0/T)2.35 = 4260 cm−1/800 K = 5.325 cm−1/K,(

αEbη0

T3

)
4.7

/ (
αEbη0

T3

)
2.35

=
20.9 × 1.5563
0.14 × 0.2659

= 874.

Therefore, since the 4.7µm band is much stronger (α4.7/α2.35 ' 150) and located in a more important part
of the spectrum

(
Ebη4.7/Ebη2.35 ' 6

)
, the influence of the 2.35µm band can be neglected. We first need to

calculate the band absorptance for the 4.7µm band. Since values in Table 11.3 are based on the mass
absorption coefficient, we need to calculate the density of the CO from the ideal gas law, as we did in
Example 11.8:

ρa =
Mpa

RuT
=

28 g/mol × 1 atm
8.3145 J/mol K × 800 K

1.0132 × 105 J/m3

1 atm
= 426.6 g/m3

and X = ρas = 85.32 g/m2. We also find from Table 11.3 that n = 0.8 and b = 1.1, so that Pe = 1.10.8 = 1.079
and β∗0Pe = 0.075×1.079 = 0.081. Further we findα = 20.9 cm−1/(g/m2),ω = 25.5

√
800/100 = 72.125 cm−1,

andτ0 = αX/ω = 20.9×85.32/72.125 = 24.72. From Fig. 11-25 or subroutinewbmcowe obtainβ∗/β∗0 = 0.529
and β = (β∗/β∗0)β∗0Pe = 0.529 × 0.081 = 0.043. Thus, τ0 > 1/β and we are in the logarithmic regime, and

A∗ = ln(τ0β) + 2 − β = 2.018 and A = 145.6 cm−1.

Sticking this into equation (11.171),

εCO(800 K, 1 atm) =

(
πIbη0

σT4

)
η0=2143 cm−1

× A =

(
Ebη0

T3

)
η0=2143 cm−1

×
A
σT

= 1.5563×10−8 W
m2 cm−1 K3 ×

145.6 cm−1

5.670×10−8×800 W/m2 K3

= 0.0500.
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FIGURE 11-29
Total emissivity of water vapor at a total gas
pressure of 1 bar and zero partial pressure,
from Hottel [18] (solid lines) and Leckner [169]
(dashed lines).

If only total emissivities are desired, it would be very convenient to have correlations, tables,
or charts from which the total emissivity can be read directly, rather than having to go through
the algebra of the wide band correlations plus equation (11.171). A number of investigators have
included total emissivity charts with their wide band correlation data; for example, Brosmer
and Tien [141,150] compiled data on CH4 and C2H2, and Tien and coworkers [149] did the same
for N2O. However, by far the most monumental work has been collected by Hottel [18] and
Hottel and Sarofim [11]. They considered primarily combustion gases, but they also presented
charts for a number of other gases. Their data for total emissivity and absorptivity are presented
in the form

ε = ε(paL, p,T1), (11.175)

α = α(paL, p,T1,Ts) ≈
(

T1
Ts

)1/2

ε

(
paL

Ts

T1
, p,Ts

)
, (11.176)

where T1 is the gas temperature and Ts is the temperature of an external blackbody (or gray)
source such as a hot surface. Originally, the power for T1/Ts recommended by Hottel was
0.65 for CO2 and 0.45 for water vapor, but with greater theoretical understanding the single
value of 0.5 has become accepted [11]. In equation (11.176) pa is the partial pressure of the
absorbing gas and p is the total pressure. (Hottel and Sarofim preferred a pressure path length
over the density path length used by Edwards.) The emissivities were given in chart form
vs. temperature, with pressure path length as parameter, and for an overall pressure of 1 atm.
Later work by Leckner [169], Ludwig and coworkers [170,171], Sarofim and coworkers [172] and
others has shown that the original charts by Hottel [11, 18], while accurate for many conditions
(in particular, over the ranges covered by experimental data of the times), are seriously in error
for some conditions (primarily those based on extrapolation of experimental data). New charts,
based on the integration of spectral data, have been prepared by Leckner [169] and Ludwig
and coworkers [170, 171], and show good agreement among each other. Emissivity charts,
comparing the newly calculated data by Leckner [169] with Hottel’s [18], are shown in Fig. 11-
29 for water vapor and in Fig. 11-30 for carbon dioxide. These charts give the emissivities for
the limiting case of vanishing partial pressure of the absorbing gas (pa → 0).
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The original charts by Hottel also included pressure correction charts for the evaluation
of cases with pa , 0 and p , 1 bar, as well as charts for the overlap parameter ∆ε. Again,
these factors were found to be somewhat inaccurate under extreme conditions and have been
improved upon in later work. Particularly useful for calculations are the correlations given by
Leckner [169], which (for temperatures above 400 K) have a maximum error of 5% for water
vapor and 10% for CO2, respectively, compared to his spectrally integrated emissivities (i.e., the
dashed lines in Figs. 11-29 and 11-30). In his correlation the zero-partial-pressure emissivity is
given by

ε0(paL, p=1 bar,T1) = exp

 M∑
i=0

N∑
j=0

c ji

(
T1
T0

) j(
log10

paL
(paL)0

)i
 , T0 = 1000 K, (paL)0 = 1 bar cm,

(11.177)

and the c ji are correlation constants given in Table 11.4 for water vapor and carbon dioxide. The
emissivity for different pressure conditions is then found from

ε(paL, p,T1)
ε0(paL, 1 bar,T1)

= 1 −
(a−1)(1−PE)
a+b−1+PE

exp

−c
[
log10

(paL)m

paL

]2 , (11.178)

where PE is an effective pressure, and a, b, c, and (paL)m are correlation parameters, also given
in Table 11.4.

As noted before, in a mixture that contains both carbon dioxide and water vapor, the bands
partially overlap and another correction factor must be introduced, which is found from

∆ε =
[

ζ
10.7 + 101ζ

− 0.0089ζ10.4
] (

log10

(pH2O + pCO2
)L

(paL)0

)2.76

, (11.179)

with
ζ =

pH2O

pH2O + pCO2

. (11.180)
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TABLE 11.4
Correlation constants for the determination of the total emissivity for water vapor and carbon
dioxide [169].

Gas Water Vapor Carbon Dioxide

M,N 2, 2 2, 3

c00 . . . cN0

...
. . .

...

c0M . . . cNM

−2.2118 −1.1987 0.035596
0.85667 0.93048 −0.14391
−0.10838 −0.17156 0.045915

−3.9893 2.7669 −2.1081 0.39163
1.2710 −1.1090 1.0195 −0.21897
−0.23678 0.19731 −0.19544 0.044644

PE (p + 2.56pa/
√

t)/p0 (p + 0.28pa)/p0

(paL)m/(paL)0 13.2t2 0.054/t2, t < 0.7
0.225t2, t > 0.7

a
2.144, t < 0.75
1.888 − 2.053 log10 t, t > 0.75 1 + 0.1/t1.45

b 1.10/t1.4 0.23

c 0.5 1.47

T0 = 1000 K, p0 = 1 bar, t = T/T0, (paL)0 = 1 bar cm

This factor is directly applicable to emissivity and absorptivity.
To summarize, the total emissivity and absorptivity of gases containing CO2, water vapor,

or both, may be calculated from:

εi(piL, p,T1) = ε0i(piL, 1 bar,T1)
(
ε
ε0

)
i
(piL, p,T1), i = CO2 or H2O, (11.181a)

αi(piL, p,T1,Ts) =

(
T1
Ts

)1/2

εi

(
piL

Ts

T1
, p,Ts

)
, i = CO2 or H2O, (11.181b)

εCO2+H2O = εCO2
+ εH2O − ∆ε

(
pH2OL, pCO2

L
)
, (11.181c)

αCO2+H2O = αCO2
+ αH2O − ∆ε

(
pH2OL

Ts

T1
, pCO2

L
Ts

T1

)
. (11.181d)

For the convenience of the reader Appendix F contains the Fortran routines totemiss and
totabsor, which calculate the total emissivity or absorptivity of a CO2–water vapor mixture
from Leckner’s correlation, and which can also be called from the stand-alone program Leckner
through user prompts.

Example 11.13. Consider a 1 m thick layer of a gas mixture at 1000 K and 5 bar that consists of 10%
carbon dioxide, 20% water vapor, and 70% nitrogen. What is the total normal intensity escaping from
this layer?

Solution
From equations (11.48) and (11.171) we see that the exiting total intensity is

I =

∫
∞

0
Ibη

(
1 − e−κηX

)
dη =

∫
∞

0
Ibηεη dη =

εσT4

π
,

where ε is the total emissivity of the water vapor–carbon dioxide mixture. First we calculate the
emissivity of CO2 at a total pressure of 1 bar from Table 11.4: With pCO2

L = 0.1 × 5 m bar = 50 bar cm
and T1 = 1000 K we find εCO2 ,0

(1 bar) = 0.157 (which may also be estimated from Fig. 11-30); for a total
pressure of 5 bar we find from Table 11.4 the effective pressure is PE = 5.14, a = 1.1, b = 0.23, c = 1.47,
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and (paL)m = 0.225 bar cm. Thus, from equation (11.178)(
ε
ε0

)
CO2

= 1 −
0.1 × (−4.14)
0.33 + 5.14

exp
[
−1.47 ×

(
log10

0.225
50

)2]
≈ 1.00,

and
εCO2

≈ 0.157.

Similarly, for water vapor with pH2OL = 0.2 × 5 m bar = 100 bar cm we find εH2O,0(1 bar) ≈ 0.359 and the
pressure correction factor becomes, with PE = 7.56, a = 1.88, b = 1.1, c = 0.5, and (paL)m = 13.2 bar cm,(

ε
ε0

)
H2O

= 1 −
0.888 × (−6.56)

1.988 + 7.56
exp

[
−0.5 ×

(
log10

13.2
100

)2]
= 1.414,

and
εH2O ≈ 0.359 × 1.414 = 0.508.

Finally, since we have a mixture of carbon dioxide and water vapor, we need to deduct for the band
overlaps: From equation (11.179), with ζ = 2

3 , ∆ε = 0.072. Thus, the total emissivity is ε = 0.157 + 0.508−
0.072 = 0.593. Alternatively, and more easily, using subroutine totemiss with ph2o = 1., pco2 = .5,
ptot = 5, L = 100, and Tg = 1000 returns the same numbers.

The total normal intensity is then

I = 0.593 × 5.670×10−8 W/(m2 K4) × (1000 K)4/π sr = 10.70 kW/m2 sr.

It is apparent from this example that the calculation of total emissivities is far from an
exact science and carries a good deal of uncertainty. Carrying along three digits in the above
calculations is optimistic at best. The reader should understand that accurate emissivity values
are difficult to measure, and that too many parameters are involved to make simple and accurate
correlations possible.

Mean Absorption Coefficients
We noted in the previous chapter that the emission term in the equation of transfer, equa-
tion (10.21), and in the divergence of the radiative heat flux, equation (10.59), is proportional to
κηIbη. Thus, for the evaluation of total intensity or heat flux divergence it is convenient to define
the following total absorption coefficient, known as the Planck-mean absorption coefficient:

κP ≡

∫
∞

0 Ibηκη dη∫
∞

0 Ibη dη
=

π

σT4

∫
∞

0
Ibηκη dη. (11.182)

Using narrow band averaged values for the absorption coefficient, and making again the
assumption that the Planck function varies little across each vibration–rotation band, equa-
tion (11.182) may be restated as

κP =

N∑
i=1

(
πIbη0

σT4

)
i

∫
∆ηband

(S
d

)
dη =

N∑
i=1

(
πIbη0

σT4

)
i
αi, (11.183)

where the sum is over all N bands, and the Ibη0 are evaluated at the center of each band. It
is interesting to note that the Planck-mean absorption coefficient depends only on the band
strength parameter α and, therefore, on temperature (but not on pressure). Values for α have
been measured and tabulated by a number of investigators for various gases and, using them,
Planck-mean absorption coefficients have been presented by Tien [3], but these values are today
known to be seriously in error. Alternatively, the Planck-mean absorption coefficient can be
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FIGURE 11-31
Planck-mean absorption coefficients for carbon
dioxide, and water vapor.

calculated directly from high-resolution databases such as HITRAN [32] and HITEMP [74]
as [173]

κP =
π

σT4

∫
∞

0
Ibη

∑
j

κη j dη =
∑

j

(
πIbη0

σT4

)
j

∫
∞

0
κη j dη =

∑
j

(
πIbη0

σT4

)
j
S j, (11.184)

where the summation is now over all the spectral lines of the gas, and the Ibη0 are evaluated at
the center of each line. Figures 11-31 through 11-33 show Planck-mean absorption coefficients
calculated from the HITEMP 2010 (CO2, H2O, and CO) and HITRAN 2008 databases (all gases).
For some gases, which saw major updates in the most recent HITRAN 2008 version, the values
obtained from HITRAN 1996 [57] are also shown for comparison. At higher temperatures
the Planck-mean absorption coefficients from HITRAN 2008 are generally larger than those
from HITRAN 1996, due to the inclusion of many more lines from higher vibrational energy
levels. Accordingly, today’s HITRAN 2008 can be used with confidence up to about 1000 K. The
latest version of HITEMP [74] includes many more “hot lines,” and strives to be accurate for
temperatures up to 3000 K.

Sometimes the Planck-mean absorption coefficient is required for absorption (rather than
emission), for example, when gas and radiation source are at different temperatures. This
expression is known as the modified Planck-mean absorption coefficient, and is defined as

κm(T,Ts) ≡

∫
∞

0 Ibη(Ts)κη(T) dη∫
∞

0 Ibη(Ts) dη
. (11.185)

An approximate expression relating κm to κP has been given by Cess and Mighdoll [174] as

κm(T,Ts) = κP(Ts)
(Ts

T

)
. (11.186)

In later chapters we shall see that in optically thick situations the radiative heat flux becomes
proportional to

1
κη
∇Ibη =

1
κη

dIbη

dT
∇T. (11.187)

This has led to the definition of an optically thick or Rosseland-mean absorption coefficient as

1
κR

≡

∫
∞

0

1
κη

dIbη

dT
dη

/∫
∞

0

dIbη

dT
dη =

π

4σT3

∫
∞

0

1
κη

dIbη

dT
dη. (11.188)
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Planck-mean absorption coefficients for ammo-
nia, nitrous oxide, and sulfur dioxide.
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FIGURE 11-33
Planck-mean absorption coefficients for carbon
monoxide, nitric oxide, and methane.

Even though they noted the difficulty of integrating equation (11.188) over the entire spectrum
(with zero absorption coefficient between bands), Abu-Romia and Tien [145] and Tien [3] at-
tempted to evaluate the Rosseland-mean absorption coefficient for pure gases. Since the results
are, at least by this author, regarded as very dubious they will not be reproduced here. We shall
return to the Rosseland absorption coefficient when its use is warranted, i.e., when a medium
is optically thick over the entire spectrum (for example, an optically thick particle background
with or without molecular gases).

11.12 EXPERIMENTAL METHODS

Before going on to employ the above concepts of radiation properties of molecular gases in
the solution of the radiative equation of transfer and the calculation of radiative heat fluxes,
we want to briefly look at some of the more common experimental methods of determining
these properties. While light sources, monochromators, detectors, and optical components are
similar to the ones used for surface property measurements, as discussed in Section 3.10, gas
property measurements result in transmission studies (as opposed to reflection measurements
for surfaces).

All transmission measurements resemble one another to a certain extent: They consist of a
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General setup of gas radiation measurement apparatus [175].

light source, a monochromator or FTIR spectrometer (unless, for measurements over a narrow
spectral range, a tunable laser is used as source), a chopper, a test cell with the (approximately
isothermal) gas whose properties are to be measured, a detector, associated optics, and an
amplifier–recorder device. The chopper often serves two purposes: (i) A pyroelectric detector
cannot measure radiative intensity, rather, it measures changes in intensity; and (ii) if the beam
is chopped before going through the sample gas then, by measuring the difference in intensity
between chopper open and closed conditions, indeed only transmission of the incident light
beam is measured. That is, any emission from the (possibly very hot) test gas and/or stray
radiation will not be part of the signal. A typical setup is shown in Fig. 11-34, depicting an
apparatus used by Tien and Giedt [175]. A chopper is not required if an FTIR spectrometer is
used, since the light is modulated inside the unit. However, for high test gas temperatures care
must be taken to eliminate sample emission from the signal [176,177]. Usually, gas temperatures
are measured independently, and knowledge of gas absorption coefficients is acquired. But it
is also possible to radiatively determine the gas temperature, if accurate knowledge of the
absorption coefficient is given, such as detailed line structure of diatomic molecules together
with FTIR spectrometry [178–180].

Measurements of radiative properties of gases may be characterized by the nature of the test
gas containment and by the spectral width of the measurements. As indicated by Edwards [1],
we distinguish among (1) hot window cell, (2) cold window cell, (3) nozzle seal cell, and (4)
free jet devices; these may be used to make (a) narrow band measurements, (b) total band
absorptance measurements, or (c) total emissivity/absorptivity measurements.

The hot window cell uses an isothermal gas within a container that is closed off at both ends
by windows that are kept at the same temperature as the gas. While this setup is the most
nearly ideal situation for measurements, it is generally very difficult to find window material
that (i) can withstand the high temperatures at which gas properties are often measured, (ii) are
transparent in the spectral regions where measurements are desired (usually near-infrared to
infrared) and do not experience “thermal runaway” (strong increase in absorptivity at a certain
temperature level), and (iii) do not succumb to chemical attack from the test gas and other gases.
Such cells have been used, for example, by Penner [20], Goldstein [181], and Oppenheim and
Goldman [182].

The cold window cell, as the name implies, lets the probing beam enter and exit the test
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cell through water-cooled windows. This method has the advantage that the problems in a hot
window cell are nearly nonexistent. However, if the geometric path of the gas is relatively short,
this method introduces serious temperature and density variations along the path. Tien and
Giedt [175] designed a high-temperature furnace, consisting of a zirconia tube surrounded by
a graphite heater, that allowed temperatures up to 2000 K. The furnace was fitted with water-
cooled, movable zinc selenide windows, which are transmissive between 0.5µm and 20µm
and stay inert to reactions with water vapor and carbon oxides for temperatures below 550 K.
A schematic of their furnace is shown in Fig. 11-35. While allowing high temperatures, it is
impossible to obtain truly isothermal gas columns with such a device. For example, for a
nominal cell at 1750 K of 30 cm length, they found that the temperature gradually varied by a
rather substantial 350 K over the central 2/3 of the cell, and then rapidly dropped to 330 K over
the outer 1/3. This apparatus was used by Tien and coworkers to measure the properties of
various gases [144, 146–149, 183].

Nozzle seal cells are open flow cells in which the absorbing gas is contained within the cell by
layers on each end of inert gases such as argon or nitrogen. This system eliminates some of the
problems with windows, but may also cause density and temperature gradients near the seal; in
addition, some scattering may be introduced by the turbulent eddies of the mixing flows [184].
This type of apparatus has been used by Hottel and Mangelsdorf [13] and Eckert [185] for
total emissivity measurements of water vapor and carbon dioxide. Most of the measurements
made by Edwards and coworkers also used nozzle seal cells [131, 132, 134, 143, 184, 186, 187]. A
schematic of the apparatus used by Bevans and coworkers [186] is shown in Fig. 11-36. Using
a burner and jet for gas radiation measurements eliminates the window problems, and is in
many ways similar to the nozzle seal cell. Free jet devices can be used for extremely high
temperatures, but they also introduce considerable uncertainty with respect to gas temperature
and density distribution and to path length. Ferriso and Ludwig [188] used such a device for
spectral measurements of the 2.7µm water vapor band.

More recently, Modest has constructed a high-temperature gas transmissometer, shown
schematically in Fig. 11-37 and used by Bharadwaj et al. [63, 65, 66] to measure transmissivities
of carbon dioxide and water vapor. The device is based on the infrared emissometer [189–191]
shown in Fig. 3-44 and combines the advantages of hot-window and cold-window absorption
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cells. In essence, the apparatus consists of a hermetically sealed high-temperature furnace, a
motorized tube fitted with an optical window, a sealed optical path, and an FTIR spectrometer
with internal infrared light source and an external detector, which can only detect the modulated
light from the FTIR. Light from the FTIR is imaged onto a platinum mirror inside the furnace;
the reflected light, in turn, is imaged onto the external detector. The cold drop-tube with an
optical window is placed into position and retracted by a high-speed motor. The gas column
between platinum mirror and optical window forms an isothermal absorption cell and, since
the optical window resides within the furnace’s hot zone for only a few seconds at a time, this
device is able to measure transmissivities of truly isothermal high-temperature gas columns.

All multispectral diagnostic techniques discussed so far have employed single-detector
monochromator or FTIR spectroscopy. Such devices can provide spectral scans in a wide
range of resolutions and of great accuracy, but to obtain a spectrally resolved measurement
with good signal-to-noise ratio takes tens of seconds for low-resolution narrow-band scans to
hours for high-resolution full-spectrum measurements. Very few attempts have been made to
date to obtain time-resolved multispectral signals from turbulent systems, because—to obtain
snapshots of a turbulent flowfield—exposure times must be of order of 0.1 ms or less. Richardson
et al. [192, 193] were perhaps the first to attempt such measurements, using a 32-element InSb
linear array detector fitted with a grating monochromator. The apparatus was quite similar to
the one shown in Fig. 11-34, except that there is no need to rotate the monochromator’s prism
or grating, with the spectrally separated light hitting different elements of the array detector
simultaneously. Their device was able to collect a 32-spectrum signal over 160µs, storing 250
samples for each detector element. This resulted in an equivalent FTIR resolution of 32 cm−1

when collecting a spectrum of 250 cm−1, with a signal-to-noise ratio of about 50. Their improved
second device was able to hold 2048 full spectra collected every 16µs. A similar apparatus was
built by Keltner et al. [194], using a 256 × 256 MCT array detector. They argued that the use of
(dual) prisms is preferable to grating monochromators in connection with array detectors. This
dual prism arrangement was also used by Ji et al. [195], together with a 160-element PbSe linear
array detector. The resulting high-speed spectrometer, is capable of taking near-instantaneous
snapshots at a rate of 390 Hz. The device was calibrated against a blackbody, and spectra from
a laminar premixed flame were compared with measurements using a grating spectrometer–
InSb detector combination. Later measurements have been carried out with this high-speed
infrared array spectrometer, to provide radiation data for the otherwise well-documented Sandia
Workshop flames [196–198], and for a sooty ethylene air diffusion flame [199].
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FIGURE 11-36
Schematic of nozzle seal gas con-
tainment system by Bevans and
coworkers [186].
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Data Correlation
The half-width of a typical spectral line in the infrared is on the order of 0.1 cm−1. To get a strong
enough signal with a monochromator, any spectral measurement is by experimental necessity
an average over several wavenumbers and, therefore, dozens or even hundreds of lines, unless
an extremely monochromatic laser beam is employed. Thus, the measured transmissivity
or (after subtracting from unity) absorptivity/emissivity is of the narrow band average type.
Most FTIR measurements also fall into this category, although they generally have much better
resolution than monochromators; resolutions better than 0.1 cm−1 are possible with high-end
spectrometers. A correlation for the average absorption coefficient may be found by inverting
equation (11.68) or equation (11.70), depending on whether the Elsasser or one of the statistical
models is to be used, in either case yielding

S
d

=
S
d

(εη,X, γ/d), (11.189)

where the εη and X (density or pressure path length) are measured quantities, and the width-
to-spacing ratio must be determined independently. Most early measurements have assumed a
constant γ/d for the entire band, in which case the width-to-spacing ratio can be obtained in a
number of ways: (i) direct prediction of γ and d, (ii) using an independently determined band
intensity, α, as the closing parameter, or (iii) finding a best fit for β (which is directly related to
γ/d) in the exponential wide band model. With the recent advent of high-resolution databases
it has been recognized that line spacing can vary dramatically across a band. The first narrow
band correlation with variable β was done by Brosmer and Tien [200] for propylene, using
Goody’s model and least-mean-square-error fits.

In medium-resolution measurements of CO2 Modest and Bharadwaj [63] correlated their
experimental transmissivities to the Malkmus model through a least-mean-square-error fit. As
an example the 2.7µm bands of CO2 at 300 and 1000 K are shown in Fig. 11-38 and compared with
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data obtained from the most accurate databases of the time, HITRAN 1996 [57] and EM2C [106].
CO2 is seen to have two bands around 2.7µm, one centered at 3615 cm−1, the other at 3715 cm−1.
Agreement between experiment-based correlation and HITRAN 1996 is seen to be excellent
except near the four S/d peaks, where the absorption coefficient is dominated by a few widely-
spaced strong lines (about 1.8 cm−1 apart). This leads to a jagged appearance if the statistical
definition for S/d is used, equation (11.82), and even if straight averaging over 4 cm−1 (equal to
the experimental resolution) is carried out. The line labeled “HITRAN/FTIR avg.” was obtained
by averaging the absorption coefficient with the FTIR’s instrument response function [201] as
weight factor, which comes close to simulating the actual experiment. Results from the EM2C
database are also shown for comparison. Because of its relatively low resolution of 25 cm−1 this
database cannot capture the dual peaks, but agreement with experiment is excellent if the lower
resolution is accounted for.

Measured spectral absorptivities may be integrated to determine total band absorptances.
Plotting those band absorptances that fall into the logarithmic regime vs. XPe on semilog paper
gives a straight line whose slope is the band width parameter (cf. Table 11.2). Preparing a linear
plot of A/Pe vs.

√
X/Pe for data in the square root regime gives again a straight line, this time with√

αωβ∗ as the slope (where β∗ = β/Pe = πγ/d is the width-to-spacing ratio for a dilute mixture,
cf. Tables 11.2 and 11.3). Finally, total emissivity values may be calculated by substituting the
measured total band absorptances into equation (11.171).

Experimental Errors
Most of the earlier gas property measurements were subject to considerable experimental errors,
as listed by Edwards [184]: (1) inhomogeneity and uncertainty in the values of temperature,
pressure, and composition, (2) scattering by mixing zones in nozzle seals and free jets, (3)
reflection and scattering by optical windows, and/or (4) deterioration of the window material
due to adsorption or “thermal runaway.” In addition, essentially all data until the 1980s were
poorly correlated, using fixed values for γ/d (across an entire vibration–rotation band), with
a resulting correlational accuracy of ±20% at best. Only the more modern measurements by
Phillips [107,108] and Bharadwaj et al. [63,65,66] apparently have experimental accuracies better
than 5% and have been accurately correlated.
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96. André, F., and R. Vaillon: “The k-moment method for modeling the blackbody weighted transmission function
for narrow and wide band radiative properties of gases,” Journal of Quantitative Spectroscopy and Radiative
Transfer, vol. 108, no. 1, pp. 1–16, 2007.

97. Elsasser, W. M.: Heat transfer by infrared radiation in the atmosphere, Harvard University Press, Cambridge, MA,
1943.

98. Abramowitz, M., and I. A. Stegun (eds.): Handbook of Mathematical Functions, Dover Publications, New York,
1965.

99. Goody, R. M.: “A statistical model for water-vapour absorption,” Quart. J. R. Meteorol. Soc., vol. 78, p. 165, 1952.
100. Godson, W. L.: “The computation of infrared transmission by atmospheric water vapour: I and II,” Journal of

Meteorology, vol. 12, p. 272 and 533, 1955.
101. Malkmus, W.: “Random Lorentz band model with exponential-tailed S−1 line-intensity distribution function,”

Journal of the Optical Society of America, vol. 57, no. 3, pp. 323–329, 1967.
102. Grosshandler, W. L.: “Radiative transfer in nonhomogeneous gases: A simplified approach,” International

Journal of Heat and Mass Transfer, vol. 23, pp. 1447–1457, 1980.
103. Grosshandler, W. L.: “RADCAL: a narrow-band model for radiation calculations in a combustion environment,”

Technical Report NIST Technical Note 1402, National Institute of Standards and Technology, 1993.
104. Soufiani, A., J.-M. Hartmann, and J. Taine: “Validity of band-model calculations for CO2 and H2O applied to

radiative properties and conductive–radiative transfer,” Journal of Quantitative Spectroscopy and Radiative Transfer,
vol. 33, pp. 243–257, 1985.

105. Lacis, A. A., and V. Oinas: “A description of the correlated-k distribution method for modeling nongray
gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,”
Journal of Geophysical Research, vol. 96, no. D5, pp. 9027–9063, 1991.

106. Soufiani, A., and J. Taine: “High temperature gas radiative property parameters of statistical narrow-band
model for H2O, CO2 and CO, and correlated-k model for H2O and CO2,” International Journal of Heat and Mass
Transfer, vol. 40, no. 4, pp. 987–991, 1997.

107. Phillips, W. J.: “Band model parameters of the 2.7µm band of H2O,” Journal of Quantitative Spectroscopy and
Radiative Transfer, vol. 43, 1990.

108. Phillips, W. J.: “Band model parameters of the 4.3µm CO2 band in the 300–1000 K temperature range,” Journal
of Quantitative Spectroscopy and Radiative Transfer, vol. 48, 1992.

109. Bharadwaj, S. P., and M. F. Modest: “A multiscale Malkmus model for treatment of inhomogeneous gas paths,”
International Journal of Thermal Sciences, vol. 46, pp. 479–490, 2007.

110. Rivière, P., and A. Soufiani: “Generalized Malkmus line intensity distribution for CO2 infrared radiation in
Doppler broadening regime,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 112, no. 3, pp.
475–485, 2011.
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Problems

11.1 Estimate the eigenfrequency for vibration, νe, for a CO molecule.

11.2 A certain gas at 1 bar pressure has a molecular mass of m = 10−22 g and a diameter of D = 5× 10−8 cm.
At what temperature would Doppler and collision broadening result in identical broadening widths
for a line at a wavenumber of 4000 cm−1?

11.3 Water vapor is known to have spectral lines in the vicinity of λ = 1.38µm. Consider a single,
broadened spectral line centered at λ0 = 1.33µm. If the water vapor is at a pressure of 0.1 atm and a
temperature of 1000 K, what would you expect to be the main cause for broadening? Over what range
of wavenumbers would you expect the line to be appreciable, i.e., over what range is the absorption
coefficient at least 1% of its value at the line center?

11.4 Compute the half-width for a spectral line of CO2 at 2.8µm for both Doppler and collision broadening
as a function of pressure and temperature. Find the temperature as a function of pressure for which
both broadening phenomena result in the same half-width. (Note: The effective diameter of the CO2

molecule is 4.0×10−8 cm.)

11.5 Methane is known to have a vibration-rotation band around 1.7µm. It is desired to measure the
Doppler half-width of a spectral line in that band at room temperature (T = 300 K). In order to make
sure that collision broadening is negligible, the pressure of the CH4 is adjusted so that the expected
collision half-width is only 1/10 of the Doppler half-width. What is this pressure? (For methane:
D = 0.381 nm.)

11.6 Repeat Problem 11.4 for CO at a spectral location of 4.8µm (Note: The effective diameter of the CO
molecule is 3.4×10−8 cm.)

11.7 A certain gas has two important vibration–rotation bands centered at 4µm and 10µm. Measurements
of spectral lines in the 4µm band (taken at 300 K and 1 bar = 105 N/m2) indicate a half-width of
γη = 0.5 cm−1. Predict the half-width in the 10µm band for the gas at 500 K, 3 bar. (The diameter of
the gas molecules is known to be between 5 Å < D < 40 Å.)

11.8 It is desired to measure the volume fraction of CO in a hot gas by measuring the transmissivity
of a 10 cm long column, using a blackbody source and a detector responsive around 4.7µm. The
conditions in the column are 1000 K, 1 atm, and properties for CO around 4.7µm are known to
be S = 0.8 cm−2atm−1, γ = 0.02 cm−1, and d = 0.05 cm−1. Give an expression relating measured
transmissivity to CO volume fraction.

11.9 A polyatomic gas has an absorption band in the infrared. For a certain small wavelength range the
following is known:

Average line half-width: 0.04 cm−1,
Average integrated absorption coefficient: 2.0 × 10−4 cm−1/(g/m2),
Average line spacing: 0.25 cm−1,
The density of the gas at STP is 3 × 10−3 g/cm3.

For a 50 cm thick gas layer at 500 K and 1 atm calculate the mean spectral emissivity for this wavelength
range using

(a) the Elsasser model,
(b) the statistical model.

Which result can be expected to be more accurate?

11.10 Consider a gas for which the semistatistical model is applicable, i.e., εη = 1−exp(−Wη/d). To predict εη
for arbitrary situations, a band-averaged (or constant) value for γη/d must be known. Experimentally
available are values for α =

∫
∆η

(Sη/d) dη and εη = εη(η) (for optically thick situations) for given pe and
T. It is also known that

γη
d
'

(γη
d

)
0

pe

(T0

T

)1/2

.

Outline how an average value for (γη/d)0 can be found.

11.11 The following is known for a gas mixture at 600 K and 2 atm total pressure and in the vicinity of a
certain spectral position: The gas consists of 80% (by volume) N2 and 20% of a diatomic absorbing
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gas with a molecular weight of 20 g/mol, a mean line half-width γ = 0.01 cm−1, a mean line spacing
of d = 0.1 cm−1, and a mean line strength of S = 8 × 10−5 cm−2/(g/m3). (a) For a gas column 10 cm
thick determine the mean spectral emissivity of the gas. (b) What happens if the pressure is increased
to 20 atm? (Since no broadening parameters are known you may assume the effective broadening
pressure to be equal to the total pressure.)

11.12 Repeat Problem 11.11 for a four-atomic gas.

11.13 1 kg of a gas mixture at 2000 K and 1 atm occupies a container of 1 m height. The gas consists of 70%
nitrogen (by volume) and 30% of an absorbing species. It is known that, at a certain spectral location,
the line half-width is γ = 300 MHz, the mean line spacing is d = 2000 MHz, and the line strength is
S = 100 cm−1 MHz. (a) Calculate the mean spectral emissivity under these conditions. (b) What will
happen to the emissivity if the sealed container is cooled to 300 K?

11.14 A 50 cm thick layer of a pure gas is maintained at 1000 K and 1 atm. It is known that, at a certain
spectral location, the mean line half-width is γ = 0.1 nm, the mean line spacing is d = 2 nm, and the
mean line strength is S = 0.002 cm−1 nm atm−1 = 2×10−10 atm−1. What is the mean spectral emissivity
under these conditions? (1 nm = 10−9 m)

11.15 The following data for a diatomic gas at 300 K and 1 atm are known: The mean line spacing is 0.6 cm−1

and the mean line half-width is 0.03 cm−1; the mean line strength (= integrated absorption coefficient)
is 0.8 cm−2 atm−1 (based on a pressure absorption coefficient). Calculate the mean spectral emissivity
for a path length of 1 cm. In what band approximation is the optical condition?

11.16 The average narrow band transmissivity of a homogeneous gas mixture has, at a certain wavenumber
η, been measured as 0.70 for a length of 10 cm, and as 0.58 for a length of 20 cm. What is the expected
transmissivity for a gas column of 30 cm length, assuming the Malkmus model to hold?

11.17 1 kg of a gas mixture at 2000 K and 1 atm occupies a container of 1 m height. The gas consists of
70% nitrogen (by volume) and 30% of an absorbing species. It is known that, at a certain spectral
location, the nitrogen-broadening line half-width at STP (1 atm and 300 K) is γn0 = 0.05 cm−1, the
self-broadening line half-width is γa0 = 0.02 cm−1, the mean line spacing is d = 0.4 cm−1, and the
density and mean line strength (for the given mixture conditions) are ρ = 0.800 kg/m3 and S̄ = 4 ×
10−3 cm−1/(g/m2), respectively. Under these conditions collision broadening is expected to dominate.

(a) Calculate the mean spectral emissivity based on the height of the container.
(b) What will happen to the emissivity if the sealed container is cooled to 300 K at constant pressure

(with fixed container cross-section and sinking top end)?

Note: The mean line intensity is directly proportional to the number of molecules of the absorbing
gas and otherwise constant. The line half-width is given by

γ = [γn0pn + γa0pa]

√
T0

T
(p in atm,T0 = 300 K),

where pn and pa are partial pressures of nitrogen and absorbing species.

11.18 A certain gas is known to behave almost according to the rigid-rotor/harmonic-oscillator model,
resulting in gradually changing line strengths (with wavenumber) and somewhat irregular line
spacing. Calculate the mean emissivity for a 1 m thick layer of the gas at 0.1 atm pressure. In
the wavelength range of interest, it is known that the integrated absorption coefficient is equal to
0.80 cm−2 atm−1, the line half-width is 0.04 cm−1 and the average line spacing is 0.40 cm−1.

11.19 A narrow band of a certain absorbing gas contains a single spectral line of Lorentz shape at its center.
For a narrow band width of ∆η = 10γ, determine the corresponding reordered k vs. 1 distribution.
Hint: This can be achieved without a lot of math.

11.20 κ
η
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Consider the spectral absorption coefficient for a narrow
band range of ∆η as given by the sketch. Carefully sketch
the corresponding k-distribution. Determine the mean
narrow band emissivity of a layer of thickness L from
this k-distribution.
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11.21
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Consider the spectral absorption coefficient for a nar-
row band range of ∆η as given by the sketch. Care-
fully sketch the corresponding k-distribution. Verify your
sketch through calculations.

11.22
κ

η

ηd 4d

Ad

4Ad

Consider the (highly artificial) absorption coefficient shown. Math-
ematically, this may be expressed as

κη = A[η + 3h(η)] 0 < η < ∞

where h(η) is a periodic function of period 2d, defined by

h(η) =
{
η, 0 < η < d,
2d − η, d < η < 2d.

For a narrow band of ∆η = 10d and 0.5d < η < 10.5d,

(a) find the k-distribution as well as the cumulative k-distribution,
(b) determine the narrow band average absorption coefficient κ̄η by direct (η−) integration, and

also from the k-distribution,
(c) determine the narrow band average transmissivity for a slab of thickness L from the k-distribution;

compare with the gray-gas value (using κη).

11.23 Consider again the gas of Problem 11.15, but replace the line intensity by

Spη = Spη0 e−|η−η0 |/ω, Spη0 = 0.02 cm−2 atm−1, ω = 20 cm−1.

In what regime is this optical condition? What is the total band absorptance?

11.24 A mixture of nitrogen and sulfur dioxide (with 0.05 volume-% SO2) is at 1 atm and 300 K. For the
strong ν3 band of SO2, centered at η3 = 1361 cm−1, it is known that

γη
d
' 0.06,

Sη
d

= 17 cm−1 atm−1 exp
[
−

( η − η3

25 cm−1

)2
]
.

For a 10 cm thick gas-mixture layer:

(a) Develop an expression for the average spectral emissivity.
(b) Calculate the total band absorptance.
(c) For comparison, calculate the total band absorptance from the wide band model. (Hint: For

300 K it is known that β∗/β∗0 > 1.)

Note: Under these conditions collision broadening is the predominant broadening mechanism.

11.25 A gas mixture at 1500 K and 1 atm is known to contain a small amount of CO2. To remotely determine
the partial pressure of CO2 the band absorptance of the CO2 4.3µm band is measured and is found
to be 100 cm−1 for a path length of 1 m. Assuming that the gas may be treated as a nitrogen–CO2

mixture, determine the partial pressure of the CO2.

11.26 Nitrogen at 2000 K and 1 atm contains a small amount of water vapor. To remotely determine the
water vapor concentration the contribution of the 6.3µm band toward the total emissivity is measured,
and is found to be ε6.3 = 0.012 for a 1 m thick isothermal gas layer. Determine the mole fraction of
water vapor.

11.27 A large moon in the outer solar system has a thin atmosphere of pure methane. In order to determine
average temperatures of the atmosphere, a satellite measures the total band absorptance of the
3.3µm fundamental band at an altitude where the atmospheric pressure is 100Pa. If the total band
absorptance for a 100 km thick layer is measured as A3.3 = 259 cm−1, determine the temperature of
the atmosphere (this may be left in the form of an implicit expression).
Note: At the expected cold temperature (< 200K) you may assume γ ' γ0 , γ(T).
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11.28 A mixture of nitrogen and sulfur dioxide is at 1 atm total pressure. To measure the partial pressure
of the sulfur dioxide in a furnace environment, an instrument is used that measures total band
absorptance for the strong SO2 band centered at ηc = 1361 cm−1. For that band it is known that
α = 2340 (T0/T) cm−2 atm−1, β = 0.357

√
T/T0Pe, ω = 8.8

√
T/T0 cm−1, b = 1.28, and n = 0.65. What is

the partial pressure of the sulfur dioxide if the total band absorptance has been measured as 142 cm−1

for a 1 m thick gas layer at T = 1600 K?

11.29 An optical device to determine NOx content in the combustion products powering a gas turbine
measures the transmissivity of NO for its 5.3µm band. The device consists of a blackbody source
(Tbb = 2000 K), two ports, a filter/detector combination (with flat response 1750 cm−1 < η < 2000 cm−1,
and zero response elsewhere), and a chopper (such that the detector registers radiation from the
blackbody source, but not the emission from the combustion gases). Two measurements are taken:
one with an inert gas in the turbine (signal S0), and another with combustion gases present (assume
T1 = 1600 K = const, p1 = 5 bar = const, light path through gas L = 1 m; signal S).

(a) Show that the measured transmissivity, t, is

τ ≡
S
S0

= 1 −
ω
∆η

A∗(T1, p1,L, xNO), ∆η = 250 cm−1,

where xNO is the volume or mole fraction of NO, and assuming that the Planck function is
constant across ∆η.

(b) If the transmissivity is measured as τ = 0.7, what is the NO volume fraction, xNO?

Note: For NO at 1600 K, β∗/β∗0 = 0.827.

11.30 It is desired to predict the fraction of the sunlight absorbed by the nitrous oxide (N2O) contained in
the atmosphere. You may assume that the atmosphere is a 20 km high layer of N2–N2O mixture, that
the atmosphere is isothermal with a linear pressure variation from 1 atm at the ground to zero at the
top of the atmosphere, and that N2O makes up 10−4% by volume of the mixture everywhere.

N2O has two vibration–rotation bands with the following wide band coefficients (at the temperature
of the atmosphere):

α β∗ ω n b
4.5µm band 2035 cm−2 atm−1 0.145 22 cm−1 0.6 1.12
7.8µm band 161 cm−2 atm−1 0.377 18.5 cm−1 0.6 1.12

(a) Show that the influence of the 7.8µm band is negligible.
(b) Calculate the total absorptivity for this atmosphere assuming a constant average pressure of

0.5 atm.
(c) Show that the absorptivity is the same as in (b) if the linear pressure variation is taken into ac-

count. Hint: You may assume that the pressure-based absorption coefficient, κpη, is independent
of pressure.

11.31 Nitrous oxide (N2O) is contained in the Earth’s atmosphere with a partial pressure of 10−6 atm.
While N2O causes pollution, it may also be employed for remote sensing applications. N2O has
two vibration–rotation bands with the wide band coefficients (at the temperature of the atmosphere)
given in Problem 11.30.

(a) It is known that, for a distance of L1 = 1 km through the atmosphere, the 4.5 µm band has
a certain total band absorptance A1. What length through the atmosphere, L2, is required to
obtain the same band absorptance with the 7.8 µm band, A2 = A1?

(b) Would this ratio L2/L1 increase, decrease, or stay the same if L1 was decreased?

11.32 In a combustor the air–fuel ratio is controlled by measuring the total band absorptance of the fuel
(methane) for its 3.3µm band. The mixture’s inlet conditions are 1 atm total pressure, temperature
is 400 K, combustor diameter is L = 10 cm, and the design mole fraction for methane is 25%. If the
total band absorptance across the diameter is measured as A3.3 = 112 cm−1, what is the exact methane
mole fraction at that time?

11.33 A 1 m thick layer of a mixture of nitrogen and methane (CH4) at T = 300 K and p = 1 atm has
a measured total emissivity of ε = 0.010. Estimate the partial pressure of the methane (RCH4 =
5.128 × 10−6 atm m3/g K). It is known that pCH4

� p.
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11.34 A mixture of water vapor and nitrogen at a total pressure of 1 atm and a temperature of 300 K is found
to have a total band absorptance of 100 cm−1 for the 6.3µm band for a geometric path length of 50 cm.
Determine the partial pressure of the water vapor.

11.35 One method of measuring the temperature of a high-temperature gas is to determine the total band
absorptance of a vibration–rotation band of the gas under the prevailing conditions. Consider a 20 cm
thick layer of pure methane, CH4, at 1 atm pressure. If the total band absorptance of the 3.3µm band
is 587 cm−1, what is the temperature of the CH4?
Note: Such instruments are generally used only for T > 1000◦C.

11.36 Estimate the total band absorptance of the 2.7µm CO2 band at 833 K, a total pressure of 10 atm, a
partial pressure of 1 atm, and a mass-path length of ρCO2

L = 2440 g/m2, from Fig. 1-16. Compare with
the result from the exponential wide band model.

11.37 A mixture of nitrogen and sulfur dioxide (with 5% SO2 by volume) is at 1 atm total pressure. To
measure the temperature of the mixture in a furnace environment (T > 1000 K), an instrument is used
that measures total band absorptance for the strong SO2 band centered at ηc = 1361 cm−1. For that
band it is known that α = 2340 (T0/T) cm−2 atm−1, β = 0.357

√
T/T0Pe, ω = 8.8

√
T/T0 cm−1, b = 1.28 and

n = 0.65. What is the temperature of the mixture if the total band absorptance has been measured as
142 cm−1 for a 1 m thick gas layer?

11.38 The Earth’s pollution with sulfur dioxide (SO2)is determined by measuring the transmission of a light
beam from a satellite. Assuming that the band absorptance of the 7.3µm band has been measured as
10.0 cm−1, and that the atmosphere may be approximated as a 10 km thick isothermal layer of nitrogen
(with a trace of SO2) at 0.5 atm and −10◦C, determine the volume fraction of SO2. Use wbmso2 from
Appendix F to calculate the overlap parameter β or use β ' 0.357

√
T/T0Pe.

11.39 To determine the average atmospheric temperature on a distant planet, the total band absorptance for
the 3.3µm CH4 band has been measured as A3.3 = 100 cm−1. It is known from other measurements
that methane is a trace element in the atmosphere (which contains mostly nitrogen and whose total
pressure is 2 atm), and that the absorption path length for methane on that planet, for which A3.3 was
measured, is 4.14 g/m2. What is the temperature?

11.40 Using the exponential wide band model, evaluate the total emissivity of a 1 m thick layer of a nitrogen–
water vapor mixture at 2 atm and 400 K if the water vapor content by volume is (a) 0.01%, (b) 1%, or
(c) 100%. Compare with Leckner’s model using subroutine totemiss.

11.41 Using the exponential wide band model, evaluate the total emissivity of a 1 m thick layer of a nitrogen–
CO2 mixture at 0.75 atm and 600 K if the CO2 content by volume is (a) 0.01%, (b) 1%, or (c) 100%.
Compare with Leckner’s model using subroutine totemiss.

11.42 Evaluate the Planck-mean absorption coefficients for the two gases in Problems 11.40 and 11.41, based
on the data given in Table 11.3. Compare the results with Fig. 11-31.

11.43 Write a small computer program that calculates the total emissivity of a CO2–inert gas mixture,
based on wide band property data from Table 11.3, as a function of temperature, pressure, CO2

volume fraction, and path length. For a given set of pressure, volume fraction, and length, compare
with values obtained from Leckner’s model using subroutine totemiss and plot the emissivity as a
function of temperature.

11.44 Repeat Problem 11.40 for a path with a temperature profile given by T = 300 K[1+4s(L− s)/L2], where
s is distance across the gas layer.

11.45 Develop a simple box model for the evaluation of the effective band width, i.e., A =
∫
∞

0 εη dη = εη ∆η,
based on an average emissivity (rather than absorption coefficient). You may assume that the line
spacing and line intensity are constant across the band. Calculate the total band absorptance of water
vapor at 0.1 atm and 400 K for path lengths of 1 mm and 1 m, assuming that ∆η ≈ ω, where ω is
the band width parameter from the exponential wide band model. Compare with results from that
model.
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