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10
THE RADIATIVE
TRANSFER EQUATION
IN PARTICIPATING
MEDIA (RTE)

10.1 INTRODUCTION

In previous chapters we have looked at radiative transfer between surfaces that were separated
by vacuum or by a transparent (“radiatively nonparticipating”) medium. However, in many
engineering applications the interaction of thermal radiation with an absorbing, emitting, and
scattering (“radiatively participating”) medium must be accounted for. Examples in the heat
transfer area are the burning of any fuel (be it gaseous, liquid,or solid; be it for power produc-
tion, within fires, within explosions, etc.), rocket propulsion, hypersonic shock layers, ablation
systems on reentry vehicles, nuclear explosions, plasmas in fusion reactors, and many more.

In the present chapter we shall develop the general relationships that govern the behavior
of radiative heat transfer in the presence of an absorbing, emitting, and/or scattering medium.
We shall begin by making a radiative energy balance, known as the radiative transfer equation, or
RTE, which describes the radiative intensity field within the enclosure as a function of location
(fixed by location vector r), direction (fixed by unit direction vector ŝ) and spectral variable
(wavenumber η).1 To obtain the net radiative heat flux crossing a surface element, we must
sum the contributions of radiative energy irradiating the surface from all possible directions
and for all possible wavenumbers. Therefore, integrating the radiative transfer equation over
all directions and wavenumbers leads to a conservation of radiative energy statement applied to
an infinitesimal volume. Finally, this will be combined with a balance for all types of energy
(including conduction and convection), leading to the Overall Conservation of Energy equation.

In the following three chapters we shall deal with the radiation properties of participating
media, i.e., with how a substance can absorb, emit, and scatter thermal radiation. In Chapter
11 we discuss how a molecular gas can absorb and emit photons by changing its energy states,
how to predict the radiation properties, and how to measure them experimentally. Chapter 12
is concerned with how small particles interact with electromagnetic waves—how they absorb,

1In our discussion of surface radiative transport we have used wavelength λ as the spectral variable throughout,
largely to conform with the majority of other publications. However, for gases, frequency ν or wavenumber η are
considerably more convenient to use. Again, to conform with the majority of the literature, we shall use wavenumber
throughout this part.
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FIGURE 10-1
Attenuation of radiative intensity by absorption and scattering.

emit, and scatter radiative energy. Again, theoretical as well as experimental methods are
covered. Finally, in Chapter 13 a very brief account is given of the radiation properties of solids
and liquids that allow electromagnetic waves of certain wavelengths to penetrate into them for
appreciable distances, known as semitransparent media.

10.2 ATTENUATION BY ABSORPTION
AND SCATTERING

If the medium through which radiative energy travels is “participating,” then any incident
beam will be attenuated by absorption and scattering while it travels through the medium,
as schematically shown in Fig. 10-1. In the following we shall develop expressions for this
attenuation for a light beam which travels within a pencil of rays into the direction ŝ. The
present discussion will be limited to media with constant refractive index, i.e., media through
which electromagnetic waves travel along straight lines [while a varying refractive index will
bend the ray, as shown by Snell’s law, equation (2.72), for an abrupt change]. It is further assumed
that the medium is stationary (as compared to the speed of light), that it is nonpolarizing,and
that it is (for most of the discussion) at local thermodynamic equilibrium (LTE).

Absorption
The absolute amount of absorption has been observed to be directly proportional to the magni-
tude of the incident energy as well as the distance the beam travels through the medium. Thus,
we may write,

(dIη)abs = −κηIη ds, (10.1)

where the proportionality constant κη is known as the (linear) absorption coefficient, and the
negative sign has been introduced since the intensity decreases. As will be discussed in the
following chapter, the absorption of radiation in molecular gases depends also on the number
of receptive molecules per unit volume, so that some researchers use a mass absorption coefficient
or a pressure absorption coefficient, defined by

(dIη)abs = −κρηIηρ ds = −κpηIηp ds. (10.2)
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The subscripts ρ and p are used here only to demonstrate the differences between the coefficients.
The reader of scientific literature often must rely on the physical units to determine the coefficient
used.

Integration of equation (10.1) over a geometric path s results in

Iη(s) = Iη(0) exp
(
−

∫ s

0 κη ds
)

= Iη(0) e−τη , (10.3)
where

τη =

∫ s

0
κη ds (10.4)

is the optical thickness (for absorption) through which the beam has traveled and Iη(0) is the
intensity entering the medium at s = 0. Note that the (linear) absorption coefficient is the
inverse of the mean free path for a photon until it undergoes absorption. One may also define
an absorptivity for the participating medium (for a given path within the medium) as

αη ≡
Iη(0) − Iη(s)

Iη(0)
= 1 − e−τη . (10.5)

Scattering

Attenuation by scattering, or “out-scattering” (away from the direction under consideration), is
very similar to absorption, i.e., a part of the incoming intensity is removed from the direction
of propagation, ŝ. The only difference between the two phenomena is that absorbed energy
is converted into internal energy, while scattered energy is simply redirected and appears
as augmentation along another direction (discussed in the next section), also known as “in-
scattering.” Thus, we may write

(dIη)sca = −σsηIη ds, (10.6)

where the proportionality constant σsη is the (linear) scattering coefficient for scattering from the
pencil of rays under consideration into all other directions. Again, scattering coefficients based
on density or pressure may be defined. It is also possible to define an optical thickness for
scattering, where the scattering coefficient is the inverse of the mean free path for scattering.

Total Attenuation
The total attenuation of the intensity in a pencil of rays by both absorption and scattering is
known as extinction. Thus, an extinction coefficient is defined2 as

βη = κη + σsη. (10.7)

The optical distance based on extinction is defined as

τη =

∫ s

0
βη ds. (10.8)

As for absorption and scattering, the extinction coefficient is sometimes based on density or
pressure.

10.3 AUGMENTATION BY EMISSION
AND SCATTERING

A light beam traveling through a participating medium in the direction of ŝ loses energy by
absorption and by scattering away from the direction of travel. But at the same time it also gains
energy by emission, as well as by scattering from other directions into the direction of travel ŝ.

2Care must be taken to distinguish the dimensional extinction coefficient βη from the absorptive index, i.e., the
imaginary part of the index of refraction complex k (sometimes referred to in the literature as the “extinction coefficient”).
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Redirection of radiative intensity by
scattering.

Emission
The rate of emission from a volume element will be proportional to the magnitude of the volume.
Therefore, the emitted intensity (which is the rate of emitted energy per unit area) along any
path again must be proportional to the length of the path, and it must be proportional to the
local energy content in the medium. Thus,

(dIη)em = jη ds, (10.9)

where jη is termed the emission coefficient. Since, at local thermodynamic equilibrium (LTE), the
intensity everywhere must be equal to the blackbody intensity, it will be shown in Chapter 11,
equation (11.22), that

jη = κηIbη and (dIη)em = κηIbη ds, (10.10)

that is, at LTE the proportionality constant for emission is the same as for absorption. Similar
to absorptivity, one may also define an emissivity of an isothermal medium as the amount of
energy emitted over a certain path s that escapes into a given direction (without having been
absorbed between point of emission and point of exit), as compared to the maximum possible.
Combining equations (10.1) and (10.10) gives the complete radiative transfer equation for an
absorbing–emitting (but not scattering) medium as

dIη
ds

= κη(Ibη − Iη), (10.11)

where the first term of the right-hand side is augmentation due to emission and the second
term is attenuation due to absorption. The solution to the radiative transfer equation for an
isothermal gas layer of thickness s is

Iη(s) = Iη(0) e−τη + Ibη
(
1 − e−τη

)
, (10.12)

where the optical distance has been defined in equation (10.4). If only emission is considered,
Iη(0) = 0, and the emissivity is defined as

εη = Iη(s)/Ibη = 1 − e−τη , (10.13)

which, as is the case with surface radiation, is identical to the expression for absorptivity.

Scattering
Augmentation due to scattering, or “in-scattering,” has contributions from all directions and,
therefore, must be calculated by integration over all solid angles. Consider the radiative heat
flux impinging on a volume element dV = dA ds, from an infinitesimal pencil of rays in the
direction ŝ i as depicted in Fig. 10-2. Recalling the definition for radiative intensity as energy
flux per unit area normal to the rays, per unit solid angle, and per unit wavenumber interval,
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FIGURE 10-3
Pencil of rays for radiative energy balance.

one may calculate the spectral radiative heat flux impinging on dA from within the solid angle
dΩi as

Iη(ŝ i)(dA ŝi · ŝ) dΩi dη.

This flux travels through dV for a distance ds/ŝ i · ŝ. Therefore, the total amount of energy
scattered away from ŝ i is, according to equation (10.6),

σsη

(
Iη(ŝ i)(dA ŝi · ŝ) dΩi dη

) ( ds
ŝ i · ŝ

)
= σsηIη(ŝi) dA dΩi dη ds. (10.14)

Of this amount, the fraction Φη(ŝi, ŝ) dΩ/4π is scattered into the cone dΩ around the direction
ŝ. The function Φη is called the scattering phase function and describes the probability that a
ray from one direction, ŝi, will be scattered into a certain other direction, ŝ. The constant 4π is
arbitrary and is included for convenience [see equation (10.17) below].

The amount of energy flux from the cone dΩi scattered into the cone dΩ is then

σsηIη(ŝ i) dA dΩi dη ds
Φη(ŝi, ŝ)

4π
dΩ. (10.15)

We can now calculate the energy flux scattered into the direction ŝ from all incoming directions
ŝ i by integrating: (

dIη
)

sca
(ŝ) dA dΩ dη =

∫
4π
σsηIη(ŝi) dA dΩi dη ds Φη(ŝ i, ŝ)

dΩ

4π
,

or (
dIη

)
sca

(ŝ) = ds
σsη

4π

∫
4π

Iη(ŝ i) Φη(ŝi, ŝ) dΩi. (10.16)

Returning to equation (10.15), we find that the amount of energy flux scattered from dΩi into
all directions is

σsηIη(ŝi) dA dΩi dη ds
1

4π

∫
4π

Φη(ŝ i, ŝ) dΩ,

which must be equal to the amount in equation (10.14). We conclude that

1
4π

∫
4π

Φη(ŝ i, ŝ) dΩ ≡ 1. (10.17)

Therefore, if Φη = const, i.e., if equal amounts of energy are scattered into all directions (called
isotropic scattering), then Φη ≡ 1. This is the reason for the inclusion of the factor 4π.

10.4 THE RADIATIVE TRANSFER
EQUATION
We can now make an energy balance on the radiative energy traveling in the direction of ŝ within
a small pencil of rays as shown in Fig. 10-3. The change in intensity is found by summing the
contributions from emission, absorption, scattering away from the direction ŝ, and scattering
into the direction of ŝ, from equations (10.1), (10.6), (10.9), and (10.16) as

Iη(s+ds, ŝ, t+dt) − Iη(s, ŝ, t) = jη(s, t) ds − κηIη(s, ŝ, t) ds

− σsηIη(s, ŝ, t) ds +
σsη

4π

∫
4π

Iη(ŝi) Φη(ŝ i, ŝ) dΩi ds. (10.18)



284 10 THE RADIATIVE TRANSFER EQUATION IN PARTICIPATING MEDIA (RTE)

I  (s, s )η s

τηs,

I  ( s)η

0

0

s´   ´ τη,

FIGURE 10-4
Enclosure for derivation of radiative transfer equation.

This equation is Lagrangian in nature, i.e., we are following a ray from s to s+ds; since the ray
travels at the speed of light c, ds and dt are related through ds = c dt. The outgoing intensity
may be developed into a truncated Taylor series, or

Iη(s+ds, ŝ, t+dt) = Iη(s, ŝ, t) + dt
∂Iη
∂t

+ ds
∂Iη
∂s
, (10.19)

so that equation (10.18) may be simplified to

1
c
∂Iη
∂t

+
∂Iη
∂s

= jη − κηIη − σsηIη +
σsη

4π

∫
4π

Iη(ŝi) Φη(ŝ i, ŝ) dΩi. (10.20)

In this radiative transfer equation (commonly abbreviated as RTE), or equation of transfer, all
quantities may vary with location in space, time, and wavenumber, while the intensity and
the phase function also depend on direction ŝ (and ŝi). Only the directional dependence, and
only whenever necessary, has been explicitly indicated in this and the following equations, to
simplify notation. As indicated earlier, the development of this equation is subject to a number
of simplifying assumptions, viz., the medium is homogeneous and at rest (as compared to the
speed of light), the medium is nonpolarizing and the state of polarization is neglected, and the
medium has a constant index of refraction. An elaborate discussion of these limitations has
been given by Viskanta and Mengüç [1]. The RTE for a medium with varying refractive index
has been given, e.g., by Pomraning [2], and some recent developments have been reported by
Ben-Abdallah [3].

Equation (10.20) is valid anywhere inside an arbitrary enclosure. Its solution requires knowl-
edge of the intensity for each direction at some location s, usually the intensity entering the
medium through or from the enclosure boundary into the direction of ŝ, as indicated in Fig. 10-
4. We have not yet brought the radiative transfer equation into its most compact form so that the
four different contributions to the change of intensity may be clearly identified. Equation (10.20)
is the transient form of the radiative transfer equation, valid at local thermodynamic equilibrium
as well as nonequilibrium.

Over the last few years, primarily due to the development of short-pulsed lasers, with pulse
durations in the ps or fs range, transient radiation phenomena have been becoming of increasing
importance [4]. However, for the vast majority of engineering applications, the speed of light
is so large compared to local time and length scales that the first term in equation (10.20) may
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be neglected. There are also several important applications that take place at thermodynamic
nonequilibrium, such as the strong nonequlibrium radiation hitting a hypersonic spacecraft
entering Earth’s atmosphere [5] (creating a high-temperature plasma ahead of it; cf. Fig. 11-7).
Nevertheless, most engineering applications are at local thermodynamic equilibrium. We have
presented here the full equation for completeness, but will omit the transient and nonequilib-
rium terms during the remainder of this book (with the exception of a very brief discussion
of nonequlibrium properties in Chapter 11, and a somewhat more detailed consideration of
transient radiation in Chapter 19).

After introducing the extinction coefficient defined in equation (10.7), one may restate equa-
tion (10.20) in its equilibrium, quasi-steady form as

dIη
ds

= ŝ · ∇Iη = κηIbη − βηIη +
σsη

4π

∫
4π

Iη(ŝi) Φη(ŝ i, ŝ) dΩi, (10.21)

where the intensity gradient has been converted into a total derivative since we assume the
process to be quasi-steady. The radiative transfer equation is often rewritten in terms of nondi-
mensional optical coordinates (see Fig. 10-4),

τη =

∫ s

0
(κη + σsη) ds =

∫ s

0
βη ds, (10.22)

and the single scattering albedo, first defined in equation (1.58) as

ωη ≡
σsη

κη + σsη
=
σsη

βη
, (10.23)

leading to
dIη
dτη

= −Iη + (1 − ωη)Ibη +
ωη
4π

∫
4π

Iη(ŝi) Φη(ŝi, ŝ) dΩi. (10.24)

The last two terms in equation (10.24) are often combined and are then known as the source
function for radiative intensity,

Sη(τη, ŝ) = (1 − ωη)Ibη +
ωη
4π

∫
4π

Iη(ŝi) Φη(ŝi, ŝ) dΩi. (10.25)

Equation (10.24) then assumes the deceptively simple form of

dIη
dτη

+ Iη = Sη(τη, ŝ), (10.26)

which is, of course, an integro-differential equation (in space, and in two directional coordinates
with local origin). Furthermore, the Planck function Ibη is generally not known and must be
found by considering the overall energy equation (adding derivatives in the three space coordi-
nates and integrations over two more directional coordinates and the wavenumber spectrum).

10.5 FORMAL SOLUTION TO THE
RADIATIVE TRANSFER EQUATION

If the source function is known (or assumed known), equation (10.26) can be formally integrated
by the use of an integrating factor. Thus, multiplying through by eτη results in

d
dτη

(
Iη eτη

)
= Sη(τη, ŝ) eτη , (10.27)
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FIGURE 10-5
Isothermal sphere for Example 10.1.

which may be integrated from a point s′ = 0 at the wall to a point s′ = s inside the medium (see
Fig. 10-4), so that

Iη(τη) = Iη(0) e−τη +

∫ τη

0
Sη(τ′η, ŝ) e−(τη−τ′η) dτ′η, (10.28)

where τ′η is the optical coordinate at s = s′.
Physically, one can readily appreciate that the first term on the right-hand side of equa-

tion (10.28) is the contribution to the local intensity by the intensity entering the enclosure at
s = 0, which decays exponentially due to extinction over the optical distance τη. The integrand
of the second term, Sη(τ′η) dτ′η, on the other hand, is the contribution from the local emission at
τ′η, attenuated exponentially by self-extinction over the optical distance between the emission
point and the point under consideration, τη−τ′η. The integral, finally, sums all the contributions
over the entire emission path.

Equation (10.28) is a third-order integral equation in intensity Iη. The integral over the source
function must be carried out over the optical coordinate (for all directions), while the source
function itself is also an integral over a set of direction coordinates (with varying local origin)
containing the unknown intensity. Furthermore, usually the temperature and, therefore, the
blackbody intensity are not known and must be found in conjunction with overall conservation
of energy. There are, however, a few cases for which the radiative transfer equation becomes
considerably simplified.

Nonscattering Medium
If the medium only absorbs and emits, the source function reduces to the local blackbody
intensity, and

Iη(τη) = Iη(0) e−τη +

∫ τη

0
Ibη(τ′η) e−(τη−τ′η) dτ′η. (10.29)

This equation is an explicit expression for the radiation intensity if the temperature field is
known. However, generally the temperature is not known and must be found in conjunction
with overall conservation of energy.

Example 10.1. What is the spectral intensity emanating from an isothermal sphere bounded by vacuum
or a cold black wall?

Solution
Because of the symmetry in this problem, the intensity emanating from the sphere surface is only a
function of the exit angle. Examining Fig. 10-5, we see that equation (10.29) reduces to

Iη(τR, θ) =

∫ τs

0
Ibη(τ′s) e−(τs−τ′s) dτ′s.
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But for a sphere
τs = 2τR cosθ,

regardless of the azimuthal angle. Therefore, with Ibη(τ′s) = Ibη = const, the desired intensity turns out
to be

Iη(τR, θ) = Ibη e−(2τR cosθ−τ′s)
∣∣∣∣2τR cosθ

0
= Ibη

(
1 − e−2τR cosθ

)
.

Thus, for τR � 1 the isothermal sphere emits equally into all directions, like a black surface at the same
temperature.

The Cold Medium
If the temperature of the medium is so low that the blackbody intensity at that temperature
is small as compared with incident intensity, then the radiative transfer equation is decoupled
from other modes of heat transfer. However, the governing equation remains a third-order
integral equation, namely,

Iη(τη, ŝ) = Iη(0) e−τη +

∫ τη

0

ωη
4π

∫
4π

Iη(τ′η, ŝ i) Φη(ŝi, ŝ) dΩi e−(τη−τ′η) dτ′η. (10.30)

If the scattering is isotropic, or Φ ≡ 1, the directional integration in equation (10.30) may be
carried out, so that

Iη(τη, ŝ) = Iη(0) e−τη +
1

4π

∫ τη

0
ωηGη(τ′η) e−(τη−τ′η) dτ′η, (10.31)

where
Gη(τ) ≡

∫
4π

Iη(τ′η, ŝi) dΩi (10.32)

is known as the incident radiation function (since it is the total intensity impinging on a point from
all sides). The problem is then much simplified since it is only necessary to find a solution for
G [by direction-integrating equation (10.31)] rather than determining the direction-dependent
intensity.

Purely Scattering Medium
If the medium scatters radiation, but does not absorb or emit, then the radiative transfer is
again decoupled from other heat transfer modes. In this case ωη ≡ 1, and the radiative transfer
equation reduces to a form essentially identical to equation (10.30), i.e.,

Iη(τη, ŝ) = Iη(0) e−τη +
1

4π

∫ τη

0

∫
4π

Iη(τ′η, ŝ i) Φη(ŝi, ŝ) dΩi e−(τη−τ′η) dτ′η. (10.33)

Again, for isotropic scattering, this equation may be simplified by introducing the incident
radiation, so that

Iη(τη, ŝ) = Iη(0) e−τη +
1

4π

∫ τη

0
Gη(τ′η, ŝ) e−(τη−τ′η) dτ′η. (10.34)

Example 10.2. A large isothermal black plate is covered with a thin layer of isotropically scattering,
nonabsorbing (and, therefore, nonemitting) material with unity index of refraction. Assuming that the
layer is so thin that any ray emitted from the plate is scattered at most once before leaving the scattering
layer, estimate the radiative intensity above the layer in the direction normal to the plate.

Solution
The exiting intensity in the normal direction (see Fig. 10-6) may be calculated from equation (10.34) by
retaining only terms of order τη or higher (since τη � 1). This process leads to e−τη = 1 − τη + O(τ2

η),
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Geometry for Example 10.2.

G(τ′η) = G(τη) +O(τη) (radiation to be scattered arrives unattenuated at a point), and e−(τη−τ′η) = 1−O(τη)
(scattered radiation will leave the medium without further attenuation), so that

Inη = Ibη(1 − τη) +
1

4π
Gητη + O(τ2

η),

where the intensity emanating from the plate is known since the plate is black. The incident radiation
at any point is due to unattenuated emission from the bottom plate arriving from the lower 2π solid
angles, and nothing coming from the top 2π solid angles, i.e., Gη ≈ 2πIbη and

Inη = Ibη(1 − τη) +
1
2

Ibητη + O(τ2
η) = Ibη

(
1 −

τη
2

)
+ O(τ2

η).

Physically this result tells us that the emission into the normal direction is attenuated by the fraction
τη (scattered away from the normal direction), and augmented by the fraction τη/2 (scattered into the
normal direction): Since scattering is isotropic, exactly half of the attenuation is scattered upward and
half downward; the latter is then absorbed by the emitting plate. Thus, the scattering layer acts as a
heat shield for the hot plate.

10.6 BOUNDARY CONDITIONS FOR THE
RADIATIVE TRANSFER EQUATION

The radiative transfer equation in its quasi-steady form, equation (10.21), is a first-order differ-
ential equation in intensity (for a fixed direction ŝ). As such, the equation requires knowledge of
the radiative intensity at a single point in space, into the direction of ŝ. Generally, the point where
the intensity can be specified independently lies on the surface of an enclosure surrounding the
participating medium, as indicated by the formal solution in equation (10.28). This intensity,
leaving a wall into a specified direction, may be determined by the methods given in Chap-
ter 5 (diffusely emitting and reflecting surfaces), Chapter 6 (diffusely emitting and specularly
reflecting surfaces) and Chapter 7 (surfaces with arbitrary characteristics).

Diffusely Emitting and Reflecting Opaque
Surfaces
For a surface that emits and reflects diffusely, the exiting intensity is independent of direction.
Therefore, at a point rw on the surface, from equations (5.18) and (5.19),

I(rw, ŝ) = I(rw) = J(rw)/π = ε(rw) Ib(rw) + ρ(rw) H(rw)/π, (10.35)

where H(rw) is the hemispherical irradiation (i.e., incoming radiative heat flux) defined by
equation (3.41), leading to

I(rw, ŝ) = ε(rw) Ib(rw) +
ρ(rw)
π

∫
n̂·ŝ′<0

I(rw, ŝ′) |n̂ · ŝ′| dΩ′, (10.36)

where n̂ is the local outward surface normal and n̂ · ŝ′ = cosθ′ is the cosine of the angle between
any incoming direction ŝ′ and the surface normal, as indicated in Fig. 10-7. Therefore, the
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Radiative intensity reflected from a surface.

outgoing intensity is not generally known explicitly, but is related to the incoming intensity. An
exception is the black surface, for which (with ρ = 0),

I(rw, ŝ) = Ib(rw). (10.37)

Diffusely Emitting, Specularly Reflecting,
Opaque Surfaces
If the reflectance of the surface has a specular as well as a diffuse component, i.e., the reflectance
obeys equation (6.1), then the outgoing intensity also consists of two components. One part
of the outgoing intensity is due to diffuse emission as well as the diffuse fraction of reflected
energy, as described by equation (10.36). In addition, the outgoing intensity has a specularly
reflected component,3 so that

I(rw, ŝ) = ε(rw) Ib(rw) +
ρd(rw)
π

∫
n̂·ŝ′<0

I(rw, ŝ′) |n̂ · ŝ′| dΩ′ + ρs(rw) I(rw, ŝs), (10.38)

where ŝs is the “specular direction,” defined as the direction from which a light beam must hit
the surface in order to travel into the direction of ŝ after a specular reflection. This direction is,
from Fig. 10-7, ŝ + (−ŝs) = 2 cosθn̂, or

ŝs = ŝ − 2(ŝ · n̂)n̂. (10.39)

Opaque Surfaces with Arbitrary Surface
Properties
Reflection from a surface with nonideal radiative properties is governed by the bidirectional
reflection function, as discussed in Chapter 7. From equation (7.10) it follows immediately that

I(rw, ŝ) = ε′(rw, ŝ) Ib(rw) +

∫
n̂·ŝ<0

ρ′′(rw, ŝ′, ŝ) I(rw, ŝ′) |n̂ · ŝ′| dΩ′. (10.40)

If the surface reflects diffusely, ρ′′ = ρd/π and equation (10.40) reduces to equation (10.36). For
specular reflection the development of equation (7.15) shows that it reduces to equation (10.38).

3Note that the specularly reflected component cannot be “assigned” to the surface where it leaves in diffuse fashion,
as was done for surface transport in Chapter 6. The reason is that the intensity changes while radiation travels from
surface to surface within a participating medium.
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FIGURE 10-8
Radiation within a pencil of rays passing
from medium to another with different re-
fractive index (shown for n1 > n2).

Semitransparent Boundaries
If the boundary is a semitransparent wall, external radiation may penetrate into the enclosure
and must be added to equations (10.36), (10.38), and (10.40) as Io(rw, ŝ). The emittance ε in
these boundary conditions is then an effective value for the internal emission from the entire
semitransparent wall thickness. If the bounding surface is totally transparent (or simply an
opening), then there is no emission from the boundary and ε = 0. This type of boundary
condition was discussed in some detail in Section 6.6.

Interface Between Two Semitransparent
Media
An interface between two semitransparent media is of interest only, if radiation can penetrate
an appreciable distance through either medium—if not, the optically dense medium may be
modeled as an “opaque surface.” This implies that the absorptive indices of both media are
very small [see equation (2.43)], and m = n − ik ' n. We will also assume that the interface
is optically smooth, i.e., reflection can be modeled by Snell’s law, as given by equations (2.72)
and (3.59), together with Fresnel’s relations, equations (2.96) and (3.60) (with n = n2/n1). If we
perform an energy balance for a pencil of rays transmitted from Medium 1 into Medium 2 (as
shown in Fig. 10-8 for the case of n1 > n2), we have from the definition of radiative intensity,

Iν1(θ1)(1 − ρ12)dt(dA cosθ1)dΩ1dν = Iν2(θ2)dt(dA cosθ2)dΩ2dν, (10.41)

where dA is an infinitesimal area element on the interface, and we have chosen frequency ν as
the spectral variable, because only frequency remains unchanged as light passes through media
with different refractive indices. Eliminating solid angle dΩ = sinθdθdψ (and azimuthal angle
ψ, which is unaffected by passing from one medium to the next), this simplifies to

Iν1(θ1)(1 − ρ12) sinθ1 cosθ1dθ1 = Iν1(θ2) sinθ2 cosθ2dθ2. (10.42)

From Snell’s law, equations (2.72) and (3.59), we have

n1 sinθ1 = n2 sinθ2, and, after differentiation, n1 cosθ1dθ1 = n2 cosθ2dθ2. (10.43)

Finally, sticking these two relations into equation (10.42), we obtain

Iν1(θ1)(1 − ρ12)

n2
1

=
Iν2(θ2)

n2
2

. (10.44)

Note that, since n1 > n2, refraction in Medium 2 is away from the surface normal, i.e., θ2 > θ1,
and there is a critical angle θ1 = θc, as given by equation (2.100), at which θ2 = 90◦ and for
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FIGURE 10-9
Intensities leaving an interface between two semitransparent media with different refractive indices (shown for n1 > n2).

larger θ1 there will be total internal reflection, and nothing is transmitted into Medium 2:

θ1 > θc = sin−1
(n2

n1

)
: ρ12 = 1; Iν2(θ2) = 0. (10.45)

This is indicated in Fig. 10-9 by showing several additional incident directions (with thin dashed
lines and open arrows), together with their transmitted (for θ1 < θc only) and reflected direc-
tions.

Employing equations (10.44) and (10.45), we can now make a full energy balance for the
interface, comprising intensity coming in from inside Medium 1, Iν1i(θ1), the fraction of it that
is reflected, Iν1r(θ1) (with specular reflection angle θr = θ1), and the fraction transmitted into
Medium 2, Iν1t(θ2), along with similar contributions from intensity striking the interface from
inside Medium 2, as depicted in Fig. 10-9:

Iν2(θ2) = ρ21Iν2i(θ2) + Iν1t(θ2) = ρ21Iν2i(θ2) + (1 − ρ12)
(n2

n1

)2
Iν1i(θ1), (10.46a)

Iν1(θ1) = ρ12Iν1i(θ1) + Iν2t(θ1) = ρ12Iν1i(θ1) + (1 − ρ21)
(n1

n2

)2
Iν2i(θ2), (10.46b)

where, from equation (2.96),

ρ12 = ρ21 =


1
2

[(n1 cosθ2 − n2 cosθ1

n1 cosθ2 + n2 cosθ1

)2

+
(n1 cosθ1 − n2 cosθ2

n1 cos1 +n2 cosθ2

)2]
, θ1 < θc,

1 θ1 ≥ θc.

(10.47)

The intensity entering the optically less dense Medium 2 from the interface, Iν2(θ2), will have
a transmitted contribution from Medium 1 for all values of θ2 (but coming from within a cone
with opening angle θc). Intensity entering Medium 1, Iν1(θ1), on the other hand, will have a
transmitted component from Medium 2 only if θ1 < θc.

10.7 RADIATION ENERGY DENSITY

A volume element inside an enclosure is irradiated from all directions and, at any instant in
time t, contains a certain amount of radiative energy in the form of photons. Consider, for
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example, an element dV = dA ds irradiated perpendicularly to dA with intensity Iη(ŝ) as shown
in Fig. 10-3. Therefore, per unit time radiative energy in the amount of Iη(ŝ) dΩ dA enters dV.
From the development in Chapter 1, equation (1.48), we see that this energy remains inside dV
for a duration of dt = ds/c, before exiting at the other side. Thus, due to irradiation from a single
direction, the volume contains the amount of radiative energy Iη(ŝ) dΩ dA ds/c = Iη(ŝ) dΩ dV/c
at any instant in time. Adding the contributions from all possible directions, we find the total
radiative energy stored within dV is uη dV, where uη is the spectral radiation energy density

uη ≡
1
c

∫
4π

Iη(ŝ) dΩ. (10.48)

Integration over the spectrum gives the total radiation energy density,

u =

∫
∞

0
uη dη =

1
c

∫
4π

∫
∞

0
Iη(ŝ) dη dΩ =

1
c

∫
4π

I(ŝ) dΩ. (10.49)

Although the radiation energy density is a very basic quantity akin to internal energy for energy
stored within matter, it is not widely used by heat transfer engineers. Instead, it is common
practice to employ the incident radiation Gη, which is related to the energy density through

Gη ≡

∫
4π

Iη(ŝ) dΩ = cuη; G = cu. (10.50)

10.8 RADIATIVE HEAT FLUX

The spectral radiative heat flux onto a surface element has been expressed in terms of incident
and outgoing intensity in equation (1.39) as

qη · n̂ =

∫
4π

Iη n̂ · ŝ dΩ. (10.51)

This relationship also holds, of course, for a hypothetical (i.e., totally transmissive) surface ele-
ment placed arbitrarily inside an enclosure. Removing the surface normal from equation (1.39),
we obtain the definition for the spectral, radiative heat flux vector inside a participating medium.
To obtain the total radiative heat flux, equation (10.51) needs to be integrated over the spectrum,
and

q =

∫
∞

0
qη dη =

∫
∞

0

∫
4π

Iη(ŝ) ŝ dΩ dη. (10.52)

Depending on the coordinate system used, or the surface being described, the radiative heat
flux vector may be separated into its coordinate components, for example qx, qy, and qz (for a
Cartesian coordinate system), or into components normal and tangential to a surface, and so on.

Example 10.3. Evaluate the total heat loss from an isothermal spherical medium bounded by vacuum,
assuming that κη = const (i.e., does not vary with location, temperature, or wavenumber).

Solution
Here we are dealing with a spherical coordinate system, and we are interested in the radial component
of the radiative heat flux (the other two being equal to zero by symmetry). We saw in Example 10.1 that
the intensity emanating from the sphere is

Iη(τR, θ) = Ibη

(
1 − e−2τR cosθ

)
, 0 ≤ θ ≤

π
2
,

where θ is measured from the surface normal pointing away from the sphere (Fig. 10-5). Since the
sphere is bounded by vacuum, there is no incoming radiation and

Iη(τR, θ) = 0,
π
2
≤ θ ≤ π.
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Therefore, from equation (10.52),

q(τR) =

∫
∞

0

∫ 2π

0

∫ π

0
Iη(τR, θ) cosθ sinθ dθ dψ dη

= 2π
∫
∞

0

∫ π/2

0
Ibη

(
1 − e−2τR cosθ

)
cosθ sinθ dθ dη

= πIb

{
1 −

1
2τ2

R

[
1 − (1 + 2τR) e−2τR

]}
= n2σT4

{
1 −

1
2τ2

R

[
1 − (1 + 2τR) e−2τR

]}
,

where n is the refractive index of the medium (usually n ≈ 1 for gases, but n > 1 for semitransparent
liquids and solids). As discussed in the previous example, if τR →∞ the heat flux approaches the same
value as the one from a black surface.

If the sphere in the last example is optically thin τR � 1 (i.e., the medium emits radiative
energy, but does not absorb any of the emitted energy), then the total heat loss (total emission)
from the sphere is

Q = 4πR2q = 4πR2
×

4
3τRn2σT4 = 4κn2σT4V. (10.53)

This result may be generalized to govern emission from any isothermal volume V without
self-absorption, or

Qemission = 4κn2σT4V. (10.54)

10.9 DIVERGENCE OF THE RADIATIVE
HEAT FLUX

While the heat transfer engineer is interested in the radiative heat flux, this interest usually holds
true only for fluxes at physical boundaries. Inside the medium, on the other hand, we need
to know how much net radiative energy is deposited into (or withdrawn from) each volume
element. Thus, making a radiative energy balance on an infinitesimal volume dV = dx dy dz as
shown in Fig. 10-10, we haveradiative energy

stored in dV
per unit time

 −
rad. energy generated

(emitted) by dV
per unit time

 +

rad. energy destroyed
(absorbed) by dV

per unit time


=

 flux in at x − flux out at x + dx
+ flux in at y − flux out at y + dy
+ flux in at z − flux out at z + dz

 .
The right-hand side may be written in mathematical form as

q(x) dy dz − q(x + dx) dy dz
+ q(y) dx dz − q(y + dy) dx dz
+ q(z) dx dy − q(z + dz) dx dy

 = −

(
∂q
∂x

+
∂q
∂y

+
∂q
∂z

)
dx dy dz = −∇ · q dV.

Thus, within the overall energy equation, it is the divergence of the radiative heat flux that is of
interest inside the participating medium.4

We have already established an energy balance for thermal radiation, the radiative transfer
equation [for example, equation (10.21)],

dIη
ds

= ŝ · ∇Iη = κηIbη − βηIη(ŝ) +
σsη

4π

∫
4π

Iη(ŝ i) Φη(ŝi, ŝ) dΩi, (10.55)

4For simplicity, this equation was derived for a Cartesian coordinate system but the result holds, of course, for any
arbitrary coordinate system.
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FIGURE 10-10
Control volume for derivation of divergence of radiative
heat flux.

which is a radiation balance for an infinitesimal pencil of rays. Thus, in order to get a volume
balance, we integrate this equation over all solid angles, or∫

4π
ŝ · ∇Iη dΩ =

∫
4π
κηIbη dΩ −

∫
4π
βηIη(ŝ) dΩ +

∫
4π

σsη

4π

∫
4π

Iη(ŝi) Φη(ŝ i, ŝ) dΩi dΩ, (10.56)

and

∇ ·

∫
4π

Iηŝ dΩ = 4πκηIbη −

∫
4π
βηIη(ŝ) dΩ +

σsη

4π

∫
4π

Iη(ŝi)
(∫

4π
Φη(ŝi, ŝ) dΩ

)
dΩi. (10.57)

On the left side of equation (10.57) the integral and the direction vector were taken into the
gradient since direction and space coordinates are all independent from one another.5 The
expression inside the operator is now, of course, the spectral radiative heat flux. On the right
side of equation (10.57) the order of integration has been changed, applying the Ω-integration
to the only part depending on it, the scattering phase function Φη. This last integration can be
carried out using equation (10.17), leading to

∇ · qη = 4πκηIbη − βη

∫
4π

Iη(ŝ) dΩ + σsη

∫
4π

Iη(ŝi) dΩi. (10.58)

Since Ω and Ωi are dummy arguments for integration over all solid angles, the last two terms
can be pulled together, using κη = βη − σsη:

∇ · qη = κη

(
4πIbη −

∫
4π

Iη dΩ

)
= κη

(
4πIbη − Gη

)
. (10.59)

Equation (10.59) states that physically the net loss of radiative energy from a control volume is
equal to emitted energy minus absorbed irradiation. This direction-integrated form of the ra-
diative transfer equation no longer contains the scattering coefficient. This fact is not surprising
since scattering only redirects the stream of photons; it does not affect the energy content of any
given unit volume.

Equation (10.59) is a spectral relationship, i.e., it gives the heat flux per unit wavenumber at
a certain spectral position. If the divergence of the total heat flux is desired, the integration over
the spectrum is carried out to give

∇ · q = ∇ ·

∫
∞

0
qη dη =

∫
∞

0
κη

(
4πIbη −

∫
4π

Iη dΩ

)
dη =

∫
∞

0
κη

(
4πIbη − Gη

)
dη. (10.60)

5While this statement is always true, care must be taken in non-Cartesian coordinate systems: Although the
direction vector is independent from space coordinates, the three components may be tied to locally defined unit vectors.
For example, in a cylindrical coordinate system the direction vector is usually defined in terms of êr and êθ, which vary
with r and θ.



10.10 INTEGRAL FORMULATION OF THE RADIATIVE TRANSFER EQUATION 295

0

s´´



sI  (r, s )η

I  w (rw,s) η

rw

r

r´

0

FIGURE 10-11
Enclosure for the derivation of the integral form of the
radiative transfer equation.

Equation (10.60) is a statement of the conservation of radiative energy. For the special case of a
gray medium (κη = κ = constant) this may be simplified to

∇ · q = κ

(
4σT4

−

∫
4π

I dΩ

)
= κ

(
4σT4

− G
)
. (10.61)

Example 10.4. Calculate the divergence of the total radiative heat flux at the center and at the surface
of the gray, isothermal spherical medium in the previous example.

Solution
We already know the intensity at the surface of the sphere and, therefore,

Gη(τR) = 2π
∫ π

0
sinθIη dθ = 2πIbη

∫ π/2

0

(
1 − e−2τR cosθ

)
sinθ dθ

= 2πIbη

1 −
e−2τR cosθ

2τR

∣∣∣∣∣∣π/2
0

 =
πIbη

τR

(
2τR − 1 + e−2τR

)
,

and

∇ · q(τR) = κ (4πIb − G) =
σT4

R

(
2τR + 1 − e−2τR

)
. (10.62)

At the center of the sphere the intensity is easily evaluated as

Iη(0) = Ibη
(
1 − e−τR

)
,

and
Gη(0) = 4πIbη

(
1 − e−τR

)
,

so that
∇ · q(0) = κ4σT4 e−τR . (10.63)

The right-hand sides of equations (10.62) and (10.63) are radiative heat losses per unit time and volume,
which must be made up for by a volumetric heat source if the sphere is to stay isothermal.

10.10 INTEGRAL FORMULATION OF THE
RADIATIVE TRANSFER EQUATION

In order to obtain incident radiation, radiative heat flux, or its divergence, it is sometimes
desirable to use an integral formulation of the radiative transfer equation. We start with the
formal solution, equation (10.28), but rewritten in terms of the vectors shown in Fig. 10-11,

Iη(r, ŝ) = Iwη(rw, ŝ) exp
[
−

∫ s

0 βη ds′′
]

+

∫ s

0
Sη(r′, ŝ) exp

[
−

∫ s′′

0 βη ds′′
]
βη ds′′, (10.64)
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where s = |r − rw| and the direction of integration has been switched to go along s′′ (from point
r toward the wall). From the definition of the incident radiation, equation (10.32), we have

Gη(r) =

∫
4π

Iwη(rw, ŝ) exp
[
−

∫ s

0 βη ds′′
]

dΩ +

∫
4π

∫ s

0
Sη(r′, ŝ) exp

[
−

∫ s′′

0 βη ds′′
]
βη ds′′ dΩ, (10.65)

with, from equation (1.26),

dΩ =


dA′′

|r − r′|2
, inside volume,

n̂ · ŝ dAw

|r − rw|
2 , at the wall,

(10.66)

where dA′′ is an infinitesimal area perpendicular to the integration path (and ds′′), such that
dV = ds′′dA′′ is an infinitesimal volume. Therefore, equation (10.65) may be rewritten as

Gη(r) =

∫
Aw

Iwη(rw, ŝ) exp
[
−

∫ s

0 βη ds′′
] n̂ · ŝ dAw

|r − rw|
2 +

∫
V

Sη(r′, ŝ) exp
[
−

∫ s′′

0 βη ds′′
] βη dV

|r − r′|2
,

(10.67)
with the local unit direction vector found from

ŝ =
r − r′

|r − r′|
. (10.68)

The radiative flux (and any higher moment) can be determined similarly, after first multiplying
equation (10.64) by ŝ, as

qη(r) =

∫
Aw

Iwη(rw, ŝ) exp
[
−

∫ s

0 βη ds′′
] (n̂ · ŝ)ŝ dAw

|r − rw|
2 +

∫
V

Sη(r′, ŝ) exp
[
−

∫ s′′

0 βη ds′′
] βηŝ dV

|r − r′|2
.

(10.69)
For a nonscattering medium Sη = Ibη, and equation (10.67) is the explicit solution for incident
radiation Gη, provided the temperature field is known, and if the walls are black. For isotropic
scattering the source function depends only on Ibη (or temperature) and incident radiation. For
such a case (and if the walls are black) equation (10.67) is a single, independent integral equation
for the incident radiation; once Gη has been determined qη is found from equation (10.69).
For reflecting walls and anisotropic scattering, equations (10.67) and (10.69) (and, perhaps,
higher-order moments) must be solved simultaneously. Also, for a nonparticipating medium
(βη = 0) with diffusely reflecting surfaces (Iw = J/π), equation (5.25) is readily recovered from
equation (10.69); this is left as an exercise (Problem 10.15).

Example 10.5. Repeat Example 10.3 using the integral formulation of the RTE.

Solution
In this simple problem with a cold, black (i.e., nonreflecting) wall with Iwη = 0, and in the absence of
scattering with Sη = Ibη = const we can determine qη directly from equation (10.69) as

qη(R) = −qη(rw) · n̂ = −Ibηκη

∫
V

e−κηs′′ n̂ · ŝ dV
(s′′)2 ,

where s′′ is the distance between any point inside the medium (at r′) and the chosen point on the wall,
r = rw. It is tempting at this point to introduce a spherical coordinate system at the center of the sphere
to evaluate the volume integral for qη; however, this would lead to a very difficult integral. Instead, we
introduce a spherical coordinate system at the chosen point at the wall, i.e., rw = 0 (point τs in Fig. 10-5).
An arbitrary location inside the sphere can then be specified as

r′ = −ŝs′′ = s′′(cosψ sinθ ı̂ + sinψ sinθ ̂ + cosθ k̂),
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where k̂ = n̂ is pointing toward the center of the sphere and ı̂ and ̂ are arbitrary (as long as they
form a right-handed coordinate system). Then, with a maximum value for s′′max = 2R cosθ, as given in
Example 10.1,

qη(R) = −Ibηκη

∫ 2π

ψ=0

∫ π/2

θ=0

∫ 2R cosθ

s′′=0
e−κηs′′ (− cosθ) sinθ dθ dψ(s′′)2 ds′′

(s′′)2

= 2πIbη

∫ π/2

θ=0
(1 − e−2τR cosθ) cosθ sinθ dθ,

exactly as in Example 10.3.

10.11 OVERALL ENERGY
CONSERVATION

Thermal radiation is only one mode of transferring heat which, in general, must compete with
conductive and convective heat transfer. Therefore, the temperature field must be determined
through an energy conservation equation that incorporates all three modes of heat transfer. The
radiation intensity, through emission and temperature-dependent properties, depends on the
temperature field and, therefore, cannot be decoupled from the overall energy equation.

The general form of the energy conservation equation for a moving compressible fluid may
be stated as

ρ
Du
Dt

= ρ

(
∂u
∂t

+ v · ∇u
)

= −∇ · q − p∇ · v + µΦ + Q̇ ′′′, (10.70)

where u is internal energy, v is the velocity vector, q is the total heat flux vector, Φ is the
dissipation function, and Q̇ ′′′ is heat generated within the medium (such as energy release due
to chemical reactions). For a detailed derivation of equation (10.70), the reader is referred to
standard textbooks such as [6, 7]. If the medium is radiatively participating through emission,
absorption, and scattering, then the conservation equations for momentum and energy are
altered by three effects [8]:

1. The heat flux term in equation (10.70), which without radiation is in most applications due
only to molecular diffusion (heat conduction), now has a second component, the radiative
heat flux, due to radiative energy interacting with the medium within the control volume.

2. The internal energy now contains a radiative contribution [the incident radiation G, due
to the first term in equation (10.20)].

3. The radiation pressure tensor must be added to the traditional fluid dynamics pressure
tensor.

We have already seen that the second effect is almost always negligible, and the same is true
for the augmentation of the pressure tensor. Under these conditions the energy conservation
equation can be simplified. If we assume that du = cv dT, and that Fourier’s law for heat
conduction holds,

q = qC + qR = −k∇T + qR, (10.71)

equation (10.70) becomes

ρcv
DT
Dt

= ρcv

(
∂T
∂t

+ v · ∇T
)

= ∇ · (k∇T) − p∇ · v + µΦ + Q̇ ′′′ − ∇ · qR. (10.72)

This is an integro-differential equation for the calculation of the temperature field, since the
evaluation of the divergence of the radiative heat flux must come from (10.59), which is an
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integral equation in temperature. Obviously, a complete solution of this equation, even with
the recent advent of supercomputers, is a truly formidable task.

Example 10.6. State the radiative transfer equation and its boundary conditions for the case of com-
bined steady-state conduction and radiation within a one-dimensional, planar, gray, and nonscattering
medium, bounded by isothermal black walls.

Solution
Since the problem is steady state and there is no movement in the medium, the left side of equation (10.72)
vanishes, and only the first (conduction) and last (radiation) terms on the right side remain. For a one-
dimensional planar medium this reduces to6

d
dz

(
k

dT
dz
− qR

)
= 0, (10.73)

and the divergence of radiative heat flux is related to temperature and incident radiation through
equation (10.59),

dqR

dz
= κ(4σT4

− G),

where the spectral integration for the gray medium has been carried out by simply dropping the
subscript η. Finally, the incident radiation is found from direction-integrating equation (10.29) (not a
trivial task). The necessary boundary conditions are T = Ti, i = 1, 2 at the two walls (for conduction) and
I(0, ŝ) = σT4

i /π (for radiation) needed in equation (10.29). Solution of this seemingly simple problem is
by no means trivial, and can only be achieved through relatively involved numerical analysis.

Radiative Equilibrium
Much attention in the following chapters will be given to the situation in which radiation is the
dominant mode of heat transfer, meaning that when conduction and convection are negligible.
This situation is referred to as radiative equilibrium, meaning that thermodynamic equilibrium
within the medium is achieved by virtue of thermal radiation alone. As is commonly done in the
discussion of “pure” conduction or convection, we allow volumetric heat sources throughout
the medium. Thus, we may write

ρcv
∂T
∂t

+ ∇ · qR = Q̇ ′′′, (10.74)

which is identical in form to the basic transient heat conduction equation (before substitution of
Fourier’s law). In the vast majority of cases radiative transfer occurs so fast that radiative equi-
librium is achieved before a noticeable change in temperature occurs [i.e., when the unsteady
term in equation (10.20) can be dropped]. Then the statement of radiative equilibrium reduces
to its steady-state form

∇ · qR = Q̇ ′′′. (10.75)

Radiative equilibrium is often a good assumption in applications with extremely high tem-
peratures, such as plasmas, nuclear explosions, and such. The inclusion of a volumetric heat
source allows the treatment of conduction and convection “through the back door:” A guess
is made for the temperature field and the nonradiation terms in equation (10.72) are calculated
to give Q̇ ′′′ for the radiation calculations. This process is then repeated until a convergence
criterion is met.

6While in the science of conduction the variable x is usually employed for one-dimensional planar problems, for
thermal radiation problems the variable z is more convenient. The reason for this is that, by convention, the polar angle
for the direction vector is measured from the z-axis.
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10.12 SOLUTION METHODS FOR THE
RADIATIVE TRANSFER EQUATION

Exact analytical solutions to the radiative transfer equation [equation (10.21)] are exceedingly
difficult, and explicit solutions are impossible for all but the very simplest situations. There-
fore, research on radiative heat transfer in participating media has generally proceeded in two
directions: (i) exact (analytical and numerical) solutions of highly idealized situations, and (ii)
approximate solution methods for more involved scenarios. Phenomena that make a radiative
heat transfer problem difficult may be placed into four different categories:

Geometry: The problem may be one-dimensional, two-dimensional, or three-dimensional.
Most investigations to date have dealt with one-dimensional geometries, and the vast
majority of these dealt with the simplest case of a one-dimensional plane-parallel slab.

Temperature Field: The least difficult situation arises if the temperature profile within the
medium is known, making equation (10.21) a relatively “simple” integral equation. Con-
sequently, the most basic case of an isothermal medium has been studied extensively.
Alternatively, if radiative equilibrium prevails, the temperature field is unknown but un-
coupled from conduction and convection, and must be found from directional and spectral
integration of the radiative transfer equation. In the most complicated scenario, radia-
tive heat transfer is combined with conduction and/or convection, resulting in a highly
nonlinear integro-differential equation.

Scattering: The solution to a radiation problem is greatly simplified if the medium does not
scatter. In that case the radiative transfer equation reduces to a simple first-order differen-
tial equation if the temperature field is known, and a relatively simpler integral equation
if radiative equilibrium prevails. If scattering must be considered, isotropic scattering
is often assumed. Relatively few investigations have dealt with the case of anisotropic
scattering, and most of those are limited to the case of linear-anisotropic scattering (see
Section 12.9).

Properties: Although most participating media display strong nongray character, as discussed
in the following three chapters, the vast majority of investigations to date have centered
on the study of gray media. In addition, while radiative properties also generally depend
strongly on temperature, concentration, etc., most calculations are limited to situations
with constant properties.

Most “exact” solutions are limited to gray media with constant properties in one-dimensional,
mainly plane-parallel geometries. The media are isothermal or at radiative equilibrium, and if
they scatter, the scattering is usually isotropic. Since the usefulness of such one-dimensional
solutions in heat transfer applications is limited, they are only briefly discussed in Chapter 14.

Several chapters are devoted to the various approximate methods that have been devised
for the solution of the radiative transfer equation. Still, these seven chapters by no means
cover all the different methods that have been and still are used by investigators in the field.
A number of approximate methods for one-dimensional problems are discussed in Chapter
15. The optically thin and diffusion (or optically thick) approximations have historically been
developed for a one-dimensional plane-parallel medium, but can readily be applied to more
complicated geometries. Similarly, the Schuster–Schwarzschild or two-flux approximation [9, 10]
is a forerunner to the multidimensional discrete ordinates method. In this method the intensity
is assumed to be constant over discrete parts of the total solid angle of 4π. Several other flux
methods exist, but they are usually tailored toward special geometries, and cannot easily be
applied to other scenarios, for example, the six-flux methods of Chu and Churchill [11] and
Shih and coworkers [12, 13]. Another early one-dimensional model was the moment method
or Eddington approximation [14]. In this model the directional dependence is expressed by a
truncated series representation (rather than discretized). In general geometries this expansion
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is usually achieved through the use of spherical harmonics, leading to the spherical harmonics
method. Several variations to the moment method that are tailored toward specific geometries
have been proposed [15, 16], but these are of limited general utility. Finally, the exponential
kernel approximation, already discussed in Chapter 5 for surface radiation problems, may be
used as a tool for many one-dimensional problems. However, its extension to multidimensional
geometries is problematic.

A survey of the literature over the past forty years demonstrates that some solution methods
have been used frequently, while others that appeared promising at one time are no longer
employed on a regular basis. Apparently, some methods have been found to be more readily
adapted to more difficult situations than others (such as multidimensionality, variable prop-
erties, anisotropic scattering, and/or nongray effects). The majority of radiative heat transfer
analyses today appear to use one of four methods: (i) the spherical harmonics method or a variation
of it, (ii) the discrete ordinates method or its more modern form, the finite volume method, (iii) the
zonal method, and (iv) the Monte Carlo method. The first two of these have already been discussed
briefly above with the one-dimensional approximations. The zonal method was developed by
Hottel [17] in his pioneering work on furnace heat transfer. Unlike the spherical harmonics
and discrete ordinates methods, the zonal method approximates spatial, rather than directional,
behavior by breaking up an enclosure into finite, isothermal subvolumes. On the other hand,
the Monte Carlo method [18] is a statistical method, in which the history of bundles of photons
is traced as they travel through the enclosure. While the statistical nature of the Monte Carlo
method makes it difficult to match it with other calculations, it is the only method that can satis-
factorily deal with effects of irregular radiative properties (nonideal directional and/or nongray
behavior).

Because of their importance, an entire chapter is devoted to each of these four solution
methods. Several other methods that can be found in the literature are not covered in this book
(except for brief descriptions in appropriate places). For example, the discrete transfer method,
proposed by Shah [19] and Lockwood and Shah [20], combines features of the discrete ordi-
nates, zonal, and Monte Carlo methods. Another hybrid proposed by Edwards [21] combines
elements of the Monte Carlo and zonal methods.
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Problems

10.1 A semi-infinite medium 0 ≤ z < ∞ consists of a gray, absorbing–emitting gas that does not scatter,
bounded by vacuum at the interface z = 0. The gas is isothermal at 1000 K, and the absorption
coefficient is κ = 1 m−1. The interface is nonreflecting; conduction and convection may be neglected.

(a) What is the local heat generation that is necessary to keep the gas at 1000 K?
(b) What is the intensity distribution at the interface, that is, I(z = 0, θ, ψ), for all θ and ψ?
(c) What is the total heat flux leaving the semi-infinite medium?

10.2 Reconsider the semi-infinite medium of Problem 10.1 for a temperature distribution of T = T0 e−z/L,
T0 = 1000 K, L = 1 m. What are the exiting intensity and heat flux for this case? Discuss how the
answer would change if κ varied between 0 and∞.

10.3 Repeat Problem 10.1 for a medium of thickness L = 1 m. Discuss how the answer would change if κ
varied between 0 and∞.

10.4 A semi-infinite, gray, nonscattering medium (n = 2, κ = 1 m−1) is irradiated by the sun normal to
its surface at a rate of qsun = 1000 W/m2. Neglecting emission from the relatively cold medium,
determine the local heat generation rate due to absorption of solar energy.
Hint: The solar radiation may be thought of as being due to a radiative intensity which has a large
value Io over a very small cone of solid angles δΩ, and is zero elsewhere, i.e.,

I(ŝ) =
{ Io over δΩ along n̂,

0 elsewhere,
and

qsun =

∫
4π

I(ŝ)n̂ · ŝ dΩ = Io δΩ.

10.5 A 1 m thick slab of an absorbing–emitting gas has an approximately
linear temperature distribution as shown in the sketch. On both sides
the medium is bounded by vacuum with nonreflecting boundaries.

(a) If the medium has a constant and gray absorption coefficient of
κ = 1 m−1, what is the intensity (as a function of direction) leaving
the hot side of the slab?

(b) Give an expression for the radiative heat flux leaving the hot side.
T1 = 1000 K

1 m

T2 = 2000 K

10.6 A semitransparent sphere of radius R = 10 cm has a parabolic temperature profile T = Tc(1 − r2/R2),
Tc = 2000 K. The sphere is gray with κ = 0.1 cm−1, n = 1.0, does not scatter, and has nonreflective
boundaries. Outline how to calculate the total heat loss from the sphere (i.e., there is no need actually
to carry out cumbersome integrations).

10.7 Repeat Problem 10.6, but assume that the temperature is uniform at 2000 K. What must the local
production of heat be if the sphere is to remain at 2000 K everywhere? Note: The answer may be left
in integral form (which must be solved numerically). Carry out the integration for r = 0 and r = R.
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10.8 Repeat Problem 10.6, but assume that the temperature is uniform at 2000 K. Also, there is no heat
production, meaning that the sphere cools down. How long will it take for the sphere to cool down
to 500 K (the heat capacity of the medium is ρc = 1000 kJ/m3 K and the conductivity is very large, i.e.,
the sphere is isothermal at all times)?

10.9 A relatively cold sphere with a radius of Ro = 1 m consists of a nonscattering gray medium that
absorbs with an absorption coefficient of κ = 0.1 cm−1 and has a refractive index n = 2. At the center
of the sphere is a small black sphere with radius Ri = 1 cm at a temperature of 1000 K. On the outside,
the sphere is bounded by vacuum. What is the total heat flux leaving the sphere? Explain what
happens as κ is increased from zero to a large value.

10.10 A laser beam is directed onto the atmosphere of a (hypothetical) planet. The planet’s atmosphere
contains 0.01% by volume of an absorbing gas. The absorbing gas has a molecular weight of 20
and, at the laser wavelength, an absorption coefficient κη = 10−4 cm−1/(g/m3). It is known that the
pressure and temperature distributions of the atmosphere can be approximated by p = p0 e−2z/L and
T = T0 e−z/L, where p0 = 0.75 atm, T0 = 400 K are values at the planet surface z = 0, and L = 2 km is a
characteristic length. What fraction of the laser energy arrives at the planet’s surface?

10.11 10 cm

z

r

Laser
irradiation

A CO2 laser with a total power output of Q = 10 W is directed (at right
angle) onto a 10 cm thick, isothermal, absorbing/emitting (but not scat-
tering) medium at 1000 K. It is known that the laser beam is essentially
monochromatic at a wavelength of 10.6µm with a Gaussian power distri-
bution. Thus, the intensity falling onto the medium is

I(0) ∝ e−(r/R)2
/(δΩ δη), 0 ≤ r ≤ ∞;

Q =

∫
A

I(0) dA δΩ δη,

where r is distance from beam center, R = 100µm is the “effective radius”
of the laser beam, δΩ = 5× 10−3 sr is the range of solid angles over which
the laser beam outputs intensity (assumed uniform over δΩ), and δη is the range of wavenumbers
over which the intensity is distributed (also assumed uniform). At 10.6µm the medium is known
to have an absorption coefficient κη = 0.15 cm−1. Assuming that the medium has nonreflecting
boundaries, determine the exiting total intensity in the normal direction (transmitted laser radiation
plus emission, assuming the medium to be gray). Is the emission contribution important? How thick
would the medium have to be to make transmission and emission equally important?

10.12 Repeat Problem 10.11 for a medium with refractive index n = 2, bounded by vacuum (i.e., a slab with
reflecting surfaces). Hint: (1) Part of the laser beam will be reflected when first hitting the slab, part
will penetrate into the slab. Part of this energy will be absorbed by the layer, part will hit the rear
face, where a fraction will be reflected back into the slab, and the rest will emerge from the slab, etc.
Similar multiple internal reflections will take place with the emitted energy before emerging from the
slab. (2) To calculate the slab–surroundings reflectance, show that the value of the absorptive index
is negligible.

10.13 A thin column of gas of cross-section δA and length L contains a uniform suspension of small particles
that absorb and scatter radiation. The scattering is according to the phase function (a) Φ = 1 (isotropic
scattering), (b) Φ = 1+A1 cos Θ (linear anisotropic scattering, A1 is a constant), and (c) Φ = 3

4 (1+cos2Θ)
(Rayleigh scattering), where Θ is the angle between incoming and scattered directions. A laser beam
hits the column normal to δA. What is the transmitted fraction of the laser power? What fraction of
the laser flux goes through an infinite plane at L normal to the gas column? What fraction goes back
through a plane at 0? What happens to the rest?

10.14 Repeat Example 10.2 for (a) Φ = 1 + A1 cos Θ (linear anisotropic scattering, A1 = const), and (b)
Φ = 3

4 (1+ cos2Θ) (Rayleigh scattering), and Θ is the angle between incoming and scattered directions.

10.15 Show that, by setting βη = 0 and Iw = J/π, the radiosity integral equation (5.25) can be recovered from
equation (10.69) for a nonparticipating medium surrounded by diffusely reflecting walls.
Hint: Break up the heat flux in equation (10.69) into two parts, incoming radiation H and exiting
radiation J. For the latter assume r to be an infinitesimal distance above the surface and evaluate the
integral in equation (10.69).


