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Various hydromagnetic turbulence simulations exhibiting large scale dy- 
namo action are analysed: rotating convection with shear, rotating shear 
flow, and isotropically forced helical turbulence. The signs and magnitudes 
of the various helicities are compared and related to the effective dynamo 
alpha parameter. In isotropically forced helical flows the alpha parameter 
is found to be a negative multiple of the residual heli½ity, which is the dif- 
ference between kinetic and current helicity. The convection simulations are 
consistent with this, but the rotating shear flow simulations are not. In the 
latter case shear is responsible for reversing the sign of the stress, and it is 
the sign of the magnetic stress that determines the sign of the magnetically 
driven dynamo alpha. Finally, the inverse magnetic cascade is related to the 
alpha effect and attempts are shown to evaluate the magnitudes of alpha 
and turbulent diffusivity in a simulation exhibiting an inverse cascade. 

1. INTRODUCTION 

The concept of helicity is central to all theories of 
large scale dynamos. In the early work by Parker (1955) 
the concept of cyclonic convection was introduced as 
a means of producing poloidal magnetic field from a 
toroidal field by twisting rising flux tubes via the Cori- 
olis force. This was later quantified with the develop- 
ment of the a-effect (Steenbeck, Krause & R/idler 1966), 
which measures the magnitude of the mean electromo- 
tive force in the direction of the mean magnetic field. 
The books by Moffatt (1978) and Krause & R/idler 
(1980) give a comprehensive account of the kinematic 
mean-field dynamo theory. The main result is that 
when a is large enough a dynamo instability sets in and 
a large scale magnetic field is generated. For isotropic 
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turbulence the c• parameter is a negative multiple of the 
kinetic helicity. 

An important discovery was made by Frisch et al. 
(1975) and Pouquet et al. (1976), who found that the 
presence of magnetic helicity can give rise to an inverse 
cascade, by which magnetic helicity and energy are be- 
ing transferred from small to large scales. The growth of 
the large scale field depends here on the residual hellcity, 
i.e. the difference between kinetic and (electric) current 
helicities. The involvement of magnetic fields, or rather 
magnetically driven fluid motions, could be crucial, es- 
pecially in those circumstances where the magnetic field 
is strong. This is the case in practically all astrophysi- 
cally interesting applications (stars, accretion discs, and 
galaxies). 

There are now many different simulations displaying 
large scale dynamo action in astrophysically relevant 
systems. The purpose of this paper is to compare the 
helicities in some of those simulations. We begin with 
recent simulations of overshooting convection with im- 
posed shear. We then discuss simulations without con- 
vection and just shear, relevant to accretion discs, and 
finally compare with simulations of isotropically forced 
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2. DYNAMOS FROM OVERSHOOTING 

CONVECTION WITH SHEAR 

The overshoot layer beneath the solar convection zone 
proper is often thought to be the place where the dy- 
namo operates. This is the main reason why it is useful 
to include overshoot in convective dynamo simulations. 
Results of Nordlund et al. (1992) and Brandenburg et 
al. (1996) suggest that dynamo action occurs actually 
throughout the entire convection zone proper, but that 
the field is then transported downwards into the over- 
shoot layer by turbulent pumping of magnetic fields via 
rapidly spinning downdrafts. Recently, those simula- 
tions have been extended to include the effects of shear 

(Brandenburg et al. 1999). Shear takes the role of the 
omega-effect, although here the concept of alpha-omega 
dynamos is not explicitly invoked. The main result is 
the generation of large scale fields on the scale of the 
box. Those fields are of significant strength and can ex- 
ceed the equipartion field strength by an order of mag- 
nitude. 

For orientation we give the basic parameters of the 
simulation. The simulation is carried out at 30 ø north- 

ern latitude and the resulting inverse Rossby number, 
2f•L/urms, is around 5. Here, Urms is the turbulent 
rms velocity, L is the depth of the unstable layer, and 
fl is the angular velocity. Uniform latitudinal shear 
is imposed by a body force throughout the convec- 
tion zone proper, but it vanishes towards the radia- 
tive interior, resulting in vertical shear around the lower 
overshoot layer. 'Sliding-periodic' boundary conditions 
(Hawley et al. 1995) are used in the cross-stream di- 
rection and ordinary periodic boundary conditions in 
the streamwise direction. The ratio between shear gra- 
dient and angular velocity is 0.5 and the velocity dif- 
ference across the box is AU • =E0.4Urms. The res- 
olution is 63 x 63 x 64 meshpoints, the ordinary and 
magnetic Prandtl numbers are Pr = v/X = 0.2 and 
PrM = v/• = 0.5, i.e. the kinematic viscosity v is 
smaller than the magnetic and thermal diffusivities (7 
and )t). In the sun the two Prandtl numbers are much 
smaller than unity, but this is impossible to simulate in 
a simulation of only modest resolution. The Reynolds 
number is Re = UrmsL/•' - 240, the Rayleigh and Tay- 
lor numbers are Ra - gL4s•)/(cpX v) - 5 x 105 and 
Ta- (2flL2/v) - 106. Here, g is gravity and s•) is the 
entropy gradient of the associated unstable hydrostatic 
solution. 

The orientation of the cartesian box is as follows: x 

points north, y points east in the toroidal direction, and 
z points downwards. The top and bottom boundaries 
are stress free and the horizontal field vanishes, so there 

kinetic and magnetic energies 
100 ..,: .... i...,i....• .... :.,.,'. ..... -,....'. - -,.• .... '..,,.; .-..; - ' ...-.' '. 

10 -1 10-2 
10 -3 
10-4 
10-5 
10-6• ........... E•in 

2500 3000 3500 4000 4500 

time 

magnitude of the mean field 
lO ø ..... 

10 -1 
10- 2 

.- ........ "':ii ' :iii::;:ii i 
--4 

...... ,I '," ........... lO_ 
lO 

2500 3000 3500 4000 4500 

time 

0.10 
0.00 

-0.10 
-0.20 

-0.30 
-0.40 
-0.50 

mean field: linear scale 

<By> 
........ 

2500 3000 3500 4000 4500 

time 

'filling' factor 
ß . _ , 

0.30 

0.20 
o.15 
0.10 

0.05 
0.00 ......... 

2500 3000 3500 4000 4500 

time 

Figure 1. Evolution of magnetic and kinetic energies, 
mean magnetic field, and (B)2/(B 2) (which may be inter- 
preted as a 'filling' factor) in a convection simulation with 
imposed shear. 

is no vertical Poynting flux through the boundaries. Ini- 
tially there is no net flux through the box. 

In figure I we show the evolution of the total mag- 
netic energy and the mean magnetic field in such a sim- 
ulation. The magnetic energy increases by 6 orders of 
magnitude and then saturates. There is also an ex- 
ponential growth of the mean field (averaged over the 
entire box), which increases by 3 orders of magnitude 
until saturation is reached. (This is at around t - 3200, 
approximately the same time when the magnetic energy 
saturates; the time unit is v/L/g.) Note that the en- 
ergy in the mean magnetic field can be as large as 20% 
of the total magnetic 
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The main effect of the shear is the generation of 
strong ordered toroidal fields, (By). There is also a 
much weaker poloidal field component. The component 
in the latitudinal direction, (Bx), is about 10 times 
weaker and oriented mostly in the opposite direction, 
i.e. (Bx)(By) < 0 for most of the time. This is simply 
a consequence of the shear, OUy/Ox • 0, which turns a 
positive (B•) into a negative (By). 

In figure 2 we show the evolution of the various helic- 
ities for this run: kinetic helicity (co-u), current helicity 
(J. B), cross hellcity (u-B), and the magnetic helicity, 
(A. B). Here, co - curlu is the vorticity, u the veloc- 
ity, J - curl B//•0 the current density, B - curl A the 
magnetic field, A the magnetic vector potential, and/•0 
the vacuum permeability. 

We find that the kinetic hellcity is negative, and that 
its magnitude increases as the dynamo becomes satu- 
rated, i.e. when the magnetic energy levels off. This 
suggests that not only the current hellcity, but also the 
kinetic hellcity is driven (at least partly) by the mag- 
netic field. In other words, the part of the velocity 
that contributes mostly to the hellcity integral is caused 
mainly by the Lorentz force. Note also that current and 
kinetic helicities have the same sign. This is in contrast 
to some simulations of magnetoconvection with imposed 
magnetic field and at smaller magnetic Reynolds num- 
ber (Brandenburg et al. 1990), where the two hellcities 
have opposite sign. This may hint at an important dif- 
ference between more-or-less passive magnetic field evo- 
lution on the one hand and dynamo-generated magnetic 
fields on the other. 

Looking at the third panel of figure 2 we note that 
there is also some cross hellcity being generated. The 
cross helicity, which is perhaps more sensibly written as 
(B ß curl- •co), measures the linkage between B-tubes 
and co-tubes. Here, curl-•co = u. Significant magnetic 
helicity, (B. curl-•B), which measures the linkage of 
B-tubes with themselves, is also being generated at the 
time when the large scale field reaches saturation. That 
too is negative, so all three fields, co, J and B, have the 
same sign of the linkage number after the time the large 
scale field saturates. Only the linkage between co and 
B tubes has the opposite sign. 

The helicities given in figure 2 are all calculated us- 
ing the full velocity and magnetic fields. In mean-field 
dynamo theory one often needs the helicity calculated 
with respect to the fluctuations about the mean value, 
i.e. (co•-u •) = (co-u) - (co)-(u) and (J•.B •) = 
(J-B) - (J). (B). The difference is negligible, how- 
ever, because the large scale kinetic and current helic- 
ities are small; see the dotted lines in figure 2a and 
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Figure 2. Evolution of kinetic hellcity, current helicity, 
cross helicity, and magnetic hellcity, in a convection simu- 
lation with imposed shear. The dotted lines in (a) and (b) 
give the large scale kinetic and current helicities, multiplied 
by a factor of 10. 

b. The fluctuations in the toroidal component of the 
electromotive force, (u • x Bt)y, are large, and there is 
only a very weak positive correlation with the mean 
toroidal magnetic field, (By). Such a correlation would 
be suggestive of a positive (but very noisy) alpha-effect, 
if (u' x St)y = O•yy(By) -]-other terms. It may be sur- 
prising or even implausible that a very noisy effect could 
explain a strong and well-defined mean magnetic field 
as seen in figure 1. The reason is perhaps that even 
a very noisy or an incoherent alpha-effect (Vishniac & 
Brandenburg 1997; see also Vishniac's chapter) could 
give rise to a large scale magnetic 
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68 HELICITY AND DYNAMOS 

3. HELICITY IN SHEAR-DRIVEN 

ACCRETION DISC DYNAMOS 

A somewhat different situation is encountered in ac- 

cretion discs, where there is no direct source of turbu- 
lence, because discs are hydrodynamically stable. Only 
in the presence of a magnetic field there is a linear insta- 
bility (Velikhov 1959, Chandrasekhar 1960, 1961). This 
instability is now often called the magnetorotational or 
Balbus-Hawley (1991) instability. However, the flows 
generated by this instability would tend to destroy the 
magnetic field via turbulent diffusion. Nevertheless, at 
the same time the turbulence can also amplify the mag- 
netic field via dynamo action. Simulations unanimously 
point towards the possibility of a cycle where the field 
generates turbulence and the turbulence generates more 
magnetic fields (Brandenburg et al. 1995, Hawley et al. 
1996, Stone et al. 1996). In particular, in simulations 
of Brandenburg et al. (1995) there is a large scale mag- 
netic field, which is oscillatory and varies on a time scale 
of about 30 orbits, Trot = 2•r/120, where 120 is the an- 
gular velocity. Many quantities vary cyclically with the 
mean field, of which the toroidal component (By) is the 
strongest. 

In figure 3 we plot the kinetic and current helicities in 
the upper disc plane as functions of the mean toroidal 
field, (;By). Note that (J. B / is approximately propor- 
tional to (By) 2, as indicated by the solid line. On the 
other hand, (w. u) shows strong scatter and is indepen- 
dent of (By I. In contrast to the case of convection with 
shear the kinetic and current helicities have now oppo- 
site signs. The negative sign of (w. u / is in agreement 
with the interpretation in terms of cyclonic motions, 
but the sign of (J-B / is not. At large scales the signs 
of the two helicities are actually different (see the lower 
two panels of figure 3), but their magnitudes are small, 
so this does not explain the result. So, the origin of 
the sign of (J. B) remains unclear. It is probably con- 
nected with the strong effects of shear, which can give 
rise to unusual signs of the a-effect. This will be dis- 
cussed next. The connection between a and (J. B) will 
be discussed in the following section. 

In the case of the accretion disc simulations it is possi- 
ble to estimate the magnitude and sign of the effective 
dynamo a parameter by correlating at different time 
steps the mean electromotive force with the resulting 
mean magnetic field and to establish a fit of the form 
(u • x B•)y = a(B•) (Brandenburg et al. 1995, Branden- 
burg & Donner 1997). Here primes denote fluctuations. 
The a measured in that way is found to be negative 
in the upper disc plane. Therefore, the sign of a is in 

? 0.2 

•v o.o 

v -0.2 

-2 -1 0 1 2 

<By>lB, q 

0.002 

0.001 

0.000 

-0.001 
-0.002 

-2 -1 0 1 2 

<Bv>/B,q 

'• 0.020 
A 0.010 

• o.ooo 
A 

v. -O.OLO 
A 

%v -0.020 
-2 -1 0 1 2 

<By>lB, • 

Figure 3. Kinetic helicity and current helicity in the upper 
disc plane of in an accretion disc dynamo simulation. The 
lines give a fit through the data. The last two panels show 
that the two helicities of the mean field are small and of 

opposite sign. 

disagreement with that expected form kinetic and cur- 
rent helicities (see the next section). The perhaps most 
convincing explanation for this negative sign is that the 
shear twists buoyant magnetic structures in the oppo- 
site sense as the Coriolis force (Brandenburg & Camp- 
bell 1997, Brandenburg 1997, 1998, 1999). The mean 
toroidal electromagnetic force, <u • x B•)y, is then gov- 

• and radial erned by the vertical velocity fluctuations uz, 
I magnetic field fluctuations, B•x, so (u • x B•)y (uzBxl. 

If u•z originates mainly from magnetic buoyancy then 
I 

u z 0• -(p•/(p))g•-, where •- is some relevant timescale 
and p•/(p)- 
with a 0• (B•xB•)g•-/(l•opcs2). This would explain the 
negative sign of a, because (BxBy) < 0 (in agreement 

3120 This with the sign of the mean shear, OUy/dx - -• . 
is an example where a negative a results from a flow 

_ 

that is driven exclusively by the Lorentz force and not, 
like in the case of convection, by thermal buoyancy of 
other nonmagnetic forces. 

4. THE RELATION BETWEEN 

ALPHA-EFFECT AND HELICITY 

There have been attempts to estimate a from forced 
MHD turbulence. Simulations of Tao et al. (1993), for 
example, verify that a is a negative multiple of the ki- 
netic helicity. However, there has so far been no verifi- 
cation that a is related to the residual helicity (Pouquet 
et al. 1976), 

Hres -- <(• ' u) - <J . $)/p. 
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BRANDENBURG 69 

The (J. B) term in this expression can lead to signif- 
icant modifications once the magnetic energy is strong 
compared with the kinetic energy. This is likely to be 
case in accretion discs. In order to access this parameter 
regime we now discuss another model (Brandenburg & 
Bigazzi 1999) where the flow is magnetically driven. In 
that case we adopt some random forcing, El, directly 
in the induction equation, which then takes the form 

OA 

c9t = u x B + q•72A - El, (2) 

where Ey consists of plane Beltrami waves of maximum 
(positive) helicity. The spatial pattern is renewed in 
regular time intervals, Aty. 

An explicit forcing in the induction equation is adopted 
mainly for mathematical convenience, rather than phys- 
ical reality. In the case of accretion discs there is actu- 
ally an extra term, E f = SAYS:, where $ is the shear 
parameter, but this corresponds to a multiplicative forc- 
ing, not to an additive forcing as in the present model, 
because E i is proportional to the y-component of A. 
We comment further on this forcing term in the next 
section, where we adopt a forcing at high wavenumbers. 

In the present model a large scale vertical magnetic 
field is imposed, so the field in Eq. (2) consists of two 
parts' B - œB0 + V x A. The flow is driven exclusively 
by the Lorentz force in the momentum equation. The 
resulting current helicity is large and positive, and the 
kinetic helicity has now the same sign, i.e. /w ß u) > 0 
and (J. B) > 0, but with [(co. u)[ << I(J' B)I. 

We measure the dynamo a by dividing the z-componen 
of the resulting electromotive force, œ = (u x B), by B0. 
We find that to a good approximation a is a negative 
multiple of Hres; see figure 4. In the present case with 
magnetic forcing the residual helicity is always negative, 
because the current helicity dominates over the kinetic 
helicity and both are positive. A somewhat different 
situation arises when the forcing is applied in the mo- 
mentum equation instead. In that case the kinetic he- 
licity is larger than the current helicity and so the sign 
of the residual helicity is positive. The corresponding 
sign of a is then also reversed. This is how we obtained 
the points on the right hand side of figure 4 for positive 
values of Hres. The data points for both magnetic and 
hydrodynamic forcing match the linear fit equally well. 

Although the approach in this section is enlighten- 
ing as far as the connection between a and the vari- 
ous helicities is concerned, is remains unsatisfactory for 
a number of reasons. Firstly, for small imposed fields 
and sufficiently large magnetic Reynolds numbers there 
is a dynamo effect that causes the mean electromotive 

0.3 

0.2 

0.1 

0.0 

-0.1 

-0.40 -0.30 -0.20 -0.10 0.00 

Hres 
0.10 0.20 

Figure 4. Alpha effect as a function of residual helicity. 

force to grow to large values until saturation occurs. 
At the same time the mean magnetic field is conserved. 
Thus there can be no casual relation between the mean 

electromotive force and the mean magnetic field. It is 
therefore no longer possible to estimate a by just di- 
viding the electromotive force by B0. The result would 
have been arbitrary and therefore meaningless. This 
difficulty does not arise for small magnetic Reynolds 
numbers, although that case is of course less interesting. 
Secondly, when measuring a using averages defined by 
projections onto the k = 0 wavenumber the results may 
be spurious, because the field in the k = 0 wavenumber 
(i.e. the flux through the box) is conserved for periodic 
boundary conditions and therefore not affected by the 
dynamics. A more satisfactory approach is therefore to 
measure a by projecting onto the wavenumber k = 1 
and forcing at sufficiently small scale to have some sort 
of scale separation. This is done in the next section. 
One could still use an initial field at wavenumber k - 1, 
but now this field can evolve. We find that it grows to 
appreciable field strengths due to dynamo action, and it 
is such a state that will be used for estimating a. First, 
however, we look at the growth of the field starting from 
random initial conditions. 

5. THE INVERSE CASCADE EFFECT IN 
ISOTROPICALLY FORCED SYSTEMS 

Following the early work on inverse cascades (Pou- 
quet et al. 1976) we now adopt a high wavenumber forc- 
ing in the induction equation. Apart from the higher 
forcing wavenumber and the absence of an imposed field 
everything else is like in the previous section. Because 
the forcing is at high wavenumbers only (k = 10) the 
magnetic field evolution at the large scales (k = 1) is not 
immediately affected, except of course for the 
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Figure 5. The inverse cascade seen in power spectra of 
the magnetic field taken at different times (upper panel). 
The four dotted curves are for t - 2, 4, 10, 20, the solid 
and dashed curves are for t - 40 and 60, respectively, and 
the dash-dotted curves are t - 80, 100, 200, and 400. The 
lower panel shows the evolution of the spectral power in the 
k = 1, 2, and 4 modes in a double-logarithmic plot. 

cascade effect which governs the evolution on wavenum- 
bers smaller than the forcing wavenumber. We also 
point out that the general behavior is similar, regard- 
less of whether the forcing is applied in the induction 
equation or in the momentum equation. 

Looking at power spectra of the magnetic field at sub- 
sequent times (figure 5) we see that the energy at the 
largest possible scale in the system (k = 1) grows un- 
til some saturation level is reached at around t = 40; 
see the lower panel of figure 5. Curiously enough, at 
the time when the k = 1 mode reaches saturation the 

power in the k = 2 mode begins to be suppressed (see 
the dotted line). Looking more carefully at this plot 
reveals that at the time when the k - 2 mode began to 
saturate (at around t = 20- 30) the power in the next 
higher modes, k = 3 and k = 4, was suppressed. This 
has also been observed in similar calculations of low 

Reynolds number flows (Gilbert & Sulem 1990, Galanti 
et al. 1991, Galanti & Sulem 1991). In our case the 
Reynolds numbers (ordinary and magnetic), based on 
the box size and the rms velocity, are around 140. How- 
ever, the Reynolds number based on the wavenumber 
10 is only 14. In that sense our simulation too is rather 
diffusive. 

The orientation of the magnetic field is not deter- 
mined a priori and depends on chance and on initial 
conditions. Sometimes we found a field that varied 

mostly in the x-direction, while for other simulations 
the field varied mostly in the y or z-directions. If the 
mean field varies only in the x-direction, for example, 
then Oy (B) = Oz (B) = 0 and only Ox (B) is nontrivial. 
Then, however, because 

o - v. (e) - (3) 

we have (Bx) = const = O, so (B) = (0, (By), 
In other words, the field vector lies in a plane whose 
normal is parallel to the direction in which it varies, 
but it has no component in that direction. Once the 
large scale field has selected a preferred direction, it will 
stick to it for all times. We note, however, that we never 
encountered a case where the field is oblique to any of 
the coordinate planes. An oblique mean field would 
diffuse faster, because the turbulent diffusion operator, 

+ 2 _ 2 ß ky) -- 2•/•krnin , •S always larger than just •/k• 2 = 
2 

•hkmin. This is probably the reason why diagonal fields 
are not being generated. 

In figure 6 we show the resulting mean magnetic field 
from a simulation in which the preferred direction of 
the mean field is the z-direction. Note that there is a 

90 ø phase difference between the x and y-components 
of the mean magnetic field. 

The approach just described allows us to study the 
evolution and saturation of the large scale magnetic 
field. An obvious question is then whether the field 
produced by the inverse cascade resembles qualitatively 
and perhaps even quantitatively the field generated by 
an a 2 dynamo, and if so, what are then the correspond- 
ing values of c• and turbulent diffusivity, 
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',! 
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Figure 6. The mean magnetic field components, (B•) and 
(By), as functions of z in a simulation where the mean field 
varies only in the 
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BRANDENBURG 71 

6. CONNECTION WITH AN 

ALPHA-SQUARED DYNAMO 

The mean magnetic field found in the previous sec- 
tion resembles in many ways an a 2 dynamo. In such 
a dynamo the large scale field is governed by the equa- 
tions 

where we have assumed that the mean field varies only 
in the z-direction, which is the situation in the par- 
ticular solution displayed in figure 6 (section 5). The 
averages are taken over the x and y directions. In the 
saturated case the field is dominated by the smallest wa- 
ver number k = 1; see the inset of figure 5. Therefore 
we now take the solution to be of the form 

(Be) -/•½(t) sin(z - zo), (By) - l•v(t ) cos(z - zo), 
(•) 

where zo is a constant (phase factor). With this, Eqs. (4) 
and (5) take the form 

= - (, + (7) ot 

of, = _ (. + (8) Ot ' 

In the steady state we have a = •/+ •/t. In order to 
estimate the value of a we modify the actual field in 
the simulation by setting momentarily the mean field 
in either the x or the y-direction to zero, i.e. we replace 
at some instance in time Bx • Bx- (Bx) or B v • 
Bv-(Bv). Looking at eq. (7) we see that setting (B•) = 
/• - 0 means that immediately after this manipulation 
the/• field should recover at a rate a/)•. This rate is 
approximately 0.02 (see figure 7), and since • = I we 
have a = 0.02. This value is already affected by the 
nonlinear feedback in the system (alpha-quenching, for 
example). Assuming that the value of a is the same 
before and after removing one of the two mean field 
components we have therefore •/+ •/t • a • 0.02. Since 
in this simulation •/ = 0.01 we have •/t • •/. Those 
values of a and •/t are rather small, suggesting again 
that the effective magnetic Reynolds number is small. 

This method can in principle be applied to systems 
with different field strengths, different magnetic Reynolds 
numbers, and different amounts of helicity. 
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0 50 100 150 200 250 300 

Figure ?. Response of the large scale field after removing 
the mean field from the Bx and By fields, respectively. After 
t = 220 the field component that was set to zero (/)x in the 
upper panel, •y in the lower) began to grow at a rate • 0.02. 

7. CONCLUSIONS 

Helicity is closely connected with large scale dynamos. 
In isotropically forced turbulence helicity leads to a 
growth of the large scale field in a way that is very simi- 
lar to the case of a-effect mean-field dynamos. Measur- 
ing the value of a in such a case gave evidence that this 
a is a negative multiple of the residual helicity, as was 
expected some time ago by Frisch et al. (1975) and Pou- 
quet et al. (1976). However, in the non-isotropic case 
(sections 2 and 3) the situation is not so obvious and 
there may no longer be a clear relation between a and 
helicity, or it may be more complicated and affected 
by other factors such as shear, for example. Another 
important point is that in the inverse cascade mecha- 
nism the large scale field appears to saturate by quench- 
ing the power in the next higher Fourier modes. This 
suggests that modelling this phenomenon in terms of 
the a-effect requires some modification such as a k- 
dependence of a in Fourier space. However, a mul- 
tiplication of the form a(k)/)(k) corresponds, in real 
space, to a convolution with some a-kernel. Such pos- 
sibilities were recently explored by Brandenburg and 
Sokoloff (1999), and may even be necessary to explain 
stellar cycle data (Brandenburg et al. 1998). 

Looking at figure 5 we note that once the field has 
reached saturation at some wavenumber, the power in 
the next larger wavenumber begins to be 
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72 HELICITY AND DYNAMOS 

This may be interpreted in terms of a wavenumber de- 
pendent quenching. However, only future work can 
show whether the apparent similarity with c•-effect dy- 
namos is coincidental or not. Whatever the result is, 
it is clear that in both approaches (inverse cascade and 
c•-effect) helicity does play an important role. 

There is another important issue that needs to be 
mentioned here. In all situations of practical relevance 
the relative kinetic and current helicities (normalized 
by the rms values of velocity and vorticity or magnetic 
field and current, respectively) are never close to 100%, 
as was the case in the cascade model. In the simula- 

tions of rotating convective and shear flow turbulence, 
for example, the relative helicities were at most around 
3%-5%. However, it is important to realize that even 
for zero net helicity, and just helicity fluctuations, a 
large scale field can grow, provided there is shear; see 
Vishniac & Brandenburg (1997). The large scale field 
generated in such a case varies somewhat irregularly in 
time and may show reversals on a diffusive time scale, 
so this effect alone would be insufficient to explain the 
solar cycle, which is more regular. Nevertheless, it is 
quite plausible that even a small amount of net hellcity 
suffices to produce mean fields with the spatial and tem- 
poral order seen on the sun. Therefore, when measuring 
the helicity in the sun observationally it is important to 
measure not only the mean helicity, but also its variance 
(see the chapter by Pevtsov, for example). 
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