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Abstract

We study vorticity production in isothermal, subsonic, acoustic (nonvortical), and decaying turbulence due to the
presence of magnetic fields. Using three-dimensional numerical simulations, we find that the resulting kinetic
energy cascade follows the ordinary Kolmogorov phenomenology involving a constant spectral energy flux. The
nondimensional prefactor for acoustic turbulence is larger than the standard Kolmogorov constant due to the
inefficient dissipation of kinetic energy. We also find that the Lorentz force can drive vortical motions even when
the initial field is uniform by converting a fraction of the acoustic energy into vortical energy. This conversion is
shown to be quadratic in the magnetic field strength and linear in the acoustic flow speed. By contrast, the direct
production of vortical motions by a non-force-free magnetic field is linear in the field strength. Our results suggest
that magnetic fields play a crucial role in vorticity production in cosmological flows, particularly in scenarios
where significant acoustic turbulence is prevalent. We also discuss the implications of our findings for the early
Universe, where magnetic fields may convert acoustic turbulence generated during cosmological phase transitions
into vortical turbulence.

Unified Astronomy Thesaurus concepts: Magnetic fields (994)

1. Introduction

One can envisage diverse astrophysical situations where the
velocity field is irrotational and the gas motions are
predominantly acoustic. Such flows can be described as the
gradient of a potential function, and thus may arise from
gravitational accelerations or barotropic pressure fluctuations.

Vortical motions, on the other hand, arise hydrodynamically
through shocks (D. H. Porter et al. 2015) and through the
baroclinic term resulting from oblique gradients of density and
pressure (F. Del Sordo & A. Brandenburg 2011; C. Federrath
et al. 2011; R. Jahanbakhshi et al. 2015; A. Elias-López et al.
2023, 2024). However, the efficiency of these effects is limited
because they depend on the Mach number, which is often
small. Thus, thermal effects such as differential heating may be
too weak to produce baroclinicity.

On the other hand, it has been known for some time that
magnetic fields create vorticity regardless of the possible
presence of irrotational turbulence as long as the curl of the
Lorentz force is nonvanishing. This was demonstrated by
T. Kahniashvili et al. (2012), who were primarily interested in
the effect of turbulence from cosmological phase transitions on
an inflationary-generated magnetic field. Yet the possibility of
producing vorticity in the presence of magnetic fields is more
general and may also have occurred under other circumstances.

A characteristic property of vortical turbulence is the
constancy of the energy flux from the driving scale along the
turbulent cascade down to the dissipation scale. This allows
one to express the energy spectrum in nondimensional form,
yielding a dimensionless prefactor known as the Kolmogorov

constant (U. Frisch 1995; K. R. Sreenivasan 1995), which is
well measured in vortical turbulence.
There have been numerous studies of acoustic turbulence,

starting with the early works of B. B. Kadomtsev &
V. I. Petviashvili (1973), K. Elsasser & H. Schamel
(1974, 1976), and V. S. L’vov & A. V. Mikhailov (1981).
However, many subsequent studies focused on compressi-
bility effects (T. Passot & A. Pouquet 1987; B. K. Shivamoggi
1992; J. Cho & A. Lazarian 2005; S. Galtier & S. Banerjee
2011). Although the spectral properties of acoustic turbulence
have also been investigated in some detail (G. Falkovich &
M. Meyer 1996; E. Kuznetsov & V. Krasnoselskikh 2008;
E. A. Kochurin & E. A. Kuznetsov 2022; G. Ricard &
E. Falcon 2023), no values for a Kolmogorov-like prefactor have
been quoted for magnetized acoustic turbulence.
Here, we use numerical simulations to revisit magnetic

vorticity production in acoustic turbulence, focusing on three
main questions: (1) can the Kolmogorov prefactor be
determined for acoustic turbulence, and how does the presence
of a magnetic field change its value? (2) To what extent does
magnetically modified acoustic turbulence resemble ordinary
turbulence? (3) Can acoustic turbulence be converted into
vortical turbulence due to the presence of a magnetic field?
We emphasize that we are not concerned with strong

compressibility effects, which would occur at large Mach
numbers (D. R. G. Schleicher et al. 2013; C. Federrath et al.
2014; D. H. Porter et al. 2015). This is why we prefer the term
“acoustic” (B. B. Kadomtsev & V. I. Petviashvili 1973) over
“compressive.” Furthermore, compared to the more general
term “irrotational,” the term “acoustic” is more directly
suggestive of low-amplitude subsonic flows.
The structure of this work is as follows. In Section 2, we

describe the magnetohydrodynamic (MHD) equations and their
implications for vorticity production, as well as our numerical
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approach, parameter space, and analysis techniques. In
Section 3, we present our results, focusing on measurements
of the Kolmogorov prefactor and magnetic vorticity produc-
tion. Implications and conclusions are given in Section 4.

2. The Model

2.1. Basic Equations

We solve the hydrodynamic and MHD equations with an
isothermal equation of state, where the pressure p and density ρ
are related to each other through p cs

2r= with c consts =
being the isothermal speed of sound. This precludes vorticity
production by the baroclinic term. The evolution equations for
ρ and the velocity u are then given by

· ( )u
D

Dt

ln
and 1

r = -

( )u J B
F

D

Dt
c ln , 2s

2
viscr

r
= - +

´
+

where B is the magnetic field, J = ∇ × B/μ0 is the current
density with μ0 being the vacuum permeability, J × B is the
Lorentz force, · ( )F S2visc

1r nr= - is the viscous force
per unit mass with ν being the kinematic viscosity, and S is
the rate-of-strain tensor with components ( )u uij i j j i

1

2
= ¶ + ¶ -S

· uij
1

3
d  . Note that our simulations only include the usual shear

viscosity and assume that the bulk viscosity is absent; see
J. R. Beattie et al. (2023) for a recent work on this aspect.

In simulations in which the magnetic field is included, we
also solve for the magnetic potential A via

( )A
u B A

t
, 32h

¶
¶

= i ´ + 

so that ∇ × A is always divergence free. In several of our
models, we also impose an external magnetic field B0 by
writing B = B0 + ∇ × A, so that we can adopt periodic
boundary conditions on A. In Equation (3), the parameter ι is
introduced to allow us to turn off the induction term (ι = 0). By
default, we have ι = 1.

2.2. Vorticity Production

To understand the terms leading to vorticity production, we
take the curl of Equation (2) and find

 ( ) ( )w
u w w w

t
, 4mag visc¶

¶
= ´ ´ + +

where  /( )w J Bmag r= ´ ´ is the magnetically produced
vorticity, and w Fvisc visc= ´ is the viscously produced
vorticity. Under the assumption that constn = , we find
(A. J. Mee & A. Brandenburg 2006)

 ( )w w G, 5visc
2n n=  + ´

where G 2 lni ij j r= S is a term that always drives vorticity
—even if it is initially absent. Alternatively, if constm nrº = ,

we have ( · )F u uvisc
1 2 1

3
r m =  +- and

 · ( )w w w uln
4

3
, 6visc

2m
r

r  =  + ´ ´ -⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

when constm = . This expression shows that viscous vorticity
production results from the obliqueness of density and velocity
divergence gradients, which is somewhat analogous to vorticity
production by a baroclinic term in the nonisothermal case. The
1/ρ term in the expression for wmag is generally only of minor
importance when the Mach number is small. Thus, in the
following, we focus on the case constn = , where vorticity
production occurs through similar terms as in the case constm = .
While wvisc can play a role at small scales, it is not the only

term that can convert acoustic motions into vortical motions in
a magnetized flow. This is because acoustic flows modify the
magnetic field, which may then exert a Lorentz force with a
finite curl. We refer to this as magnetically assisted vorticity
production. We give a simple one-dimensional example of this
process in Section 3.6.1, and in Section 3.6.2 we present a set
of simulations that validate the scaling relations obtained from
the one-dimensional model.

2.3. Initial Velocity Field

Our study is based on the PENCIL CODE (Pencil Code
Collaboration et al. 2021), which employs sixth-order centered
differences and a third-order time-stepping scheme. In all cases,
we use a resolution of 10243 mesh points. Our simulations have
periodic boundary conditions, so the mass in the volume is
conserved, and the mean density ρ0 ≡ 〈ρ〉 is constant. Here and
below, angle brackets denote volume averaging.
Our initial velocity and vector potential are constructed in

Fourier space as ( ) ˜( ) ·u x u k e k xi= å and ( ) ˜ ( ) ·A x A k e k xi= å
with

˜ ( ) [( ) ( ) ˆ ˆ ] ˜ ( ) ( )k ku k k u S1 1 2 , 7i ij i j jiniz d z= - - -

˜ ( ) ( ˆ ˆ ) ˜ ( ) ( )k kA k k A S . 8i ij i j jinid= -

Here, uini and Aini are amplitude factors, k̂i are the components of
the unit vector /k̂ k kº , ˜ ( )kSj is a vector field in Fourier space
with three independent components that depend on k = |k| but
have random phases j(k) for each k vector, and ζ is the
irrotationality parameter with ζ = 0 when the initial velocity is
vortical and ζ = 1 when it is acoustic (irrotational). Here, we
choose

/

/

/ /

/ /
˜ ( )
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where k0 is the peak wavenumber of the initial condition, and α
is the slope of the subinertial range, which we set to α = 4 in
this work.

2.4. Diagnostic Quantities

An important characteristic of turbulence is its energy
spectrum. The kinetic energy density per linear wavenumber
interval, EK(k, t), is defined as the modulus squared of the
Fourier transform of the velocity integrated over concentric
shells in wavevector space. The spectrum is normalized such
that ( ) ( )t E k t k, dK Kò= is the mean kinetic energy density.
To obtain the energy per unit volume, we include a ρ0 factor, so

/( ) ut 2K 0
2r= á ñ , but we refer the reader to A. G. Kritsuk

et al. (2007) for alternatives.
The magnetic energy spectrum EM(k, t) is defined analogously

such that ( ) ( )t E k t k, dM Mò= is the mean magnetic energy
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density with /( ) Bt 2M
2

0m= á ñ . In addition, we also compute
the spectrum of the vorticity, Ew(k, t), analogously to EK(k, t),
but with the velocity u being replaced by the vorticity
w = ∇ × u. In this case, Ew(k, t) is related to the vortical
part of the kinetic energy spectrum, EV(k, t), through
EV(k, t) = Ew(k, t)/k

2.
Finally, we also consider the scaled logarithmic density

spectrum, ( )E k t,ln r , which is normalized such that
/( ) ( )E k t k c, d ln 2ln 0 s

2ò r r= á ñr . Looking at Equation (1),
the spatiotemporal Fourier transform of its linearized form
reads · ˜k ui ln iw r- = -

~
, where ω is the frequency. Using the

dispersion relation for sound waves, ω = csk, we have
ˆ · ˜k uc lns r =

~
, so that c lns r is directly a proxy for the

longitudinal velocity, and ( )E k t,ln r is a proxy of the energy
spectrum of the acoustic part, E EA ln» r. We note that
EK = EV + EA is a fairly accurate decomposition, at least
for subsonic flows. We therefore compute the acoustic velocity
spectrum as EA = EK − EV and have verified that Eln r is
indeed a good approximation of EA.

The kinetic and magnetic dissipation rates are

( )JS2 and , 10K
2

M 0
2nr hmº á ñ º á ñ 

respectively. The magnetic dissipation can also be obtained
from òM(t) = ∫2ηk2EM(k, t) dk. For the kinetic energy
dissipation, however, we have to remember that vortical and
irrotational parts contribute differently, because

( · ) ( )w uS
4

3
. 112 2 2á ñ = á ñ + á ñ

Therefore, we also define òV(t) = ∫2νk2EV(k, t) dk, and
( ) ( )t k E k t k2 , dA

4

3
2

Aò n= , but note that, in general, òK ≠
òV + òA owing to the existence of mixed terms.

To characterize the velocity and magnetic fields of our runs,
we define five different Mach numbers. The usual Mach number
is Ma = urms/cs, which characterizes the combined vortical
and acoustic parts. This can also be characterized separately

through / /cMa 2V V 0 sr=  and / /cMa 2A A 0 sr=  , so

that Ma Ma Ma2
V
2

A
2= + . The magnetic field is characterized

by the Alfvén speed /v BA rms 0 0r m= , which allows us to
define a corresponding Mach number. Here, it is convenient to
consider separately the contributions from the imposed field

/BvA0 0 0 0r m= and the rest, vA1, so that v v vA
2

A0
2

A1
2= + . The

corresponding Mach numbers are then MaM0 = vA0/cs and
MaM1 = vA1/cs.
We also define the time-dependent Reynolds number

/uRe rms Kx n= based on the usual integral scale:

/( ) ( )k E k dk 12K
1

K Kòx = - 

and quote in the following a late-time average when it varies
only slowly. In all cases, our Mach numbers are averaged over
a fixed interval at a time of around 100 sound travel times,
( )c ks 1

1- . The values of the Mach numbers are well below unity,
and the magnetic Prandtl number, PrM = ν/η, is taken to be
unity in all cases.
It is convenient to present magnetic and kinetic energy

spectra in a normalized form. Instead of normalizing them by a
quantity characterizing the large-scale properties ( /kK 0 ), we
choose here to normalize them by the quantity // /kK

2 3
0
5 3 ,

characterizing the small scales. For our runs, we take the values
k0/k1 = 10 and 2.

3. Results

3.1. Summary of the Runs

We performed a series of runs varying the input parameters
ζ, ι, k0, uini, Aini, MaM0, and MaM1; see Table 1 for a summary.
Nonmagnetic runs are those where MaM0 = MaM1 = 0 (see
Runs A, B, and H). When MaM0 = 0 but MaM1 ≠ 0, we have
initially a random (“turbulent”) magnetic field with a spectrum
peaking at k ≈ k0, similar to the initial velocity field (Runs C–E
and G). Run D is the same as Run C, except that the induction

Table 1
Summary of the Runs Discussed in This Paper

Input Parameters Output Parameters

Run ζ ι k̃0 ũini Ãini MaM0 MaM1 MaK MaV MaA Re CM CK CKV CKA CV CA

A 0 1 10 0.020 0 0 0 0.020 0.020 0.002 1200 L 1.62 1.62 0.00 1.65 0.00
B 1 1 10 0.020 0 0 0 0.013 0.000 0.013 1000 L 6.06 0.00 6.06 0.35 6.06
C 1 1 10 0.020 0.005 0 0.009 0.014 0.004 0.013 1100 2.93 6.31 0.33 5.99 0.80 7.22
D 1 0 10 0.020 0.005 0 0.019 0.033 0.031 0.010 1200 0.00 1.86 1.65 0.22 1.69 0.48
E 0 1 10 0 0.005 0 0.008 0.003 0.003 0.000 200 2.88 0.96 0.96 0.00 0.96 0.02
F 1 1 10 0.020 0 1.00 0.010 0.014 0.008 0.012 200 3.66 3.92 1.57 2.35 3.09 3.17
G 1 1 2 0.020 0.005 0 0.014 0.013 0.007 0.011 2100 1.80 6.58 0.86 5.72 1.54 7.36
H 1 1 2 0.020 0 0 0 0.026 0.000 0.026 1300 L 2.17 0.00 2.17 0.26 2.18
I 1 1 2 0.020 0 0.02 0 0.026 0.000 0.026 1900 0.19 2.26 0.00 2.26 0.18 2.27
J 1 1 2 0.020 0 0.05 0.001 0.026 0.000 0.026 1900 0.35 2.26 0.00 2.26 0.32 2.28
K 1 1 2 0.020 0 0.10 0.002 0.026 0.001 0.026 1500 0.57 2.13 0.00 2.12 0.74 2.13
L 1 1 2 0.020 0 0.20 0.004 0.026 0.001 0.026 1300 0.98 2.11 0.02 2.09 1.39 2.09
M 1 1 2 0.020 0 0.50 0.011 0.026 0.005 0.025 1900 1.95 2.47 0.17 2.30 2.18 2.35
N 1 1 2 0.020 0 1.00 0.020 0.028 0.015 0.023 1900 2.92 3.13 1.01 2.12 2.32 2.67
O 1 1 2 0.004 0 0.10 0.001 0.008 0.000 0.008 500 0.63 2.74 0.00 2.74 0.16 2.76
P 1 1 2 0.004 0 1.00 0.006 0.008 0.004 0.007 500 2.90 3.12 0.55 2.57 1.99 2.87

Note. Column (1): run name; column (2): irrotationality parameter ζ; column (3): induction switch ι; column (4): normalized peak wavenumber /k̃ k k0 0 1= ; columns
(5–6): normalized amplitudes of initial random velocity and vector potential, /ũ u cini ini s= and /Ã k A cini 1 ini 0 0 sr m= ; columns (7–11): five different Mach numbers;
column (12): the Reynolds number; columns (13–18): six different Kolmogorov-type parameters. Dashes indicate that CM cannot be determined for nonmagnetic runs.
Run D is the same as Run C, except that the induction term has been ignored in Equation (3).
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term has been ignored in Equation (3), i.e., ι = 0. The Mach
numbers are in the range 0.007–0.04, and the Reynolds number
is in the range 200–1900.

The Kolmogorov-type parameter or prefactor for the
magnetic field, CM, varies significantly and is usually in the
range 2–8. In all cases with ζ ≠ 0, CK exceeds the typical value
of 1.6 for vortical turbulence (Run A). Almost no vorticity is
produced when MaK and CKV are small (Runs B, C, H–L, and
O). This is the case for all nonmagnetic and weakly magnetized
cases when MaM0  0.1. Vorticity is produced when
MaM0  0.01 or MaM1  0.02 (Runs C–E and G). We recall
that Run G has a smaller value of k0 than Runs C–E.

3.2. Comparison of Typical Spectra

The velocity spectra for Run A, with vortical hydrodynamic
turbulence, Run B, with acoustic hydrodynamic turbulence,
and Run C, with acoustic MHD turbulence, are compared
at a fixed time in Figure 1. We see that, although our runs
have a fixed viscosity (νk1/cs = 10−6 for k0/k1 = 10 and
νk1/cs = 5 × 10−6 for k0/k1 = 2) and similar values for the
Mach Number, only Run A has a spectrum that still possesses
significant energy at large k. It is also the only run with a
marked bottleneck, i.e., a shallow part just before the viscous
subrange at large k (G. Falkovich 1994). The peak of the scaled
spectra for Run B is higher, reflecting the fact that the
Kolmogorov prefactor for acoustic turbulence is larger, as we
discuss below. Finally, the kinetic energy spectra for Runs B
and C are similar to that for Run A, except there is no visible
bottleneck.

3.3. Kolmogorov Prefactor

In Kolmogorov’s theory, the constancy of the kinetic energy
flux along the turbulent cascade makes òK an important
quantity for dimensional arguments. On dimensional grounds,
the spectrum should be equal to / /C kK K

2 3 5 3- , where CK, the
dimensionless prefactor, is the Kolmogorov constant
(U. Frisch 1995). To obtain the value of CK, it is convenient
to present compensated spectra, / / ( )k E k t,K

2 3 5 3
K

- , which
should show a constant plateau in the k range where the
Kolmogorov scaling applies. Note that the difference with our
normalization in Figure 1 lies in the fact that there the factor
/k0

5 3 was a constant, but now it is k dependent.

We begin with the more familiar vortical case with ζ = 0 and
no magnetic field (B = 0, Run A). The result is shown in
Figure 2, where we see the approach to a plateau in the
compensated spectrum at the level CK ≈ 1.6, which agrees with
the usual Kolmogorov constant (Y. Kaneda et al. 2003;
A. Brandenburg et al. 2023). Near the dissipative subrange, we
also see a strong bulge. This was already evident from Figure 1
and was characterized as the bottleneck (G. Falkovich 1994). It
is significantly stronger here than for ordinary (stationary)
turbulence, for which the compensated spectrum at the
bottleneck is usually well below 3 (Y. Kaneda et al. 2003;
N. E. Haugen et al. 2004; A. Brandenburg et al. 2023). This
could partially be a consequence of having underresolved the
high wavenumbers at early times.
The corresponding case for acoustic turbulence, where

ζ = 1, looks different in many ways. This is shown in
Figure 3, where we plot spectra that are compensated separately
for the vortical and acoustic parts, i.e.,

/ /( ) ( ) ( ) ( )c k t t k E k t, , , 13i i i
2 3 5 3= -

and denote by Ci the approximate average of ci(k, t) over the flat
part for i = V or A. Here, we still see the approach to a plateau,
but the bottleneck is very weak (see the inset). Instead, there is a
spike in EA at the low-wavenumber end, where the spectrum
transits from the subinertial range to the inertial range. In the

Figure 1. Kinetic energy spectra for Runs V (black), A (red), and C (blue), all
at time t = 28/csk1. No distinction between vortical and acoustic contributions
has been made.

Figure 2. Compensated kinetic energy spectra for Run A at times csk1t = 3, 7,
14, and 28. The dotted line denotes the initial state, and the thick line marks the
last time. The dashed–dotted horizontal line marks the approach to the value
CK = 1.5. The inset shows the approach to a plateau in a semilogarithmic plot.

Figure 3. Compensated kinetic energy spectra for acoustic turbulence (Run B),
/ /( ) ( )t k E k t, ,i i

2 3 5 3- separated into the vortical (i = V, blue lines) and acoustic
(i = A, green lines) components.
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following, we refer to this spike as the subinertial range peak.
The height of the plateau also significantly exceeds the usual
value for vortical turbulence and is CA ≈ 8, suggesting that the
standard Kolmogorov phenomenology may not be applicable.

In Run B, some vorticity is produced by the interaction with
viscosity. Although the spectrum in Figure 3 is normalized by
òA, the level of the plateau is low (around 0.5), although it still
increases over time. As discussed in Section 2.1, this vorticity
production results from the obliqueness of density and velocity
divergence gradients. We find that the amount of vorticity
production is virtually the same regardless of whether ν or μ is
constant. This is likely because the Mach number is small in
both cases, meaning that density fluctuations are also small.

3.4. Magnetic Vorticity Production

Next, for Run C, we consider an irrotational initial flow
(ζ = 1, just like Run B) together with a random initial magnetic
field with a spectrum EM ∝ k4 for k < k0 and EM ∝ k−5/3 for
k > k0, just like the initial velocity field. Depending on the
relative strengths of the magnetic and velocity fields, the curl of
the Lorentz force can drive vorticity through the wvisc term in
Equations (5) and (6).

The result for Run C is shown in Figure 4. Interestingly, the
magnetic energy EM(k) shows neither a marked bottleneck nor
a marked subinertial range peak. The compensated cV(k)
spectrum of Equation (13) does not have a plateau, but it
crosses CV ≈ 1.6 at intermediate wavenumbers. Note, however,
that CM(t) has a plateau with a magnetic Kolmogorov prefactor
of about 3; see Figure 4.

In the Appendix, we compare spectra for Runs C and E with
and without initial turbulence, Runs C and D with and without
the induction term, i.e., ι = 1 and 0, respectively, as well as
Runs C and G with k0/k1 = 10 and 2, respectively. We see that
in Run E, turbulence is gradually produced. Regarding the
presence or absence of the induction term, we see that for Run
C the induction term enables the magnetic and kinetic energy
cascades to be nearly parallel. This is not the case when the
induction term is absent (Run D). Finally, comparing Runs C
and G, we see that for both k/k1 = 2 and 10, there is a loss of
kinetic energy in the acoustic components along with a gain of
kinetic energy in the vortical component.

3.5. Comparison with Earlier Work

In the presence of irrotational forcing, T. Kahniashvili et al.
(2012) found that, for an inflationary magnetic field with a
magnetic energy spectrum proportional to k−1, vortical turbulence
develops with a spectrum EV(k) that is in equipartition, i.e.,
EV(k) ≈ EM(k). Comparing this with our present results, we see
that equipartition between EV(k) and EM(k) exists only at high
wavenumbers. This difference with T. Kahniashvili et al. (2012)
seems to be connected with the fact that they used an inflationary
magnetic field with a k−1 spectrum, whereas here EM(k) has a
peak at intermediate wavenumbers. To further verify this
interpretation, we show in Figure 5 the compensated spectra of
EV(k, t) and EM(k, t) for a run with k0/k1 = 2. Here, we see that
the range over which the two spectra are nearly parallel is not only
increased, but also the degree of equipartition is better, i.e., the
two spectra are closer together.
The velocity spectrum generated by the Lorentz force of such a

magnetic field alone, i.e., without an initial acoustic component, is
known to develop a shallow spectrum near k0, and is in
approximate equipartition with the magnetic field at large
wavenumbers. This is similar to the EV spectrum in Figure 4,
where the compensated spectra are proportional to k2/3, suggesting
that EV(k) ∝ k in the beginning of the magnetic inertial range.
In agreement with the earlier work of A. J. Mee &

A. Brandenburg (2006), the present results confirm that
acoustic turbulence hardly contributes to driving magnetic
fields. Theoretically, small-scale dynamo action of the type first
proposed by A. P. Kazantsev (1968) should also be possible for
acoustic turbulence (A. P. Kazantsev et al. 1985; M. Martins
Afonso et al. 2019), but this has never been confirmed
numerically (A. J. Mee & A. Brandenburg 2006). What has
been confirmed, however, is a small negative turbulent
magnetic diffusivity (K.-H. Rädler et al. 2011). Because its
negative value is never larger than the positive microphysical
magnetic diffusivity, it can only slow down the decay without
leading to dynamo action from this effect alone. Furthermore,
this negative turbulent magnetic diffusivity effect only
concerns the mean or large-scale magnetic field.

3.6. Magnetically Assisted Vorticity Conversion

As we have seen from Table 1, runs with sufficiently strong
uniform magnetic fields produce noticeable amounts of
vorticity. Here, the mechanism causing vorticity is different
from the vorticity production considered in Section 3.4 because
it relies on the presence of initially acoustic turbulence. This is

Figure 4. Similar to Figure 3, but for Run C, where the magnetic field produces
vorticity. Compensated magnetic energy spectra are also plotted (i = M, red
lines). The dashed–dotted horizontal lines indicate the approximate positions of
plateaus at CA ≈ 8 (green), CM = 3 (red), and CV = 2 (blue).

Figure 5. The same as Figure 4, but for Run G with k0/k1 = 2.
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what we call magnetically assisted vorticity conversion. To
gain a better understanding of this mechanism, we first consider
a simple one-dimensional example.

3.6.1. Vorticity Conversion in One Dimension

The conversion of acoustic kinetic energy into vortical kinetic
energy can be demonstrated with the help of a one-dimensional
example. We consider a domain − π < x < π with a uniform
magnetic field in the diagonal direction, B0 = (B0x, B0y, 0),
constant density, ρ = ρ0, and a standing sound wave initially,
i.e., u u kxsinx 0= . All the kinetic energy is in acoustic motions.
The uncurled induction equation reads A u Bz x y0= , and the
momentum equation becomes  /( )u J B B, , 0z y x0 0 0r= - , where
dots denote time derivatives. For vorticity production, which
yields w uz y= ¢, where primes denote x derivatives, only the uy

component matters, and thus we have  /w J Bz z x0 0r= ¢ . Taking
another time derivative and using J Az z= - , we have
ẅ u v vz x x yA A= - ¢¢¢ , where vAx and vAy are the Alfvén speeds in
the x- and y-directions, respectively. Replacing t and x derivatives
by factors of ω and k, and using the dispersion relation for sound
waves, ω = csk, we find for the vorticity amplitude

/( ) ( )w v v c u k. 14z x yA A s
2

0=

For u u kxsinx 0= , wz is proportional to kxcos . In Figure 6, we
show three cases: (i) u0 = 0.1, B0 = 0.1; (ii) u0 = 0.05,
B0 = 0.1; and (iii) u0 = 0.1, B0 = 0.05. We see that the linear
scaling in u0 and the quadratic scaling in B0 in Equation (14) is
reproduced by a numerical simulation of this one-dimensional
initial value problem.
In Figure 7, we present visualizations of (Bx, By) vectors and

(ux, uy) vectors overlaid on color-scale representations of Jz and
wz, respectively. To make the small departures from the
uniform field more clearly visible, we have scaled the
perturbations of By by a factor of 20 and uy by a factor of 300.
Given that the magnetically assisted conversion of acoustic

into vortical motions requires strong fields, it is of interest to
see whether the strength of this conversion agrees with what is
implied by Equation (14). This is done in the next section.

3.6.2. Vorticity Conversion in Three Dimensions

To see if the scaling found in Section 3.6.1 applies to our runs,
we plot in Figure 8 the dependence of MaV on Ma MaM0

2
A for runs

Figure 8. Dependence of MaV on Ma MaM0
2

A for our three-dimensional runs
with an imposed magnetic field, and on ( )71Ma MaM1

2
A for Runs C and G

without an imposed magnetic field. The red filled symbols mark Runs F and N,
while the blue filled symbols mark Runs O and P. The green filled symbols
mark Runs C and G without an imposed magnetic field. The solid line
corresponds to 0.67 Ma MaM0

2
A and the dashed line to 0.03 MaM0. The

uppercase letters denote the runs.

Figure 7. Visualization of (Bx, By) vectors overlaid on a color-scale representation
of Jz (a) and of (ux, uy) vectors overlaid on wz (b) in a two-dimensional plane by
replicating the data of the one-dimensional calculation in the y-direction.

Figure 6. (i) u0 = 0.1, B0 = 0.1; (ii) u0 = 0.05, B0 = 0.1; (iii) u0 = 0.1,
B0 = 0.05. Note that the normalized curves of wrms for all three cases are
initially the same.

6

The Astrophysical Journal, 983:105 (9pp), 2025 April 20 Brandenburg & Scannapieco



with an imposed magnetic field. Except for Runs I–L with
0.02�MaM1� 0.2, in which the magnetic field is weak and the
acoustic turbulence strong, the vorticity obeys the expected scaling
with Ma 0.67 Ma MaV M0

2
A» . For runs without an imposed

magnetic field, the same scaling can also be recovered if we
multiply MaM1 by a factor of ≈71, suggesting that a much weaker
turbulent field has the same effect as a stronger uniform field. Note
that it is difficult to distinguish this type of conversion from
vorticity produced directly from the Lorentz force (here Run E).
However, we see that the expected dependence on MaA is indeed
obeyed; see Equation (14). This suggests that Runs C and G (green
symbols in Figure 8) with k0 = 10 and 2, respectively, and with
MaM0 = 0 and MaM1 = 0.005 also experience magnetically
assisted vorticity production.

In Figure 9, we present visualizations of ∇ · u, B2, and w2

on the periphery of the computational domain for Run N at
three different times. We see that the structures reflect the
presence of shocks extending over major parts of the domain.
This is especially clear in the plots of the local vorticity density.

4. Conclusions

Acoustic turbulence is common throughout astrophysics, arising
naturally from gravitational accelerations or barotropic pressure
fluctuations. In this work, we have used numerical simulations to

study the production of vorticity in isothermal, decaying acoustic
turbulence, focusing on the role of magnetic fields.
We find that, without magnetic fields, acoustic turbulence

obeys a Kolmogorov-type phenomenology, with a nondimen-
sional Kolmogorov prefactor of CK ≈ 6. This is significantly
larger than the standard Kolmogorov constant for vortical
turbulence, which is around 1.6. The presence of a magnetic
field lowers this value to around 2–3 for most of our runs,
although the universality of this prefactor remains uncertain, as
we occasionally observe larger values.
Magnetic fields also influence the partitioning between the

acoustic and vortical components of the turbulence. When a
non-force-free magnetic field is added, the Lorentz force
produces vorticity with a kinetic energy spectrum that is close
to equipartition with the magnetic energy spectrum in the upper
part of the inertial range. The turbulence also begins to
resemble vortical turbulence, developing a spectrum that is
nearly in equipartition with the magnetic energy spectrum at
high wavenumbers. Our simulations reproduce this process, in
agreement with earlier findings (T. Kahniashvili et al. 2012).
We also show that, even if the magnetic field is force free, it

is still able to produce vorticity by converting acoustic energy
into vortical kinetic energy. This conversion is most efficient
when the acoustic component has significant contributions

Figure 9. Visualizations of∇ · u (top) with a range of −4 to 4, B2 (middle) with a range of 4–6, and w2 (bottom) with a range of 0–2. All plots are on the periphery of
the computational domain for Run N at t csk1 = 1, 10, and 100.
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from large length scales and when the field is strong. The
amplitude of the vortical component in this case is expected to
scale quadratically with the magnetic field and linearly with the
strength of the initial acoustic component. This scaling is
confirmed by our simulations, particularly in Runs N and P,
where a strong imposed magnetic field (MaM0 = 1) converts
acoustic energy into vortical energy. Even in the case of a
turbulent magnetic field, the same scaling holds, though the
required field strength is much weaker (MaM1 = 0.005).

The implications of our findings extend to cosmology,
particularly to the early Universe. During the radiation-
dominated era, the gas obeys an ultrarelativistic equation of
state, where the pressure is proportional to the density, similar
to isothermal flows. The sudden generation of acoustic
turbulence, for example from cosmological phase transitions
(M. S. Turner et al. 1992; M. Hindmarsh et al. 2015), could
be converted into vortical turbulence by a magnetic field. Such
a field might have been produced either during inflation
or during the subsequent reheating era just prior to the
radiation-dominated era. This could play a significant role in
shaping the dynamics in the early Universe, particularly the
generation of vortical turbulence from initially acoustic
fluctuations.
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Appendix

At the end of Section 3.4, we mentioned spectral comparisons
of Run C with three other runs (Runs E, D, and G). In Figure 10,
we compare the kinetic and magnetic energy spectra for Runs C
and E, i.e., with and without initial turbulence. We see that
turbulence is gradually generated by the magnetic field, but there
is hardly any effect on the magnetic energy spectra.

In Figure 11, we show the resulting spectra for a case where
the induction term, u × B, has been suppressed in Equation (3),
i.e., ι = 0, and we just solve the diffusion equation,
∂A/∂t = η∇2A. The magnetic field then decays preferentially
at high wavenumbers, where magnetic diffusion is the
strongest. This is evident from a premature cutoff of the
magnetic energy spectrum. The vortical part of the kinetic
energy spectrum now seems to show a very strong bottleneck,
but the acoustic part does have a plateau at a low level and a
small bottleneck. This suggests that the initial energy in the

acoustic component is unimportant for the dynamics of the
magnetic field. Moreover, the vorticity production by the
magnetic field is largely independent of the initial energy in the
irrotational component.

Figure 10. Comparison of kinetic (blue lines) and magnetic (red lines) energy
spectra for Runs C (solid lines) and E (dashed lines), runs with and without
initial turbulence, at times 2.5, 7.5, and 25.

Figure 11. Similar to Figure 10, but for Runs C (solid lines) and D (dashed
lines, ι = 0, i.e., no induction) at times 2.5, 7.5, and 60. The black dotted lines
provide fixed reference values in each panel.
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In Figure 12, we compare magnetic and kinetic energy spectra
for the vortical and acoustic components for Runs C with G at
three different times. We see that, at later times, Run G suffers a
loss of kinetic energy in the acoustic components along with a
gain of kinetic energy in the vortical component. This energy
exchange occurs around the wavenumber k/k1 = 2.
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