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ABSTRACT

Turbulent flows are known to produce enhanced effective magnetic and passive scalar diffusivities,

which can fairly accurately be determined with numerical methods. It is now known that, if the flow

is also helical, the effective magnetic diffusivity is reduced relative to the nonhelical value. Neither the

usual second-order correlation approximation nor the various τ approaches have been able to capture
this. Here we show that the helicity effect on the turbulent passive scalar diffusivity works in the

opposite sense and leads to an enhancement. This effect has not previously been seen. We have also

demonstrated that the correlation time of the turbulent velocity field increases by the kinetic helicity.

This is a key point in the theoretical interpretation of the obtained numerical results. Simulations
in which helicity is being produced self-consistently by stratified rotating turbulence, resulted in a

turbulent passive scalar diffusivity that was found to be decreasing with increasing rotation rate.

Keywords: Astrophysical magnetism (102) — Magnetic fields (994)

1. INTRODUCTION

In many astrophysical plasmas such as stellar convec-
tion zones, the interstellar medium, and accretion discs,

the Reynolds numbers are extremely large. Therefore,

to describe the large-scale behavior of such flows, one of-

ten replaces the small viscosity or diffusion coefficients

by effective ones. Turbulent diffusivities in the evolution
equations for passive scalars act similarly as ordinary

(molecular or atomic) ones, except that they character-

ize the diffusion of larger scale structures, as described

by the corresponding averaged or coarse-grained evolu-
tion equations. Denoting the mean passive scalar con-

centration C by an overbar, the equation for C is given

by
∂C

∂t
= −∇ ·

(

U C
)

+ (κ+ κt)∇2C, (1)

where we have allowed for the possibility of a mean flow

U , while κ and κt are the microphysical and turbulent
diffusion coefficients, respectively. The diffusion coeffi-
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cients are proportional to the product of the mean free

path and the typical velocity of particles or, in the tur-
bulent case, the product of the integral turbulent scale

and the rms velocity. Equation (1) is written for turbu-

lence without stratification of the mean density or tem-

perature, so that effective pumping velocity caused by
the turbulent thermal diffusion vanishes (Elperin et al.

1997; Rogachevskii 2021).

The derivation of the turbulent diffusion coefficients

is usually done by some approximations. Meanwhile,

significant progress has been made by numerically com-
puting these turbulent coefficients. A particularly useful

approach is the test-field method (Schrinner et al. 2005,

2007), which was originally applied to magnetic fields

in spherical geometry and then to Cartesian domains
(Brandenburg 2005; Brandenburg et al. 2008). This

method is sufficiently accurate to identify subtle effects

caused by kinetic helicity in the flow (Brandenburg et al.

2017).
In the presence of magnetic fields, the kinetic heli-

city causes completely new qualities of its own. Unlike

the case of turbulent or microphysical diffusion, helicity
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also produces non-diffusive effects that lead to a desta-

bilization of the non-magnetic state. This is because

helicity is a pseudo-scalar, which can couple the axial

magnetic field vector with the polar electric field vector
to give an extra contribution to the turbulent electro-

motive force in the mean-field induction equation. By

contrast, the turbulent magnetic diffusivity is an ordi-

nary scalar. It was therefore surprising when kinetic

helicity was found to affect even the magnetic diffusiv-
ity (Brandenburg et al. 2017). This effect was such that

helicity suppresses the magnetic diffusivity by a certain

amount. The possibility of a helicity effect on the turbu-

lent magnetic diffusivity was already noticed in the early
work of Nicklaus & Stix (1988), but they found an en-

hancement of the turbulent magnetic diffusivity by the

kinetic helicity.

The results of Brandenburg et al. (2017) were recently

verified by Mizerski (2023) using the renormalization
group approach. In particular, he found that for small

magnetic Reynolds numbers, the helical correction to

turbulent diffusion of the mean magnetic field is pro-

portional to Rm2(Huτc)
2/〈u2〉, where Rm = τc 〈u2〉/η is

the magnetic Reynolds number, τc is the turbulent cor-

relation time, η is the magnetic diffusion caused by an

electrical conductivity of plasma, and Hu = 〈u·ω〉 is the
kinetic helicity. This scaling (∝ Rm2) is shown in Fig-

ure 4 of Brandenburg et al. (2017). This confirms that
the helical correction cannot emerge from the second-

order correlation approximation, where the transport

coefficients are only linear in the magnetic Reynolds

number.
What has not yet been specifically addressed is the

effect of helicity on the passive scaler diffusivity, or even

the thermal diffusivity of an active scalar such as the

temperature or the specific entropy in the mean-field

energy equation. Doing this is the purpose of the present
work.

Helicity affects the value of the turbulent passive and

active scalar diffusivity in a clear and consistent way.

This is similar to the helicity effect on the turbulent
magnetic diffusivity, but this new effect is the other way

around, i.e., the turbulent passive and active scalar dif-

fusion is enhanced by helicity, while the turbulent mag-

netic diffusivity is decreased. In the accompanying the-

oretical paper by Rogachevskii et al. (2025), remaining
puzzles are addressed and possible explanations are be-

ing proposed.

Of some interest in this context is the earlier work

of Brandenburg et al. (2012), who computed turbulent
magnetic field and passive scalar transport for rotating

stratified turbulence. The combined presence of rota-

tion and stratification also leads to helicity and there-

fore to an α effect. They found a slight decrease of the

magnetic diffusivity as the angular velocity is increased.

At the time, this was not thought surprising because

the focus was on new turbulent transport coefficients
that only arise because of rotation and stratification.

Furthermore, already rotation alone (without helicity)

is known to decrease the turbulent magnetic diffusivity

(Rädler et al. 2003).

For most astrophysical purposes, only order of mag-
nitude estimates of turbulent transport coefficients are

usually considered. This may change in future, when

more accurate methods and measurements become more

commonly available both in simulations and in observa-
tions. For example, the discrepancy in the estimate for

the turbulent magnetic diffusivity was noticed in the-

oretical work in high-energy astrophysics on the chiral

magnetic effect when simple estimates for the turbulent

magnetic diffusivity did not match previous estimates
(Schober et al. 2018). This discrepancy was then ex-

plained by the presence of helicity in one of the cases.

2. OUR MODEL

We consider both isothermal and non-isothermal tur-
bulence and begin with the former.

2.1. Basic equations for isothermal turbulence

Our basic equations are the induction and passive

scalar equations for the magnetic field B and the pas-

sive scalar concentration C (e.g., number density of par-
ticles). The magnetic field is also divergence-free, so it

is convenient to express it in terms of its magnetic vec-

tor potential A such that B = ∇ ×A. The governing

equations are then

∂B

∂t
= ∇× (U ×B −Ediff) , Ediff = −η∇×B, (2)

∂C

∂t
= ∇ · (−UC − Fdiff) , Fdiff = −κ∇C. (3)

The velocity U is obtained as a solution of the Navier-

Stokes equations. In the kinematic test-field method, we
ignore the feedback of the magnetic field on the flow, i.e.,

we solve

DU

Dt
= −c2s∇ ln ρ+ f +

1

ρ
∇ · (2ρνS), (4)

D ln ρ

Dt
= −∇ ·U . (5)

where ρ is the density, cs is the isothermal sound speed,
ν is the kinematic viscosity, S is the rate of strain tensor

with the components Sij = (∂iuj +∂jui)/2− δij∇·u/3,

and f represents a forcing function that is δ-correlated

in time and consists of plane waves with a mean forcing
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wavenumber kf . It is given by fi = Rijf
(nohel)
j , where

R(k̂) = (δij − σǫijk k̂k)/
√
1 + σ2 depends on k̂ = k/k

with k = |k| and the fractional helicity σ, and f (nohel) =

f0 e× k/|e× k| is a nonhelical forcing function with f0
being a scaling factor and e a random vector that is not

aligned with k.

2.2. Equations for non-isothermal turbulence

In our simulations of non-isothermal turbulence, we

measure the response of the system to imposing large-

scale gradient of specific entropy s with a relaxation time
τ . The evolution equations for u and s are then

DU

Dt
= −c2s∇(ln ρ+ s/cp) + f +

1

ρ
∇ · (2ρνS), (6)

T
Ds

Dt
= 2νS2 +

1

ρ
(∇ · Frad − C)− s− s̃0

τ
, (7)

where T is the temperature, cp is the specific heat at con-

stant pressure, Frad = −cpρχ∇T is the radiative flux,

and C is a volumetric cooling function to compensate for

viscous heating. Since the system is no longer isother-
mal, the sound speed is now given by c2s = (γ − 1)cpT ,

where γ = cp/cv is the ratio of specific heats, and cv is

the specific heat at constant volume. For the target pro-

file of specific entropy, we choose s̃0 = s0 sin k1z, where
k1 = 2π/L is the smallest wavenumber in the domain.

2.3. Parameters

As in Brandenburg et al. (2017), we use a scale sepa-

ration ratio, i.e., the ratio of the forcing wavenumber kf
and the box wavenumber k1 of kf/k1 = 5 in all cases.

Our governing control parameters are

Re = urms/νkf , Ma = urms/cs. (8)

The Schmidt number, Sc = ν/κ, the magnetic Prandtl
number, PrM = ν/η, and the thermal Prandtl number

Pr = ν/χ are unity in all cases. Therefore, the magnetic

Reynolds number and the Péclet number equal the fluid

Reynolds number in all cases.

2.4. Test-field methods

The test-field method implies the simultaneous solu-

tion of additional equations for the fluctuating magnetic

field or the fluctuating passive scalar concentration. The
variables are indicated by the letter T . The equations

are obtained by subtracting the corresponding averaged

equations from the original ones and yield

∂bT

∂t
= ∇×

(

u×B
T
+U × bT + E

′

T

)

+ η∇2bT , (9)

∂cT

∂t
= ∇ ·

(

−uC
T −UcT +F

′

T

)

+ κ∇2cT , (10)

where E ′

T = u×b−u× b andF ′

T = −(uc−uc) are non-

linear terms that are neglected in the second-order cor-

relation approximation. Including those terms yields the

new subtle effects that we found in Brandenburg et al.
(2017) for ηt and in the present work for κt.

In the following, we assume planar averages

and denote them by overbars, e.g., B(z, t) =
∫

B(x, y, z, t) dz/L2
⊥
, where L⊥ is the extent of the com-

putational domain in the xy plane. In the spirit of the
test-field method, one decouples Equations (9) and (10)

from those for the actual fluctuations and solve them

for a set of mean fields (mean scalars) such that one can

compute αij , ηij , and κij uniquely for each time step
and at each value of z. Using as a shorthand s = sin kT z

and c = cos kT z, we choose sinusoidal and cosinusoidal

test-fields B
1
= (s, 0, 0), B

2
= (c, 0, 0), B

3
= (0, s, 0),

and B
4
= (0, c, 0), as well as C

1
= s, C

2
= c, i.e., four

different tests fields for B
T

and two different ones for
C

T
. This allows us to compute the coefficient αij , ηij ,

and κij in the parameterizations

ET
i = αijB

T

j − ηij(∇ ×B
T
)j , (11)

FT

i = γiC
T − κij∇jC

T
, (12)

where i, j = 1, 2, ET = u× bT , FT = −ucT . The

aforementioned turbulent viscosity and passive scalar

diffusivity are then given by ηt = (η11 + η22)/2 and
κt = (κ11 + κ22)/2. The effective pumping velocity γ

of the mean magnetic field vanishes for homogeneous

turbulence, but the effective pumping velocity γ of the

mean passive scalar field due to the density stratifi-
cation of the fluid (Elperin et al. 1997; Rogachevskii

2021) was found to lead to downward transport of the

mean passive scalar concentration (to the maximum of

the mean fluid density) in density stratified turbulence

(Brandenburg et al. 2012; Haugen et al. 2012).

2.5. Active scalar diffusivity

To determine the turbulent radiative diffusion coeffi-

cient, we use the standard mean-field expression for the
enthalpy flux (Rüdiger 1989),

Fenth = −χtρT∇S, (13)

where the actual enthalpy flux is computed as Fenth =

(ρU)′cpT ′, and correlate their z components against

each other to determine χt. Here, primes denote the

departures from the horizontal means. This method
follows that employed by Käpylä & Singh (2022), who

also computed the turbulent kinematic viscosity in an

analogous way be correlating the yz component of the

Reynolds stress against the corresponding component of
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the mean-field strain tensor. The current setup differs

from that in Käpylä & Singh (2022) in that a large-scale

velocity is not imposed and therefore no off-diagonal

Reynolds stress is present.

2.6. Simulations, data, and error bars

We use the Pencil Code for our simulations

(Pencil Code Collaboration et al. 2021). It uses sixth
order accurate spatial derivatives and a third order

timestepping scheme. It also allows us to compute tur-

bulent transport coefficients with the test-field method.

We usually present our results for α, ηt, and κt in
normalized form and divide α by A = urms/3 and ηt
and κt by D = urms/3kf . This allows us to compare

runs with different rms velocity amplitudes.

Our results for the turbulent transport coefficients are

functions of z and t. Since the turbulence in our simula-
tions is homogeneous, we average the resulting transport

coefficients over z. The resulting time series is then av-

eraged over statistically steady intervals and error bars

have been estimated by taking the largest departure to
the average from any one third of the full time series.

For sufficiently long time series, the resulting errors are

rather small, so we often exaggerate then by a factor of

3 or 4, as is indicated in the plots below.

3. RESULTS

3.1. Passive scalar results and comparison

Although the results for ηt have already been com-

puted in Brandenburg et al. (2017), we compute them
here again by invoking similar test-field routines in

the Pencil Code at the same time. The test-field

method for passive scalars was already described in

Brandenburg et al. (2009). Rädler et al. (2011) applied

it to passive scalar diffusion in compressible flows. In the
following, we use urms and kf to express our results in

nondimensional form by normalizing the diffusivities by

urms/3kf . Using earlier test-field results, this was found

to be an accurate estimate (Sur et al. 2008).
Figure 1 shows a comparison of time series of κt and

ηt for nonhelical and helical cases and Re = 2.4. While

κt appears to be unaffected by the presence of helicity,

ηt is suppressed, as already found by Brandenburg et al.

(2017). For Re = 120, however, κt is found to be en-

hanced by the presence of helicity; see Figure 2. We

have considered a number of additional simulations with

other values of Re. The dependence on Re is shown in

Figure 3; see also Table 1 for a summary.
The forcing is kept constant between different runs, so

the resulting rms velocity depends on how stiff the sys-

tem is against this forcing. We see that the value of the

Mach number increases slightly with increasing values of

Figure 1. Time series of κt (upper panel) and ηt (lower
panel) for Runs A without helicity (solid black line) and with
helicity (dashed red line) with Re = 2.4. The thick black and
red horizontal lines denote the time-averaged values.

Figure 2. Similar to Figure 1, but for Runs F with Re =
120.

the Reynolds number. We also see that the Mach num-

ber is slightly enhanced in the simulations with helical

forcing. This suggests that such flows are less effective

in dissipating energy. These slight changes in Ma do not
significantly affect our results for ηt and κt, because we

always present our results in normalized form and we

are here only interested in subsonic turbulence. Note

also that the compressibility of the turbulence affects
only non-helical contributions to the turbulent diffusion

(Rogachevskii et al. 2018).

In Appendix A, we compare our results with different

degrees of helicity with earlier simulations of rotating
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Figure 3. Dependence of κt (upper panel) and ηt (lower
panel) for nonhelical (solid lines) and helical (dashed lines).
The error bars have been exaggerated by a factor of 3.

stratified turbulence in which helicity is automatically

being produced in self-consistent way. It turns out, how-

ever, that the enhancement of turbulent diffusion by he-

licity is not being reproduced in such simulations. We

argue that this is caused by the more dominant effect of
rotation which strongly suppresses turbulent transport.

3.2. Active scalar results

The results of simulations similar to those of

Käpylä & Singh (2022) are shown in Figure 4. Here we

see the turbulent heat diffusivity computed from an im-

posed entropy gradient (see Käpylä & Singh 2022, for
details) for non-helical and helical cases. For Pe = Re >

10, there is a statistically significant increase of χt by

about 10% for the helical cases relative to the nonheli-

cal ones. These results were obtained by correlating the

actual enthalpy flux with the mean-field expression given
by Equation (13). In Käpylä & Singh (2022) an alter-

native independent method was used where the mean

entropy profile is initially forced and then allowed to

decay. This yielded very similar results.
The kinetic helicity effects on turbulent diffusion of the

mean magnetic and scalar fields are partially related to

the helicity effect on the effective correlation time. To

examine this in more detail, we compute the correlation

1 10 100

Re

1

10

χ
t
×
3
k
f/
u
rm

s

Figure 4. Dependence of χt for nonhelical (black symbols,
solid line) and fully helical turbulence (red symbols, dashed
line) as a function of Reynolds number Re = Pe/Pr with
Pr = 1 in all cases. The error bars have been exaggerated
by a factor of 4.

0 5 10 15 20 25 30
turmskf

0

5

10

15

20

τ
c(
t)
=

∫

t t
0
〈u

(t
0)
·
u
(t
′ )
〉d
t
′

〈u
(t
0)
〉2

ǫf = 0.928

ǫf = 0.839

ǫf = 0.545

ǫf = -0.002

Figure 5. Correlation time of turbulence computed from
time integrals of velocity autocorrelation from runs with
Re = 13 and different relative helicity ǫf = 〈u · ω〉/kfu

2
rms.

times as the late-time limit of

τc(t) =

∫ t

t0

〈u(t0) · u(t′)〉 dt′
/

〈

u2(t0)
〉

. (14)

The result is shown in Figure 5 for simulations with

Re = 13 and different values of the relative helicity. We

see that, through the presence of kinetic helicity, the
correlation time of the turbulent velocity field increases

and is more than doubled as the kinetic helicity is in-

creased from zero to one. We note that the Reynolds

number of these simulations is very modest. Clarifying
the robustness of this effect in more turbulent regimes

warrants further study.

Another way to estimate the correlation time is ob-

tained from the ratio of kinetic energy and its dissipation
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Table 1. Values of κnhel
t and κhel

t as well as ηnhel
t and ηhel

t , normalized by D0 ≡ urms/3kf , for the nonhelical and helical cases,
and αhel normalized by A0 ≡ urms/3, for the helical cases for different values of Re. The value of Ma is given for completeness.

Run Re κnhel
t /D0 κhel

t /D0 ηnhel
t /D0 ηhel

t /D0 αhel/A0 Manhel Mahel

A 2.4 1.14± 0.01 1.12± 0.01 1.12± 0.01 0.84 ± 0.015 −0.83± 0.01 0.062 0.063

B 3.4 1.47± 0.03 1.45± 0.03 1.39± 0.02 0.97 ± 0.011 −0.95± 0.02 0.068 0.070

C 5.0 1.87± 0.04 1.93± 0.04 1.72± 0.00 1.06± 0.03 −1.02± 0.02 0.077 0.081

D 8.7 2.26± 0.03 2.54± 0.01 1.96± 0.05 1.15± 0.02 −0.96± 0.01 0.089 0.099

E 20.7 2.54± 0.02 2.94± 0.01 2.03± 0.03 1.40± 0.02 −0.83± 0.02 0.105 0.120

F 45.5 2.50± 0.03 2.82± 0.07 1.95± 0.08 1.58± 0.16 −0.75± 0.03 0.116 0.128

G 120.6 2.27± 0.01 2.58± 0.12 1.73± 0.08 1.46± 0.28 −0.69± 0.07 0.123 0.130

Table 2. Values of χnhel
t and χhel

t normalized by D0 ≡
urms/3kf , for the nonhelical and helical cases. The value of
Ma is given for completeness.

Run Re χnhel
t /D0 χhel

t /D0 Ma

A 1.2 0.63 ± 0.03 0.59± 0.02 0.031

B 4.7 1.86 ± 0.08 1.78± 0.09 0.048

C 11.8 2.51 ± 0.05 2.72± 0.07 0.060

D 27.6 2.57 ± 0.01 2.95± 0.07 0.070

E 75.1 2.40 ± 0.03 2.67± 0.04 0.077

F 151.9 2.25 ± 0.02 2.52± 0.04 0.077

G 307.0 2.18 ± 0.04 2.42± 0.05 0.078

rate:

τc =
EK

ǫK
, (15)

where EK = 1
2 〈u2〉 and ǫK = 2ν〈S2〉. The results for

the correlation time are summarized in Figure 6. Both

measures of τc show an increasing trend as a function of

the fractional helicity, ǫf = u · ω/kfu
2
rms.

3.3. Comparisons with the theoretical predictions

Let us compare the obtained numerical results with

the theoretical predictions by Rogachevskii et al. (2025).

According to the theory, the turbulent magnetic diffu-

sion coefficient η
t
(Hu) is given by

η
t
(Hu) = η

t0

τc(Hu)

τ0

(

1− τ2c (Hu)

3

H2
u

〈u2〉

)

, (16)

while the turbulent diffusion coefficient κ
t
(Hu) of the

scalar field is

κ
t
(Hu) = κ

t0

τc(Hu)

τ0

(

1− τ2c (Hu)

6

H2
u

〈u2〉

)

, (17)

where Hu = 〈u ·ω〉, η
t0
= η

t
(Hu = 0), κ

t0
= κ

t
(Hu = 0)

and τ0 = τc(Hu = 0) = (urmskf)
−1. The numerical re-

sults suggest that τc(Hu)/τ0 ≈ ǫ4f . This implies that

0.00 0.25 0.50 0.75 1.00

ǫf

0

5

10

τ
c
u
rm

s
k
f

τ
corr
c

τ
diss
c

Figure 6. Correlation time τc as function of ǫf from the
late-time limit of Equation (14) (black symbols) and from
Equation (15) (red symbols) normalized by the turnover time
(urmskf)

−1 for the same runs as in Figure 5. The dotted lines
are proportional to ǫ4f , and the error bars are boosted by a
factor of ten for τdiss

c and by five for τ corr
c .

the derivative of the turbulent magnetic diffusion coef-

ficient,

dη
t

dǫf
= 4η

t0
ǫ3f

(

1− 7

6
ǫ10f

)

, (18)

is negative for ǫf ∼ 1, i.e., the turbulent magnetic dif-
fusion coefficient is reduced by the kinetic helicity. On

the other hand, the derivative of the turbulent diffusion

coefficient for scalar field,

dκ
t

dǫf
= 4κ

t0
ǫ3f

(

1− 7

12
ǫ10f

)

, (19)

is positive, i.e., the turbulent diffusion coefficient for the
scalar field is increased by the kinetic helicity. These

arguments can explain the results of our DNS.

4. CONCLUSIONS

Our simulations have revealed a surprising difference

in the helicity effect for passive and active scalars on
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the one hand and magnetic fields on the other. Quali-

tatively, one could understand the helicity effect on the

magnetic field as a tendency to support dynamo action,

or, alternatively, as a tendency for rotational suppres-
sion of the magnetic diffusivity. For passive and active

scalars, on the other hand, there is no dynamo effect.

Furthermore, in some special deterministic flows (the

Roberts-IV flow; see Devlen et al. (2013)), the effective

magnetic diffusivity can even be negative and thereby
lead to dynamo action. Such an effect was never found

for passive or active scalars or magnetic fields in turbu-

lent flows at high Reynolds numbers. What has been

previously found, however, is a suppression of both ηt
and κt for potential (compressible) flows (Rädler et al.

2011; Rogachevskii et al. 2018). In the present work,

however, we have only considered nearly incompressible

flows for actual turbulence simulations, as opposed to

some constructed flows such as the Roberts flow.
The key numerical result of the present study is the

enhancement of turbulent diffusion of the mean passive

and active scalar fields by the kinetic helicity. This re-

sult is opposite to the magnetic case where turbulent
magnetic diffusion is decreased by the kinetic helicity.

We also found that the correlation time of the turbulent

velocity field increases because of kinetic helicity. The

latter is one of the main facts for understanding the ki-

netic helicity effects on turbulent diffusion of scalar and
magnetic fields (see Section 3.3).

The enhancement of the passive scalar diffusion ex-

amined here can be compared with the effect of ro-

tation and stratification on the passive scalar diffusiv-
ity. As discussed in the introduction, rotating stratified

flows also attain kinetic helicity and for such flows, it

was previously found that the passive scalar diffusiv-

ity gets reduced as the rotation speed is increased, just

like the magnetic diffusivity, which also became smaller
(Brandenburg et al. 2012). This effect was not ascribed

to the presence of helicity, but it was simply regarded as

a rotational suppression of the magnetic diffusivity. This

difference can probably be explained by the anisotropy

of the flow that is being produced in rotating stratified
turbulence, which is a more complicated situation than

just a helically forced flow.
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http://norlx65.nordita.org/∼brandenb/projects/Scalar.

APPENDIX

A. COMPARISON WITH EARLIER WORK

In Figure 7, we compare with the values of the α effect and the turbulent magnetic and passive scalar diffusivities

from the earlier work of Brandenburg et al. (2012), in which kinetic helicity is being produced by the interaction

with rotation and stratification. Here, we have estimated the fractional helicity from the product of Coriolis number
Co = 2Ω/urmskf and gravity number Gr = 1/Hρkf , where Ω is the angular velocity, kf is the forcing wavenumber of

the turbulence, and Hρ is the density scale height. We used a formula by Jabbari et al. (2014), ǫf = 2CoGr. For the

present simulations, we used ǫf = 2σ/(1 + σ2).

There is not much agreement with our present simulations, shown in red. This shows that other effects such as the

rotational suppression of turbulent transport plays a more dominant role than just the helicity.

https://github.com/pencil-code/
http://norlx65.nordita.org/~brandenb/projects/Scalar
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Figure 7. Dependence of the fractional helicity, ǫf , and comparison of the values of α and the turbulent magnetic and
passive scalar diffusivities with the earlier work of Brandenburg et al. (2012), in which kinetic helicity is being produced by
the interaction with rotation and stratification. The originally used symbols of Brandenburg et al. (2012) have been retained:
−α̃⊥ and −α̃‖ for the normalized perpendicular and parallel components of the α effect, β̃⊥ and β̃‖ for those of the magnetic

diffusivity, and β̃C

⊥ and β̃C

‖ for those of the passive scalar diffusivity. The tildes indicate appropriate normalization. In the

second panel, we also show in blue 1− 3α2/u2
rms.
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Rädler, K.-H., Brandenburg, A., Del Sordo, F., &

Rheinhardt, M. 2011, Phys. Rev. E, 84, 046321,

doi: 10.1103/PhysRevE.84.046321
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