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Abstract. We numerically study axion-U(1) inflation, focusing on the regime where the
coupling between axions and gauge fields results in significant backreaction from the amplified
gauge fields during inflation. These amplified gauge fields not only generate high-frequency
gravitational waves (GWs) but also induce spatial inhomogeneities in the axion field, which
can lead to the formation of primordial black holes (PBHs). Both GWs and PBHs serve as
key probes for constraining the coupling strength between the axion and gauge fields. We
find that, when backreaction is important during inflation, the constraints on the coupling
strength due to GW overproduction are relaxed compared to previous studies, in which
backreaction matters only after inflation. For PBH formation, understanding the probability
density function (PDF) of axion field fluctuations is crucial. While earlier analytical studies
assumed that these fluctuations followed a χ2-distribution, our results suggest that the PDF
tends toward a Gaussian distribution in cases where gauge field backreaction is important,
regardless whether during or after inflation. We also calculate the spectrum of the produced
magnetic fields in this model and find that their strength is compatible with the observed
lower limits.
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1 Introduction

The idea of inflation originated from attempts to solve the singularity problem [1] and to
address the horizon, isotropy and flatness problems in the hot big bang along with the
monopole problem of grand unification, see [2–4] and [5, 6]. Inflation not only ameliorates the
latter set of issues, but most importantly provides a natural mechanism [7–9] for generating
initial density perturbations in the universe from mere vacuum fluctuations, see also [10–13].
These perturbations account for anisotropies in the cosmic microwave background radiation
(CMB) recently measured by Planck collaboration [14] with unprecedented precision, thereby
confirming the predictions of this mechanism and the theory of inflation. Later on these
perturbations collapse to form all galaxies and the large-scale structure in the universe.
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Following the initial proposal, numerous models have been suggested to realize an inflationary
era in the early universe (for details see refs. [15–19]). Axion inflation models are particularly
interesting because they provide a natural high energy physics ingredient for a long lasting
inflation - an approximate shift symmetry of the potential [20]. After the first proposal,
several models have been suggested in the context of axion inflation [21–26]; see ref. [27] for
a review. One of these models [25] considers a coupling of the axion field with the U(1)
gauge field and we focus on this model in this paper. The axion inflation model, where the
axion couples to a gauge field, exhibits a rich phenomenology. This includes the production of
gravitational waves (GWs) [28–34], primordial black holes (PBHs) [35–37], matter-antimatter
asymmetry [38, 39], and primordial magnetic fields [40–47]. The rich phenomenology of
axion inflation has prompted extensive studies to understand the dynamics of these models.
In scenarios with a sufficiently strong coupling between the axion and the gauge field, the
backreaction of the produced gauge fields becomes important either during inflation or post
inflation depending on the coupling strength. This model including the backreaction of the
gauge fields has been studied semi-analytically through perturbative approaches [48–50] and
the gradient expansion formalism (GEF) [47, 51] under the assumption of a homogeneous
axion field. More recently, efforts have been made to numerically investigate the strong
backreaction regime, where the assumption of homogeneous axion field is relaxed [52–54].
Motivated by the importance of inhomogeneities of the axion field, as demonstrated in the
numerical studies, these inhomogeneities have also been incorporated perturbatively into
GEF [55].

This rich phenomenology of axion inflation has been used to constrain the coupling
strength between the axion and gauge fields. The coupling between the axion and the gauge
field results in the production of gauge fields, which in turn generate high-frequency GWs,
typically in the GHz range [33, 34]. These GWs contribute to the early universe’s total
energy budget as additional radiation degrees of freedom. The bound on additional radiation
degrees of freedom from CMB observations constrains the produced GWs, which further
limits the coupling between the axion and the gauge fields. We reexamine the bounds on the
coupling strength between the axion and the gauge field, considering stronger couplings than
those explored in previous works [33, 34]. In [33], the authors considered scenarios where the
backreaction due to the produced gauge field became important in the post-inflationary era
but not during inflation. For one of their models, the chaotic inflation model, they found that
the coupling strength should be below (mpl/70)

−1 for an inflaton mass equal1 to 1.2×10−6mpl.
In our study, we explore scenarios with larger coupling strengths, where the gauge field energy
density becomes large enough to affect the duration of inflation. Corresponding studies in
refs. [52, 53] did not address the production of GWs, however. In these scenarios, inflation
ends when the gauge field energy density becomes comparable to the inflaton field’s potential
energy. Our findings indicate that in such scenarios, the bounds on the coupling strength are
relaxed compared to previous estimates [33, 34].

Additionally, the produced gauge field can also enhance spatial fluctuations of the axion
field. If these spatial fluctuations exceed a threshold value, they can lead to the formation of
PBHs2 in the post-inflationary era. This phenomenon has been analyzed in detail considering
the χ2-distribution of the spatial fluctuations of the axion field. Given that the backreaction
of the gauge field on the axion field is quadratic in nature, and assuming the gauge field has a
Gaussian distribution, the spatial fluctuations of the axion field are expected to follow a χ2-

1Here and throughout the paper mpl = 1.22× 1019 GeV represents the Planck mass.
2For other models of the formation of PBHs during inflation see, e.g., refs. [56–59].
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distribution. By using constraints on PBH abundances, a bound on the axion and gauge field
coupling has been obtained [35, 36]. A recent numerical study of axion inflation [52] considers
the case when the backreaction of the gauge field on the axion evolution becomes significant
during inflation. It was found that the distribution of the spatial fluctuations of the axion
field starts to deviate from the χ2-distribution and begins to resemble a Gaussian distribution.
In this paper, we study the probability distribution of spatial fluctuations in the axion field
over a range of coupling strengths. We find that the distribution tends to a χ2-distribution
during the evolution. However, it gradually transitions to a Gaussian distribution at a later
time, irrespective of whether the backreaction of the gauge fields becomes important during
or after inflation.

The paper is organized as follows. In section 2, we discuss the axion-inflation model and
state the governing evolution equations for this system. In section 3, we describe the initial
conditions of our numerical simulations, present the simulation results, and compare them
with previous semi-analytical studies. The production of GWs considered in section 4. The
magnetic part of the produced gauge fields may explain the presence of magnetic fields in the
intergalactic medium, which we discuss in section 5. In section 6, we describe the probability
density function of the curvature perturbation. In section 7, we present the conclusions of
our study.

Throughout this paper, the indices i, j, k represent three-dimensional vector indices,
and the background spacetime metric is assumed to be the spatially-flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric. Capital bold letters denote three-dimensional vector
quantities. We use signature convention (−,+,+,+) and Planck units ~ = c = G = 1. The
Planck mass is defined as mpl = 1/

√
G.

2 Axion-U(1) inflation model

The following action describes the dynamics of the axion-U(1) inflation model,

S =

∫

d4x
√−g

[

m2
pl

16π
R− 1

2
∂µφ∂

µφ− V (φ)− 1

4
FµνF

µν − α

4f
φFµν F̃

µν

]

. (2.1)

Here, φ represents the axion field and V (φ) denotes its potential, which in our analysis is
taken as3 V (φ) = m2φ2/2 with m = 1.06 × 10−6mpl, Fµν = ∂µAν − ∂νAµ represents the
gauge field strength tensor, while F̃µν is its Hodge dual, α/f denotes the coupling strength
between the axion field and the U(1) gauge fields, and R is the Ricci scalar. Using this,
and denoting derivatives with respect to conformal time η by a prime, we get the following
dynamical equations4 for the axion-gauge field evolution [43]

φ′′ + 2Hφ′ −∇2φ+ a2
dV

dφ
=

α

f

1

a2
E ·B , (2.2)

A′′ −∇A′

0 −∇2A+∇(∇ ·A)− α

f

(

φ′B+∇φ×E
)

= 0 , (2.3)

3Although chaotic inflation has been ruled out by CMB observations [18], we have chosen this model for
several reasons. First, it simplifies our analysis. Second, it allows us to compare our results directly with those
of previous studies. Lastly, many other inflationary potentials can be approximated by a quadratic potential
near the end of inflation, and our study primarily focuses on this late phase of the inflationary period.

4In this paper, we neglect the role of metric perturbations. The terms that couple metric perturbations
to the axion field are suppressed by slow-roll parameters and can thus be ignored during inflation [60, 61].
However, the role of these terms may become important near the end of inflation, which we leave for future
investigation; see refs. [54, 62, 63] for recent studies on this topic.
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where5 E = −A′ + ∇A0, B = ∇ × A and H is the comoving Hubble parameter with
H = a′/a for scale factor a(η). On top of the constraint ∇ ·B = 0, the action (2.1) modifies
the Coulomb law to

∇ · E+
α

f
B ·∇φ = 0 . (2.4)

Finally, the gravitational background obeys the Friedmann equations

H2 =
8π

3m2
pl

a2ρ , H′ = −4πa2

m2
pl

(ρ+ p) +H2 , (2.5)

where the density ρ and pressure p are given by [34]

ρ =
〈1

2

φ′2

a2
+

1

2

(∇φ)2

a2
+ V (φ) +

E2 +B2

2a4

〉

, (2.6)

p =
〈1

2

φ′2

a2
− 1

6

(∇φ)2

a2
− V (φ) +

E2 +B2

6a4

〉

, (2.7)

and the 〈..〉 represents the spatial averaging over a cubic domain of size L3, where L = 2π/k1
is specified in terms of the lowest wave number of the domain, k1. We consider different
values for L, depending on the value of α/f .

Before turning to the numerical results, it is useful to discuss here the possibility of gauge
field amplification in the case of a homogeneous axion field. By assuming a homogeneous
axion field (∇φ = 0) and using the Coulomb gauge (∇ · A = 0), equation (2.4) implies
A0 = 0 and equation (2.3) reduces to,

A′′ −∇2A− α

f
φ′
∇×A = 0 . (2.8)

By choosing the circular polarization basis, the above equation simplifies to the following
form in Fourier space,

(

∂2
η + k2 ∓ 2ξ(Hη)

k

η

)

A±

k = 0 , where ξ = − α

2f

φ′

H . (2.9)

The above equation indicates that, as φ rolls down its potential, one of the modes of the gauge
field amplifies depending on the velocity of the axion field (φ′/H) and the coupling strength
(α/f). This phenomenon has been extensively discussed in the literature [40, 42, 43, 47]. For
large coupling strengths, the backreaction from the produced gauge fields becomes significant
and must be considered, as it alters the dynamics of the system. This backreaction provides
an additional friction term for the axion field evolution, leading to an extended duration of
inflation compared to cases where backreaction is neglected.

In this paper, we use the Pencil Code [64] to solve these equations on a lattice in the
regime where the backreaction from the produced gauge fields is significant; see appendix A
for details about the implementation of these equations.

5We follow here the standard sign convention between E and A
′ [25], which differs from that of some other

papers [43, 53].
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3 Numerical simulations of axion-U(1) inflation

3.1 Initial conditions

In this section, we describe the initial conditions for the axion and gauge fields used in
our simulations. The initial conditions are set well within the inflationary era. To achieve
accelerated expansion of the universe, the pressure p must satisfy p < −ρ/3 which in the
absence of gauge field implies φ′2 < a2V (φ). Using this condition in its extreme form of ≪
in equations (2.5), we get

H2 ≈ 8π

3m2
pl

a2V (φ) and ǫH ≡ − Ḣ

H2
≈ 3

2

φ′2

a2V (φ)
, (3.1)

here H = ȧ/a = H/a is the usual Hubble parameter, dot denotes derivative with respect
to cosmological time dt = adη and ǫH represents the first slow-roll parameter. The above
expressions imply

φ′ ≈ a

√

2ǫH
3

V (φ) . (3.2)

Assuming a = −1/(Hη) during inflation, we get η = −1/(aH) = −1/H, and thus the initial
values of φ and ηi as

φ′

0(ηi) = ai

√

2ǫH
3

V (φin), ηi = − 1

Hi
. (3.3)

Here Hi =
√

[8π/(3m2
pl)]V (φ0) and φ0 is the initial value of the homogeneous part of the

axion field. For the quadratic inflation model, V (φ) = m2φ2/2, we have ǫH = 2/(8πφ2). This
implies,

φ′

0(ηi) = ai
m mpl√

12π
. (3.4)

In our simulations, we choose the initial condition for the axion field and its derivative such
that

φ(ηi) = φ0(ηi) + δφ(ηi,x) , (3.5)

φ′(ηi) = φ′

0(ηi) + δφ′(ηi,x) , (3.6)

where δφ represents the fluctuations arising from the quantum mechanical nature of the
axion field. We initialize these fluctuations as a Gaussian random field with a power spec-
trum, Pδφ(k) = H2/2k3 (k/H)2 corresponding to the Bunch-Davies initial condition. At the
beginning of our simulation, the chosen box size ensures that all wave numbers are within
the Hubble horizon. To avoid the effects of large ultraviolet modes, we cut off the spectrum
at a wave number kp to a decaying power law with a specific index. Our results remain
insensitive to the value of this cutoff wave number kp, as demonstrated in appendix B. The
initial spectra of δφ′, A, and E have been chosen correspondingly. The spectra of the electric
part, PE(k) and of the magnetic part, PB(k) of the gauge field are defined via the comoving
energy density,

ρg ≡ 1

2
〈E2 +B2〉 =

∫

dk

k
[PE(k) + PB(k)] . (3.7)
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Run α/f (in m−1
pl ) α/(

√
8πf) kp/m k1/m grid size ∆Ne

A 35 7 47 2 512 0.0
B 50 10 47 2 512 0.0
C 60 12 47 2 512 0.0
D 75 15 47 4 1024 1.7
D’ 75 15 94 2 512 1.7
E 90 18 47 8 1024 4.0

Table 1: Parameters for the runs discussed in the paper. Here k1 represents the lowest wave
number of the simulation domain and kp is the cutoff wavenumber for the initial spectrum.
∆Ne denotes the excess number of e-folds over the case without backreaction due to the
gauge fields.

3.2 Dynamics of axion and gauge fields: inferred from simulations

To study the dynamics of the axion-U(1) inflation model, we perform a series of simulations
with different coupling strengths6 α/f = 30, 50, 65, 75, and 90. The parameters for these
simulations are given in table 1. In figure 1, we present the evolution of different energy
densities for α/f = 60, 75, and 90. We show the evolution of the kinetic energy density,
ρkin (dashed blue curves), potential energy density, V (φ) (solid cyan curves), and gauge field
energy density, ρg (dot-dashed orange curves) in panels (a), (b), and (c) of figure 1 for the
coupling strengths α/f = 60, 75, and 90, respectively. Panels (d), (e), and (f) illustrate the
evolution of ξ, while panels (g), (h), and (i) display the first slow-roll parameter, ǫH , for the
corresponding cases. Inflation ends when ǫH = 1. The vertical gray lines indicate the epoch
of the end of inflation in each case. In this figure, e-folds N is defined7 such that N = 0
marks the end of inflation in scenarios where the backreaction of the gauge fields on the axion
dynamics is negligible. We denote the corresponding excess number of e-folds as ∆Ne.

For α/f = 60, inflation ends when the potential and kinetic energies of the axion field
become comparable and the backreaction of the gauge field becomes important post-inflation.
The α/f = 30 and 50 cases have the similar behavior. However, for α/f = 75 and 90, the
amplification of the gauge fields is significant to backreact on the evolution of the axion field
during inflation itself. When the backreaction of gauge fields on the axion field dynamics
becomes significant during inflation, it reduces the axion field velocity, thereby extending the
duration of inflation. The duration of inflation extends by ∆Ne = 1.7 e-folds for α/f = 75
and ∆Ne = 4.0 e-folds for α/f = 90 compared to cases with smaller coupling strengths. Our
results are similar to those obtained in ref. [53], except that here the extended duration of
inflation ∆Ne is slightly shorter.

In scenarios where the backreaction of gauge fields is negligible during inflation, it
ends when the potential and kinetic energy become comparable. However, when gauge field
backreaction is significant during inflation, it ends when the gauge field energy density is
comparable to the axion potential energy.

6It is to be noted that our coupling strengths are in the units of the inverse of the Planck mass. However,
many previous studies use the inverse of the reduced Planck mass for normalization. To convert our coupling
strengths to the reduced Planck mass normalization, our values need to be divided by

√
8π. table 1 provides

the values of the coupling strengths in both units for clarity.
7As usual we define dimensionless e-folds N through the relation dN = Hdt with cosmological time t and

Hubble parameter H .
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Figure 1: The time evolution of different energy densities (top row), ξ (middle row), and the
first slow-roll parameter, ǫH (bottom row), is shown for α/f = 60 (left column), 75 (middle
column), and 90 (right column). The vertical gray lines indicate the end of inflation for each
case. In the middle and bottom rows, the violet lines represent the time evolution of ξ and
ǫH for the homogeneous φ case. In panels (e) and (f), the dot-dashed gray lines show the
analytical GEF results discussed in refs. [45, 51].

3.3 Comparison with previous work in the homogeneous φ case

As discussed in the previous section, the backreaction of the gauge fields on the evolution
of the axion field becomes significant during inflation for the coupling strengths; α/f = 75
or 90. Previous semi-analytical studies have studied the evolution of this by ignoring spatial
inhomogeneities [47, 49, 51, 55], and more recently, lattice simulations have been used to
study this model [52, 53]. In ref. [49], backreaction is incorporated perturbatively, while the
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authors of ref. [51] use the gradient expansion formalism. In this section, we compare our
results with these semi-analytical findings.
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P B

N=-4.8 N=1.2
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N=-7.0 N=-0.0

Figure 2: The spectra of the magnetic and electric components of the gauge field at different
times are shown for α/f = 75 (left, blue curves, run D) and α/f = 90 (right, red curves, run
E).

To compare our results with the previous semi-analytical studies, we neglect the axion
field inhomogeneity in the evolution of the axion and gauge fields, i.e., equations (A.1),
(A.8), and (A.9), and the contribution of the corresponding term in the total energy budget
that governs the evolution of the background FLRW geometry, i.e., equation (A.6). We
compare our results with previous semi-analytical works using a similar methodology to that
in ref. [53]. In panels (d), (e), and (f) of figure 1, the cyan curves show the evolution of ξ,
which governs the growth of the gauge fields. The purple curves in these panels represent
the evolution of ξ when φ is assumed to be homogeneous, thus ignoring terms involving the
spatial derivatives of φ in the evolution equations. The gray curve in panel (e) shows the
predicted evolution of ξ from the semi-analytical GEF model used to study the axion-U(1)
system described in refs. [47, 51]. From figure 1, we conclude that our simulation results
align well with those of the GEF model. To have a good match with the GEF results, we
note that the initial conditions for the simulation must be chosen so that the axion-U(1)
system reaches the slow-roll regime a few e-folds before the gauge field backreaction becomes
significant. This issue is discussed in detail in appendix C.

For the coupling strengths α/f = 75 and 90, the spatial fluctuations of gauge fields
become prominent and suppress the oscillatory features observed in the homogeneous case
(purple curves in panels (e) and (f)). This attenuation has also been demonstrated in [53].

In figure 2, we show the spectra of the magnetic and electric components of the gauge
fields for run D (blue curves) and run E (red curves). For run D, the spectra are shown from
the initial time Ni = −4.8 to the final time Nf = 1.2, with intervals of ∆N = 0.5. For run E,
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the spectra span from Ni = −7 to Nf = 0, which is also the time span shown in ref. [53]. We
show the spectra of scalar field fluctuations at different times for these runs in appendix D.

As seen in figure 2, both magnetic and electric energy spectra initially peak at a scale
close to the minimum wave number of the simulation box. As time progresses, the spectral
peaks shift towards higher wave numbers, eventually reaching close to the maximum box
wave number for run E. To extend the simulation to later times, a larger simulation box
would be required.

4 Gravitational waves

In this section, we discuss the production of GWs during axion-U(1) inflation. The interaction
between the axion and the gauge field results in the generation of GWs, as the produced
gauge field has a nonzero transverse traceless component in its energy-momentum tensor.
Additionally, scalar field spatial fluctuations produced by the gauge field also contribute
to the generation of GWs. GWs are defined as the transverse traceless part of the tensor
perturbations (hTT

ij ) of the metric. Including these tensor perturbations, the metric is given
by,

ds2 = a2
(

−dη2 + (δij + hTT
ij )dxidxj

)

(4.1)

The evolution of these tensor perturbations is governed by the Einstein equation. By lin-
earizing the Einstein equation, we obtain;

(

∂2

∂η2
+ k2 − a′′

a

)

h̃ij =
16π

m2
pl

T̃ij

a
, (4.2)

where, h̃ij = ahTT
ij , T̃ij = a2TTT

ij and TTT
ij denotes the transverse traceless part of the energy-

momentum tensor (Tij) of the source that led to the production of GWs. For the axion-U(1)
model, the total Tij is given by

Tij = −BiBj − EiEj + a2∂iφ∂jφ+ ... (4.3)

Here, the ellipsis represents the irrelevant terms proportional to gij . The energy density of
the produced GWs is given by,

ρGW ≡ 1

32πa2
〈h′TT

ij h
′TT
ij 〉 = 1

32πa4
(

〈h̃′ij h̃′ij〉 − 2H〈h̃ij h̃′ij〉+H2〈h̃ij h̃ij〉
)

. (4.4)

The density fraction of GWs at the present epoch is given by,

ΩGWh2 =
ρGW

ρc

∣

∣

∣

0
=

ρGW

ρr

∣

∣

∣

e
Ωrh

2 . (4.5)

Here, Ωrh
2 represents the radiation density fraction at the present epoch and ρGW/ρr|e

denotes the ratio of the GW energy density to the total energy density at the time when the
GW energy density reaches saturation.

Further in this section, we study the production of GWs in the axion-gauge field scenario,
considering both weak and strong coupling cases. The characteristic current frequency of
these produced GWs is in GHz range and is determined by the horizon scale at the end of
inflation, see equation (5.3). In figure 3, we show the time evolution of the gauge field energy
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Figure 3: The time evolution of the gauge field energy density (left panel), normalized by
the total energy density, and the density fraction of GWs (right panel) is shown for different
values of α/f . The vertical lines indicate the end of inflation for each case. In the right panel,
the horizontal solid gray line represents the bound on ΩGWh2 from Planck observations of
the CMB, while the dashed gray line denotes the combined sensitivity of the future mission
COrE and Euclid [65]. The blue band represents the CMB’s S4 1σ and 2σ projections [66].

density normalized by the total energy density in the left panel and the density fraction of
the GWs in the right panel. The curves correspond to different coupling strengths; α/f = 30
(dotted violet), 50 (dashed blue), 60 (dot-dashed blue), 75 (solid orange), and 90 (dot-
dashed red). The vertical lines, in corresponding colors, represent the end of inflation for
each case. The horizontal solid gray line indicates the bound on the GW energy density
from the ∆Neff constraints from the CMB. The dashed gray curve represents the sensitivity
of the future CMB-S4 mission. Our key findings regarding the constraints on the coupling
strength between axion and gauge fields from the CMB bound on ∆Neff can be summarized
as follows.

• As shown in figure 1, for α/f = 75 and 90, once the energy density of the gauge field
becomes comparable to the kinetic energy of the axion field, the velocity of the axion
decreases. This reduction in axion velocity leads to a slower growth rate of the gauge
field compared to the pre-backreaction stage. Consequently, the production rate of
GWs also slows down, as shown in figure 3. The amplitude of the generated GWs
remains below the bound obtained using Planck data for these cases up until the end
of inflation.

• Previous studies [33, 34] indicated that the coupling strength above 70 leads to an
overproduction of GWs, violating the ∆Neff bound from the Planck data of CMB.
This bound is for the case of chaotic potential, which is also considered for this case.
However, we find that this bound is relaxed in the strong coupling case when gauge
field backreaction becomes significant during inflation. The specific details of this bound
depend on the duration of GW production after the end of inflation. As evident from
figure 3, the produced GWs for α/f = 75 may violate the bound from the Planck data
on the GW amplitude, but this occurs 2–3 e-folds after the end of inflation. In our
analysis, we have not considered the interaction of the gauge field with other standard
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model particles. For large coupling strengths, this interaction becomes important and
may lead to instantaneous reheating, as discussed in section 4.2 of ref. [43]. Considering
these effects would lead to the decay of the gauge field into other standard model species,
further affecting GW production. If the gauge field energy density decays significantly
within 2–3 e-folds after inflation, the produced GW amplitude will be smaller and may
well be within the bound obtained from the Planck data (shown by the solid horizontal
gray line in figure 3).
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100

ρ g
/ρ

with cont. from ϕ
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−3 −2 −1 0 1 2 3
N

10−15
10−13
10−11
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Ω G
W
h2

Figure 4: In this figure, we show the time evolution of ρg/ρ and ΩGWh2 for α/f = 75 for
run D (solid yellow curves) and for a run (dotted black curves) analogous to run D in which
the contribution of the φ term in the total energy-momentum tensor, given in equation(4.3),
is neglected in the calculation of the GW energy density.

• Both axion and gauge fields contribute to GW production. To compare their contribu-
tions, we conduct a simulation analogous to run D, but with the axion field contribution
neglected. We demonstrate this in figure 4. The left panel shows the time evolution
of ρg/ρ, while the right panel is for ΩGWh2. The solid yellow curves correspond to the
evolution for run D, whereas the dotted black curves represent a similar run where the
contribution of the φ field was neglected in the estimation of the GW energy density.
The vertical gray line marks the end of inflation for both runs. From this figure, we
conclude that the contribution of the axion field to the GW energy can be neglected
for most of the duration.

5 Magnetogenesis

There is indirect evidence of magnetic fields in the intergalactic medium, inferred from the
non-detection of secondary GeV photons from blazars [67–70]. The presence of such in-
tergalactic magnetic fields motivates the study of their generation in the early universe,
potentially during inflation [71–79] or a first-order phase transition [80–84], for reviews see
ref. [85–87]. In this section, we study the generation of magnetic fields within the axion-U(1)
inflation scenario and calculate their present day strength for different coupling strengths,
α/f .

5.1 Gauge-field production

As discussed in section 3.2, the gauge fields are amplified due to the coupling between the
axion and gauge fields. The produced gauge fields consist of two components; the magnetic
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part (hypermagnetic fields) and the electric part (hyperelectric fields). The energies in the
electric component of the gauge fields will be converted into kinetic and magnetic energies
[88] within one Hubble time after reheating due to the high conductivity of the universe post-
reheating. By contrast, the hypermagnetic fields remain frozen because of the medium’s high
conductivity. However, this is not entirely accurate as hypermagnetic fields also decay as
a power law due to their interaction with the charged plasma via the Lorentz force [86,
89–92], which we discuss later in this section. At the electroweak phase transition, these
hypermagnetic fields will convert to standard magnetic fields, with their strength related
to the hypermagnetic fields by the Weinberg angle, which is O(1). If strong enough, these
magnetic fields could explain the presence of intergalactic magnetic fields in the present-day
universe. We discuss this later in this section. The possibility of magnetogenesis in axion
inflation has been studied in ref. [43] for coupling strengths α/f = 60 and below. In this
study, we also calculate the magnetic field strengths for larger coupling strengths; α/f = 75
and 90 [53] in addition to the cases considered in [43].

First, we study the evolution of the electric and magnetic components of the gauge fields
during inflation in our simulations. The root mean square value of the hypermagnetic field
and its coherence length are given by,

Brms =
1

a2

√

∫

d log k · PB(k) , and Lc =

∫

d log k · k−1 · PB
∫

d log k · PB
. (5.1)

Similar definitions are used for the electric part of the gauge fields. Furthermore, as-
suming the universe evolves in a radiation-dominated phase from the end of our simulations,
we can calculate the magnetic field strength today using the following expression:

Brms

∣

∣

0
= 4.2µG

√

∫

d log k · PB

ρ

√

g0
3.36

(

BCMB

3.3 µG

)

. (5.2)

Here, ρ represents the total energy density of the universe at the end of our simulations, g0
represents the total number of relativistic degrees of freedom of the energy density today,
and BCMB is the magnetic field strength corresponding to the CMB energy density.

In figure 5, we demonstrate the evolution of the electric component with solid lines and
the magnetic component with dashed lines for coupling strengths α/f = 30 (green curve),
50 (red curve), 60 (orange curve), 75 (blue curve), and 90 (yellow curve). In the right panel,
we illustrate the evolution of the coherence length for each coupling strength. The coherence
length scale is normalized by the length scale corresponding to the Hubble horizon. The
length scale corresponding to the Hubble horizon at the end of inflation is given by

LH =
a0
ae

1

H
= 1.97 × 10−17pc

(

10−6mpl

H

)1/2

. (5.3)

In the above expression, we assume that the universe evolves adiabatically after inflation,

ae
a0

=

(

g0s
grs

)1/3 T0

Tr
= 2.66× 10−29

(

g0s
3.94

106.75

grs

)1/3 (106.75

gr

)1/4 T0

2.73K

(

10−6mpl

H

)1/2

,

(5.4)

where grs and g0s denote the effective degrees of freedom in the entropy density at the end
of inflation and the present epoch, respectively. We estimate the reheating temperature, Tr,
by assuming instantaneous reheating using 3H2m2

pl = (π2/30)grT
4
r .
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Figure 5: The evolution of the electric and magnetic components of the gauge field (left
panel) and their coherence lengths (right panel) is shown for different values of α/f . The
coherence lengths are normalized by the length scale corresponding to the Hubble horizon.

5.2 Evolution of gauge fields post inflation

After the end of inflation, the universe is dominated by the gauge field in the strong coupling
regime of axion-U(1) system. Due to the dominance of the gauge field in the total energy
budget, the effective equation of state resembles that of radiation dominance. We assume
that reheating in this model occurs through the interaction of the gauge field with other
Standard Model fields, as described in [43, 93]. Therefore, we can consider the universe as
being radiation-dominated just after the end of inflation.

As discussed earlier, the gauge fields have a blue spectrum at the end of inflation and
peaks at a scale smaller than the Hubble horizon size; see figure 5. We assume that the
gauge fields remain unaffected from the end of inflation until the epoch when the universe’s
conductivity becomes much larger than the Hubble parameter. Once this epoch is reached,
the electric component of the gauge field shortened out within a Hubble time scale, and the
magnetic field becomes frozen into the rest of the plasma. After this epoch, the magnetic
field interacts with the plasma via the Lorentz force and transfers some of its energy to the
plasma. As a result, the magnetic field strength decreases. This nonlinear processing of the
magnetic field begins when the Alfvén time becomes smaller than the Hubble time, which
implies that the corresponding scale factor is anl ≡ aH(H Lc/VA). Here, aH corresponds to
the scale factor at the horizon entry for a particular scale, and VA =

√

B2/(2(ρ + p) is the
Alfvén velocity.

In the nonlinear processing regime, the magnetic field strength decays as (am/anl)
−1/3,

and the coherence length (which corresponds to the peak scale in our case) increases as
(am/anl)

2/3 for the fully helical case. After incorporating the nonlinear processing of the
fields, the magnetic field strength and its coherence length at the present epoch is given by,

Brms

∣

∣

0
= 2.03 × 10−14 G

√

∫

d log k · PB

ρ

√

g0
3.36

(

BCMB

3.3 µG

)

r1/3 , (5.5)

and

LNL
c = 0.8 pc (HLc)

(

10−6mpl

H

)1/2

r−2/3. (5.6)

Here r = max(1,H Lc/VA) and BCMB denotes the magnetic field strength corresponding to
the CMB energy density. We show the time evolution of HLc/VA in appendix E for the runs
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Run α/f Brms|0 (G) LNL
c |0 (pc) Bbound

(G)
B1

rms|0 (G) L1,NL
c |0

(pc)
B1

bound

(G)

A 35 6.2×10−17 1.4× 10−3 8.4×10−14 8.5×10−16 7.1 × 10−3 3.7×10−14

B 50 4.6×10−16 8.7× 10−3 3.4×10−14 9.0×10−15 9.9 × 10−2 1.0×10−14

C 60 1.7×10−15 3.0× 10−2 1.8×10−14 1.8×10−14 9.9 × 10−2 1.0×10−14

D 75 1.2×10−14 1.9× 10−1 7.2×10−15 1.7×10−14 1.5 × 10−1 8.1×10−15

E 90 1.4×10−14 1.7× 10−1 7.6×10−15 – – –

Table 2: Brms|0 and LNL
c |0 represent the present-day magnetic field strength and its co-

herence length obtained for each run, respectively. Bbound denotes the lower bound on
the magnetic field strength based on blazar observations, where we assume Bbound =
10−17G(L/0.1Mpc)1/2.

given in table 1. After using the above expressions, we obtained the magnetic field strength
and its coherence length corresponding to each coupling strength and the values are given in
table 2. For the values given in columns 2 and 3 of table 2, we use (

∫

d log k · PB/ρ)
1/2 and

HLc at the end of inflation in equation (5.5) and equation (5.6), respectively. However, for
the values given in columns 4 and 5, we use the value of (

∫

d log k · PB/ρ)
1/2 and HLc one

e-fold after inflation. In table 1, Bbound denotes the lower bound of magnetic field strength
obtained from the blazars observation. Here we assume Bbound = 10−17G(LNL

C /0.1Mpc)1/2.
From the values given in the table 2, we conclude that the magnetic field strength obtained
in the axion-U(1) inflation model for coupling strengths α/f ≥ 60 can explain the required
field strength to account for the non-observation of GeV photons in blazar observations.
Recently, it has been suggested that the reconnection time, rather than the Alfvén time, is
the relevant timescale for the decay of the nonlinear evolution of magnetic fields in the early
universe [94–97]. In ref. [98], it was found that this makes the timescale approximately 50
times longer than the Alfvén time. If we account for this in our calculations, the length
scale would decrease by a factor of 502/3, and the magnetic field strength would increase by
a factor of 501/3 compared to the values mentioned in table 2. (If the decay is controlled by
reconnection and the decay time still proportional to the square root of the conductivity, the
exponents might be 4/7 and 2/7, respectively; see ref. [99].)

6 Curvature perturbations and its probability distribution function

In the previous analytical study [35–37], the formation of the PBHs from the large spatial
fluctuations of the axion field generated by the backreaction of the gauge field on the axion
dynamics has been studied. To estimate the abundance of PBHs, the authors used the
Press-Schechter approach [100–102]. For this, one needs to know the probability distribution

function (PDF) of the curvature perturbation variable, ζ = −Hδφ/ ˙̄φ. The PDF of ζ will be
the same as the PDF of spatial fluctuations, δφ, of the axion field. In these studies, this PDF
has been assumed to be a χ2-distribution due to the quadratic nature of the backreaction
term of the gauge field in the scalar field dynamics. Using this, the authors in [35, 36]
examined the constraints on α/f by using the constraints on PBHs abundances from BBN
and CMB and obtained an upper bound on α/f . The obtained values of the upper bound
are α/f ≤ 115 from [35] and α/f ≤ 130 from [36]. The obtained upper bound on α/f in
these studies is such that this setup of axion-U(1) inflation is in the strong backreaction
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regime. Here we test this assumption and study the PDF of the axion field fluctuations in
our simulations.
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Figure 6: The PDFs of δφ/σφ at different times for α/f = 35 (top row), α/f = 60 (middle
row), and α/f = 75 (bottom row). The yellow line represents the PDF for a Gaussian random
field, while the magenta line shows the χ2-distribution with three degrees of freedom for the
variable

√
6δφ/σφ +3. Here N represents the number of e-folds and N = 0 marks the end of

inflation. In the bottom row, the initial time corresponds to N = −4.8, i.e., 1.7 e-folds less
than that of the top and middle rows to address the prolonged duration of inflation by 1.7
e-folds for the case of α/f = 75. In the left column, we show the PDFs at the earlier times
of the simulation, while the right column displays them at the later stages.

To study the evolution of the PDF of the axion field’s spatial fluctuations, we use 3D
snapshots from our simulations. At the beginning of our simulations, these fluctuations follow
a Gaussian random field as set by the initial conditions. We normalize by the root mean
square of the fluctuations in the axion field, σφ, and plot the PDF of δφ/σφ ≡ (φ − φ̄)/σφ.
Initially, it follows a standard normal distribution. In figure 6, we present the evolution of
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the PDFs for three different coupling strengths, α/f = 35 (top panel), α/f = 60 (mid panel)
and α/f = 75 (bottom panel). As evident from the top panel of figure 6, the PDF of δφ/σφ is
initially Gaussian and evolves into a χ2-distribution with three degrees of freedom. However,
in the case of strong coupling strength, the PDF starts as a Gaussian, transitions to a χ2

distribution at an intermediate time, and reverts to a distribution closer to Gaussian at later
times.

In a previous numerical study of axion-U(1) inflation [52], the authors investigated the
PDF of curvature perturbations for α/f = 125. However, due to the limited box size, their
simulations covered only 6 e-folds during inflation and did not extend until the end of inflation.
Extending the simulation until the end would require a significantly larger simulation box.
In their study, the authors also observed that the PDF tends toward a Gaussian distribution.
We would like to emphasize, however, that this result is not exclusive to cases where the
gauge field backreaction is significant during inflation. As demonstrated in the middle panel
of figure 6, the PDF of axion fluctuations for α/f = 60 shows that this transition toward a
Gaussian distribution also occurs when the backreaction becomes important after inflation.

Considering a distribution that is less non-Gaussian than the χ2-distribution will result
in a smaller PBH abundance8. This will relax the constraints on α/f . We will present a
detailed study of the PBHs constraints in a future study.

7 Discussion and conclusion

In this paper, we study the axion-U(1) inflation model by simulating the dynamics of both
the axion and the gauge fields. Our focus is on the regime where the gauge field backreaction
on axion evolution becomes significant during inflation. Previous studies have addressed
this scenario semi-analytically using perturbative [49, 55] and gradient expansion approaches
[47, 51], which neglect axion field inhomogeneity. However, recent numerical simulations
have incorporated these inhomogeneities [52–54]. For our study, we developed two new
modules in the Pencil Code. Our numerical simulation results align well with previous
semi-analytical studies for the homogeneous axion case and with recent numerical simulations
for the inhomogeneous axion case.

We have analyzed the production of GWs and the PDF of spatial fluctuations in the
axion field for α/f = 75 and 90 in the Planck units. We also compare these results with cases
of smaller coupling strengths (α/f = 35, 50, and 60), where the gauge field backreaction
is not significant during inflation. For α/f = 75 and 90, the gauge field energy density
becomes comparable to the potential energy of the axion field at the end of inflation and
soon dominates the total energy budget of the universe. The produced GWs are within the
bounds set by Planck data of CMB if only those produced until the end of inflation with
no further production are considered. However, these GWs might exceed the bound if we
account for those produced 2–3 e-folds during reheating after inflation and neglect the effects
of the produced charged particles from the gauge fields.

In this study, we have neglected the interaction of the gauge field with other Standard
Model particles. In cases of large coupling, such as α/f = 75 and 90, the gauge field energy
density is sufficient to provide instantaneous reheating, as the interaction rate of the gauge

8To accurately estimate PBH abundances, it is necessary to know the PDF of the smoothed curvature
perturbations [35, 36]. Since the PDF of the smoothed curvature perturbations will be similar to, or even
less non-Gaussian than, that of the unsmoothed perturbations, the constraints derived from the smoothed
perturbations will be comparable to or less stringent than those from the unsmoothed perturbations.
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field with other particles is much larger than the Hubble expansion rate. This is discussed in
detail in ref. [43]. Additionally, the produced large gauge fields may lead to the production
of charged particles via the Schwinger effect [45, 103–109]. Once the backreaction of these
charged particles becomes significant, they may halt any further production of the gauge
fields. Consequently, the produced GW energy density will saturate at a stage when these
interactions become important. As these interactions may not be neglected until 2–3 e-folds
after inflation, the bound from the Planck data may not be exceeded as a result. A detailed
study incorporating the effects of other interactions will be conducted in future work.

The large-scale gauge fields produced in this model offer a possible explanation for
intergalactic magnetic fields. We have explored this for small to large coupling strengths,
α/f , and find that the resulting magnetic fields are above the lower bound on intergalactic
magnetic fields inferred from blazar observations [67] for α/f ≥ 60. For the coupling strength
α/f = 75, the resulting magnetic field strength is 1.2 × 10−14 G with a coherence length of
0.19 pc. The lower bound on the magnetic field strength from blazar observations for this
coherence length is 7.2× 10−15 G, based on the relation Bbound = 10−17 G(L/0.1Mpc)1/2, as
discussed in section 5.2.

Furthermore, we examine the PDF of the produced axion fluctuations. Understanding
this PDF is crucial for studying the formation of PBHs in this model. Previous analytical
studies considered it to be a χ2-distribution with one or two degrees of freedom. In our study,
we initialize axion fluctuations as a Gaussian random field. We find that the spatial fluctua-
tions indeed transition to a χ2-distribution at later times, but with three degrees of freedom.
However, as the backreaction of the gauge field becomes significant, the system starts to
resemble a Gaussian distribution. Incorporating this information in studies constraining the
axion-gauge coupling from PBH abundance bounds will relax the existing constraints on this
coupling strength.

In this study, we examine the unsmoothed axion fluctuation distribution. However, to
make accurate estimates, one needs to understand the distribution of the smoothed fluctu-
ations. We believe that the distribution of smoothed fluctuations will be even closer to a
Gaussian distribution compared to the unsmoothed case. We will provide a detailed study
on this in a future work.
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A Implementation in the Pencil Code

As discussed in section 2, we use the Pencil Code for our simulations. To simulate the
axion-U(1) inflation, we use the special modules backreact inf.f90 and disp current.f90.
The φ and FLRW background equations are solved in the ‘backreact infl.f90’ module, while
the E and A equations are solved in the ‘disp current.f90’ module. By default, we use the
Weyl gauge, but the Lorenz gauge can also be used by setting the llongitudinalE logical to
false and the llorenz gauge disp logical to true. The governing equations in both Lorenz
and Weyl gauges are described in the section A.1 and section A.2, respectively. In addition to
the E and A variables, we also solve for A0 in the Lorenz gauge. Additionally, we also solve
for the production of gravitational waves using the equations in the gravitational module
gravitational waves hTXk.f90; see ref. [110] for details. The Pencil Code employs a
sixth-order finite difference method for spatial derivatives and a third-order Runge-Kutta
method for time stepping.

A.1 Lorenz Gauge

In the Lorenz gauge, where A′
0 = ∇ ·A, the system of equations (2.2), (2.4), (2.3) and (2.5)

reduces to

φ′′ + 2Hφ′ −∇2φ+ a2
∂V

∂φ
=

α

f
a−2E ·B (A.1)

A′

0 = ∇ ·A (Lorenz gauge) (A.2)

A′′

0 −∇2A0 =
α

f
∇φ ·B or (∇ ·A)′ −∇2A0 =

α

f
∇φ ·B (A.3)

A′ = −E+∇A0 (A.4)

E′ = ∇×B− α

f

(

φ′B+∇φ×E
)

. (A.5)

H2 =
8π

3m2
pl

a2ρ. (A.6)

Here E = ∇A0 − A′ and B = ∇ × A. In this case, we solve the equations (A.1), (A.2),
(A.3), (A.4) and (A.5) for the axion-gauge field dynamics and equation (A.6) for the FLRW
background evolution.
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A.2 Weyl or temporal gauge

In the Weyl or temporal gauge, we have A0 = 0 and instead of equations (A.2), (A.3), (A.4),
and (A.5), we solve equations (A.7) and (A.8) and (A.9) for the gauge field evolution.

A′ = −E (A.7)

E′ = −∇2A+∇Γ− α

f

(

φ′B+∇φ×E
)

(A.8)

Γ′ = −(1− g2e)∇ ·E+ g2e
α

f
∇φ ·B. (A.9)

Here Γ = ∇ ·A. In appendix F, we present a comparison of the different gauges.

B Different initial cutoff wave numbers

As mentioned in section 3.1, we initialize the fluctuations of the axion and gauge fields using
the Bunch-Davies initial condition. To neglect the contribution of large ultraviolet quantum
fluctuation modes, we consider an initial power spectrum with a cutoff at a wave number
kp, above which the power spectrum follows a decaying power law. In this appendix, we
demonstrate that the results of our simulations are independent of the initial value of kp.

We conduct a simulation analogous to run D with kp/m = 94 and α/f = 75. The
results are shown in figure 7, which depicts the evolution of ξ defined below equation (2.9)
and the ratio of the gauge field energy density to the total energy density ρg/ρ for kp/m = 47
(dot-dashed blue curves) and kp/m = 94 (dashed violet curves). As evident from figure 7,
both sets of curves overlap, indicating that the location of kp does not affect the final results.
The initial departure in the two curves in the right panel is because of the larger value of the
initial amplitude of the gauge fields for the case kp/m = 94. We also checked the dependence
on the cutoff wave number for α/f = 90 and came to similar conclusions for this case as well.
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Figure 7: In this figure, we show the evolution of ξ and ρg/ρ for the runs D and its analogues
run in which kp/m = 94.

C Comparison with the GEF results

In section 3.3, we compared with the GEF results. Here, we discuss the need to choose
initial conditions in the simulations that allow the system to relax into the slow-roll regime
a few e-folds before the gauge field backreaction becomes significant. In our simulation, we
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initialize φ and φ′ based on slow-roll conditions, starting the simulation 3.14 e-folds before
the end of slow-roll inflation when gauge field backreaction is not yet significant. The spectra
of A and E are initialized using the Bunch-Davies conditions. However, gauge modes closer
to the horizon may already have been amplified, i.e., the Bunch-Davies conditions might not
be an ideal initial condition for all gauge modes. We expect the system to naturally evolve
to these solutions within a few e-folds, as can be seen for the coupling strength α/f = 75 in
figure 8, where this alignment occurs about one e-folds before the end of inflation, yielding a
good match between GEF and our simulation results.
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Figure 8: The evolution of the ratio of gauge field energy density to the total energy density
(left panel) and the parameter ξ is shown in this figure. The yellow curves represent the results
from the GEF approach, while the blue and black curves show results from our simulation
for the homogeneous axion case. The black curve corresponds to the case where we start at
Ni = −4.54 e-folds before the end of slow-roll inflation, and the blue curve is for Ni = −3.14.
The upper and lower rows are for the coupling strength, α = 75 and 90, respectively.

This is to be noted that, for α/f = 90, we initialize the system at Ni = −4.5 to
provide more time for it to approach the GEF results. If we instead initialize this case at
Ni = −3.14, the gauge field energy density agrees with the GEF results only just before the
gauge fields’ backreaction becomes significant for the axion dynamics, as shown by the blue
curve in figure 8. This initialization does not provide a good match for the evolution of ξ at
later times, as shown in the bottom right panel in figure 8.

Importantly, the difference in gauge field energy density between GEF and our simula-
tion remains small after the time of backreaction even in the case in which we initialize at
Ni = −3.14 for α/f = 90. Therefore, while choosing better initial conditions could improve
consistency with GEF, it would not significantly impact the predictions for magnetic fields
and gravitational waves.
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D Spectrum of scalar field fluctuations

At the end of section 3.3, we compared with the results for runs D and E. Here, we provide
the spectra of the scalar field fluctuation Pδφ. The left- and right-hand panels of figure 9 show
those spectra for runs D and E, respectively. The light to dark shades represent different
times, with each curve separated by ∆N = 0.5. They agree well with those of ref. [53].
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Figure 9: The spectrum of scalar field fluctuations is shown, with the left panel representing
run D and the right panel representing run E. The curves progress in time from lighter to
darker shades, each separated by ∆N = 0.5.

E Time evolution of H Lc/VA

In section 5.2, we discussed that the nonlinear processing of the magnetic field depends on
the ratio of the Alfvén time scale to the Hubble time scale, H Lc/VA. This ratio shown in
figure 10 decides when the nonlinear processing of the magnetic field will begin in the plasma
after its generation. The different curves show the time evolution of H Lc/VA for different
values of α/f .

From this figure, we see that after the end of inflation, the value of H Lc/VA is less than
1 for all cases except for α/f = 35. Therefore, as discussed in section 5.2, we conclude that
the magnetic fields are in the nonlinear processing regime at the end of inflation, except in
the case of α/f = 35.

F Additional tests

In appendix A, we stated that we use the Weyl gauge by default. Here, we compare with the
Lorenz gauge and show that with both gauges, the constraint equation (2.4) is obeyed.

F.1 Weyl vs Lorenz gauge

We use the Weyl gauge to evolve the gauge field in the simulations discussed in this paper.
However, the Lorenz gauge can also be used to solve these equations, although this requires
solving an additional equation—the evolution of the temporal component, A0. The Lorenz
gauge has been used in previous studies [43, 52].

In this section, we compare the results of run D for the Weyl and Lorenz gauges. Thus,
we run a simulation analogous to run D in the Lorenz gauge, using equation (A.1), and show
the time evolution of the parameter ξ and the ratio ρg/ρ in figure 11. From this figure, it is
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Figure 10: Time evolution of H Lc/VA for the runs given in table 1.

clear that the evolution in the Lorenz gauge (dashed-dotted blue curves) closely matches that
in the Weyl gauge (dashed violet curves). Thus, either gauge can be used for the numerical
evolution of the gauge field equations.
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Figure 11: In this figure, we show the evolution of ξ and the ratio ρg/ρ for run D (dashed
violet curves), along with its analogous run where the gauge field equation is evolved using
the Lorenz gauge (dashed-dotted blue curves).

F.2 Constraint equation check

As discussed in appendix A, with the Pencil Code, the axion-U(1) inflation model can be
solved using either the Lorenz gauge or the Weyl gauge. While the simulations discussed in
the main text use the Weyl gauge, we provide a comparison of the results obtained with both
gauges in the appendix F.1. Here, we demonstrate the status of the constraint equation (2.4)
with time in one of our simulations. To do this, we use the following expression

C.E. =
〈 ∇ · E− α

f ∇φ ·B
√

(∇ ·E)2 + (αf∇φ ·B)2

〉

. (F.1)
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In figure 12, the left panel shows the status of the constraint equation in the Weyl gauge,
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Figure 12: The status of the constraint equation (2.4) with time in Weyl (left panel) and
Lorenz gauge (right panel) is shown for the run D.

while the right panel shows the gauge condition in the Lorenz gauge. Both panels correspond
to run D. Additionally, we also check the accuracy with which the constraint equation is
satisfied for different values of g2e defined in equation (A.9). We find that for g2e = 2, 1, or 0,
the accuracy remains at similar levels shown in figure 12.
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