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Abstract: We consider the effects of backreaction on axion-SU(2) dynamics during inflation.
We use the linear evolution equations for the gauge field modes and compute their backreaction
on the background quantities numerically using the Hartree approximation. We show that
the spectator chromo-natural inflation attractor is unstable when back-reaction becomes
important. Working within the constraints of the linear mode equations, we find a new
dynamical attractor solution for the axion field and the vacuum expectation value of the
gauge field, where the latter has an opposite sign with respect to the chromo-natural inflation
solution. Our findings are of particular interest to the phenomenology of axion-SU(2) inflation,
as they demonstrate the instability of the usual trajectory due to large backreaction effects.
The viable parameter space of the model becomes significantly altered, provided future
non-Abelian lattice simulations confirm the existence of the new dynamical attractor. In
addition, the backreaction effects lead to characteristic oscillatory features in the primordial
gravitational wave background that are potentially detectable with upcoming gravitational
wave detectors.
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1 Introduction

Natural inflation was originally proposed in order to address the UV sensitivity problem of
inflation [1, 2]. By identifying the inflaton with an axion, the pseudo-scalar field possesses a
shift symmetry that protects the inflationary potential against radiative corrections. The
inflationary potential is generated through instanton effects and in the early versions of
natural inflation the potential is a sinusoidal function of the field.

The shift symmetry also dictates the possible couplings of the inflaton to other fields, since
an axion can only couple derivatively to other fields. In particular, the lowest order coupling
to fermions ψ and gauge bosons Aµ are f−1(∂µϕ)ψ̄γµγ

5ψ and f−1ϕFµνF̃
µν , respectively,

where Fµν is the field strength tensor and F̃µν = ϵµναβFαβ is the dual field strength tensor
(see e.g. [3–6]).

The coupling of an axion inflaton to gauge fields through a Chern-Simons term has
attracted significant attention in the literature. In the case of an Abelian field, the parity-
violating nature of the coupling leads to the two helicities developing a different effective
frequency. One of them can even become tachyonic, when the velocity of the inflaton is
high enough. After the end of inflation, tachyonic production of gauge fields can lead to
instantaneous preheating [6]. Identifying the gauge field with the hypercharge sector of
the Standard Model can lead to the generation of observationally relevant cosmological
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magnetic fields [7, 8]. During inflation, the production of gauge fields can lead to observable
non-Gaussianity.

Depending on the axion-gauge coupling strength, the tachyonic amplification of the
gauge fields can arise during inflation. In this case, the generation of gauge fields leads to a
significant backreaction on the inflaton, leading to a sudden drop of its velocity. Once the
gauge fields are diluted by the expansion of space-time, the backreaction term subsides and
the inflaton starts rolling again. This can lead to periodic bursts of gauge field production
during inflation [9–17], as has been shown analytically and numerically. However, recent
lattice simulations showed that the inclusion of inhomogeneous backreaction and a larger
dynamical range can significantly change the resulting dynamics [18].

Despite the interesting backreaction dynamics that occurs for large axion-gauge coupling,
the rolling of the axion in the linear regime is determined by the potential and Hubble friction.
By replacing the Abelian field with a non-Abelian one, this ceases to be true. The fact that
SU(2) fields (see ref. [19] for the generalization to SU(N) fields) possess a non-trivial vacuum
structure leads to a new inflationary attractor, in which the dominant source of friction for
the rolling axion is not the Hubble term, but the non-Abelian field VEV [20–24].

This family of models, collectively named chromo-natural inflation, allows for slow-roll
inflation even in steep potentials. Due to the parity-violating Chern-Simons coupling, one of
the tensor modes of the SU(2) sector experiences a similar instability to one of the helicities
in the Abelian case. However, the fact that the SU(2) tensor mode is linearly coupled to the
gravitational sector leads to a similar enhancement of chiral gravitational waves (GWs).

While chromo-natural inflation with a cosine potential has been shown to be incompatible
with CMB observations [24], spontaneous breaking of the SU(2) symmetry or going beyond
the cosine potential can bring the model in agreement with current data [25, 26]. A further
generalization of CNI was proposed in ref. [27], where the axion-SU(2) action was treated
as a spectator sector. This separates the inflationary sector, which is responsible for scalar
fluctuations, from the chromo-natural sector, which can produce detectable B-modes, while
remaining subdominant in both scalar fluctuations and energy density during inflation.
This family of models can be described as “spectator chromo-natural inflation” (SCNI) and
their GW spectra are directly related to the shape of the axion potential [28]. Currently,
the dynamics of spectator non-Abelian gauge fields during inflation is an active research
direction [29–47].

Previously, the effects of backreaction in spectator axion-SU(2) inflation were estimated by
comparing the backreaction contributions to other terms in equations of motion [27, 31, 48, 49],
or more generally in ref. [50] for the case when the backreaction integral is regularized.1
The authors of the ref. [50] studied the stability of slow-roll dynamics during axion-SU(2)
inflation and found that the slow-roll solutions become unstable when the backreaction
terms dominate in the equations of motion. In this work, we go beyond previous studies of
axion-SU(2) dynamics during inflation by considering the effects of backreaction without the
regularization of backreaction integrals. We use the linear equations of motion for the tensor

1In the slow-roll approximation, the backreaction integrals of gauge field tensor perturbations onto
background quantities can be expressed via linear combinations of the Whittaker functions that are divergent
and require regularization [48].
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SU(2) fluctuations and self-consistently solve the background equations for the axion and
SU(2) VEV, including the homogeneous (averaged) backreaction from tensor fluctuations.
This is in spirit similar to the analysis performed in ref. [16] for the Abelian case. We must
note that ref. [15] largely validated these calculations, while more recent simulations [18]
point out the importance of inhomogeneous effects during the strong backreaction regime.
Our analysis can therefore be considered an important and necessary next step into the
uncharted backreaction regime of axion-SU(2) dynamics during inflation. Our use of the
linearized equations of motion for the gauge fields does not allow us to capture possible non-
Abelian effects. While we can safely conclude that backreaction leads to the destabilization of
the “standard” chromo-natural attractor, full lattice simulations are required to validate the
existence of the new dynamical late-time attractor described below. This is left for future work.

Our manuscript is organized as follows. In section 2 we review spectator chromo-natural
inflation and provide the necessary equations and analytical solutions. The numerical
procedure is described in section 3, followed by the results and semi-analytical analysis of
the solution. We conclude in section 4. In appendix A we present the set of parameters
used for the numerical computations. In appendix B we discuss possible numerical artifacts.
In appendix C we give details of the backreaction dynamics and in appendix D discuss the
behavior of tensor perturbations on the dynamical attractor solution found in this work and
provide a comparison with axion-U(1) inflation.

2 Review of spectator axion-SU(2) inflation

In this section, we review the spectator axion-SU(2) inflation or the spectator chromo-natural
inflation model, outlining the background and perturbation analysis based on previous
works [22, 24, 27].

2.1 Model and background evolution

The action for spectator axion-SU(2) inflation is given by [27]

S=
∫
d4x

√
−detgµν

[
M2

pl
2 R− 1

2(∂ϕ)2−V (ϕ)− 1
2(∂χ)2−U(χ)− 1

4F
a
µνF

aµν +λχ

4f F
a
µνF̃

aµν

]
,

(2.1)
where R is the space-time Ricci scalar, ϕ(t) and V (ϕ) are the inflaton field and its potential,
respectively, χ(t) and U(χ) are the axion field and its potential, F a

µν = ∂µA
a
ν − ∂νA

a
µ −

gϵabcAb
µA

c
ν is the field strength of the SU(2) gauge field Aa

µ, F̃ a µν = ϵµνρσF a
ρσ/

(
2
√

−det gµν
)

is its dual (ϵµναβ is the antisymmetric tensor and ϵ0123 = 1), g is the gauge field coupling, λ
is the coupling constant between the gauge and axion sectors, f is the axion decay constant,
and Mpl is the reduced Planck mass.

In this work we use the axion potential of the form

U(χ) = µ4
(

1 + cos χ
f

)
, (2.2)

where µ is a constant that sets the energy scale of the axion field. In this convention, the axion
field takes values χ ∈ [0, πf ]. The potential for the inflation field, V (ϕ), is left unspecified.
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We work with the FLRW metric

ds2 = −dt2 + a(t)2δijdx
idxj , (2.3)

where i, j indicate the spatial directions. An isotropic solution for the background is given
by the gauge field configuration [20, 21]

Aa
0 = 0, Aa

i = δa
i a(t)Q(t), (2.4)

which is also an attractor [51]. For this ansatz, the closed system of equations for the vacuum
expectation value (VEV) of the gauge field Q(t) and the Hubble parameter H(t) is given by

M2
plḢ = −1

2 ϕ̇
2 − 1

2 χ̇
2 −

[
(Q̇+HQ)2 + g2Q4

]
, (2.5)

3M2
plH

2 = ϕ̇2

2 + V (ϕ) + χ̇2

2 + U(χ) + 3
2
(
Q̇+HQ

)2
+ 3

2g
2Q4, (2.6)

Q̈+ 3HQ̇+
(
Ḣ + 2H2

)
Q+ 2g2Q3 = gλ

f
χ̇Q2, (2.7)

χ̈+ 3Hχ̇+ Uχ(χ) = −3gλ
f
Q2
(
Q̇+HQ

)
, (2.8)

ϕ̈+ 3Hϕ̇+ Vϕ(ϕ) = 0, (2.9)

where Vϕ(ϕ) = ∂V (ϕ)/∂ϕ, Vχ(χ) = ∂U(χ)/∂χ, and an overdot denotes a derivative with
respect to cosmic time t. The Hubble slow-roll parameters are defined as

ϵH = − Ḣ

H2 , ηH = − Ḧ

2HḢ
, (2.10)

which are much smaller than unity during inflation. The first slow-roll parameter ϵH contains
contributions from the inflaton field ϕ and the spectator sector that consists of the axion
and gauge fields

ϵH = ϵϕ + ϵQE
+ ϵQB

+ ϵχ. (2.11)

The various contributions are defined as

ϵϕ = ϕ̇2

2M2
plH

2 , ϵQE
= (Q̇+HQ)2

M2
plH

2 , ϵQB
= g2Q4

M2
plH

2 , ϵχ = χ̇2

2M2
plH

2 . (2.12)

For the axion-gauge sector to remain a spectator, their energy densities must be subdominant
to that of the inflaton, i.e.,

ρϕ ≫ ρχ, ρQE
, ρQB

, (2.13)

where the energy densities are given by

ρϕ = 1
2 ϕ̇

2 + V (ϕ), ρχ = 1
2 χ̇

2 + U(χ), ρQE
= 3

2(Q̇+HQ)2, ρQB
= 3

2g
2Q4. (2.14)

The original chromo-natural inflation model in the slow-roll approximation has an
attractor solution [22, 24]

λ

f
χ̇ = 2gQ+ 2H2

gQ
, Q̇ = −HQ+ f

3gλ
Uχ

Q2 . (2.15)
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The VEV of the gauge field that minimizes the axion effective potential is

Q ≃
(−fUχ(χ)

3gλH

)1/3
, (2.16)

which is a solution of equation (2.15) when Q is constant. It is convenient to introduce
the parameters

mQ = gQ

H
, ξ = λ

2fH χ̇, (2.17)

where the dimensionless mass parameter mQ characterizes the mass of the gauge field
fluctuations and controls their amplification. On the chromo-natural inflation attractor, mQ

and ξ are related via ξ ≃ mQ + 1/mQ.

2.2 Perturbations

Let us now review the perturbations in the spectator axion-SU(2) model. We adopt the
gauge choice and decomposition for field fluctuations following ref. [52] of the form

ϕ = ϕ+ δϕ,

χ = χ+ δχ,

A1
µ = a (Y1, Q+ δQ+ t+, t×, ∂zM1),

A2
µ = a (Y2, t×, Q+ δQ− t+, ∂zM2),

A3
µ = a (Yz, 0, 0, Q+ δQ+ ∂z∂zM),

(2.18)

together with

gµν = a2


−1 + 2φ B1 B2 ∂zB

1 + h+ h× 0
1 − h+ 0

1

 . (2.19)

The perturbations consist of seven scalar modes (δϕ, δχ, Y, δQ, M, φ, B), six vector modes
(Y1,2, M1,2, B1,2) and four tensor modes (t+, t×, h+, h×). At the linear level, all perturbations
are decoupled from each other. Vector perturbations decay on superhorizon scales and at
the linear level metric fluctuations can be neglected [52].

The scalar perturbations have been studied in detail at the linear [27] and nonlinear
levels [49, 53]. It was shown that for mQ <

√
2, the scalar perturbations are tachyonically

unstable [52]. The combination from linear and nonlinear analyses leads to the constraint [49]

√
2 < mQ ≤

(
g2

32π2 Pζ,CMB

)1/4

≃ 35√
g, (2.20)

on the parameter mQ, where Pζ,CMB = 2.1 · 10−9.
Let us now turn to the discussion of tensor perturbations. It is convenient to express

the plus and cross polarizations of tensor perturbations via the left-handed and right-handed
polarizations as

h+ = hL + hR√
2

, h× = hL − hR

i
√

2
, t+ = tL + tR√

2
, t× = tL − tR

i
√

2
. (2.21)
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We canonically normalize them by introducing

hL,R =
√

2
Mpa

ψL,R, tL,R = 1√
2a
TL,R. (2.22)

We will work with conformal time defined as

η =
∫ t

0

dt

a(t) , (2.23)

which, with the near de Sitter expansion, leads to

a = − 1
Hη

(2.24)

for the scale factor. In the following, derivatives with respect to η are denoted by primes.
In conformal time and to leading order in slow-roll, the equations of motion for the tensor
perturbations are

ψ′′
R,L+

(
k2− 2

η2

)
ψR,L =

2√
ϵQE

η
T ′

R,L+
2√

ϵQB

η2 (mQ±kη)TR,L, (2.25)

T ′′
R,L+

{
k2+ 2

η2
[
mQξ±kη(mQ+ξ)

]}
TR,L = −

2√
ϵQE

η
ψ′

R,L

+ 2
η2
[√
ϵQB

(mQ±kη)+√
ϵQE

]
ψR,L. (2.26)

Here k is the wave number. The spectator axion-SU(2) model is known to have a transient
growth of one of the polarizations of the gauge field tensor modes that leads to the production
of chiral GWs. The produced GW background is enhanced with respect to the standard
single-field slow-roll models of inflation with predictions potentially observable by near-future
B-mode experiments.

The total GW power spectrum is defined as∑
i,j

⟨hij(k)hij(k′)⟩ = (2π)3δ3(k + k′) Ptot
h (k), (2.27)

where Ptot
h (k) can be expressed in terms of left and right polarization modes as

Ptot
h (k) = 2PL

h (k) + 2PR
h (k), (2.28)

where P(s)
h is the late-time sourced GW power spectrum, defined as

P(s)
h (k) = H2

π2M2
pl

∣∣∣√2k
(

− k

aH

)
lim
η→0

ψ
(s)
R (k, η)

∣∣∣2. (2.29)

It is convenient to introduce a parameter that characterizes the enhancement of the GW
background with respect to the vacuum prediction,

RGW = P(s)
h

P(v)
h

, (2.30)

– 6 –
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where the vacuum prediction for the power spectrum is given by

P(v)
h (k) = 2H2

π2M2
pl
. (2.31)

In order to have sizable GW production, the parameter range of the model has to be chosen
such that RGW ≳ 1. This requirement leads to the constraint [49]

g ≲ 1.8 · 10−5m2
Q e

1.8mQ . (2.32)

The growth of tensor modes results in the backreaction [27, 31, 48–50] on the background
equations of motion (2.5)–(2.9). Taking into account the contribution from backreaction,
the background equations of motion in conformal time take the form

Q′′ + 2HQ′ +
(
H′ + H2

)
Q+ 2g2a2Q3 − gλ

f
aχ′Q2 + a2T Q

BR = 0, (2.33)

χ′′ + 2Hχ′ + a2Uχ(χ) + 3gλ
f
aQ2 (Q′ + HQ

)
+ a2T χ

BR = 0, (2.34)

with H = a′/a. The backreaction terms are evaluated in the Hartree approximation, leading
to the integrals over mode functions

T Q
BR = g

3a2

∫
d3k

(2π)3

(
ξH − k

a

)
|TR|2, (2.35)

T χ
BR = − λ

2a4f

d

dη

∫
d3k

(2π)3 (amQH − k) |TR|2. (2.36)

It is worth noting that in this work we consider homogeneous backreaction, where the
spatial gradients of inflation and axion fields are neglected, keeping these fields homogeneous
during inflation.

In the small-backreaction regime with an approximately constant mQ parameter, the
spectator axion-SU(2) model can be solved analytically [23]. The regime of small backreaction
is achieved with the constraint [49]

g ≪
(

24π2

2.3 · e3.9mQ

1
1 +m−2

Q

)1/2

. (2.37)

In figure 1, we plot the three constraints (2.20), (2.32), and (2.37)2 on the parameter range
of the theory, indicating the fiducial parameters used in the current work.

3 Numerical treatment of the backreaction

To study the backreaction in axion-SU(2) inflation, we now solve the perturbation equations
along with those for the background numerically. We begin by describing the numerical
method and then discuss the results.

2The boundaries of different regions correspond to equality signs in the corresponding equations.
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Overproduction of scalar perturbations

RGW<1
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0.002

0.005

0.010

0.020

0.050

Figure 1. Constraints on the spectator axion-SU(2) model similar as in ref. [49] with indication of
parameters used in the current work. The stars correspond to the parameters (from left to right)
mQ = 2.44, 3.29, 3.58, 4.19 with g = 0.011 (runs µ1, µ3, µ4, and µ5 from table 1). Reproduced
from [49]. © 2019 IOP Publishing Ltd and Sissa Medialab. All rights reserved.

3.1 Numerical implementation

We solve equations (2.26) and (2.25) for both the left- and right-handed components of TR,L

and ψR,L. For each perturbation variable, we solve the equations for the real and imaginary
parts and represent them on a k mesh to compute the integrals in (2.35) and (2.36). For
most of our studies, we use the logarithmic wave number along with conformal time as
the independent coordinates. In that case, we use nk points in ln k that are separated by
uniform intervals in ln k in the range

nmin ≤ ln(k/a0H) ≤ nmax. (3.1)

To solve the background (2.33) and (2.34), we compute the integrals (2.35) and (2.36)
up to second-order accuracy. We advance the solution in conformal time using a third-order
time-stepping scheme. The initial conformal time is ηi and the final one is ηf . In practice,
we choose ηi = −H−1

i with Hi = aiH and ai = 1 along with ηf = −10−5, which corresponds
to a total duration of N ≈ 25 e-folds. The length of the conformal time step is then usually
chosen to be ∆η = 10−6/H.

It is convenient to use the compute and data management infrastructure provided by
the Pencil Code [54], which allows for efficient parallelization using the Message Passing
Interface library. In some exploratory cases, we also solved the equations on a mesh where
nmin and nmax grow in time such that the main contributions to the integral are captured
during the entire evolution.

We initialize the perturbation variables with the Bunch-Davies initial condition. Specif-
ically, we set the initial conditions for the real and imaginary parts of the perturbation
variables as follows:

TR,L = e−ikη

√
2k

, T ′
R,L = −ik TR,L. (3.2)

The same initial conditions are used for ψR,L. To discard the contributions from quantum
vacuum fluctuations of TR,L in the calculation of the integrals in (2.35) and (2.36), we use the
criterion that for wave numbers where |TR,L|2 < 1/2k, the value of |TR,L|2 is replaced by zero.

– 8 –
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0 5 10 15 20 25
N

−0.0002

0.0000

0.0002

0.0004
Q

mQ=2.44
mQ=3.29

mQ=3.58
mQ=4.19

0 5 10 15 20 25
N

4.6×10−3

4.8×10−3

5×10−3

5.2×10−3

5.4×10−3

χ

mQ=2.44
mQ=3.29

mQ=3.58
mQ=4.19

Figure 2. Evolution of Q and χ with N is shown for different initial parameters. The blue solid, green
dot-dashed, black dotted, and red dashed curves correspond to runs µ1, µ3, µ4, and µ5 respectively
from table 1 with g = 0.011 and mQ = 2.44, 3.29, 3.58, 4.19 respectively. For the blue curve, the
backreaction is negligible therefore the value of Q remains constant. However, for a larger value of
mQ (green, black and red curves), the backreaction effects are important. Using equation (3.4) from
section 3.3, the velocity of χ is dχ/dN = −2Hf/(gλQ), which can be evaluated using the data of
table 1, leading to dχ/dN = −8.2 × 10−6, −7.7 × 10−6, and −6.9 × 10−6 for the green dot-dashed,
black dotted and red dashed curves respectively. These estimates agree with the χ evolution shown in
this figure.

3.2 New late-time attractor solution

We have performed a range of simulations with different values of µ, g, and λ; see appendix A
for a summary. In figure 2, we show the time evolution of Q and χ for runs µ1, µ3, µ4, and
µ5, which corresponds to mQ = 2.44, 3.29, 3.58, and 4.19, respectively. When mQ is large
enough, the backreaction of the perturbations becomes important and the system undergoes
a transition to the new dynamical attractor with negative values of Q and a reduced velocity
for χ after about N = 2–10 e-folds.

As a test of our numerical implementation, we choose the initial value of µ and g for
one of the runs where the backreaction of the perturbations on the background evolution
is negligible. Run µ1 with mQ = 2.44 is an example of such a case. It is evident from
figure 2 that Q remains constant in time for run µ1, as expected from the analytical results.
Furthermore, we have compared our numerical results for

√
2k(x|TR,L|) and

√
2k(x|ψR,L|)

with the analytical solution and show the comparison in the upper panel of figure 3 for
k = 10−4. Here, x = −kη is the dimensionless time variable. In this figure, the solid red and
dotted blue curves show the numerical result for the right- and left-handed polarizations,
respectively, and the dashed green curve shows the analytic solution obtained using the
homogeneous solution of TR in equation (2.26). This solution is given by [23, 24],

TR = 1√
2k
iβWβ,α(2ikη). (3.3)

Here, Wβ,α(2ikη) is the Whittaker function with β = −i(mQ + ξ) and α = −i
√

2mQξ − 1/4.
The Whittaker function provides a good analytical approximation for TR for a particular wave
number approximately until the Hubble horizon crossing. However, the solution starts to differ
in the deep superhorizon regime due to the contribution from metric tensor perturbations. It
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Figure 3.
√

2kx|TR,L| and
√

2kx|ψR,L| vs N for k = 10−4 for runs µ1 with mQ = 2.44 (upper panel),
µ4 with mQ = 3.58 (lower panel). The solid red and dotted blue curves represent the numerical results
for the right and left-handed polarization respectively. The dashed green curve shows the Whittaker
solution for TR given by equation (3.3).

is evident from the upper panel of figure 3 that our numerical solution matches well with
the analytical solution in the regime where it is valid.

In the lower panel of figure 3 we show the evolution of
√

2k(x|TR,L|) and
√

2k(x|ψR,L|)
for the case when backreaction is important. We see that the gauge field tensor perturbations
as well as the metric tensor perturbations are getting amplified for larger values of mQ.
However, as we have seen in figure 2, such amplification drastically changes the behavior
of the background dynamics.3

It is worth discussing the evolution of the backreaction integrals T Q
BR and T χ

BR defined in
equations (2.35) and (2.36). We show it in figure 4. From figure 4, we conclude that most
of the contribution to the backreaction comes from a fixed narrow range of wave numbers.
This range is different for different values of mQ. For run µ4 with mQ = 3.58, the range
is around ln k/(a0H) ≈ 6; see figures 4(b) and (e), while for run µ5 with mQ = 4.15, it is
ln k/(a0H) ≈ 4; see figures 4(c) and (f). For run µ1 with mQ = 2.44, there is no backreaction;
see figures 4(a) and (d).

We also performed variable k range integrations for the same runs by calculating the
backreaction integrals for modes around the comoving horizon. However, such a comoving
integration scheme leads to unphysical oscillatory features in the background evolution, as
we show in appendix B.

3Ref. [50] also found a deviation from the usual Chromo-Natural attractor, albeit not as drastic as the one
described in the current work. This can be attributed to the regime of couplings — and therefore the strength
of the backreaction — considered in ref. [50].
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Figure 4. The integrands of T Q
BR and T χ

BR, denoted here by dT Q
BR/d ln k and dT χ

BR/d ln k, respectively,
for µ = 1.2 × 10−4 [run µ1 with mQ = 2.44, panels (a) and (d), no backreaction], µ = 1.6 × 10−4

[run µ4 with mQ = 3.58, panels (b) and (e)], and µ = 1.8 × 10−4 [run µ5 with mQ = 4.19, panels (c)
and (f)]. The white line indicates the position of the comoving horizon.

3.3 Semi-analytical modelling

In this section, we provide a semi-analytical analysis to approach the new dynamical attractor
solution. In order to provide some intuition on the dynamics in the backreaction regime, it is
instructive to investigate the evolution of each contribution to the equations of motion, (2.33)
and (2.34). The time dependence of contributions is shown in figure 5. Following the
evolution of the backreaction terms T Q

BR, T χ
BR, three distinct phases of dynamics can be

distinguished. From the top left and bottom left panels of figure 5 one can see that the
backreaction contributions (solid black curves) grow exponentially in absolute value up to
around 8 e-folds. We refer to the stage of exponential growth of backreaction as Stage I.
This leads to the destabilization of the “standard” chromo-natural attractor and pushes the
system toward a new regime. When the backreaction contributions become comparable to
one of the terms in the equations of motion, Stage II begins. At this stage, the backreaction
terms change their behavior, start to decrease, and eventually cross zero. Following this
stage, the system converges to the final solution (see the top right and bottom right panels of
figure 5) which we refer to as Stage III.4 The dynamics during different stages is described
in more detail in appendix C.

4During this stage the backreaction terms dominate, questioning the validity of the linearized equations. A
full non-Abelian simulation would be required to fully explore the late-time behavior, which is outside the
scope of the present work. We use the linear equations as an approximation to the full system.
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Figure 5. Top left: Contributions to the equation of motion for the VEV of the gauge field, Q, with
respect to the number of e-folds at the initial stage and when backreaction occurs for the run µ3 with
mQ = 3.29. The three vertical gray grid lines correspond to the moments when Q′′ = 0, Q′ = 0, and
then again Q′′ = 0 (from left to right) respectively. Top right: Contributions to the equation of motion
for Q during the transition to the final attractor solution for the same run. Vertical gray grid lines
correspond to the moments when Q = 0, Q′′ = 0, Q′′ = 0 (from left to right) respectively. Bottom left:
Contributions to the equation of motion for the axion field, χ, with respect to the number of e-folds
at the initial stage and when backreaction is turned on for the same run as the top panels. Grid lines
are the same as in the top left panel. Bottom right: Contributions to the equation of motion for χ
during the transition to the final attractor solution for the same run. Grid lines are the same as in the
top right panel.

Let us turn right away to the discussion of the new late-time dynamical attractor. In
Stage III, all the contributions to the equations of motion become nearly constant. In
addition, the term −(gλ/f) aχ′Q2 becomes nearly equal to the contribution 2H2Q in the
equation of motion (2.33),5 which leads to

λ

af
χ′ ≃ −2H2

gQ
, Q ≃ const. (3.4)

This solution resembles the original chromo-natural attractor solution given in equation (2.15)
with Q = const and just with the second term present that has an opposite sign. It follows
the late-time attractor ξ ≃ −1/mQ. In figure 6, we show that equation (3.4) does indeed
hold. With (3.4), the equations of motion in Stage III become

4H2Q+ 2g2Q3 + T Q
BR ≃ 0, Uχ + 3gλ

f
HQ3 + T χ

BR ≃ 0, (3.5)

where we have taken into account that terms with derivatives in the last stage are negligible.
5We used H′ = a2Ḣ + H2 and Ḣ = 0 in numerical simulations.
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Figure 6. Verification of equation (3.4), showing (λχ′/af)fin versus −2H2/gQfin, where Qfin denotes
the value of Q at the final attractor for multiple series of runs from table 1.

Let us now take a closer look into the time dependence of each component of the backre-
action integrals (2.35) and (2.36). Backreaction terms may be written in conformal time as

T Q
BR = g

3a2

(
ξH⟨|T |2⟩ − 1

a
⟨k|T |2⟩

)
≡ T Q

1 + T Q
2 , (3.6)

T χ
BR = − λ

2a3f

[
mQH⟨|T |2⟩′ − 1

a
⟨k|T |2⟩′ +

(
amQH

2 + gQ′
)

⟨|T |2⟩
]

(3.7)

≡ T χ
1 + T χ

2 + T χ
3 + T χ

4 , (3.8)

where we have denoted the integrals over wave numbers by

⟨|T |2⟩ =
∫

d3k

(2π)3 |TR|2, ⟨k|T |2⟩ =
∫

d3k

(2π)3 k |TR|2. (3.9)

We have checked that in all our cases, the contributions from |TL| to the backreaction are
negligible. In figure 7, we show the time evolution of the different contributions to the
T Q

BR and T χ
BR integrals. There is a clear correspondence between the background dynamics

and backreaction integrals, and vice versa. We refer the interested reader to the detailed
discussion in appendix C.

The backreaction integrals include crucial information that governs the evolution of the
whole system. It is therefore convenient to introduce a new parameter that quantifies the
ratio of the two backreaction integrals

T Q
BR

T χ
BR

≡ α. (3.10)

From equations (3.5), one can find the relation between χ and Q on the final attractor

Uχ = −3gλ
f
HQ3 + 1

α

(
4H2Q+ 2g2Q3

)
. (3.11)

At the final stage it holds T Q
BR ≃ T Q

1 and T χ
BR ≃ T χ

1 + T χ
3 , so the parameter α can be

expressed as

α = 2
9

Hf

λg Q2
fin
, (3.12)
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Figure 7. Left: Backreaction terms T Q
BR and their contributions with respect to the number of e-folds

for the run µ3 with mQ = 3.29. The dashed curve shows when T Q
BR is negative. Right: Backreaction

terms T χ
BR with contributions with respect to the number of e-folds for the same run. Grid lines are

the same as in figure 5. Dashed curves represent negative values and solid curves show when functions
are positive.

Figure 8. Dependence of the parameter α on Qfin for three series of runs.

where we used ⟨|T |2⟩′ ≃ 2aH⟨|T |2⟩ and Qfin denotes the value of Q on the final attractor.
The dependence of α on the parameters λ, g, and µ is confirmed in figure 8 for runs of the
three families. To sum up, the late-time dynamical attractor is given by equations (3.4),
(3.11) and (3.12).

3.4 Observational signatures

The GW energy density power spectrum can be approximated as [55]

ΩGW(k) = 3
128ΩradPtot

h (k)
[

1
2

(
keq
k

)2
+ 16

9

]
, (3.13)

where Ωrad ≃ h−2 2.47 × 10−5 is the present radiation density parameter and keq ≃ 1.3 ×
10−2 Mpc−1 is the wave number entering the horizon at matter-radiation equality. Here, h is
defined such that H0 = 100h km s−1 Mpc−1 is the Hubble parameter at the present epoch.
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To express ΩGW as a function of frequency, we use f ≃ 1.5 × 10−15 (k/Mpc−1) Hz. Here, the
frequency is not to be confused with the axion decay constant, which is also called f .

In figure 9, we show 2kx2|T |2 vs k/kH and ΩGW vs f/fH for runs µ4, µ7, and µ4∗ with
mQ = 3.58, 5.15, 3.78 respectively (solid blue, dotted red, and dashed green curves). The
run denoted as µ4∗ is analogous to the µ4 run but with a Hubble parameter H larger by a
factor of 10. In this figure, we have normalized the wave number and GW frequency using
the values corresponding to the Hubble horizon size (kH) at the end of inflation and the
corresponding frequency (fH). These quantities are given by

kH = ae

a0
H = 2.3 × 1022Mpc−1 H

1.04 × 10−6Mpl
, fH = kH

2π = 3.5 × 107Hz. (3.14)

Here, H = 1.04 × 10−6Mpl and we assume an adiabatic evolution of the Universe to calculate
ae/a0, given by

ae

a0
=
(
g0s

grs

)1/3 T0
Tr

= 5.8 × 10−29 g0s

3.94
106.75
grs

T0
2.73K

1.3 × 1015

Tr
. (3.15)

In the above expression, g∗s and g0s denote the effective degrees of freedom in the entropy
at the end of inflation and the present epoch, respectively, and Tr denotes the reheat-
ing temperature assuming instantaneous reheating. We estimate Tr by using the relation
3H2M2

pl = (π2/30)grT
4
r . It is worth noting that we normalize the frequency in figure 9 by

assuming that the end of the simulation is also the end of inflation. However, if the end of
the simulation is Ne e-folds before the end of inflation, the wave number and corresponding
frequency must be multiplied by e−Ne .

As is evident from figure 9, the modes that are amplified around horizon crossing give the
largest contribution to ΩGW. The oscillations observed in ΩGW are related to the oscillations
in TR, as illustrated in the left panel of figure 9. The higher initial value of mQ in run µ7
results in a higher peak value of ΩGW. As demonstrated in figure 9, the higher value of
H leads to a higher value of ΩGW.

In figure 10, we show h2ΩGW for runs µ4, µ7, and µ4∗ (mQ = 3.58, 5.15, and 3.78,
respectively), along with sensitivity curves for various GW detectors. The sensitivity curves
are obtained by using the “strain noise power spectra” file available in the Zenodo online
repository [56] associated with ref. [57]. Our simulation covers approximately 25 e-folds. To
provide a comparison of the obtained h2ΩGW with the sensitivity of upcoming GW detectors
DECIGO and BBO, we rescale the GW frequency such that the end of our simulation
occurs 14 e-folds before the end of inflation. For run µ4∗, the peak in ΩGW at f = 0.1 Hz
is potentially detectable.

4 Summary and discussion

In this work, we simulated an axion-SU(2) sector, which is a spectator during inflation,
meaning that its energy density is subdominant to the inflaton and that both the Hubble
rate and the density perturbations are unaffected by its presence. In our simulations, the
fluctuations are computed using the linearized equations of motion. Their effect on the
axion and gauge field VEV are computed self-consistently, but averaged over the simulation
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Figure 9. 2kx2|T |2 vs k/kH and h2ΩGW vs f/fH is shown for the runs µ4, µ4∗, and µ7.
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Figure 10. h2ΩGW vs f along with the sensitivity curves of various detectors [57]. Reproduced
from [57]. CC BY 4.0.

domain. This method is similar in spirit to the one followed in ref. [16] in the case of
axion-U(1) inflation, where the gauge fields are computed using linear equations of motion
and their collective effect is considered a background quantity and added to the corresponding
background equations. In the case of the Abelian model, an oscillatory result was found
that can be understood in the following way: an increase in the axion velocity leads to
an increase in the gauge field amplification. This results in an increased backreaction on
the rolling axion through the ⟨E · B⟩ term; see appendix D. This backreaction leads to a
slow-down of the axion, which, in turn, reduces the subsequent amplification of gauge fields.
Since the gauge fields red-shift after their production, their backreaction will also reduce,
leading to a speed-up of the axion and the whole process will start anew, thus leading to
periodic bursts of gauge field production.

In the non-Abelian case, the initial stage is similar to the Abelian case: as the axion
picks up speed, the gauge fields (a tensor mode in this case) are exponentially amplified.
This leads to a backreaction on the equations of motion that define the VEV of both the
axion field as well as the SU(2) sector. This leads to both a slow-down of the axion, as well
as a completely new sign-flipped value for the gauge field VEV. Furthermore, in this new
regime, the superhorizon tensor modes of the gauge field evolve as TR,L ∝ 1/η. This leads
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to the absence of the periodic behavior found in the Abelian case, because the backreaction
of the gauge field fluctuations onto the background quantities does not diminish with time
(to lowest order in slow-roll).

Having revealed this new regime, several questions remain to be answered. An intriguing
relation was found between the backreaction terms in the axion and gauge VEV, leading to
a universal relation between the parameters of the potential and the late-time value of the
gauge VEV. However, we are not able to predict the gauge VEV itself in this new attractor.
We believe that the initial value of the gauge VEV (in the original chromo-natural attractor)
plays a role in determining its late-time value.

Furthermore, our analysis neglects spatially dependent backreaction effects that can lead
to mode-mode coupling of the gauge field, as well as the excitation of scalar fluctuations in
the axion sector. It has been shown in ref. [18] that space-dependent backreaction effects can
be very important in the Abelian case. More importantly, large values of the gauge fields may
lead to non-Abelian interactions becoming important and invalidate the linear approximation.
While we expect the initial growth of the fluctuations and destabilization of the “standard”
chromo-natural solution to hold, providing conclusive proof on the existence and stability
of the late-time attractor requires solving the full system on a lattice, without making any
linear or Hartree-type approximations. In addition, non-Abelian fields coupled to a rolling
axion have been argued to lead to warm inflation [58, 59]. It is an intriguing possibility
to examine if a system can transition from the chromo-natural inflation attractor to warm
inflation, either in the original chromo-natural inflation formulation or in spectator models.

Furthermore, our calculation was performed with a constant Hubble scale, in an exact
de-Sitter background. While this can be an excellent approximation for several inflationary
models, it does not allow us to probe the evolution of this new attractor close to the end
of inflation, when |Ḣ/H2| ∼ 1.

Finally, the flipped sign of the gauge field VEV provides the possibility of amplifying
the subdominant helicity of gauge tensor modes. Further analysis of this is left for future
work, as it can provide interesting scale-dependent observables.
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A Full set of parameters

The full set of parameters used in the simulations is shown in table 1. The fiducial parameters
are µ = 1.5 × 10−4, g = 1.11 × 10−2, f = 0.003 and λ = 500. The runs are grouped
separately for runs µ1–µ8 with 1.2 ≤ µ/10−4 ≤ 2.45, runs g1–g5 with 1.11 ≤ g/10−2 ≤ 3,
and runs λ1–λ6 with 100 ≤ λ ≤ 600. Only the runs with negative values of Qfin have
undergone backreaction. For run µ4∗, we have used H = 1.04 × 10−5Mpl, which leads to
a higher value of ΩGW; see section 3.4.

B Artifacts from not resolving the superhorizon modes

One might have expected that it is important to resolve the modes around the comoving
horizon. Looking at figure 4, this is not obvious, however. Once backreaction becomes
important, most of the contributions to the backreaction come from a fixed band of wave
numbers. It is instructive to examine the results where we allow for the possibility to move
the range of integration to a comoving strip with

nmin ≤ ln[k/a(η)H] ≤ nmax. (B.1)

The result of numerical simulation using a comoving strip of wave numbers is shown in figure 11.
As we see from the insets of figure 11, the corresponding evolution of Q is different in

cases where the modes in the proximity of the comoving horizon are resolved at the expense
of not capturing any more the strongly superhorizon modes. We can conclude that this causes
numerical artifacts that look like periodic bursts of gauge field production during inflation.

C Detailed description of backreaction stages

At the initial stage, referred to here as Stage I, the solution follows the chromo-natural
attractor solution (2.15), where the three terms −(gλ/af)χ′Q2, 2g2Q3, and 2H2Q/a2 balance
each other in (2.33). Note that, in the present case of H = const, we have H′ + H2 = 2H2.
When the backreaction T Q

BR becomes important, the contribution −(gλ/af)χ′Q2 becomes
more dominant compared to the rest of the terms (see purple dashed curve in the top left and
bottom left of figure 5). To compensate for the increase of the sum T Q

BR and −(gλ/af)χ′Q2

terms, the Q′′ contribution becomes negative. It causes the change in the sign of Q′. This
changes the behavior and turns on the Q′ term, T χ

4 , in the integral T χ
BR of equation (3.8),

which produces a bump in ξ; see figure 12. This happens around N = 8 e-folds. The change
in ξ makes the two terms T Q

1 and T Q
2 in (3.6) almost cancel each other, see figure 7. As a
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Run µ g λ mQ0 Q0 Qfin α

µ1 1.20 × 10−4 1.11 × 10−2 500 2.44 2.29 × 10−4 2.26 × 10−4 −1.67 × 10−2

µ2 1.40 × 10−4 1.11 × 10−2 500 3.00 2.81 × 10−4 2.77 × 10−4 −1.59 × 10−2

µ3 1.50 × 10−4 1.11 × 10−2 500 3.29 3.08 × 10−4 −1.36 × 10−4 6.71 × 10−3

µ4 1.60 × 10−4 1.11 × 10−2 500 3.58 3.36 × 10−4 −1.45 × 10−4 5.91 × 10−3

µ4∗ 1.60 × 10−3 1.11 × 10−2 500 3.78 3.40 × 10−3 −1.46 × 10−3 5.90 × 10−4

µ5 1.80 × 10−4 1.11 × 10−2 500 4.19 3.93 × 10−4 −1.63 × 10−4 4.72 × 10−3

µ6 1.90 × 10−4 1.11 × 10−2 500 4.51 4.22 × 10−4 −1.71 × 10−4 4.27 × 10−3

µ7 2.10 × 10−4 1.11 × 10−2 500 5.15 4.82 × 10−4 −1.88 × 10−4 3.55 × 10−3

µ8 2.45 × 10−4 1.11 × 10−2 500 6.32 5.92 × 10−4 −2.15 × 10−4 2.70 × 10−3

g1 1.50 × 10−4 1.11 × 10−2 500 3.29 3.08 × 10−4 −1.36 × 10−4 6.71 × 10−3

g2 1.50 × 10−4 1.50 × 10−2 500 4.02 2.79 × 10−4 −1.17 × 10−4 6.77 × 10−3

g3 1.50 × 10−4 2.00 × 10−2 500 4.87 2.53 × 10−4 −1.00 × 10−4 6.91 × 10−3

g4 1.50 × 10−4 2.50 × 10−2 500 5.65 2.35 × 10−4 −8.86 × 10−5 7.06 × 10−3

g5 1.50 × 10−4 3.00 × 10−2 500 6.38 2.21 × 10−4 −8.01 × 10−5 7.20 × 10−3

λ1 1.50 × 10−4 1.11 × 10−2 600 3.09 2.90 × 10−4 2.87 × 10−4 −1.31 × 10−2

λ2 1.50 × 10−4 1.11 × 10−2 500 3.29 3.08 × 10−4 −1.36 × 10−4 6.71 × 10−3

λ3 1.50 × 10−4 1.11 × 10−2 400 3.54 3.32 × 10−4 −1.44 × 10−4 7.53 × 10−3

λ4 1.50 × 10−4 1.11 × 10−2 300 3.90 3.65 × 10−4 −1.54 × 10−4 8.77 × 10−3

λ5 1.50 × 10−4 1.11 × 10−2 200 4.46 4.18 × 10−4 −1.69 × 10−4 1.10 × 10−2

λ6 1.50 × 10−4 1.11 × 10−2 100 5.62 5.27 × 10−4 −1.96 × 10−4 1.62 × 10−2

Table 1. Summary of runs for the g, λ, and µ series. For each series, the first line refers to the
fiducial run with µ = 1.5 × 10−4, g = 1.11 × 10−2, f = 0.003 and λ = 500. The asterisk on run µ4∗

indicates that here H = 1.04 × 10−5 Mpl is 10 times larger than usual.

result, the T Q
BR term becomes first negative and is then close to zero. This causes a decrease

of Q. The steps at Stage I can be described by the following chain sequence:

T Q
BR → Q′′ → Q′ → T χ

BR → ξ(χ′) → T Q
BR → Q.

The next stage, Stage II, is characterized by a continuous decrease of Q. The backreaction
T Q

BR ≈ 0 remains small, and T χ
BR ≈ const.

The last stage, Stage III, begins when the gauge field VEV reaches zero, i.e., Q = 0.
This changes the sign of terms with mQ, i.e., T χ

1 and T χ
3 from (3.8). This governs the change

in ξ and causes the inflection of the T Q
1 contribution. As a result, the solution arrives at

the final attractor (3.4) with T χ = T χ
1 + T χ

3 ≈ const and T Q = T Q
1 ≈ const. At Stage III,

we observe the following chain sequence:

Q → mQ → T χ
BR → ξ(χ′) → T Q

BR → Q.

The three stages of evolution are summarized in table 2.
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Figure 11. T Q
BR for (Q0, µ)/10−4 = (3.2, 1.5) without shift for 0 ≤ ln k ≤ 12 (first panel), and with

shift for −12 ≤ ln k/aH ≤ 4, −12 ≤ ln k/aH ≤ 4, −6 ≤ ln k/aH ≤ 4, and −2 ≤ ln k/aH ≤ 4 (the
other 3 panels). The insets show the corresponding evolution of Q.

Stage I Stage II Stage III

T Q
BR ∝ exp (O(1)N) T Q

BR ≈ 0 4H2Q+ 2g2Q3 + T Q
BR ≃ 0

|T χ
BR| ∝ exp (O(1)N) Uχ + (3gλ/f)HQ3 + T χ

BR ≃ 0 Uχ + (3gλ/f)HQ3 + T χ
BR ≃ 0

Table 2. The three stages of dynamics in axion-SU(2) inflation with backreaction.
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Figure 12. Left: VEV of the gauge field Q versus the number of e-folds for run µ3 with mQ = 3.29.
Grid lines are the same as in figure 5. Right: Evolution of the ξ parameter, defined in equation (2.17)
with respect to the number of e-folds, for the same run as in the left panel.
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D Dynamical attractor, gravitational waves and the Anber-Sorbo solution

It is interesting to compare the dynamical attractor solution found in this work to the Anber-
Sorbo (AS) solution [61], which applies to axion-U(1) inflation. We start by briefly reviewing
the AS solution. While it has recently been shown to be unstable [17], its analytical derivation
can still be illuminating when compared to the dynamical attractor found in the present work.

We assume an exact de-Sitter expansion for simplicity, meaning that conformal time η is
η = −1/Ha = −e−Ht/H. The equation of motion for the background axion field is

ϕ̈+ 3Hϕ̇+ V,ϕ = α

f
⟨E · B⟩ , (D.1)

where the gauge fields follow the linear equations (in conformal time)

d2A±
dη2 +

(
k2 ∓ 2kξ

η

)
A± = 0 , (D.2)

and ξ = αϕ̇/(2fH) is taken to be constant during inflation. At |η| = 2|ξ|/k, one of the
polarizations becomes tachyonic and for |kη| ≪ 2ξ, the solution of the amplified polarization
A+ is approximated as

A+ ≃ 1√
2k

(
k

2ξaH

)1/4
eπξe−2

√
2ξk/aH , (D.3)

where we take ξ > 0. The backreaction is

⟨E · B⟩ = − 1
a4

∫
d3k

(2π)3
k

2
∂

∂η
|A2

+|, (D.4)

where we only consider the amplified polarization and ∂A+/∂η ≃
√

2ξkaHA+. By integrating
from k = 0 to kmax, we arrive at

⟨E · B⟩ ∝ e2πξ
(
kmax
a

)4
. (D.5)

For any finite range of comoving wave numbers, this contribution redshifts as a−4. However,
in the presence of a slow rolling axion field ϕ, new wave numbers are amplified all the time,
meaning that kmax ≃ 2ξaH, leading to ⟨E · B⟩ ∝ e2πξH4, which is constant in time. Simply
put, the largest wave numbers are dominating the backreaction.

Let us now move to the case of the new dynamical attractor in the axion-SU(2) system.
The linearized equation for the gauge field fluctuations at late times can be approximated as

T ′′
R,L + 2

η2mQξ TR,L = 0, (D.6)

where we ignored terms proportional to TR,L that grow slower than η−2 at late times, as well
as terms proportional to ψR,L or ψ′

R,L, which are suppressed by slow-roll quantities. During
the new attractor, mQξ ≃ −1 (see equation (3.4)), so the above equation has a growing
late-time solution TR,L ∝ 1/η, as seen for example in figure 3 (see also ref. [24] for a similar
late-time evolution of TR,L in the original chromo-natural inflation model).
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Figure 13. The normalized mode-functions
√

2kx|TR| (left) and
√

2kx|ψR| (right) as a function of
e-folds N for the run µ4 (mQ=3.58) for different wave numbers. The solid red, blue, and green curves
correspond the numerical results for k = 2.5 × 10−4, 3.7 × 10−4, and 5.0 × 10−2 respectively, while the
dashed black, brown, and magenta curves in the right panel represent the corresponding analytical
results given in equation (D.8) in the superhorizon limit.

The backreaction terms T Q
BR, T

χ
BR given in equations (2.35) and (2.36) can be calculated

similarly to ⟨E · B⟩ to scale as T Q
BR, T

χ
BR ∝ kmax for late times. Thus, contrary to the

AS solution, the new non-Abelian attractor does not require continuous amplification of
new, ever-larger wave numbers. Instead, it is supported by a fixed range of comoving wave
numbers. This is shown in figure 4.

Before we conclude, it is worth exploring the late-time superhorizon evolution of grav-
itational wave modes ψR in the presence of the growing mode TR. By keeping only the
dominant terms of eq. (2.25) for η → 0, we arrive at

ψ′′
R − 2

η2ψR =
2√

ϵQE

η
T ′

R +
2√

ϵQB

η2 mQTR = 2
η3
[
mQ

√
ϵQB

− √
ϵQE

]
T 0

R , (D.7)

where we used TR = T 0
R/η at late times. This can be analytically solved to give

ηψR ∼ const − 1 + 3 log(η)
9

[
mQ

√
ϵQB

− √
ϵQE

]
T 0

R . (D.8)

We compare this analytic expression to the numerical results in figure 13, showing excellent
agreement. We must note that T 0

R depends on the wave number k, since different wave
numbers experience different amplification, as shown in figure 13.
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