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In the primordial plasma, at temperatures above the scale of electroweak symmetry breaking, the presence
of chiral asymmetries is expected to induce the development of helical hypermagnetic fields through the
phenomenon of chiral plasma instability. It results in magnetohydrodynamic turbulence due to the high
conductivity and low viscosity and sources gravitationalwaves that survive in the universe today as a stochastic
polarized gravitational wave background. In this article, we show that this scenario only relies on Standard
Model physics, and therefore the observable signatures, namely the relic magnetic field and gravitational
background, are linked to a single parameter controlling the initial chiral asymmetry.We estimate themagnetic
field and gravitational wave spectra, and validate these estimates with 3D numerical simulations.
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I. INTRODUCTION

The excess of matter over antimatter on cosmological
scales in the universe today is well measured but its origin is
not yet established. In studies of early universe cosmology,
it is typically assumed that the matter-antimatter asymmetry
arose dynamically in the first fractions of a second after
the big bang through a process called baryogenesis [1].
In addition to creating the baryon asymmetry, e.g., the excess
of nuclei over antinuclei, baryogenesis may have created
other (possibly unstable) particle asymmetries as well; a
few examples include lepton asymmetry [2], Higgs asym-
metry [3], neutrino asymmetry [4,5], and right-chiral elec-
tron asymmetry [6]. Some of these are examples of chiral
asymmetries, n5 ¼ nR − nL, namely an excess (or deficit) of
right-chiral particles and antiparticles over their left-chiral
partners. A particular linear combination of various particle
asymmetries, which we call the hypercharge-weighted chiral
asymmetry, has attracted interest because of its connections
with primordial magnetogenesis [7] through a phenomenon
known as the chiral plasma instability [8].
The primordial magnetic field may survive in the

universe today as an intergalactic magnetic field, thereby

opening a pathway to test this scenario [9,10]. In addition,
the primordial magnetic field and its interaction with
the turbulent plasma are expected to source gravitational
radiation; see Ref. [11] for pioneering work and Ref. [12]
for numerical simulations of the gravitational waves
induced by the primordial magnetic field originating from
the chiral plasma instability. The production of magnetic
fields (possibly dark fields) and gravitational wave radia-
tion has also been extensively explored in a different class
of theories where the role of the chemical potential is
played by axions or axionlike particles [13–16]. In our
work, we investigate the gravitational wave signatures of a
primordial hypercharge-weighted chiral asymmetry via the
chiral plasma instability.
Contrary to earlier numerical simulations, we study here

a parameter regime that is more realistic in various respects.
The resulting gravitational wave energy from our simu-
lations confirm the scaling with the sixth power of the
chiral chemical potential and the fifth power of the inverse
square root of the chiral dilution parameter, which can
be combined into a single parameter, as already found
previously [12].

II. DESCRIPTION OF THE MODEL

We consider the primordial Standard Model plasma
at temperatures T ≳ 100 TeV in the phase of unbroken
electroweak symmetry. We remain agnostic as to the
physics of baryogenesis, but assume that a nonzero
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hypercharge-weighted chiral asymmetry is present in the
plasma initially. We study the growth of an initially
vanishingly small hypermagnetic field via the chiral plasma
instability and calculate the resulting gravitational wave
radiation. The hypermagnetic field generated by the chiral
plasma instability is always maximally helical and there-
fore also leads to the production of maximally circularly
polarized gravitational waves. The present work is con-
ceptually different from that of Refs. [17,18], where a
helical magnetic field was present initially such that the net
chirality of the system was balanced to zero by a fermion
chirality of opposite sign.
One appealing aspect of our approach is its minimalism:

we only assume Standard Model particle physics and
the standard cosmological model after reheating. Our only
free parameter is the initial hypercharge-weighted chiral
asymmetry, which presumably arises from physics beyond
the Standard Model. We work in the Lorentz-Heaviside
unit system with ℏ ¼ c ¼ kB ¼ 1. We account for the
cosmological expansion using an Friedmann-Lemaître-
Robertson-Walker metric with dimensionless scale factor
aðtÞ and set a0 ¼ 1 today. Unless otherwise specified,
all dimensionful variables are comoving; this includes
conformal time dt ¼ dtphys=a, comoving magnetic field
B ¼ a2Bphys, comoving magnetic correlation length ξM ¼
ξM;phys=a, comoving temperature T ¼ aTphys, comoving
wave number k ¼ akphys, comoving Hubble parameter
H ¼ aHphys (with H ≡ ðda=dtÞ=a), and comoving energy
density of any relativistic component (including frozen-in
magnetic fields, gravitational waves, etc) E ¼ Ephysa4. We
denote Newton’s gravitational constant by G, the Planck
mass by MPl ¼ 1=

ffiffiffiffi
G

p ¼ 1.2 × 1019 GeV, the physical
Hubble constant by Hphys;0 ¼ 100h0 km= sec =Mpc, and
the critical energy density today by Ecr ¼ 3H2

0=ð8πGÞ.
We use the subscript “CPI” to denote the time when
the chiral plasma instability (CPI) develops. Assuming
that the plasma’s entropy density is conserved between
the CPI epoch and today leads to the relation
g�S;CPIa3CPIT

3
phys;CPI ¼ g�S;0a30T

3
phys;0. Taking g�S;0 ¼ 3.91

and Tphys;0 ¼ 0.234 meV gives

aCPI
a0

¼ ð8 × 10−19Þ
�
g�S;CPI
106.75

�
−1=3

�
Tphys;CPI

100 TeV

�
−1
: ð1Þ

We fiducialize the effective number of relativistic degrees
of freedom during the CPI epoch to g�S;CPI ¼ 106.75,
which is the expected value for Standard Model
cosmology at temperatures above 100 GeV. We fiducialize
the physical plasma temperature at the CPI epoch to
Tphys;CPI ¼ 100 TeV.

A. Chiral magnetic effect

The chiral plasma instability and chiral magnetic effect
(CME) were first studied in the context of a relativistic

electron-positron plasma described by quantum electrody-
namics (QED). Although chirality is conserved at the
classical level for massless electrons, chirality is broken
in the quantum theory and this is expressed by the Adler-
Bell-Jackiw axial anomaly [19,20]. A manifestation of the
anomalous chiral symmetry is the CME [21]: in a QED
plasma that possesses a chiral asymmetry, a magnetic field
induces a proportional current. The CME corresponds to an
anomalous contribution to the electric current density
Jðx; tÞ ¼ μ5ðtÞBðx; tÞ where μ5 ¼ 2αμ̃5=π is proportional
to the chiral chemical potential μ̃5, α ¼ e2=4π ≈ 1=137 is
the electromagnetic fine structure constant, and B is the
magnetic field. Implications of the CME for a turbulent
QED plasma have been studied extensively with a
combination of analytical techniques and numerical
simulations [12,18,22–25]; see also Ref. [26] for a recent
review article.

B. Adaptation to hypercharge

The formalism used to study the CME in QED is
easily adapted to the hypercharge sector of the Standard
Model for a plasma in the phase of unbroken electro-
weak symmetry at temperatures Tphys ≳ 100 GeV. The
quantity of interest is the hypercharge-weighted chiral
chemical potential μ̃Y;5ðtÞ, which is given by μ̃Y;5ðtÞ ¼P

i εigiY
2
i μ̃iðtÞ, where the sum runs over all Standard

Model particle species (indexed by i), εi ¼ �1 for right/
left-chiral particles (and 0 otherwise), gi is a multiplicity
factor (counting color, spin, etc), Yi is the hypercharge of
species i, and μ̃i is the chemical potential that parameterizes
the asymmetry (excess of particles over antiparticle part-
ners) in species i via ni ∝ μ̃iT2; see Refs. [27,28] for
additional details.

C. Chiral plasma instability

In the presence of a chiral asymmetry, the equations of
magnetohydrodynamics (MHD) are modified due to the
CME, and the new equations exhibit a tachyonic insta-
bility toward the growth of long-wavelength modes of the
magnetic field, which is known as the chiral plasma
instability [8]. To illustrate the instability in the hyper-
charge sector of the primordial plasma, we present
the evolution equation for the hypermagnetic field
assuming negligible plasma velocity: ḂY ¼ ηY∇2BY þ
ð2αY μ̃Y;5=πÞηY∇ × BY . Here and below, dots represent
partial derivatives with respect to conformal time,
BYðx; tÞ is the hypermagnetic field, ηY ¼ 1=σY is the
hypermagnetic diffusivity, σY is the hypercharge conduc-
tivity, and αY ¼ g02=4π ≈ 0.01 is the hypercharge
fine structure constant. Long-wavelength modes of the
hypermagnetic field with wave number k < kCPI ¼
2αY jμ̃Y;5ðtÞj=π experience a tachyonic instability in one
of the two circular polarization modes, and their ampli-
tude increases exponentially ∝ expðt=tCPIÞ. The fastest
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growing modes have k ¼ kCPI=2, and for these modes
tCPI ¼ 4=ηYk2CPI ¼ π2=ηYα2Y jμ̃Y;5j2. Assuming a radiation-
dominated cosmology with g� ¼ 106.75, the physical
plasma temperature at this time is

Tphys;CPI ¼ ð70 TeVÞ
�

ηY
0.01T−1

��jμ̃Y;5j=T
10−3

�
2

: ð2Þ

In other words, although the chiral asymmetry may be
present in the plasma from a very early time, its effect on
the hypermagnetic field does not develop until (possibly
much) later when the age of the universe is comparable to
tCPI and the plasma has cooled to temperature Tphys;CPI.
Reducing the magnitude of the chiral asymmetry, i.e.,
assuming a smaller jμ̃Y;5j=T initially, delays the onset of
the chiral plasma instability.

D. Chiral asymmetry erasure

In a relativistic electron-positron plasma described by
the theory of QED, the electromagnetic charge is exactly
conserved and the chiral charge is approximately con-
served. The violation of chiral charge conservation derives
from both the chiral anomaly, which leads to the phenome-
non of chiral plasma instability discussed above, as well as
explicit breaking induced by the nonzero electron mass.
The chiral charge changes in a scattering that converts
right-chiral particles into left-chiral particles, or vice versa,
and the rate for such “spin-flip” scatterings is proportional
the squared electron mass ðme=TÞ2. Although the chiral
charge is not exactly conserved, it is important to recognize
that it is approximately conserved on timescales that are
small compared to the inverse spin-flip rate. Similarly, the
hypercharge-weighted chiral asymmetry is eventually
driven to zero by scatterings involving the Yukawa cou-
plings; the most relevant processes are Higgs decays
and inverse decays with right-chiral electrons. The rate
for these chirality-changing reactions is Γf ≈ 10−2y2eT, with
ye electron Yukawa coupling ye ¼

ffiffiffi
2

p
me=v ≃ 3 × 10−6

and assuming a standard radiation-dominated cosmology,
these reactions come into equilibrium when the plasma
cools to a physical temperature of Tphys;f ≃ 80 TeV [29].
To ensure that the chiral plasma instability develops before
the hypercharge-weighted chiral asymmetry is erased by
Higgs decays and inverse decays, it is necessary to have
jμ̃Y;5j=T > 10−3. For reference, the observed baryon asym-
metry of the universe today corresponds to a much smaller
chemical potential of μ̃B=T ≈ 10−8, but it is not unusual for
large chemical potentials to be generated during the course
of baryogenesis. New physics such as a matter-dominated
phase or an injection of eR asymmetry can change the
temperature of chiral asymmetry erasure; for an example,
see Ref. [30].

E. Magnetogenesis

As the chiral plasma instability develops, the growing
helical hypermagnetic field is accompanied by a depletion
of the hypercharge-weighted chiral asymmetry. This is
because the hypercharge-weighted chiral number density
nY;5 ¼ μ̃Y;5T2=6 and the hypermagnetic helicity HB are
linked by the chiral anomaly, which imposes ṅY;5 ∝
−αYḢM=π [7]. If the chiral plasma instability shuts off
after the hypercharge-weighted chiral asymmetry depletes
by an order one factor, the hypermagnetic helicity can be
estimated as HM;CPI ∼ πjμ̃Y;5jT2

CPI=6αY . The coherence
length and field strength are estimated as ξM;CPI ≈
2π=ðkCPI=2Þ and BCPI≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HM=ξM;CPI

p
, which gives ξM;CPI≈

ð5 × 105 cmÞðjμ̃Y;5j=10−3TÞ−1 and BCPI ≈ ð5 × 10−11 GÞ×
ðjμ̃Y;5j=10−3TÞ. If the magnetic field evolves according
to the inverse cascade scaling (in the fully helical case),
ξM ∝ t2=3 and B ∝ t−1=3 [31], until recombination, then the
physical coherence length and field strength today (assum-
ing a frozen-in magnetic field and neglecting MHD
dynamics at late epochs, after reionization) are expected
to be on the order of

ξM;phys;0 ¼ ð9 × 10−4 pcÞ
�

ηY
0.01T−1

�
2=3

�jμ̃Y;5j=T
10−3

�
1=3

;

Bphys;0 ¼ ð7 × 10−16 GÞ
�

ηY
0.01T−1

�
−1=3

�jμ̃Y;5j=T
10−3

�
1=3

:

ð3Þ

A larger chiral asymmetry leads to a stronger magnetic field
on larger length scales today.

F. Gravitational wave generation

The time-varying quadrupole moment of the growing
hypermagnetic field provides a source of gravitational wave
radiation [11]. As the chiral plasma instability develops,
most of the magnetic energy is carried by the modes with
coherence length ξM;CPI (i.e., the magnetic energy is
characterized by a spectrum that peaks at wave number
kI ≃ 2π=ξM;CPI). As long as the magnetic field is still
growing, however, the induced gravitational wave spectrum
peaks at the characteristic wave number k ¼ 2=tCPI ¼
ηYk2CPI=2 [12]. For ηYkCPI=2 < 1, this wave number is
below the cutoff wave number for gravitational waves, kCPI.
Above this wave number, very little gravitational wave
energy is produced by the chiral plasma instability [12].
The gravitational wave cutoff frequency is fGW ≃
2kI=ð2πÞ ≃ 2=ξM;CPI (the factor “2” is due to the quadratic
nature of the source). Since the gravitational waves’
comoving frequency remains constant, the physical fre-
quency today corresponds to fGW;0 ¼ 2=ξM;CPI. Once the
CPI stops and μ̃Y;5 becomes depleted, the low wave number
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part of the gravitational wave spectrum becomes shallower
and the peak moves toward smaller wave numbers.
The energy density carried by the gravitational waves is

estimated as EGW ∼ ðG=2πÞa−2CPIξ2M;CPIB
4
CPI. This estimate

follows from deriving the energy density EGWðx; tÞ in the
standard way1 [34]. Next we define ΩGW ¼ EGW=Ecr to be
the gravitational wave energy fraction today.
Numerical estimates give

fGW;0 ¼ ð1 × 105 HzÞ
�jμ̃Y;5j=T

10−3

�
;

ΩGWh20 ¼ ð7 × 10−39Þ
�

ηY
0.01T−1

�
2
�jμ̃Y;5j=T

10−3

�
6

: ð4Þ

A larger hypercharge-weighted chiral asymmetry moves
the peak of the gravitational wave spectrum to higher
frequencies (since the chiral plasma instability develops
earlier) and increases the gravitational wave strength. For
reference, the LIGO-Virgo-KAGRA gravitational wave
interferometer array is sensitive to a stochastic gravitational
wave background at the level of ∼10−7 for frequencies of
∼10–100 Hz [35]. The future space-based detectors such
as the Laser Interferometer Space Antenna (LISA) will
push this sensitivity down to ∼10−12 at frequencies of
∼1–10 mHz [36–38]. At still lower frequencies of
∼10−9 − 10−7 Hz, pulsar timing arrays (PTAs), such as
Parkes PTA (PPTA) [39], European PTA (EPTA) [40],
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) [41], Chinese PTA (CPTA) [42],
Indian PTA (InPTA) [43], and MeerKAT Pulsar Timing
Array (MPTA) [44] are sensitive to a stochastic gravita-
tional wave background at the level of ΩGWh20 ∼ 10−10.
Various strategies for probing higher-frequency gravita-
tional waves, even up to the GHz band, have been explored
in recent years; see Ref. [45] for a review of these
activities. Nevertheless, a detection of gravitational wave
radiation at the level expected here, even for jμ̃Y;5j=T ≈ 1,
seems far out of reach.

G. Baryon number overproduction

The presence of a helical hypermagnetic field in the
early universe is expected to give rise to a baryon
asymmetry [27,28,46]. This is because time-varying
hypermagnetic helicity sources baryon and lepton number

through the electroweak anomaly [47]. Specifically, the
conversion of a hypermagnetic field into an electromag-
netic field at the electroweak epoch at Tphys ≈ 100 GeV
sources baryon number after the electroweak sphaleron has
gone out of equilibrium, leading to a boost in the baryon
asymmetry [28].
The baryon number can easily be overproduced if the

magnetic field strength is too large. Avoidance of this
baryon-number overproduction imposes an upper bound of
jμ̃Y;5j=T ≲ 10−2 [48]. This bound is somewhat uncertain as
the baryon production calculation depends on a detailed
modeling of magnetic field evolution at the Standard
Model electroweak crossover [28], which is not well
understood.

III. NUMERICAL SIMULATIONS

In order to validate the preceding estimates, we have
performed three-dimensional numerical simulations using
the PENCIL CODE [49]. These simulations allow us to study
the growth and evolution of the magnetic field during the
chiral plasma instability and to evaluate the spectrum of the
resulting gravitational wave radiation.
We model the Standard Model matter and radiation as a

single component plasma of charged particles interacting
with the hypermagnetic field. Several properties of the
plasma are relevant to the evolution: the magnetic diffu-
sivity (for simplicity here and below we suppress the
subscript “Y”) ηðtÞ ¼ 1=σðtÞ, the kinematic viscosity
νðtÞ, the chiral diffusion coefficient D5ðtÞ, the chiral
depletion parameter λðtÞ, and the chiral chemical poten-
tial μ50 ≡ μ5ðx; 0Þ ¼ 2αμ̃5=π that enters as an initial
condition. One can calculate σ, η, ν, and D5 from first
principles using Standard Model particle physics. The
hypercharge conductivity is predicted to be σ ∼ T=α ≈
100T [50] implying η ≈ 0.01T−1, and we assume for
simplicity η ¼ ν ¼ D5. The chiral depletion parameter λ
arises from the Standard Model chiral anomalies, and past
studies have obtained the prediction λ ¼ 192α2=T2 ≃
0.02T−2 [25,51]. The initial chiral chemical potential
can be written as μ50 ≈ ð6 × 10−6TÞðμ̃5=T=10−3Þ by fidu-
cializing to μ̃5=T ¼ 10−3.
Given the limited dynamic range of numerical simula-

tions, it is not possible to set the parameters, η, ν, D5, λ,
and μ50, equal to the Standard Model predictions. Instead
we consider sets of simulations with different parameters.
They can be distinguished by the relative ordering of the
characteristic quantities vλ ¼ μ50=ðEcrλÞ1=2 and vμ ¼ μ50η.
We consider runs in regimes I (where vλ > vμ) and II
(where vλ < vμ).
The simulations solve a coupled system of partial

differential equations that account for MHD and the
CME [25] to determine the evolution of the magnetic field
Bðx; tÞ, the energy density of the plasma ρðx; tÞ, the plasma
velocity uðx; tÞ, and the chiral chemical potential μ5ðx; tÞ.

1In physical space, we have EðphysÞ
GW ðxphys; tphysÞ ¼

h∂tphyshðphysÞij ðxphys; tphysÞ∂tphyshðphysÞij ðxphys; tphysÞi=ð32πGÞ where

hðphysÞij ðxphys; tphysÞÞ is the transverse and traceless tensor
mode of the metric perturbations, and using the gravitational
wave equation ∂

2
tphysh

ðphysÞ
ij −∇2

physh
ðphysÞ
ij ¼ 16πGTðphysÞ

ij where

TðphysÞ
ij ∼ BðphysÞ

i BðphysÞ
j is the transverse and traceless part of

the anisotropic part of the magnetic field stress-energy tensor,
to estimate the field amplitude [32,33].
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In the following, we solve the following set of
equations [51]

∂A
∂t

¼ u × Bþ ηðμ5B − JÞ; ð5Þ

∂μ5
∂t

¼ −∇ · ðμ5uÞ − ληðμ5B − JÞ · BþD5∇2μ5; ð6Þ

Du
Dt

¼ 2

ρ
∇ · ðρνSÞ − 1

4
∇ ln ρþ u

3
ð∇ · uþ u · ∇ ln ρÞ

−
u
ρ
½u · ðJ × BÞ þ ηJ2� þ 3

4ρ
J × B; ð7Þ

∂ lnρ
∂t

¼−
4

3
ð∇ ·uþu ·∇ lnρÞþ1

ρ
½u ·ðJ×BÞþηJ2�; ð8Þ

where Sij ¼ ð∂jui þ ∂iujÞ=2 − δij∇ · u=3 are the compo-
nents of the rate-of-strain tensor. We solve Eqs. (5)–(8)
using the PENCIL CODE [52], which is a massively parallel
MHD code using sixth-order finite differences and a third-
order time stepping scheme.
For discussion of the simulation results, we employ

“code units.” Times are measured in units of t� ¼ 1=H�,
lengths in units of l� ¼ c=H�, and energies in units
of E� ¼ Ecr;�l3�. Setting ℏ ¼ c ¼ kB ¼ 1 we define H�
by the relation H� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8πG=3Þðπ2=30Þðg�T4�=a2�Þ

p
where g� ¼ 100, Tphys;� ¼ T�=a� ¼ 100 TeV, and
T� ¼ ðg�S;0=g�S;�Þ1=3T0 ≃ 8 × 10−5 eV. If the CPI devel-
ops at a physical plasma temperature of 100 TeV then the
age of the universe is ∼1=H� and Hubble-scale Fourier
modes have k ∼H�. The linearized gravitational wave
equations are solved in wave number space [33],

∂
2

∂t2
h̃þ=×ðk; tÞ þ k2h̃þ=×ðk; tÞ ¼

6H�
tEcr

T̃þ=×ðk; tÞ; ð9Þ

where h̃þ=× ¼ eþ=×
ij ðPilPjm − 1

2
PijPlmÞh̃lmðk; tÞ are the

Fourier-transformed þ and × modes of h, with eþijðkÞ ¼
e1i e

1
j − e2i e

2
j and e×ijðkÞ ¼ e1i e

2
j þ e2i e

1
j being the linear

polarization basis, e1 and e2 are unit vectors perpendicular
to k and perpendicular to each other, and PijðkÞ ¼ δij −
kikj is the projection operator. T̃þ=× are defined analo-
gously. We solve Eq. (9) accurate to second order in the
time step and use 10243 mesh points in all of our
calculations. Our initial conditions have a weak seed
magnetic field and vanishing plasma velocities, and the
chiral chemical potential is homogeneous and equal to
the value given above. At each time step, we calculate the
spectrum of gravitational wave radiation by solving the
gravitational wave equation sourced by the stress-energy of
the plasma and magnetic field; see Ref. [33] for details
regarding our computational approach.
In Table I, we summarize the parameters used in our

simulations, including the smallest wave number k1, and
the key results. We consider two series of runs that we
refer to as X and Y. We also compare with two pairs of
runs, A1 and A12, as well as B1 and B10, both from
Ref. [12]. where μ=vλ increases from 0.02 and 0.05 to 20
and 250, respectively. Also the efficiency parameters
increases from 0.03 to 12 and 18, respectively. The
runs of series X and Y are subdivided further into runs
X1–X4 and runs Y1–Y3. Our runs of series X have
increasing values of vμ and cross from regime II (for run
X1) into regime I (for run X4). For the runs of series X,
we take η ¼ ν ¼ D5 ¼ 5 × 10−11=H�, Ecrλ ¼ 1020H2�, and
μ50 ¼ 106H�. We also give the efficiency of gravitational
wave production,

TABLE I. Summary of Runs discussed in this paper. Runs B1, B10, A1, and A12 of Ref. [12] are included for comparison. In the last
row, theoretically expected values are listed where η2 ¼ ηY=ð0.01T−1Þ and μ3 ¼ μ̃Y;5=10−3T.

Run ηH� ðEcrλÞ1=2=H� μ50=H� vμ vλ ημ250=H� k1=H� Emax
M =Ecr Esat

GW=Ecr q

B1 1 × 10−6 2 × 104 104 1 × 10−2 5 × 10−1 1 × 102 1 × 102 1.6 × 10−2 4.7 × 10−12 0.027
B10 1 × 10−3 2 × 104 104 1 × 101 5 × 10−1 1 × 105 1 × 102 6.0 × 10−2 6.0 × 10−9 12

A1 1 × 10−6 5 × 104 104 1 × 10−2 2 × 10−1 1 × 102 1 × 102 4.6 × 10−3 8.9 × 10−14 0.032
A12 5 × 10−3 5 × 104 104 5 × 101 2 × 10−1 5 × 105 5 × 101 9.2 × 10−3 3.0 × 10−10 18

X1 5 × 10−8 1010 106 5 × 10−2 1 × 10−4 5 × 104 5 × 103 2.4 × 10−9 8.8 × 10−31 0.39
X2 5 × 10−9 1010 106 5 × 10−3 1 × 10−4 5 × 103 5 × 103 2.4 × 10−9 1.6 × 10−30 0.53
X3 5 × 10−10 1010 106 5 × 10−4 1 × 10−4 5 × 102 5 × 103 2.4 × 10−9 1.1 × 10−30 0.44
X4 5 × 10−11 1010 106 5 × 10−5 1 × 10−4 5 × 101 5 × 103 2.3 × 10−9 3.1 × 10−31 0.12

Y1 5 × 10−8 7 × 1011 106 5 × 10−2 1 × 10−6 5 × 104 5 × 103 4.9 × 10−13 3.6 × 10−38 0.39
Y2 5 × 10−8 7 × 1011 106 5 × 10−2 1 × 10−6 5 × 104 2 × 103 4.4 × 10−13 3.2 × 10−37 1.3
Y3 5 × 10−8 7 × 1011 106 5 × 10−2 1 × 10−6 5 × 104 1 × 103 3.3 × 10−13 6.9 × 10−37 2.5

Expected 10−15η2 6 × 1012 5 × 107μ3 6 × 10−8η2μ3 8 × 10−6μ3 3η2μ
2
3

� � � 6 × 10−15μ23 7 × 10−39η22μ
6
3

� � �
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q ¼ ðkpeak=H�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esat
GWEcr

q
=Emax

M ; ð10Þ

where we estimate kpeak ¼ kμ minð1; vμ=vλÞ where
kμ ¼ μ50=2. This means that kpeak ¼ kμ when vμ > vλ
(regime II) and kpeak ¼ kλ=4 when vμ < vλ (regime I);
see Ref. [25].
In the last row of Table I, we compare with the

theoretically expected values. Obviously, our values of η
are about seven orders of magnitude too large. This reflects
the fact that our simulations are unable to capture a
sufficiently large range of length scales. Consequently,
also our values of vμ are by about six orders of
magnitude too large. Furthermore, ημ250=H� is by about
four orders of magnitude too large. Most of the other
simulation values in the table are not so far from the
theoretically expected values.
The evolution of the magnetic and gravitational wave

energy spectra for run X4 is shown in Fig. 1. The energy
densities may be written as E ¼ R∞

0 dkEðkÞ where k is the
wave number and EðkÞ is the energy spectrum. For the
parameters of run X4, the instability length scale corre-
sponds to a wave number of kCPI ¼ 106H�, which agrees
with the wave number above which EGWðkÞ drops sharply.
The instability timescale normalized to the Hubble time is
tCPIH� ¼ 0.08, which is about 100 times longer than the
time step. The magnetic energy spectrum grows initially for
modes with k ≈ kCPI=2 ¼ 5 × 105H� (see the upper set of
dotted lines in Fig. 1). Later, the peak evolves to smaller k
with an inverse cascade scaling, which is consistent with

earlier simulations [25]. The generated magnetic field is
then maximally helical; see Fig. 8(b) of Ref. [53].
The gravitational wave energy spectra grow in time as

long as the magnetic energy has not yet reached its
maximum. In this phase, as discussed above, the gravita-
tional wave spectrum is expected to peak at the character-
istic wave number k ¼ 2=tCPI ¼ ηk2CPI=2 ¼ 25H�, which is
here much smaller than kCPI ¼ 106H�, but larger than the
horizon wave number, k ¼ H�. When the magnetic energy
density has reached its maximum value, the gravitational
wave spectrum has nearly saturated and is then approx-
imately independent of k for k < kCPI=2. In principle, it is
possible to have a declining k−2 spectrum in the range
ηk2CPI=2 ≤ k ≤ kCPI, but this is only seen in our models with
larger diffusivity. The absence of a k−2 subrange in the
gravitational wave spectrum could also be an artifact of
insufficient numerical resolution. In any case, once the
gravitational wave spectrum saturates, we would expect the
development of a flat (EGW ∝ k0) spectrum. Such a flat
spectrum is expected to extend all the way to the horizon
wave number k ¼ HCPI [54–56]. Therefore, the total
gravitational wave energy is expected to be proportional
to kCPI=2 −H�. However, since kCPI=2 is already much
larger than our lower cutoff value k1, the error in our
estimate of EGW ∝ kCPI=2 − k1 is negligible.
In Fig. 2, we show gravitational wave spectra for a few

runs with smaller values of the minimum wave number in
the simulations. We see that the spectra remain nearly flat,
but the spectra are also becoming more irregular at large
wave numbers. This is likely an artifact of insufficient
numerical resolution. We also see that most of the gravi-
tational wave energy is at frequencies below about 1 kHz,
but this value would increase with increasing values of μ50,

FIG. 1. Spectra (per linear wave number interval) of magnetic
energy EMðk; tÞ (upper curves) and gravitational wave energy
EGWðk; tÞ (lower curves) from the chiral plasma instability and
turbulent MHD evolution for run X4, where μ5 ¼ 106H�,
Ecrλ ¼ 1020=H�, η ¼ 5 × 10−11H� which implies vλ ¼ 10−4

and vμ ¼ 5 × 10−5 (corresponding to regime I). The solid curves
are for tH� ¼ 2.98, when EM is maximum. The dotted curves are
for tH� ¼ 2.41 (black), 2.56 (red), and 2.71 (orange), before EM
is maximum, while the dashed curves are for tH� ¼ 3.66 (blue)
and tH� ¼ 5.37 (green), when EM is decaying.

FIG. 2. Comparison of h20ΩGWðfÞ versus f for runs with
k1=H� ¼ 103 (run Y3, blue), 2 × 103 (run Y2, orange), and
5 × 103 (run Y1, red), with λ ¼ 49 × 1022H2�=Ecr;� and η ¼
5 × 10−8H−1� with H0 ¼ 100h0 km s−1 Mpc−1. Run X4 with
λ ¼ 1020H2�=Ecr;� and again η ¼ 5 × 10−8H−1� is shown as the
black line for reference.
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beyond the value of 106H� adopted here. The fiducial value
of μ̃Y;5 ¼ 10−3T in Eq. (4) corresponds to μ50 ≈ 5 × 107H�,
and since the simulations presented in Fig. 2 have
μ50 ¼ 106H�, the gravitational wave frequencies are pro-
portionally smaller.
Earlier work showed that Esat

GW grows approximately
linearly with η and was proportional to ðEcrλÞ−5=2, which
leads to the combined dependence [12]

Esat
GW=Ecr ≈ 6 × 10−8 v5λvμ; ð11Þ

which implies that Esat
GW ∝ μ650. In Fig. 3, we plot Esat

GW

versus v5λvμ for runs X1–X4 and Y1–Y3. We see that
Eq. (11) agrees reasonably well with our numerical data.
Compared with the runs of Ref. [12], the new one in Fig. 1
has much smaller values of vλ (here vλ ¼ 10−4 instead of
0.5 for the old runs of series B) and vμ (here vμ ¼ 5 × 10−5

instead of 10−2, which was their smallest value). This has
been achieved by having kCPI much larger (here 106 instead
of 104, for example). This also means that we have to
choose a correspondingly larger value of the minimum
wave number, k1.

IV. CONCLUSIONS

Our estimates of the key variables are summarized in
Fig. 4. Since we assume Standard Model particles and
interactions, as well as a standard cosmology with radiation
domination at temperatures T > 100 TeV, the observables
depend only on the single dimensionless parameter
jμ̃Y;5j=T, which controls the size of the initial hyper-
charge-weighted chiral asymmetry. To ensure that the
instability develops before the chiral asymmetry is washed
out by reactions such as Higgs decays and inverse
decays, we need jμ̃Y;5j=T ≳ 10−3. On the other hand, to
avoid overproducing the baryon asymmetry we need

jμ̃Y;5j=T ≲ 10−2. This leaves an approximately one-decade
wide window of viable parameter space. The predicted
magnetic field strength today, assuming inverse cascade
scaling from production until recombination, is at the level
of 10−15 Gauss. An intergalactic magnetic field at this level
is strong enough to explain observations of distant TeV
blazars, which provide evidence for a nonzero intergalactic
magnetic field at the level ≳10−16 Gauss [9], although the
predicted coherence length is too small. Alternative models
with CPI-like equations of motion and late-time dynamics
[57,58] may lead to stronger large-scale fields. The same
magnetic field may help to explain the origin of galactic
magnetic fields by providing a seed for the galactic
dynamo. The strength of the gravitational wave signal
is expected to depend strongly on the value of jμ̃Y;5j=T,
going as its sixth power. The typical frequency of this
signal is expected to fall near ∼GHz, putting it into a
frequency band that is being targeted by several recently
proposed probes of high-frequency gravitational wave
radiation. However, within the viable window, the gravi-
tational wave signal is likely far too weak for detection.

The source code used for the simulations of this study,
the PENCIL CODE, is freely available from Ref. [49]. The
simulation setups and the corresponding data are freely
available from Ref. [59].
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