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Decay law of magnetic turbulence with helicity balanced by chiral fermions
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In plasmas composed of massless electrically charged fermions, chirality can be interchanged with magnetic
helicity while preserving the total chirality through the quantum chiral anomaly. The decay of turbulent energy in
plasmas such as those in the early Universe and compact stars is usually controlled by certain conservation laws.
In the case of zero total chirality, when the magnetic helicity density balances with the appropriately scaled chiral
chemical potential to zero, the total chirality no longer determines the decay. We propose that in such a case, an
adaptation to the Hosking integral, which is conserved in nonhelical magnetically dominated turbulence, controls
the decay in turbulence with helicity balanced by chiral fermions. We show, using a high resolution numerical
simulation, that this is indeed the case. The magnetic energy density decays and the correlation length increases
with time just like in nonhelical turbulence with vanishing chiral chemical potential. But here, the magnetic
helicity density is nearly maximum and shows a scaling with time t proportional to t−2/3. This is unrelated to the
t−2/3 decay of magnetic energy in fully helical magnetic turbulence. The modulus of the chiral chemical potential
decays in the same fashion. This is much slower than the exponential decay previously expected in theories of
asymmetric baryon production from the hypermagnetic helicity decay after axion inflation.
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Magnetic helicity characterizes the knottedness of mag-
netic field lines and plays important roles in cosmological,
astrophysical, and laboratory plasmas. Since the early work
of Woltjer in 1958 [1], we know that the magnetic helicity
is an invariant of the ideal magnetohydrodynamic (MHD)
equations. Even in the nonideal case of finite conductivity,
it is asymptotically conserved in the limit of large magnetic
Reynolds numbers [2]. This is because, unlike the magnetic
energy dissipation, which is finite at large magnetic Reynolds
numbers, the magnetic helicity dissipation converges to zero
in that limit [3]. The magnetic helicity controls the decay
of magnetic fields in closed or periodic domains, provided
the magnetic helicity is finite. However, even when the net
magnetic helicity over the whole volume vanishes, there can
still be random fluctuations of magnetic helicity. In this case,
the conservation of magnetic helicity still plays an important
role, but only in smaller subvolumes, as was shown recently
[4]. The conserved quantity in that case is what is now known
as the Hosking integral [5,6], which characterizes magnetic
helicity fluctuations in smaller subvolumes [4].

At relativistic energies, the chirality of fermions combines
with the helicity of the magnetic field to a total chirality that
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is strictly conserved in a periodic or closed domain—even
for finite magnetic diffusivity [7,8] which is a consequence
of the chiral anomaly [9,10]. This can have a number of
consequences. There is an instability that can amplify a he-
lical magnetic field [11]. It is now often referred to as the
chiral plasma instability (CPI) [12] and it causes the chiral
chemical potential carrying the chirality of the fermions to
decay such that the total chirality remains unchanged [13–15].
Conversely, if a helical magnetic field decays, the chiral chem-
ical potential can increase [16,17]. Finally, when the chiral
chemical potential balances the magnetic helicity to produce
vanishing total chirality of the system, which is realized in,
e.g., cosmological MHD after axion inflation [18–20], the
magnetic field can only decay. It has been thought that the
decay is triggered by the CPI and that it would be there-
fore exponential [18,19]. In this Letter, however, we show
that this decay occurs only in a power-law fashion. This
has consequences for explaining the baryon asymmetry of
the Universe [21–23] and for theories of primordial mag-
netic fields, which will open up a new direction for early
Universe cosmology model building. The purpose here is to
show that the decay of the magnetic field in chiral MHD
is governed—similarly to nonhelical MHD—by a conserved
quantity that we call the adapted Hosking integral. While
the model adopted here is based on quantum electrodynam-
ics, the extension to the realistic cosmological models based
on the standard model of particle physics is straightforward;
see, e.g., Refs. [14,24].
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The Hosking integral IH is defined as the asymptotic limit
of the relevant magnetic helicity density correlation integral,
IH(R), for scales R which are large compared to the correla-
tion length of the turbulence, ξM, but small compared to the
system size L. The function IH(R) is given by

IH(R) =
∫

VR

〈h(x)h(x + r)〉 d3r, (1)

where VR is the volume of a ball of radius R and, in MHD,
h = A · B is the magnetic helicity density with A being the
magnetic vector potential, so B = ∇ × A. Here, angle brack-
ets denote averages over the volume L3.

For relativistic chiral plasmas, on the other hand, we now
amend the magnetic helicity density with a contribution from
the chiral chemical potential μ5. We work here with the scaled
chiral chemical potential μ5 → μ′

5 = (4α/h̄c) μ5, where α is
the fine structure constant, h̄ is the reduced Planck constant,
and c is the speed of light. Our rescaled μ′

5 has the dimension
of a wave number. From now on, we drop the prime and
only work with the rescaled chiral chemical potential. We
also define the quantity λ = 3h̄c (8α/kBT )2, where kB is the
Boltzmann constant and T is the temperature. We define the
total helicity density htot ≡ A · B + 2μ5/λ and replace h →
htot when defining the adapted Hosking integral.

Similarly to earlier studies of nonrelativistic chiral plasmas
(μ5 → 0) with a helical magnetic field, the case of a finite net
chirality, 〈htot〉 �= 0, is governed by the conservation law for
〈htot〉. Of course, when 〈htot〉 = 0, it is still conserved, but it
can then no longer determine the dynamics of the system. This
is when we expect, instead, IH to control the dynamics of the
decay. As before, we define IH = IH(R∗) for values of R∗ for
which IH(R) shows a plateau. In the following, we focus on
this case using numerical simulations to compute the decay
properties of a turbulent magnetic field and the conservation
properties of IH using the total helicity in a relativistic plasma.

Now, setting c = 1, the evolution equations for A and μ5

are [8]

∂A
∂t

= η(μ5B − J) + u × B, J = ∇ × B, (2)

∂μ5

∂t
= −2

λ
η(μ5B − J) · B − ∇ · (μ5u) + D5∇2μ5, (3)

where η is the magnetic diffusivity, D5 is the diffusion co-
efficient of μ5, spin flipping is neglected here, and u is
the velocity, which is governed by the compressible Navier-
Stokes equations [8,25,26]

Du
Dt

= 2

ρ
∇ · (ρνS) − 1

4
∇ ln ρ + u

3
(∇ · u + u · ∇ ln ρ)

− u
ρ

[u · (J × B) + ηJ2] + 3

4ρ
J × B, (4)

∂ ln ρ

∂t
= −4

3
(∇ · u + u · ∇ ln ρ) + 1

ρ
[u · (J × B) + ηJ2],

(5)

where Si j = (∂iu j + ∂ jui )/2 − δi j∇ · u/3 are the components
of the rate-of-strain tensor, ν is the kinematic viscosity, ρ is
the density (which includes the rest mass density), and the

ultrarelativistic equation of state for the pressure p = ρ/3 has
been employed. We assume uniform ν, η, and D5 such that
ν = η = D5. Our use of Eqs. (4) and (5) compared to the
nonrelativistic counterpart only affects the kinetic energy and
not the magnetic field evolution; see Ref. [27] for comparisons
in another context.

We define spectra of a quantity h(x) as Sp(h) =∮
4π

|h̃|2 k2d�k/(2πL)3, where a tilde denotes the quantity in
Fourier space and �k is the solid angle in Fourier space, so
that

∫
Sp(h) dk = 〈h2〉. Here, k ≡ |k|. The magnetic energy

spectrum is EM(k, t ) ≡ Sp(B)/2 and
∫

EM dk = 〈B2〉/2 is the
mean magnetic energy density. The mean magnetic helicity
density is HM = 〈A · B〉, the magnetic helicity spectrum is
HM(k, t ) with

∫
HM dk = HM, and ξM = E−1

M

∫
k−1EM dk is

the correlation length.
For an initially uniform μ5 ≡ μ50, Eq. (2) has exponen-

tially growing solutions proportional to eik·x+γ5t , when k <

μ50. The maximum growth rate is γ5 = μ2
50η/4 for k =

k5 ≡ μ50/2 [8,25]. As an initial condition for A, we con-
sider a Gaussian distributed random field with a magnetic
energy spectrum that is a broken power law with EM(k, t ) ∝
k4 for k < k0, motivated by causality constraints [28], and
a Kolmogorov-type spectrum, EM(k, t ) ∝ k−5/3, for k > k0,
which may be expected if there is a turbulent forward cascade.
By setting k0 = 1 for the spectral peak, we fix the units of ve-
locity and length. The unit of time is then (k0)−1. We initially
set ρ = ρ0 = 1, which then also fixes the units of energy.

We solve the governing equations using the PENCIL CODE

[29], where the equations are already implemented [30,31].
We consider a cubic domain of size L3, so the smallest wave
number is k1 = 2π/L. The largest wave number is kNy =
k1N/2, where N is the number of mesh points in one direction.
In choosing our parameters, it is important to observe that
k1 � k0 � k5 � kNy. Here, we choose k1 = 0.02, k0 = 1,
k5 = 5, and kNy = 10.24, using N = 1024 mesh points in each
of the three directions. This means that |μ50| = 10, which is
virtually the same as kNy. However, experiments with other
choices, keeping N = 1024, showed that ours yields an ac-
ceptable compromise that still allows us to keep k1 small
enough. We choose the sign of μ5 to be negative, and adjust
the amplitude of the magnetic field such that 2EMξM = HM =
−2μ50/λ. Using η = 2 × 10−4 and λ = 2 × 104, we have,
following Ref. [27], vλ ≡ μ/

√
ρ0λ ≈ 0.07 and vμ ≡ μη =

0.002, so vλ/vμ ≈ 35 � 1, corresponding to what is called
regime I.

In Fig. 1(a), we present magnetic energy spectra at different
times. We clearly see an inverse cascade where the spectral
magnetic energy increases with time for k � k0 (indicated by
the upward arrow), but decays for k � k0. As time goes on,
the peak of the spectrum moves to smaller wave numbers with
kpeak ≈ ξ−1

M , where ξM increases approximately like a power
law, ξM ∝ t q, while the energy density decreases, also approx-
imately like a power law with EM ∝ t−p. The spectral peak
always evolves underneath an envelope ∝ k3/2, which implies
that max[EM(k, t )] = ξM(t )−β with β = 3/2, indicated by the
upper dashed dotted line in Fig. 1(a).

To compute IH (and thereby IH), we employ a spectral
technique by computing the total helicity variance spectrum
Sp(htot ); see Fig. 1(b). Compared to the inverse cascade seen
in Sp(B), here we see the conservation of the large-scale total
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FIG. 1. (a) Magnetic energy and (b) total helicity variance spec-
tra at t = 31 (dashed), 100 (solid), 316 (dotted), 103 (blue), 3.16 ×
103 (green), 104 (orange), and 3.16 × 104 (red). In (a), note that
Sp(B) evolves underneath the envelope k3/2, and the upward arrow
indicates the sense of time. For orientation, the slopes k−5/2 and k−4

have been indicated in what is expected to correspond to the inertial
ranges in (a) and (b), respectively. In (a), the inset shows (k/2) HM(k)
at the last time with positive (negative) values in red (blue), and in
(b), the inset compares Sp(2μ5/λ) (solid) with Sp(htot ) (dotted) at
the last time.

helicity variance spectrum ∝ k2. We thus obtain

IH (R, t ) = L−3
∫

w(k, R) Sp(htot ) d3k/(2π )3. (6)

We choose w(k, R) = (4πR3/3)[6 j1(kR)/kR]2 as weight
function [6] with jn being spherical Bessel functions.

In Fig. 2, we plot the adapted Hosking integral IH(t ), nor-
malized by its initial value. It is evaluated as IH(t ) = IH(R∗, t )
with k0R∗ = 100, where IH(R, t ) is shown in the inset at
different times as functions of R. Note that IH(t ) is essentially
flat and shows only toward the end a slight decline ∝ t−0.12,
which is similar to what has been seen for other simulations at
that resolution; see, e.g., Ref. [32]. Thus, the adapted Hosking
integral appears to be well conserved – even better so than
the Hosking integral in ordinary MHD, studied in Refs. [4,6].
There is not even the slight uprise IH(t ) reported in Ref. [6],
which was there argued to be due to strong non-Gaussian
contributions to the field that emerged during the nonlinear
evolution of the system. Note also that for R � R∗, we see
IH(R, t ) ∝ R2, which is shallower than the expected cubic
scaling. This might change at larger resolution, although an
intermediate range ∝ R2 is also seen in Fig. 4(d) of Ref. [6],
before cubic scaling emerged for R/2π < 10−4.

As in the case of nonrelativistic MHD (μ5 → 0), the di-
mensions of IH and IH are cm9 s−4. This implies that in ξM ∝
t q, the value of the exponent is q = 4/9, if the conservation

FIG. 2. IH(t ) normalized by its initial value. The inset shows
IH(R, t ) versus R at different times t : solid lines correspond to
t = 70, 200, 700, 2000, 7000, and 20 000, which are also marked by
selected colored symbols in the graph of IH(t ). The adapted Hosking
integral is evaluated as IH(t ) = IH(R∗, t ). The vertical dashed-dotted
line marks the value k0R∗ = 100 where the curves show a plateau.
The slopes ∝ R2 and ∝ R3 are also marked by dashed-dotted lines.

of IH determines the time evolution of the magnetic field
around the characteristic scale. Next, assuming self-similarity,
the magnetic spectra can be collapsed on top of each other
by plotting them versus kξM(t ) and compensating the decline
in the height by ξ

β

M to yield the universal function φ(kξM) =
ξ

β

MEM(kξM); see Appendix B of Ref. [6] and Refs. [32,33]
for examples in other contexts. Using also the invariance of
the spectrum under rescaling [34], x → x′ = x� and t → t ′ =
t�1/q, and since the dimension of EM(k, t ) is cm3 s−2, we
have EM(k�−1, t�1/q ) = �3−2/q+β [ξM�]−βφ(kξM), and there-
fore β = 2/q − 3 = 3/2, which agrees with Fig. 1(a). Finally,
for EM ∝ t−p, we find with EM(t ) = ∫

EM dk ∝ t−(β+1)q the
line p = 2(1 − q), which is also known as the self-similarity
line [6,33]. With q = 4/9, we thus obtain p = 10/9. This is
completely analogous to the MHD case with zero magnetic
helicity [35]; see also Table 2 of Ref. [32]. Thus, the can-
cellation of finite magnetic helicity by fermion chirality with
HM(t ) = −2〈μ5〉(t )/λ �= 0 has the same effect as that of zero
magnetic helicity.

To understand the decay of magnetic helicity density in
the present simulations, it is important to remember that
the real space realizability condition of magnetic helicity
[36] is always valid and implies |HM| � 2EMξM. Assuming
the inequality to be saturated, we find the scaling |HM| ∝
|〈μ5〉| ∝ t−r with r = p − q = 2/3. This is well obeyed, as is
shown in Fig. 3. In the inset, we show that 2EMξM/HM ≈ 1
at early times and about 1.1 at late times. It is thus fairly
constant, therefore confirming the validity of our underlying
assumption. On top of this evolution of the chiral asymmetry,
the growth rate of the CPI, γ5 ∝ 〈μ5〉2 ∝ t−4/3, decays more
rapidly than t−1, which causes it to grow less efficiently so as
not to spoil the scaling properties of the system.

To characterize the scaling expected from the conserva-
tion of the adapted Hosking integral further, in Fig. 4 we
plot the pq diagram of the instantaneous scaling exponents
p(t ) = −d ln EM/d ln t versus q(t ) = d ln ξM/d ln t . The so-
lution converges to a point close to the crossing point between
the β = 3/2 line and the scale-invariance line p = 2(1 − q).
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FIG. 3. Time dependence of EM (black), ξM (orange), HM (blue),
and −2〈μ5〉/λ (red). The inset confirms that 2EMξM/HM ≈ 1 during
the whole time.

The approach to the point (p, q) = (10/9, 4/9) does not oc-
cur predominantly along the β = 3/2 line, as in nonhelical
standard MHD, but is now closer to the r = 2/3 line, where
p = q + r. In the unbalanced case, where the net chirality
is nonvanishing, however, the decay is solely governed by
〈htot〉 = const [37].

In conclusion, we have presented evidence that, in the bal-
anced case of zero total chirality, the Hosking integral, when
adapted to include the chiral chemical potential, is approxi-
mately conserved around the characteristic scale. This implies
decay properties for magnetic energy and correlation length
that are unchanged relative to nonhelical MHD, but here with
HM + 2〈μ5〉/λ = 0 (instead of HM = 0). This yields the scal-
ing |HM| ∝ |〈μ5〉| ∝ t−2/3, along with the familiar scalings
EM ∝ t−10/9 and ξM ∝ t4/9 that also apply to the case with
HM = 0. These scalings have consequences for understand-
ing the properties of the chiral magnetic effect in the early
Universe [13,18–20,38] and young neutron stars [39,40]. Our
work has significant impact on the baryon asymmetry of
the Universe from hypermagnetic helicity decay after axion

FIG. 4. pq diagram for times t = 700, 1000, 1500, 2200, 3200,
4600, 6800, 104, 1.5 × 104, 1.5 × 104, 2.2 × 104, and 3.2 × 104,
corresponding to symbols of increasing size. The solid line denotes
the scale-invariance line p = 2(1 − q), the dashed line the β = 3/2
line for adapted Hosking scaling, and the dashed dotted line is the
new r = 2/3 line that does not have any correspondence in standard
MHD.

inflation. It also exposes a rather unexpected application of the
general idea behind the recently developed Hosking integral,
raising therefore the hope that there may be other ones yet to
be discovered.
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