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Abstract. We use direct numerical simulations of decaying primordial hydromagnetic tur-
bulence with helicity to compute the resulting gravitational wave (GW) production and its
degree of circular polarization. The turbulence is sourced by magnetic fields that are either
initially present or driven by an electromotive force applied for a short duration, given as
a fraction of one Hubble time. In both types of simulations, we find a clear dependence
of the polarization of the resulting GWs on the fractional helicity of the turbulent source.
We find a low frequency tail below the spectral peak shallower than the f3 scaling expected
at super-horizon scales, in agreement with similar recent numerical simulations. This type
of spectrum facilitates its observational detection with the planned Laser Interferometer
Space Antenna (LISA). We show that driven magnetic fields produce GWs more efficiently
than magnetic fields that are initially present, leading to larger spectral amplitudes, and to
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modifications of the spectral shape. In particular, we observe a sharp drop of GW energy
above the spectral peak that is in agreement with the previously obtained results. The
helicity does not have a huge impact on the maximum spectral amplitude in any of the two
types of turbulence considered. However, the GW spectrum at wave numbers away from the
peak becomes smaller for larger values of the magnetic fractional helicity. Such variations of
the spectrum are most noticeable when magnetic fields are driven. The degree of circular
polarization approaches zero at frequencies below the peak, and reaches its maximum at the
peak. At higher frequencies, it stays finite if the magnetic field is initially present, and it
approaches zero if it is driven. We predict that the spectral peak of the GW signal can be
detected by LISA if the turbulent energy density is at least ∼ 3% of the radiation energy
density, and the characteristic scale is a hundredth of the horizon at the electroweak scale.
We show that the resulting GW polarization is unlikely to be detectable by the anisotropies
induced by our proper motion in the dipole response function of LISA. Such signals can,
however, be detectable by cross-correlating data from the LISA-Taiji network for turbulent
energy densities of ∼5%, and fractional helicity of 0.5 to 1. Second-generation space-base
GW detectors, such as BBO and DECIGO, would allow for the detection of a larger range of
the GW spectrum and smaller amplitudes of the magnetic field.

Keywords: cosmological phase transitions, gravitational waves / sources, Magnetohydrody-
namics, primordial magnetic fields
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1 Introduction

Primordial turbulent magnetic fields produced and/or present during phase transitions in
the early universe generate a stochastic background of gravitational waves (GWs) [1]; see
refs. [2, 3] for reviews. Assuming the standard energy scales of cosmological phase transitions
(T∗ ∼ 100 GeV for the electroweak, and T∗ ∼ 100 MeV for the QCD phase transition), and
accounting that the characteristic scale of the magnetic field at the moment of its generation
is limited by the Hubble horizon scale and it is taken to be a fraction of it (this fraction is
determined by the size of the magnetic field eddies, which is related to the phase transition
bubble size in the case of a first order phase transition, and/or by the energy containing wave
number k∗ of the turbulent motions in other scenarios), the characteristic typical frequencies
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of the GW spectrum range from nHz to Hz [4–6]. Future space-based GW detectors such
as the Laser Interferometer Space Antenna (LISA) [7], planned to be launched in 2034,
as well as TianQin [8] and Taiji [9], will be sensitive to GWs in frequencies ranging from
10µHz to a few Hz, with a peak sensitivity around 1mHz (LISA and Taiji) and a few mHz
(TianQin). Actually, this is a typical Hubble frequency range for the electroweak phase
transition (EWPT) if occurring around 10TeV. In this range of frequencies, we expect
magnetic fields and turbulence yielding GW signals generated at the EWPT; see ref. [10] for
pioneering work and refs. [11–13] for subsequent studies. Importantly, the main parameters
of the turbulence (and, correspondingly, the characteristics of the phase transitions) are
imprinted on the GW signal shape, amplitude, and polarization [14, 15].

Additional sources from a first-order phase transition producing GW radiation in this
range of frequencies include the collision of scalar field shells, sound waves induced into the
surrounding plasma, and subsequent turbulent motions; see ref. [16] for a pioneering work
and refs. [17, 18] for recent reviews, and references therein. In addition, the next generation
of space-based GW detectors is planned to improve the sensitivity to GW signals and to cover
the range from mHz to 10Hz (which lies in between the sensitive frequencies of space-based
GW detectors such as LISA and ground-based GW detectors such as the LIGO-Virgo-Kagra
network), e.g., the DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) [19],
and the Big Bang Observer (BBO) [20, 21]. In the lower regime of frequencies, measuring
the time of arrival by a pulsar timing array (PTA) allows one to detect GW signals in the
range from 10−9–10−7 Hz, which corresponds to the GW signals generated during a phase
transition with typical energy scales from a few MeV to one GeV, such as the QCD phase
transition, with a typical scale of about 100 MeV; see refs. [4, 22–24] and ref. [25] for a
review, and references therein. This frequency range is also typical for the blue tilted GW
spectrum originated from the inflationary epoch; see ref. [25] for a review and references
therein. Even smaller frequencies can be probed by the indirect detection of B-modes in the
cosmic microwave background (CMB) polarization [26, 27], which, along with temperature and
E-mode polarization anisotropies, can be produced by inflation-generated GW signals [28, 29].
The treatment of the early-universe generated GW energy density spectrum allows one to
constrain different scenarios by PTA measurements, laser interferometer experiments, and big
bang nucleosynthesis (BBN) bounds [30]. In addition, large surveys of stars like Gaia [31] or
the proposed Theia [32] have been recently proposed to detect GWs in the range of frequencies
around the QCD scale [33, 34].

There is various kind of evidence for magnetic fields in the largest scales of the universe [3],
which can have their origin in astrophysical or cosmological seed fields. In particular, primordial
magnetic fields are motivated by the lower limits on the strength of extragalactic magnetic
fields inferred by observations of blazar spectra by the Fermi Gamma-ray Observatory; see
ref. [35] for a pioneering work and ref. [36] for a recent review, and references therein. Such
fields are strongly coupled to the primordial plasma due to the high conductivity of the early
universe, inevitably leading to magnetohydrodynamic (MHD) turbulence; see refs. [37, 38] for
pioneering work and ref. [39] for a recent study. In addition, any primordial turbulent process
during the early universe can also reinforce the magnetic field; see ref. [40] for a discussion of
the dynamo mechanism in decaying turbulence.

The cosmological evolution of the magnetic field strongly depends on helicity [41, 42],
yielding magnetic fields with larger coherent scales and favoring the constraints from Fermi
observations (see ref. [36] for a review and references therein). Parity-violating processes at
the EWPT leading to the generation of helical magnetic fields have been proposed. Some
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examples are: via sphaleron decay (see ref. [43] for a non-helical case and ref. [44] for a helical
case), due to the generation of Chern-Simons number through B + L anomalies [45], and due
to inhomogeneities in the Higgs field in low-scale electroweak hybrid inflation [46–51]. The
presence of a cosmic axion field also leads to the generation of helicity in existing primordial
magnetic fields [52, 53]. Magnetic fields can also be produced during inflation; see refs. [43, 54–
58] for pioneering work and the reviews [36, 59, 60], and references therein. Some mechanisms
have been proposed to add helicity into the inflationary magnetogenesis models; see ref. [61]
for pioneering work and refs. [36, 60] for reviews, and references therein.

As expected, primordial helical magnetic fields produce circularly polarized GWs [62–65].
In particular, the detection of circularly polarized GWs, proposed in refs. [66, 67], will shed
light on phenomena of fundamental symmetry breaking in the early universe, such as parity
violation, and potentially can serve as an explanation of the lepto- and baryogenesis asymmetry
problem; see refs. [68–72] for pioneering work, ref. [73] for a review, and refs. [74–76] for recent
work. The dependence of the degree of polarization of GWs on the helicity of the source has
been a matter of uncertainty owing to the approximations made in the analytical calculations
available to date. In particular, previous works (see refs. [62, 63]) showed that the maximum
circular polarization depends on the relation between the magnetic energy and the magnetic
helicity spectra. Assuming Kolmogorov-type turbulence, with spectral index of −5/3 for the
magnetic energy density and −8/3 for the helicity,1 following phenomenological modeling
of ref. [77], the circular polarization of GWs would be at most about 80% for a maximally
helical magnetic field [62, 63]. Following refs. [62, 63], we call this helical Kolmogorov (HK)
turbulence. It can actually reach nearly 100% in the case when the spectral indices are
equal, which we call a Moiseev-Chkhetiani type spectrum; see ref. [78], or helical transfer
(HT) turbulence, following refs. [62, 63]. On small scales, the HT turbulence is dominated
by helicity dissipation, and hence, the transfer of helicity is effective. Thus, the resulting
degree of polarization stays constant at large wave numbers, and approximately equal to
the fractional magnetic helicity. On the other hand, the HK turbulence is dominated by
energy dissipation, such that the polarization decays to zero due to the vanishing helicity [62].
In both cases, the spectral peak of the polarization spectrum is at the same scale as the
GW spectral peak, which is at a wave number approximately twice the wave number of the
magnetic spectral peak.2 For low values of the fractional magnetic helicity, the maximum
degree of polarization also diminishes. More recently, the two types of spectra have been
studied to model the turbulence produced in a first-order EWPT in ref. [64], in the context of
detection prospects with LISA by using the dipole modulation induced by the proper motion
of the solar system, as proposed in refs. [66, 67], and recently applied to LISA in ref. [79].
The potential detection of polarization can be improved by cross-correlating two space-based
GW detectors as, for example, LISA and Taiji [80, 81]. We show that the circular degree of
polarization computed from direct numerical simulations follows the HT turbulence model of
previous analytical works if the magnetic field is assumed to be present at the initial time of
generation. This scenario neglects the production of GWs that occurs while the magnetic
field is generated by any of the described magnetogenesis mechanisms or via MHD dynamo.
When we consider a magnetic field that is initially zero and it builds up during the simulation,

1The spectral indices in refs. [62, 63] refer to spectra defined with a 1/k2 factor with respect to those used
in the present work (defined in section 2.4), where a scale-invariant spectrum is ∝ k−1. Hence, the spectral
indices −5/3 and −8/3 correspond to −11/3 and −14/3 in their works.

2The GW energy density is sourced by the stress tensor, computed from the convolution of the magnetic
field in Fourier space. This causes stress spectrum to peak at a wave number twice that of the magnetic peak.
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following ref. [82], both the HK and the HT models of turbulence fail to predict the spectrum
of the degree of circular polarization, and numerical simulations are required [65].

Recently, in refs. [82, 83], the authors have described the implementation of a GW solver
into the Pencil Code [84] and have presented direct numerical simulations for modeling
development and dynamics of primordial hydrodynamic and hydromagnetic turbulence from
phase transitions, and subsequent generation of a stochastic GW background, also computed
numerically. Their simulations included fully helical sources, but the estimation of the GW
polarization degree spectrum, as well as the polarization detection prospects, were not the
focus of their studies. We present here two types of simulations, similar to the two types of
hydromagnetic simulations presented in ref. [82]: one where a primordial magnetic field is
assumed to be given as the initial condition and one where a magnetic field is generated by an
electromotive force F(x, t) that depends on time t and position x. In particular, regarding
the first type, we study the cases with an initial stochastic magnetic field with different values
of the fractional helicity, from non-helical up to the fully helical case. In ref. [65], the degree of
circular polarization for kinetically and magnetically forced turbulence was presented, which
is similar to our second type of simulations. We complement their analysis in the present
work by studying the variation of the polarization degree in the different scenarios of the
magnetic field generation. Furthermore, we study cases where turbulence is driven for times
significantly shorter than what was considered in ref. [65]. The driving is then applied during
a short time interval (around a 10% of the Hubble time), and then switched off such that
turbulence decays for later times. By using suitably scaled variables and conformal time,
the governing equations describing the evolution of GWs and turbulent magnetic fields in an
expanding universe in the radiation era can be brought into a form that is best suited for
numerical simulations [83]. We explore the detectability of the generated GW signal and its
polarization with planned space-based GW detectors.

We begin by summarizing our approach and the equations solved in section 2. We
then present the magnetic and GW energy spectra obtained from the numerical simulations
in section 3. In particular, the degree of circular polarization is shown in section 3.3 and
compared with previous analytical models in section 3.4. We explore the potential detectability
of the GW background amplitude and polarization by space-based GW detectors and, in
particular, by combining LISA and Taiji, in section 4, and we conclude in section 5.

Throughout this work, electromagnetic quantities are expressed in Lorentz-Heaviside
units where the vacuum permeability is unity. Einstein index notation is used so summation
is assumed over repeated indices. Latin indices i and j refer to spatial coordinates 1 to 3. The
Kronecker delta is indicated by δij , the Levi-Civita tensor by εijk, the Dirac delta function by
δ(x), and the Heaviside step function by Θ(x).

2 The model

2.1 Gravitational signal from MHD turbulence

We perform direct numerical simulations of the MHD turbulence starting at the time of
generation, which belongs to the radiation-dominated era and can be appropriately scaled to,
e.g., the EWPT. At every time step of the MHD simulation, we compute the contributions
from velocity and magnetic fields to the stress tensor Tij . Then, we solve the GW equation to
compute the strains hij , sourced by the traceless and transverse projection of the stress tensor.
The details of the numerical setup and application to the electroweak scale are described in
refs. [82, 83].

– 4 –
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We use the linear polarization modes + and × to describe the two gauge-independent com-
ponents of the tensor mode perturbations,3 such that h̃ij(k) = h̃+(k)e+

ij(k̂) + h̃×(k)e×ij(k̂) [85],
where the tilde indicates that this decomposition is performed in Fourier space,4 and k̂ = k/|k|.
The linear polarization basis tensors are

e+
ij(k̂) = e1

i e
1
j − e2

i e
2
j , e×ij(k̂) = e1

i e
2
j + e2

i e
1
j , (2.1)

where e1 and e2 form a basis with the unit vector k̂ [86]. We solve the non-dimensional
GW equation in the radiation era for the scaled strains h̃+,×(k, t) [1], using conformal time,
normalized to unity at the initial time of magnetic field generation t∗, and comoving wave
vector, normalized by 1/(ct∗), as described in refs. [82, 83],(

∂2
t + k2

)
h̃+,×(k, t) = 6

t
T̃TT

+,×(k, t), (2.2)

where T̃TT
+,×(k, t) is the comoving stress tensor, projected into the traceless and transverse

(TT) gauge, described by the linear polarization modes + and ×, and normalized by the
energy density at t∗. The scaled strains are tensor mode perturbations over the Friedmann-
Lemaître-Robertson-Walker metric tensor, such that the line element is ds2 = a2(−dt2 +
[δij + hij/a] dxi dxj). During the radiation-dominated epoch, the equation of state is p = 1

3ρ,
where ρ is the energy density and p the pressure. This leads to a linear evolution of the scale
factor a with t, and allows one to get rid of the damping term [87], which should be included
otherwise in equation (2.2).5 The stress is composed of magnetic and kinetic contributions
and computed in physical space as

Tij(x) = 4
3
ρuiuj
1− u2 −BiBj +

(
ρ

3 + B2

2

)
δij , (2.3)

where u is the plasma velocity and B is the magnetic field. The total enthalpy is w = p+ρ = 4
3ρ.

Since Tij refers to comoving and normalized stress tensor, the MHD fields (ρ, u, and B) are
accordingly normalized and comoving.

The non-dimensional and comoving MHD equations for an ultrarelativistic gas in a flat
expanding universe in the radiation-dominated era after the EWPT are given by [38]

∂ ln ρ
∂t

= −4
3 (∇ · u + u ·∇ ln ρ) + 1

ρ

[
u · (J ×B) + ηJ2

]
, (2.4)

∂u

∂t
= −u ·∇u + u

3 (∇ · u + u ·∇ ln ρ) + 2
ρ

∇ · (ρνS)

− 1
4∇ ln ρ− u

ρ

[
u · (J ×B) + ηJ2

]
+ 3

4ρJ ×B, (2.5)

∂B

∂t
= ∇× (u×B − ηJ + F), J = ∇×B, (2.6)

3When the GWs are unpolarized, the amplitudes of the + and × modes are the same, and we only have
one gauge-independent component.

4We use the Fourier convention, h̃(k) =
∫
h(x)e−ik·xd3x, such that the inverse Fourier transform is

h(x) = (2π)−3 ∫ h̃(k)eik·xd3k.
5We take the scale factor a to be unity at the time of generation, which allows one to simply write a = t,

and t∗ = H−1
∗ , where H∗ is the Hubble rate at the time of generation. More generally, one should substitute t

by a in the denominator of the sourcing term of equation (2.2).
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where Sij = 1
2(∂jui + ∂iuj) − 1

3δij∇ · u are the components of the rate-of-strain tensor, J
is the current density, ν is the kinematic viscosity, and η is the magnetic diffusivity. The
electromotive force F is used to model the generation of magnetic fields.

2.2 Magnetic fields present at the initial time

In the first type of runs, we consider the magnetic field to be present at the initial time of the
simulation, so we set the electromotive force term F to be zero at all times. We generate a
random three-dimensional vector field in Fourier space,

B̃i(k) = B0
(
Pij(k̂)− iσεijlk̂l

)
g̃j(k̂) g0(k), (2.7)

where B0 is the magnetic field amplitude, g̃j(k̂) is the Fourier transform of a δ-correlated
vector field in three dimensions with Gaussian fluctuations, i.e., gi(x)gj(x′) = δijδ

3(x−x′), σ
is a parameter that allows one to control the fractional magnetic helicity, Pij(k̂) = δij − k̂ik̂j
is the projection operator. The spectral shape is determined by g0(k) [39],

g0(k) = k
−3/2
∗ (k/k∗)α/2−1

[1 + (k/k∗)2(α−β)]1/4
, (2.8)

where k∗ sets the scale of the spectral peak, which is identified with the initial wave number
of the energy-carrying eddies. The magnetic energy density is EM = 1

2〈B
2〉,6 such that its

initial value is Emax
M = 1

2B
2
0 . Due to the normalization used, this value corresponds to a

fraction of the radiation energy density at the time of magnetic field generation, and since
this case corresponds to decaying turbulence, Emax

M is the maximum value of the magnetic
energy density. The magnetic spectrum EM(k), computed such that EM =

∫
EM(k) dk, is

proportional to k2g2
0(k), with a spectral index α = 4 in the low wave number limit (subinertial

range) for a Batchelor spectrum,7 and Kolmogorov-type spectral slope β = −5/3 in the high
wave number range.8 Here, the k−3/2

∗ prefactor ensures that the resulting magnetic energy
EM is independent of the value of k∗. The exponents ζ = 2 and ζ−2 = 1/4 in the denominator
of equation (2.8) determine the transition smoothness from one slope to the other around the
spectral peak. The initial fractional helicity of the magnetic field, PM = k∗〈A ·B〉/〈B2〉,9 is
given by 2σ/(1 + σ2), being A the magnetic vector potential, such that B = ∇×A.

2.3 Magnetic fields forced at the initial time

In the second type of simulations, to model the magnetic field generation with fractional
magnetic helicity, we use the electromotive force F , which is non-zero for a short amount of
time, and its value is given by

F(x, t; k∗) = Re{Af̃(k(t)) exp[ik(t) · x + iϕ]}, (2.9)
6Angle brackets denote ensemble average over stochastic realizations, which can be approximated as the

average of the random field over the physical domain for a statistically homogeneous field.
7For magnetic fields produced by causal processes, e.g., during cosmological phase transitions, the correlation

length is finite, which leads to a Batchelor magnetic spectrum EM(k) ∝ k4 in the limit k → 0 [88].
8The Kolmogorov-type k−5/3 spectrum is found and well-established in purely hydrodynamic turbulence [89].

In general MHD, a k−3/2 Iroshnikov-Kraichnan spectrum has been proposed in refs. [77, 90]. However, direct
numerical simulations of MHD turbulence have found approximately Kolmogorov and steeper scalings [42, 91].

9The general definition of PM uses a characteristic wave number k computed from the integration of the
helical spectrum over wave numbers, which is, in general, different than the spectral peak k∗.
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where the wave vector k(t) and the phase ϕ(t) change randomly from one time step to the
next. This forcing function is therefore white noise in time and consists of plane waves with
average wave number k∗ such that |k| lies in an interval k∗ − δk/2 ≤ |k| < k∗ + δk/2 of width
δk. Here, A is the amplitude of the forcing term. The Fourier amplitudes of the forcing are

f̃i =
(
δij − iσεijlk̂l

)
f̃

(0)
j

/√
1 + σ2, (2.10)

where f̃
(0)(k) = (k × e)/[k2 − (k · e)2]1/2 is a non-helical forcing function. Here, e is an

arbitrary unit vector that is not aligned with k. Note that |f̃ |2 = 1. The parameter σ ∈ [−1, 1]
is related to the fractional helicity of the forcing term, with σ = 0 and σ = ±1 corresponding
to non-helical and maximally helical cases, respectively. The forcing is only enabled during an
arbitrarily short time interval 1 ≤ t ≤ tmax, to reproduce the more realistic scenario in which
the magnetic field does not appear abruptly, but it is built up to its maximum value Emax

M
at tmax, and then it decays. We chose tmax = 1.1 in the present work, which corresponds to
a 10% of the Hubble time. In ref. [65], the authors consider forcing up to tmax = 3, so the
forcing is active for 2 Hubble times, although its amplitude is considered to decrease linearly.

2.4 Characterization of stochastic magnetic and strain fields

The magnetic fields considered and the resulting velocity fields and tensor mode perturbations,
are all stochastic fields. We present here the spectral functions that are used to describe the
statistical properties of these fields.

The autocorrelation function of the magnetic field, assuming statistical homogeneity and
isotropy, and a Gaussian-distribution in space,10 is

〈B̃∗i (k, t)B̃j(k′, t)〉 = (2π)6δ3(k − k′)
[
Pij(k̂)EM(k, t)

4πk2 + iεijlk̂l
HM(k, t)

8πk

]
, (2.11)

where EM(k, t) and HM(k, t) are the magnetic and helicity spectra, respectively. We work
here with spectra per linear wave number interval.

The magnetic field is either given at the initial time; see equation (2.7), or driven using
the forcing term F , described in equations (2.9) and (2.10), for a short time 1 ≤ t ≤ tmax,
being tmax = 1.1. In both cases, we have introduced a parameter σ that allows one to control
the fractional helicity of the initial magnetic field or the initial forcing term. In general, we
define the fractional helicity PM(t) as

PM(t) =

∫ ∞
0

kHM(k, t) dk

2
∫ ∞

0
EM(k, t) dk

= 2σM(t)
1 + σ2

M(t) . (2.12)

Initially, if the magnetic field is given, PM is determined by the chosen value of σM = σ. On
the other hand, if the magnetic field is initially driven, the fractional helicity depends on the
value of σ used in the forcing term; see equation (2.10), but its exact value is obtained by
solving the set of MHD equations and σM might differ from σ. For later times, in both cases,
the values of σM(t) and PM(t) are given by the dynamical evolution of the MHD fields. The
magnetic polarization spectrum is directly computed from the helical and magnetic spectra,

10For a random field with Gaussian distribution, the two-point autocorrelation function is sufficient to
describe its statistical properties [88].
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PM(k, t) = 1
2kHM(k, t)/EM(k, t); see equation (2.12). The realizability condition gives an

upper bound to the helicity spectrum HM(k, t) [92],∣∣∣12kHM(k, t)
∣∣∣ ≤ EM(k, t), (2.13)

such that the magnetic polarization PM(k, t) takes values from −1 to 1. Due to the realizability
condition, to directly compare the magnetic and the helicity spectra, the latter is usually
multiplied by k/2; see equations (2.12) and (2.13).

The GW energy density is [93]

EGW(t) = c2

32πG〈ḣ
phys
ij (x, t)ḣphys

ij (x, t)〉, (2.14)

where hphys
ij = hij/a are the physical strains, the angle brackets denote space average; see

footnote 6, and a dot represents derivative with respect to physical time tphys.11 In terms of
the normalized and comoving units used in equation (2.2), the ratio of comoving GW energy
density to critical energy density ΩGW = EGW/E0

crit is

a4ΩGW(t) = 1
12

(
H∗
H0

)2〈
∂thij ∂thij + hijhij/t

2 − 2hij ∂thij/t
〉
, (2.15)

where E0
crit = 3H2

0c
2/(8πG), with H0 = 100h0 km s−1 Mpc−1 ≈ 3.241 × 10−18 h0 s−1 being

the Hubble rate at the present time, and h0 takes into account the uncertainties in its exact
value [94]. The equal time correlation function for general tensor fields Πa

ij and Πb
ij (assuming

isotropic and homogeneous random fields) is expressed as [95]

〈Π̃a
ij(k, t)Π̃b

lm(k′, t)〉 = 1
4(2π)6δ3(k − k′)

[
Mijlm(k̂)Sab(k, t)4πk2 + iAijlm(k̂)Aab(k, t)4πk2

]
, (2.16)

where

Mijlm(k̂) = PilPjm + PimPjl − PijPlm, (2.17)
Aijlm(k̂) = 1

2 k̂q(Pjmεilq + Pilεjmq + Pimεjlq + Pjlεimq). (2.18)

To compute the spectral functions of the GW energy density; see equation (2.15), we use
equation (2.16) applied to the strains hij and their time derivatives h′ij = ∂thij : when
Πa
ij = Πb

ij = hij , we define Sh and Ah; when Πa
ij = Πb

ij = h′ij , we define Sh′ and Ah′ , and
when Πa

ij = hij and Πb
ij = h′ij (or vice versa, note that equation (2.16) is symmetric in ab), we

define Smix and Amix. The spectra of GW energy density ΩGW(k, t) and GW helicity/chirality
ΞGW(k, t) are

a4ΩGW(k, t) = 1
12

(
H∗
H0

)2
k

[
Sh′(k, t) + 1

t2
Sh(k, t)− 2

t
Smix(k, t)

]
=
(
H∗/H0

)2
kEGW(k, t), (2.19)

a4ΞGW(k, t) = 1
12

(
H∗
H0

)2
k

[
Ah′(k, t) + 1

t2
Ah(k, t)− 2

t
Amix(k, t)

]
=
(
H∗/H0

)2
kHGW(k, t), (2.20)

11The GW energy density in equation (2.14) is given in non-normalized units, being the strains hphys
ij defined

such that ds2 = a2(−dt2 + [δij + hphys
ij ] dxi dxj), and the physical time refers to non-normalized cosmic time,

which is related to conformal time as dtphys = adt.
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such that ΩGW(t) =
∫

ΩGW(k, t) d ln k ∝
∫
EGW(k, t) dk. Using the + and × polarization

basis defined in equation (2.1), the functions Sab(k, t) and Aab(k, t), defined in equation (2.16),
for generic tensor fields Πa

ij and Πb
ij , can be expressed as [95]

2〈Π̃a
+(k)Π̃b,∗

+ (k′) + Π̃a
×(k)Π̃b,∗

× (k′)〉 = (2π)6δ3(k − k′)Sab(k)
4πk2 , (2.21)

2〈Π̃a
+(k)Π̃b,∗

× (k′)− Π̃a,∗
+ (k)Π̃b

×(k′)〉 = i(2π)6δ3(k − k′)Aab(k)
4πk2 , (2.22)

which allows one to compute the spectral functions in equations (2.19) and (2.20) from
h̃+,× and ∂th+,×, solutions to the GW equation (2.2), via shell-integration.12 The degree
of circular polarization of the GW background is Ph(k, t) = Ah(k, t)/Sh(k, t) [62]. We
also define the polarization using the GW energy density spectral functions: PGW(k, t) =
HGW(k, t)/EGW(k, t).13 The total GW polarization can be expressed as the ratio of the
integrated spectra over wave numbers, PGW(t) = ΞGW(t)/ΩGW(t).

3 Numerical results

We have computed solutions for a range of values of σ, using both given and driven initial
fields; see table 1 for a summary of the different runs. In general, the different GW modes
grow up to δt = t− tmax ∼ O(k−1); see figure 3 of ref. [82], when they start to oscillate, taking
tmax = 1 in the runs with an initial magnetic field. The duration δt is the time that it takes to
the GWs, which propagate at the speed of light, to reach the scales corresponding to the wave
number k. We have set up all the runs to have a spectral peak k∗ ≈ 600 (see table 1), which
corresponds to, approximately, 100 times the Hubble wave number 2π/H∗ or, equivalently, to
a 100th of the Hubble scale, and the smallest wave number of the simulations is k0 ≈ 100.
Hence, the GW spectrum stops growing and enters the oscillatory stage at δt ∼ O(10−2), and
after that time we average the spectra over oscillations in time to obtain the saturated GW
spectra and their integrated values over wave numbers Ωsat

GW and PGW = Ξsat
GW/Ωsat

GW, given in
table 1 in units of a−4(H∗/H0)2.

In the present work, all the numerical simulations are performed using a periodic cubic
domain of size L = 2π/k0 with a discretization of n3 = 11523 mesh points. To solve the GW
equation, given by equation (2.2), we use the Pencil Code [84], following the methodology
described in section 2.6 of ref. [83], which is denoted there as approach II. Equation (2.2) is
sourced by the strain tensor, which is obtained by solving the MHD equations (2.4)–(2.6).
Following ref. [82], we fix the viscosity ν = η and choose it to be as small as possible (see
table 1), but still large enough such that the inertial range of the computed spectra is
appropriately resolved [39]. Their physical values in the early universe are much smaller than
what we can accurately simulate and they would require much larger numerical resolution.
The inertial range of the turbulence would extend to higher frequencies. However, those

12The spectral functions S(k) and A(k), defined in equations (2.21) and (2.22), and omitting the subscript
ab, correspond to shell-integrated functions of the tensor fields. For example,

S(k, t) = 4πk2

(2π)6

∫
2
(
Π̃2

+(k, t) + Π̃2
×(k, t)

)
dΩk,

where Ωk is the solid angle of the shell of size k, such that
∫
S(k, t) dk = 〈Πij(x, t)Πij(x, t)〉.

13In previous works, these two definitions are used interchangeably, assuming that EGW = k2Sh, and
HGW = k2Ah, which hold in the absence of sources. However, turbulent sources can modify the dispersion
relation of the strains, and Ph 6= PGW in general.
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Type σM Emax
M Ωsat

GW PM PGW k∗ n ν, η kν

ini 0.1 3.93× 10−3 2.53× 10−11 0.19 0.18 600 1152 5× 10−8 8.1× 104

ini 0.3 4.23× 10−3 3.00× 10−11 0.55 0.54 600 1152 5× 10−8 8.2× 104

ini 0.5 4.85× 10−3 4.09× 10−11 0.80 0.77 600 1152 5× 10−8 8.5× 104

ini 0.7 5.78× 10−3 5.72× 10−11 0.94 0.91 600 1152 5× 10−8 8.9× 104

ini 1 7.75× 10−3 1.04× 10−10 1.00 0.95 600 1152 5× 10−8 9.6× 104

forc −0.01 1.42× 10−2 2.64× 10−9 −0.006 0.01 600 1152 5× 10−7 2.2× 104

forc 0.01 1.43× 10−2 2.65× 10−9 0.02 0.06 600 1152 5× 10−7 2.2× 104

forc 0.3 1.69× 10−2 3.14× 10−9 0.56 0.58 600 1152 5× 10−7 1.9× 104

forc 0.5 1.92× 10−2 3.54× 10−9 0.82 0.78 600 1152 5× 10−7 1.6× 104

forc 0.7 2.09× 10−2 3.96× 10−9 0.96 0.88 600 1152 5× 10−7 1.3× 104

forc −1 2.12× 10−2 4.16× 10−9 −0.999 −0.91 600 1152 5× 10−7 1.1× 104

Table 1. Summary of numerical simulations and relevant parameters.

higher wave numbers are of little observational interest since the GW amplitude at those
wave numbers would be very low, as shown in the results presented below.

3.1 Runs with decaying magnetic field at the initial time

In figure 1, we compare the spectra of the magnetic field and the resulting GWs, both the
symmetric, EM(k) and EGW(k), and the antisymmetric spectra, HM(k) and HGW(k), for
different values of σM at the initial time of the simulation. Since the GW spectra fluctuate
around an approximately statistically steady spectrum, we show the saturated values of the
spectra at each mode computed by averaging them over times larger than t = t∗+1/k0 = 1.01,
and the shaded region corresponds to the maxima and minima of the oscillations at every
wave number. The magnetic spectra are shown at the initial time of the simulation, when the
magnetic energy density has its maximum Emax

M , and it decays for later times.
The magnetic helicity spectrum shows the same power law scalings as the spectrum of

the magnetic energy density in the inertial range, which correspond to k−5/3 Kolmogorov-type
spectra. Thus, this corresponds to HT turbulence; see section 3.4. In the subinertial range,
we observe that, as we decrease the fractional helicity, the helical spectrum becomes slightly
steeper than the k4 Batchelor spectrum observed in the magnetic energy density, being both
spectra identical in the fully helical case, as expected. Note that the magnetic helicity spectra
are multiplied by k/2 to take into account the realizability condition; see equation (2.13).

On small length scales or, equivalently, large wave numbers (above the spectral peak k∗),
we observe that both the GW energy density and helicity spectra, EGW(k) and HGW(k), follow
k−11/3 scalings, which correspond to the Kolmogorov-type magnetic spectra, in agreement
with ref. [82]. On larger scales, we observe an approximately flat spectrum for the GW energy,
as shown from numerical simulations in ref. [82]. This is a consequence of the k4 Batchelor
spectrum for a Gaussian magnetic (hence, divergenceless) field, which yields a k2 (i.e., white
noise) spectrum of the magnetic stress [82, 96]. The small deviations from an exact flat
spectrum, which increase towards negative slopes as we decrease the value of the fractional
helicity, could be due to the small number of points in wave number space when we reach the
largest scales of the simulation, as well as to the oscillations over time. It is also for large
scales (small wave numbers) that we observe a decay of the GW helical spectrum HGW(k)
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Figure 1. Magnetic and GW energy (solid lines) and helicity (dashed lines) spectra for the runs with
a magnetic field given at the initial time of the simulations, normalized to t∗ = 1, for different values
of the parameter σM, which is related to the fractional magnetic helicity as PM = 2σM/(1 + σ2

M). The
magnetic spectra are shown at the initial time of the simulation and the GW spectra are the saturated
ones (averaged over times t > 1.01), while the shaded region shows the variation over time between
the maxima and minima. Positive values of the helicity spectra (magnetic and GW) are shown in red,
while negative values in blue. The discretized intervals show the tangent power laws fitting the spectra
used to compute their local slopes, shown as a fraction of integers, with a tolerance of 0.1. The values
of the wave numbers and spectra are comoving and normalized by the Hubble rate and the radiation
energy density at the initial time, respectively.

with respect to the flat spectrum observed for EGW(k). As we decrease the fractional helicity
of the magnetic field, we observe this decay to be at approximately twice the smallest wave
number of the magnetic field (expected from the source of the GWs that is given through
convolution). This could be due to the steeper slope of the helical magnetic spectrum at low
wave numbers, impacting the helical spectrum of GWs. Hence, we can expect the helicity
spectrum of GWs to decay with respect to the flat spectrum in the subinertial range, and omit
the smallest wave number of the simulation k0, since the correct computation of this mode
would require the computation of the magnetic field at k0/2. We defer further discussion of
the GW polarization PGW(k) = HGW(k)/EGW(k) to sections 3.3 and 3.4.
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Figure 2. Magnetic and GW energy (solid lines) and helicity (dashed lines) spectra, similar to figure 1,
for runs with an almost non-helical forcing (σM = ±0.01) for short times (1 ≤ t ≤ 1.1).

3.2 Runs with forced magnetic field at the initial time

In figures 2 and 3, we compare the spectra of the magnetic field and the resulting GWs for
the runs in which we drive the magnetic field for a short duration δt = tmax − 1 = 0.1 (i.e.,
10% of the Hubble time). In figure 2, we show runs that are almost non-helical (σM = ±0.01),
and in figure 3, we show runs with larger fractional helicity of the forcing term,14 up to the
fully helical case (which is negative in this case). We show that magnetic fields with negative
helicity drive GW with the same GW energy density than those produced by magnetic fields
with positive helicity, but the resulting helicity of the GW spectrum is negative. The time
evolution of the fractional magnetic helicity PM(t) is shown in figure 4. We observe that at
very early times (up to δt ≈ 2× 10−2 for the runs with σM = 0.3 and 0.5, and up to δt ≈ 10−1

for the other runs), the value of σM corresponds to the parameter σ of the forcing term.
The magnetic spectra are shown at the time tmax, when the magnetic energy density

reaches its maximum value Emax
M , and when we switch off the forcing term. Note that at

tmax = 1.1; see figure 4, the value of the fractional magnetic helicity is dynamically evolving
in time, and is already different than its initial value. At earlier times, the magnetic spectrum
shows a spike around the forcing wave number k∗, which is distributed at later times to a
turbulent spectrum due to the MHD dynamical evolution of the magnetic field. We see that in
all cases, the causal EM(k) ∝ k4 magnetic spectrum is established. The spectra are averaged
over times t ≥ 1.1, which is just after the maximum magnetic energy has been reached and
the GW energy begins to fluctuate around an approximately statistically steady state. For
k > k∗, the slope of the magnetic energy spectrum is steeper than a k−5/3 Kolmogorov-type
spectrum. This is because of the finite time driving during the rather short time interval,
1 ≤ t ≤ 1.1. The consequences of the finite forcing time are the appearance of a smoothed
spike around k∗ which has not completely disappeared, and the steeper slopes, especially in
the inertial range. This effect seems to be enhanced with helicity. An exponential drop in
the magnetic spectra is observed at the largest wave numbers due to viscosity and magnetic
diffusivity. We can estimate the viscous cutoff wave number kν from the energy dissipation

14For the case with forced magnetic fields, σ corresponds to the helicity parameter in the forcing term; see
equation (2.10), while σM is related to the fractional magnetic helicity, defined in equation (2.12).
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Figure 3. Magnetic and GW energy (solid lines) and helicity (dashed lines) spectra, similar to figure 1,
for runs with forcing for short times (1 ≤ t ≤ 1.1), for different values of σM.
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Figure 4. Time evolution of the fractional helicity of the magnetic field, for the different values of
σM, for (a) the runs with an initial given magnetic field, and (b) those with a forced magnetic field.
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rate ε ∼ ν〈ω2〉, where ω = ∇× u is the fluid vorticity, as kν ∼ (ε/ν3)1/4 (see table 1). Note
that for the runs with a given initial magnetic field, the diffusive scale is around the Nyquist
wave number so the inertial range is observed down to the smallest scales of the simulation.
If the driving was continued over a long time interval (long enough for the magnetic field to
be processed, i.e., tmax ∼ 1) we would recover the Kolmogorov spectrum [65]. The magnetic
helicity spectrum around the peak k∗ is nearly saturated for all values of |σM| considered from
0.3 to 1. For σM = ±0.01, there is a clear separation between EM(k) and kHM(k)/2 and the
sign of the magnetic helicity tends to fluctuate noticeably, especially at high wave numbers.
We also see a systematic sign flip at higher k both in HM(k) and HGW(k), which also occurs
for the cases with |σM| ≥ 0.3. Such sign flips are typical of decaying helical turbulence and
are a consequence of the fact that the fractional magnetic helicity is there already extremely
small. The helicity spectrum kHM(k) is steeper than the magnetic spectrum EM(k), while in
the runs with an initial magnetic field, both spectra follow the same power laws in the inertial
range. This is observed for all values of σM. However, for the fully helical case, the difference
in slope is smaller, and it becomes larger for smaller fractional helicity.

We again observe an approximately flat GW spectrum in the subinertial range, which
presents negative slopes that become steeper for smaller values of |σM|. For values of |σM| ≥ 0.3,
the spectrum becomes completely flat near the spectral peak, and then presents an abrupt
drop below the peak, as shown in ref. [82], which is due to the finite duration of the forcing,
and related to the spike that appears in the magnetic spectra. The inertial range of the GW
spectra also present steeper slopes than the k−11/3 obtained for the Kolmogorov scaling in
the case of initially given magnetic fields. We observe the slopes −5.5, −6.33, −6, −6.25,
and −6.33 below the spectral peak for σM = ±0.01, 0.3, 0.5, 0.7, and −1, respectively. The
helical GW spectrum is slightly shallower on small scales, and becomes fully helical around
the spectral peak. Similar to the magnetic field, the helical GW spectrum decays faster
than the GW energy density in the subinertial range after a characteristic wave number that
increases with the fractional magnetic helicity. We observe that this decay starts at larger
wave numbers for the GW spectra than for the magnetic spectra.

3.3 Degree of circular polarization

In figure 5, we plot the GW degree of circular polarization, Ph(k) and PGW(k), for the two types
of simulations. We see that PGW(k) reaches ±1 at the GW spectral peak kGW ≈ 2k∗ ≈ 1200
when σM = ±1. This polarization is larger than what was found in previous analytic
predictions; see ref. [63], and recently used in ref. [64] in relation to detectability with LISA.
This discrepancy can probably be explained by the use of the simplified approximations made
in the analytic calculations. Toward smaller wave numbers, there are systematic fluctuations
around PGW(k) = 0, especially in the case of an initial given magnetic field, due to the
oscillations of the helical GW spectrum at low wave numbers.

The GW polarization integrated over all wave numbers PGW, as a function of the
magnetic fractional helicity PM = 2σM/(1 + σ2

M), is shown in figure 6. The value of the
integrated magnetic fractional helicity PM, as a function of time is shown in figure 4. In
the runs with an initial given magnetic field, PM stays constant for a short time interval
δt = t − 1 ∼ 10−2, which is similar to the time that the GW spectrum takes to enter
the stationary regime. Hence, the value of PM does not change while the GW spectrum
is established. However, for the case in which the magnetic field is driven for a duration
δtmax = tmax − 1 = 10−1, the fractional helicity PM has changed more significantly when the
GW spectrum is established, such that the variation of helicity affects the GW polarization;
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Figure 5. GW degree of circular polarization, Ph(k) and PGW(k), for the different values of σM, for
the types of simulations: runs with a given initial field; see panels (a) and (c), and runs with a forced
magnetic field for a short duration, i.e., for times 1 ≤ t ≤ 1.1; see panels (b) and (d). The solid line
represents the saturated value of the polarization (i.e., averaged over times in the oscillatory regime),
and the shaded regions are the maximum and minimum values of the polarization over oscillations.

see figures 2 and 3. At earlier times, as mentioned in section 3.2, the values of σM are the same
as the values of the parameter σ of the forcing term. We observe a dependence PGW ∼ PM,
inferred from the numerical results; see figure 6. This result differs from the analytical model
considered in appendix A, which corresponds to a magnetic field that depends only on one
spatial coordinate with fractional helicity PM = 2σM/(1 + σ2

M). The predicted dependence of
the degree of circular polarization is PGW = 2PM/(1 + P2

M), given in equation (A.21), and
shown in figure 14.

3.4 Comparison to the analytical prediction of the spectrum of polarization
The GW degree of circular polarization of signals produced by primordial MHD turbulence
has been estimated in refs. [62, 63]. In this section, we use their model to predict the spectrum
of GW polarization Ph and compare it to the numerical results, to explore the validity of
their model and the impact of the assumptions made. In the first place, we define the unequal
time correlation (UTC) function of the magnetic field as

〈B̃i(k, t1)B̃∗j (k′, t2)〉 = (2π)6δ3(k − k′)
(
Pij(k̂)FM(k, t1, t2)

4πk2 + iεijlk̂l
GM(k, t1, t2)

8πk

)
, (3.1)
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Figure 6. GW polarization PGW versus magnetic polarization PM; see table 1. We obtain a numerical
fit PGW ≈ PM = 2σM/(1 + σ2

M), both for the runs with an initial given magnetic field (‘initial’),
and with an initially driven field (‘forcing (short)’). We compare with the relation obtained for the
analytical model of appendix A, PGW = 2PM/(1 + P2

M); see equation (A.21). The vertical lines
correspond to |σM| = 0.1 (green), 0.3 (dark green), 0.5 (orange), 0.7 (dark orange), and 1 (red).

where we recover the equal time correlation of the magnetic energy density and helicity, defined
in equation (2.11), when t1 = t2 = t, FM(k, t, t) = EM(k, t), and GM(k, t, t) = HM(k, t). Fol-
lowing ref. [62], which assumes stationary turbulence, we express the spectral functions of the
UTC of the freely decaying turbulent source as a function of only the time difference, modelled
as FM(k, t1, t2) = FM(k, t1, t1 + δt) ≈ EM(k, t1)D1(δt). Similarly, the helical contribution to
the UTC spectrum is GM(k, t1, t2) = GM(k, t1, t1 + δt) ≈ HM(k, t1)D2(δt). The functions
D1(δt) and D2(δt) are monotonically decreasing functions, with D1(0) = D2(0) = 1. To
characterize the two types of turbulence considered in the present work, t1 is considered to
be the time when the turbulence starts freely decaying. This corresponds to the initial time
(t1 = 1) for the cases with a given magnetic field, and to the time at which the forcing term is
switched off (t1 = tmax) otherwise.

Assuming that the duration of the turbulence sourcing is short, i.e., τ = tfin − 1 � 1,
where tfin corresponds to the final time of the turbulence, such that the expansion of the
universe can be neglected, and after averaging over the time oscillations of the source, the
functions Sh(k) and Ah(k) can be obtained as [11, 62]

Sh(k) = A
τ

k2

∫
d ln p1

∫
d ln p2Θ̄

[
(1 + γ2)(1 + β2)EM(p1)EM(p2)

+ 4γβHM(p1)HM(p2)
]
, (3.2)

Ah(k) = 2A τ

k2

∫
d ln p1

∫
d ln p2Θ̄

[
(1 + γ2)βEM(p1)HM(p2)

+ (1 + β2)γHM(p1)EM(p2)
]
, (3.3)

where Θ̄ = Θ(p1 + p2 − k)Θ(p1 + k − p2)Θ(p2 + k − p1), γ = (k2 + p2
1 − p2

2)/(2kp1),
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Figure 7. Polarization spectra Ph(k) for HK turbulence with nS = −5/3 and nA = −8/3 in the
subinertial range (blue), and for HT turbulence with nS = nA = −5/3 (red), using a single power law
in the inertial range (solid lines) [62–64], and using a broken power law with a Batchelor spectrum
in the subinertial range (dotted lines), for fractional helicities h = 0.1, 0.3, 0.5, 0.8, and 1. We use
k∗ = 600 for comparison with the numerical simulations.

β = (k2 + p2
2 − p2

1)/(2kp2), and A is a constant that we omit, since we are interested
in the spectral shapes, and we will use equations (3.2) and (3.3) to compute the polarization,
which does not depend on A.15 Previous analytical assumptions [62–64] consider two types
of turbulence:

• Helical Kolmogorov (HK) turbulence driven by magnetic energy dissipation at small
scales, resulting in spectral powers nS = −5/3 and nA = −8/3.16

• Turbulence determined by helical transfer (HT) and helicity dissipation at small scales,
which results in nS = nA = −7/3, based in ref. [78].

They use power law spectra EM(k) ∝ knS and kHM(k) ∝ hknA in the range k∗ < k < kν , with
h being the fraction of helicity dissipation. We extend their analytic approach to consider a
broken power law with a subinertial k4 Batchelor spectrum below k∗, and modify the HT
spectrum to nS = nA = −5/3, corresponding to the spectral slopes of the stochastic magnetic
fields that we use in our numerical simulations (see figure 1) and that is based in previous
MHD simulations applied to cosmological phase transitions [39]. Figure 7 shows the resulting
polarization degree Ph(k) for the HT and HK types of turbulence. The inclusion of the
subinertial range leads to an increase on polarization at wave numbers right below the peak,
which is a more realistic scenario when compared to the numerical results, especially for the
case of HK turbulence. The model described above assumes that the partial helicity at k∗ is
PM(k∗) = h, and describes the magnetic energy and helicity spectra using power laws. The
assumption that the slopes are the same along the inertial range is accurate in the case with
an initial magnetic field; see figures 1 and 8.

In figure 8, we compare the analytical results obtained from HT turbulence (with modified
slopes and extended to broken power laws; see figure 7) with our numerical simulations that
consider an initial given magnetic field. Note that the extension of the turbulent spectra to k <
k∗ allows one to get a more accurate position of the polarization spectral peak. In general, we

15Equations (3.2) and (3.3) correspond to eqs. (10) and (11) of ref. [62], in which PS(k) = 2π2EM(k)/k2,
PA(k) = π2HM(k)/k, H(k) = 2π2Sh(k)/k2, H(k) = 2π2Ah(k)/k2, and their value A contains τ/k2 and differs
by constant coefficients due to the normalization we use in equation (2.2). References [63, 64] use the notation
IS(k) = PS(k) and IA = PA(k).

16We refer here to the spectral slopes of EM(k) ∝ knS and kHM(k) ∝ knA , while ref. [62] uses spectral slopes
of PS and PA, which are divided by k2.
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Figure 8. Polarization spectra PGW(k) (dots) and Ph(k) (crosses) obtained from the numerical
simulations for different σM, compared to Ph(k) computed from the analytical model (single power
law and extended to a broken power law; see figure 7) using HT type of turbulence (dashed lines),
and from the analytical integrals; see equations (3.2) and (3.3), using the numerical spectra of the
turbulence (solid lines). Similar to figure 6, the shaded regions denote the maximum and minimum
polarizations PGW(k) of the fluctuations.

observe good agreement of the analytical results with the polarization PGW(k) computed from
the simulations, while the spectrum Ph(k) agrees well at low and intermediate k, but decays
with respect to the analytical models for large k. However, in the case in which the magnetic
field is forced for a short duration of time, we observe in figure 3 that the energy and helicity
spectra are similar around the spectral peak (where the magnetic field is maximally helical),
while the helical spectrum starts decaying with a steeper slope than the magnetic spectrum at
a specific wave number, which increases with the helicity of the forcing. This behavior is not
captured by previous analytical models. In figure 9, we compare the results of the polarization
spectra Ph(k) and PGW(k), obtained from the numerical simulations, with those obtained
from HK and HT types of turbulence. In addition, to take into account the deviations from
the assumption of constant slopes of the magnetic spectra, we compute the polarization using
equations (3.2) and (3.3) by integrating over the numerically computed spectra EM(k) and
HM(k). We observe in figures 8 and 9 that the latter gives an accurate approximation of
PGW(k) to the numerical results, while Ph(k) shows a bigger decay at large k. In general, the
polarization spectrum shows features of both HK and HT types of turbulence. As we have
mentioned, around the spectral peak, the numerical simulations show that the magnetic field
is maximally helical in all the considered runs with |σM| ≥ 0.3 or |PM| ≥ 0.55, which is better
represented by the HT spectrum (with h = 1) in the subinertial range, while in the inertial
range the different slopes lead to a decrease of the polarization with a scaling similar to that
of the HK spectrum, especially as we decrease the fractional helicity, although the polarization
computed numerically is still larger than that obtained by the HK model in all cases.
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Figure 9. Similar to figure 8, polarization spectra PGW(k) and Ph(k) obtained from the numerical
simulations for different σM, compared to Ph(k) obtained from the analytical model using both HK
and HT types of turbulence (dashed lines; see figure 7), and obtained from the analytical integral,
using the numerical spectrum of the turbulence (solid lines).

We have confirmed using numerical simulations that in the case of an initial magnetic
field with a Kolmogorov spectrum for both the magnetic energy density and helicity, the
analytical model previously considered in refs. [62–64] using HK turbulence gives an accurate
prediction of the degree of circular polarization, which gets better when we consider a broken
power law. However, when we consider the scenario in which the magnetic field is generated
via MHD forcing for a short amount of time, and non-linear interactions appear, allowing to
have different spectral slopes at different scales, previous analytical estimates underpredict
considerably the polarization degree peak and fail to predict the appropriate shape, which is
not given by either the HK or the HT models, but presents non-linearly combined features of
both. In addition, we observe a helical inverse cascade that produces larger degree of circular
polarization at large scales.

4 Prospects of detecting signals from the electroweak phase transition

4.1 Observable GW energy density spectra
The GW energy density at the present time is obtained from the comoving ΩGW(k), defined
in equation (2.19), and expressed as a function of the frequency. For a signal that has been
produced at the EWPT, the resulting GW spectrum is

ΩGW(k) =
(
a0
a∗

)−4 (H∗
H0

)2
kEGW(k),

h2
0 ΩGW(f) = 1.652× 10−5 (g∗/100)−1/3 (2πf/fH)EGW(f), (4.1)
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where we have used the present time values T0 = 2.73 K, g0 = 3.91, and H0, expressed by the
Hubble parameter today h0 in units of 100 km s−1 Mpc−1 [94], and g∗ and fH = H∗a∗/a0 are
the number of degrees of freedom and the Hubble frequency, respectively, at the electroweak
scale. The ratio of the scale factors is obtained assuming adiabatic expansion, i.e., with
constant g T 3a3 [97],

a0
a∗

= 1.254× 1015
(

kBT∗
100 GeV

)(
g∗(T∗)

100

)1/3
, (4.2)

with T∗ being the electroweak temperature. The Hubble rate at the electroweak scale is [97]

H∗ = 2.066× 1010 s−1
(

kBT∗
100 GeV

)2 (g∗(T∗)
100

)1/2
. (4.3)

The resulting spectrum is expressed in terms of the frequency, which corresponds to the
physical comoving wave number (from the GW dispersion relation 2πf = k) shifted to the
present time; see ref. [97],

f = H∗
2π

(
a∗
a0

)
k = fH

2πk, with fH = 1.646× 10−5 Hz
(

kBT∗
100 GeV

)(
g∗(T∗)

100

)1/6
, (4.4)

being the Hubble frequency at the electroweak scale, which corresponds to kH = 2π according
to our normalization. The helical spectrum of GWs h2

0 ΞGW(f), defined in equation (2.20), is
computed in the same way as h2

0ΩGW(f) in equation (4.1), substituting EGW(k) by HGW(k).
Recent numerical simulations of GWs produced by MHD turbulence have found a

dependence of the GW energy density ΩGW on the square of the magnetic energy density
E2

M and the inverse of the square of the magnetic spectral peak k−2
∗ [65, 82, 98, 99]; see

equation (2.15). In the present work, our numerical simulations follow this scaling, and we
define the GW efficiency q2(t) = k2

∗ΩGW(t)/(Emax
M )2, shown in figure 10. Such scaling was

obtained in early analyses of MHD turbulent production of GWs; see, e.g., refs. [10–13], which
assumed stationary turbulence, and reported in ref. [100] in the case when the decay of the
magnetic field does not impact the evolution of GWs. We compute this scaling in the analytical
model presented in appendix A; see also the Beltrami field studied in ref. [83]. However,
ref. [100] proposes a general E3/2

M scaling for MHD turbulence; see their equation (82), which
was previously obtained in refs. [101, 102], and assumes that the magnetic field decay impacts
the GW dynamics. This is often used when considering GW signals from MHD turbulence in
the LISA band [18]. In general, the exact scaling depends on the dynamical evolution of the
magnetic field and, in particular, on the UTC of the stress, which is modelled in previous
estimates (see reviews [25, 103]), while the direct numerical simulations of MHD turbulence
allow to obtain the final GW spectrum with no assumptions on the magnetic stress UTC. We
observe that the GW production is similar for all values of σM if the magnetic field is present
at the initial time of generation with a GW efficiency of q = 0.95. For the case in which the
magnetic field is forced at initial times, we observe an enhancement of the GW production
by a factor of ∼ 5, and larger GW energy densities for smaller helicities. The dependency of
the GW production on the helicity is consistent with that for the runs of ref. [65], in which
the forcing term is present for longer times, and the GW production is larger. In the case of
acoustic turbulence (e.g., sound waves), the GW production is larger by a factor of ∼ 200, as
reported in ref. [82]. The GW production obtained in the numerical simulations is smaller
than the estimated amplitudes computed in previous analytical estimates [64, 104]. This
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Figure 10. Efficiency of GW energy density q(t) = k∗Ω1/2
GW(t)/Emax

i for i = M (magnetic) and K
(kinetic) in units of a−4(H∗/H0)2 = 1.644 × 10−5 (g∗/100)−1/3; see equations (2.15) and (4.1), for
the runs with an initial given magnetic field (‘initial’), and for the runs with a forced magnetic field
(‘forcing (short)’), with tmax = 1.1. Added for comparison are the runs in ref. [65] (‘forcing (long)’), in
which the magnetic field is forced for longer times (tmax = 3), and the runs of ref. [82], which contain
cases with initial given magnetic field, with forced magnetic field at k∗ = 60, 600, and 6000, and runs
of acoustic turbulence (‘acoustic’).

is probably due to simplifying assumptions made. We defer the study of the scaling of the
GW amplitudes with the characteristic scale and the amplitude of the turbulence sourcing to
future work.

4.2 Interferometry of GW detectors LISA and Taiji

The GW signals produced at the EWPT are expected to be detectable with future planned
space-based GW detectors, e.g., LISA [7], Taiji [9], TianQin [8], DECIGO [19], and BBO [21].
We revisit the interferometry of this type of detectors in appendix B, and apply the analysis
to LISA and Taiji to consider the potential detectability of the circular polarization of GW
signals produced by primordial magnetic fields. In general, it is necessary that the GW
background presents anisotropies to measure its circular polarization [66, 67]. Hence, a priori,
parity-violating effects cannot be detected if the system of GW detectors is coplanar, which is
the case for space-based GW detectors, and the GW background is isotropic [105]. However,
different approaches have recently been proposed to detect the circular polarization of a
statistically isotropic GW background [79–81]. On the one hand, a statistically isotropic
GW background, such as that expected from cosmological sources, can present anisotropies
that have been kinematically induced due to the proper motion of the solar system, and the
induced anisotropies allow one to detect the circular polarization of the background [66, 67].
On the other hand, the combination of a network of GW detectors breaks the coplanarity
of the detectors allowing one to detect circular polarization. This has been considered in
the case of ground-based GW detectors; see, e.g., refs. [79, 105–108], and for the LISA-Taiji
network [80, 81].
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The total and the polarization signal-to-noise ratios (SNR) of a stochastic GW back-
ground with energy density ΩGW(f) and helical spectra ΞGW(f), for a duration T of the
observations, are

SNR = 2
√
T

[∫ ∞
0

df
(ΩGW(f)

Ωs(f)

)2]1/2

, (4.5)

SNRdip
pol = 2

√
T

∫ ∞
0

df
(

ΞGW(f)− 1
4dΞGW(f)/d ln f

Ξdip
s (f)

)2
1/2

, (4.6)

SNRcomb
pol = 2

√
T

[∫ ∞
0

df
( ΞGW(f)

Ξcomb
s (f)

)2]1/2

, (4.7)

where the GW sensitivity Ωs(f) in equation (4.5) refers to LISA, ΩA
s (f), Taiji, ΩC

s (f), or the
combined LISA-Taiji network, Ωcomb

s (f); see equations (B.28) and (B.37). The polarization
SNRpol given in equation (4.6) is obtained by using the anisotropies induced by the polarization
of the GW background, due to our proper motion, yielding a dipolar response in the LISA
A and E channels or the Taiji C and D channels, with the sensitivity Ξdip

s (f) = ΞAEs (f)
or ΞCDs (f) given in equation (B.29). On the other hand, the polarization SNRpol given
in equation (4.7) is obtained by cross-correlating the different channels between LISA and
Taiji with the sensitivity Ξcomb

s (f) given in equation (B.41). Further details on the dipole
response function and the LISA-Taiji cross-correlations are given in appendices B.3 and B.4,
respectively, and the GW sensitivity functions are shown in figure 16. Assuming flat GW
energy density ΩGW(f) and helicity spectra ΞGW(f) of the background, we get

h2
0 ΩLISA

GW (f) = h2
0 ΩA

flat = 1.65× 10−13
(SNR

10

)√4 yr
T
, (4.8)

h2
0 ΩTaiji

GW (f) = h2
0 ΩC

flat = 6.81× 10−14
(SNR

10

)√4 yr
T
, (4.9)

h2
0 ΞLISA

GW (f) = h2
0 ΞAEflat = 10−10

(SNRpol
10

)√4 yr
T

(
1.23× 10−3

v/c

)
, (4.10)

h2
0 ΞTaiji

GW (f) = h2
0 ΞCDflat = 4.16× 10−11

(SNRpol
10

)√4 yr
T

(
1.23× 10−3

v/c

)
, (4.11)

where v is the solar system’s proper motion. Using the values of SNRpol = 1, v/c = 10−3, and
T = 3 yr, we recover the amplitude h2

0 ΞAEflat = 1.4 × 10−11, reported in ref. [79]. The exact
value of the SNR necessary to claim that the signal is detectable with a large likelihood is
not trivial, and requires a detailed analysis that depends on the spectral shape of the GW
signal. For a simplified treatment, we follow refs. [109, 110], in which a value of SNR = 10 is
proposed. To study the potential detectability of the GW signals produced by primordial
turbulence, we compute the power law sensitivities (PLS) [110], assuming a spectral shape
defined by a power law of generic slope; see appendix B. Figure 16 shows the PLS of LISA
and Taji, corresponding to the GW energy density, ΩA

PLS(f) and ΩC
PLS(f), and to the helicity,

ΞAEPLS(f) and ΞCDPLS(f), using the dipole response function, and for the combined LISA-Taiji
network, Ξcomb

PLS (f). The reconstruction of the signal for more complex spectral shapes is
an active topic of research; see, e.g., the review [111] or the work by the LISA cosmology
working group [110], and we defer it to future work. In general, the values of the polarized
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GW signal h2
0 ΞGW(f) that can be detectable by using the dipole response function of a single

space-based GW mission, either LISA or Taiji, require very large amplitudes of the magnetic
fields generating GWs.17 Hence, we consider the combination of LISA and Taiji to detect
such polarized GW signals, following ref. [81]. Assuming a flat GW polarized spectrum of the
background, we get

h2
0 ΞLISA-Taiji

GW (f) = h2
0 Ξcomb

flat = 5.1× 10−13
(SNRpol

10

)√4 yr
T
, (4.12)

which shows an improvement in the potential detectability of the helicity by a factor of ∼ 80
with respect to the dipole response function of Taiji.

4.3 Detectability of GW energy density and polarization
To assess the observational prospects of detecting GWs, we plot in figure 11 the resulting
GW signal computed numerically; see section 3, for different values of σM, for runs with an
initial given magnetic field (left panels) and an initially driven magnetic field (right panels),
and compare with the expected PLS of LISA [110], DECIGO, and BBO [113]. We use the
results from the numerical simulations; see table 1, shifted to Emax

M = 0.1 and 0.05, using the
computed E2

M scaling; see figure 10. The value of 0.1 has been reported as an upper bound on
the combined magnetic, velocity, and GW energy density (as a fraction of the total energy
density) from BBN [114, 115]. The spectra are similar, but we now also see that for smaller
values of |σM|, the jump in ΩGW(f) near the peak is less pronounced, so for larger frequencies,
i.e., to the right of the peak, ΩGW(f) increases (decreases) for smaller (larger) values of |σM|.
For smaller frequencies, we have the aforementioned shallow spectrum ΩGW(f) ∝ f , which is
approximately independent of the value of σM. We see that, for an initial magnetic energy
density of Emax

M = 0.1, the GW signal produced is detectable by LISA with a SNR larger than
10 for both types of turbulence. For Emax

M = 0.05, only the case in which the magnetic field is
driven at initial times has a SNR above 10, while the case with an initially given magnetic
field has a SNR between 1 and 10.

We show in figure 12 the helicity spectra |ΞGW(f)| obtained from our numerical sim-
ulations together with the PLS obtained using the dipole response function of LISA, and
obtained by cross-correlating LISA and Taiji channels. As in figure 11, we shift the numerical
GW signal to Emax

M = 0.1 and 0.05, according to the scaling ΩGW(f) ∼ E2
M. The helical GW

spectrum, as the GW energy density, is smaller for the cases in which the magnetic field is
given at the initial time than those in which it is initially driven. In this case, since the degree
of circular polarization of the GW spectrum is proportional to the magnetic helicity, the fully
helical runs result in the largest polarized GW signals. This is clearly seen in the case with
initially given magnetic fields. In the driven case, the larger efficiency for smaller fractional
magnetic helicity compensates for moderate values of the helicity, and the polarized signal is
comparable for all runs with |σM| ≥ 0.3. Moreover, in the inertial range, since the drop of GW
energy is larger for runs with larger helicity, we can observe that the helical GW spectrum
becomes smaller for larger values of |σM|. We observe that in the limit of a non-helical

17We find that magnetic energy densities of ∼75% the radiation energy density are required for a polarized
SNR of 10 with LISA if we assume that the scaling of ΩGW(f) with E2

M is still valid in the highly relativistic
limit and we use the results for magnetic fields that are initially driven; see figure 12. Our result is consistent
with the results reported in ref. [64], which require strong first-order phase transitions, i.e., α ∼ 1, for a
detectable polarized signal; see the first right panel of their figure (8). The strength of the transition α is the
ratio of vacuum to radiation energy density and it is related to the kinetic energy induced in the plasma by
the efficiency κ, which becomes ∼55% of the radiation energy density for α = 1 [10, 112].
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Figure 11. GW spectrum h2
0 ΩGW(f) for signals produced at the EWPT from magnetic fields with

Emax
M = 0.1 for the case with an initial given field (panel a), and the case with a driven field (panel b),

and with Emax
M = 0.05 for both cases (panels c and d). The PLS of the GW detectors assume a SNR

of 10 for LISA, Taiji, BBO, and DECIGO, for an observation duration of 4 years; see refs. [110, 113]
and figure 16.

magnetic field, i.e., σM = ±0.01, this is no longer the case since the helical spectrum is
proportional to the magnetic helicity. In all the cases, we observe that the degree of circular
polarization of the GW signals is not large enough to be detectable using the dipolar response
function of LISA due to our proper motion. However, the detection of circular polarization of
an isotropic GW background can be improved by cross-correlating two space-based detectors,
e.g., LISA and Taiji [80, 81], which are both planned to be launched around 2034 [7, 9]. We
have discussed this briefly in section 4.2, and in more detail in appendix B.4. The resulting
SNR of the cross-correlated channels of LISA and Taiji is given in equation (4.7). Figure 12
shows that the combined LISA-Taiji network could lead to the detection of parity-violating
signals produced from primordial magnetic fields around the electroweak scale. In the case of
an initial given magnetic field, the SNR is between 1 and 10 for the upper bound estimate of
Emax

M = 0.1, while for a driven magnetic field, the SNR is above 10. For smaller Emax
M , e.g.,

0.05, the former can only reach a SNR of 1, while the latter case yields values of the SNR
close to 10 in the case with moderate values of the fractional magnetic helicity.
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Figure 12. Helical GW spectrum h2
0|ΞGW(f)| for signals produced at the EWPT from magnetic

fields with Emax
M = 0.1 for the case with an initial given field (panel a) and the case with a driven

field (panel b). The PLS to a polarized GW signal for LISA and Taiji correspond to SNR of 1 for an
observation duration of 4 years; see figure 16 and ref. [64]. The LISA-Taiji curves correspond to the
PLS with a SNR of 1 and 4 years of mission obtained by cross-correlating the LISA and Taiji channels;
see figure 16.

Figure 13 shows the helical GW spectrum h2
0 ΞGW(f) computed from the simulations

presented in ref. [65]. In this case, for Emax
M = 0.1, we find a SNR close to but still below

unity when only considering LISA self-correlations. The GW signals are larger in this case
because the forcing term is acting for longer times, leading to a larger GW production; see
figure 10. We observe that the kinetically dominated turbulence leads to larger values of the
helical GW spectrum than the magnetically dominated one around the spectral peak. This is
due to the larger production of GW amplitude in the kinetic case, since the degree of circular
polarization is larger at low wave numbers for the magnetic case; see figure (3) of ref. [65].
Hence, the helical inverse cascade is more efficient in the magnetically dominated case, leading
to larger PGW(f) at low frequencies for magnetically dominated turbulence. However, the
resulting GW signal ΩGW(f) is stronger for kinetically dominated turbulence in this range
of frequencies, compensating the stronger inverse cascade. This is not seen in figure (4) of
ref. [65], since the energy density of the turbulent sourcing Emax

i , with i = M or K, is not the
same for all runs (see their table II), and hence, the resulting GW spectra cannot be directly
compared. Note that this relies on the result that the GW spectrum scales with E2

i , which
the numerical simulations seem to indicate [65, 82, 83, 98, 99, 116].

5 Conclusions

In the present work, we have studied the generation of polarized stochastic GW backgrounds
produced by partially and fully helical turbulent sources, in particular, primordial magnetic
fields. Our numerical simulations have confirmed that there is a direct correspondence
between the magnetic helicity and the degree of circular polarization of the GWs produced
from the resulting magnetic stress. We have calculated the GW spectra, both the energy
density ΩGW(f) and the helicity ΞGW(f), that are produced by primordial magnetic fields
for different values of the fractional magnetic helicity, and assuming two types of turbulence
production. On the one hand, we have studied the production of GWs due to the presence of
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Figure 13. Similar to figure 12, helical GW spectrum h2
0|ΞGW(f)| for signals produced at the EWPT

from kinetically dominated (panel a), and magnetically dominated turbulence (panel b), using the
results from the numerical simulations presented in ref. [65], shifted to Emax

i = 0.1, with i = M or K.

a fully developed turbulent magnetic field at the initial moment of GW production with a
characteristic scale well defined by the turbulent process. On the other hand, we have studied
the production of GWs due to a primordial magnetic field that is driven by an electromotive
force that models magnetogenesis by injecting energy at a characteristic scale for a short
duration (around a 10% of one Hubble time). In both cases, the resulting magnetic energy
and helicity spectra are typical of fully developed turbulence, but their spectral shapes depend
on the type of turbulence and the fractional helicity.

5.1 Numerical GW spectra

Our work confirms a shallow GW spectrum in the subinertial range that was obtained in
previous numerical simulations [82]. We observe that the spectrum can instead possess even a
small negative slope, instead of the flat spectrum reported in ref. [82], especially for low values
of the helicity and for cases when the magnetic field is produced via turbulence forcing for a
short duration; see figures 1–3. Such spectral slopes have also been reported in other recent
numerical simulations which model the generation of magnetic fields via a forcing term [65, 99],
and in ref. [116], in which the magnetic field is produced by the chiral magnetic effect. As
suggested in ref. [99], this could be due to a finite size of the simulation domain or it could
indeed be physical due to inverse transfer, analogous to that in helical [117] and non-helical
hydromagnetic turbulence [118]. Additionally, it has been pointed out in refs. [96, 98] that
the spectrum of the stress becomes shallower than white noise when the magnetic (or velocity)
field is non-Gaussian, which would lead to a shallower GW spectrum. In the case when the
magnetic field is driven, the MHD evolution might indeed generate a stochastic magnetic
field with deviations from a Gaussian field. However, the exact shape of the GW spectrum at
large scales requires further study.

5.2 GW polarization spectrum of magnetic fields initially present

In the runs with an initially given magnetic field, we show that the magnetic spectral shape
does not depend on helicity, and the helicity spectrum has the same slopes as the magnetic
spectrum, with a strength proportional to its fractional helicity (see figure 1). Both EM(k)
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and kHM(k) are characterized by a k4 Batchelor spectrum below the peak at k∗ (taken to
be 600 in our simulations) and by a k−5/3 Kolmogorov spectrum in the inertial range. The
resulting GW spectrum EGW(k) (defined per linear wave number interval) has an inertial
range slope of −11/3, as was already shown in the numerical simulations of ref. [82], with a
spectral peak at around 2k∗, as expected, since GWs are sourced by the magnetic stress, which
is obtained by convolution of the magnetic spectrum with itself. The helical GW spectrum
HGW(k) also has a similar spectral shape as the GW energy density spectrum. The exception
is precisely at large scales (or low wave numbers), where we observe a decay of the helical
GW spectrum in the smallest modes of the simulation (affecting the second and/or third
largest wave numbers of the simulation). This becomes more noticeable for small values of the
fractional magnetic helicity |σM|. The reason for this is not clear, since this is not observed in
the magnetic helicity spectrum, but it might be due to the finite size of the domain. In figure 5,
we show that there are strong fluctuations at low wave numbers, which induce uncertainty
on the actual value of the circular degree of polarization PGW(k) that is much reduced for
larger wave numbers. In the case of an initial given magnetic field, the polarization degree
follows the description given in refs. [62–64], after a few minor modifications, for turbulence
dominated by helical transfer (HT), which assumes the same spectral slopes for the energy
and helicity spectra, and relies on the assumptions of stationary turbulence and short sourcing;
see figures 7 and 8. However, we showed that the polarization degree is not the same if
computed directly from the strains, Ph(k) = Ah(k)/Sh(k), or from the time derivatives of
the strains, PGW(k) = Aḣ(k)/Sḣ(k) = HGW(k)/EGW(k), the latter being the one that is
in better agreement with the analytical description. We find a linear relation between the
magnetic polarization degree PM and the resulting GW polarization PGW, both obtained as
the ratio of the total helicity of the magnetic or GW field to the total energy density; see
figure 6. The linear relation PGW ∼ PM, obtained from the numerical simulations, deviates
from the analytical model considered in appendix A; see figure 14. However, the model in
appendix A corresponds to a single-mode magnetic field of fractional magnetic helicity. Its
generalization to a three-dimensional fully developed turbulent field is used for the numerical
simulations; see equation (2.7).

5.3 GW polarization spectrum of magnetic fields initially driven

When the turbulence is forced for a finite duration, the situation changes drastically. Due
to the quasi-monochromatic sourcing, a spike appears in the magnetic spectrum EM(k) at
initial times. When the magnetic energy density has reached its maximum value Emax

M , and
it starts to decay (which is taken to be at tmax = 1.1, given in Hubble times), the spike has
smoothed around the spectral peak k∗ but it is still not completely gone; see figure 3. In
the subinertial range, we observe a Batchelor spectrum with slopes very close to 4, while in
the inertial range, the spectrum has negative slopes, steeper than −5/3 (which corresponds
to Kolmogorov turbulence). The spectrum of magnetic helicity HM(k) presents a similar
shape below and around the peak for all values of the fractional helicity above |σM| = 0.3
(shown in figure 3) with a fractional polarization of almost 1 in this range of wave numbers.
The exception to this is for almost non-helical runs; see figure 2, for which the spectrum
of helicity is negligible compared to the magnetic spectrum at all scales. At wave numbers
above the peak, the helicity spectrum shows a sharper decrease with k than the magnetic
energy density, which becomes less pronounced as we increase the helicity, such that in the
fully helical case the slopes of the magnetic and helicity spectra become very similar. This is
plausibly explained by a forward cascade of current helicity [119]. The GW spectrum EGW(k)
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shows a drop on amplitude at scales just below the peak that has also been observed in other
recent numerical simulations [82, 99] due to the finite sourcing of the magnetic field. This
drop appears also in the antisymmetric or helical spectrum of GWs HGW(k), as we show
in figure 3, and it does not depend on the fractional helicity. The GW degree of circular
polarization PGW(k) in this case is shown in figure 5, where we show that it reaches the
fully polarized case at the peak for large values of the fractional magnetic helicity |σM| and
then decays at large wave numbers. The case with different slopes of the magnetic and
helicity spectra was studied in previous analytical works [62–64], leading to a maximum
degree of circular polarization of 80%, underpredicting it when compared to our numerical
simulations. We compared in figure 9 the prediction of the polarization degree from the
analytical model with our numerical results, showing that the numerical simulations do not
follow the degree of circular polarization obtained by the analytical models in any of the
two models considered previously, i.e., helical Kolmogorov (HK) or HT turbulence. Previous
analytical assumptions were using a single power law for the magnetic energy and helicity
spectra that did not depend on the wave number, besides the assumptions used to model the
unequal time correlator and on the turbulence duration, as discussed in section 3.4. However,
we showed in figures 8 and 9 that the predictions by the analytical models are more accurate,
when compared to the numerical results, if we use the proper magnetic spectra obtained from
the numerical simulations and evaluate the analytical model to compute the GW polarization
degree using equations (3.2) and (3.3). This shows that the assumption of a single power
law for the magnetic spectra affects more strongly the resulting polarization degree than
the assumptions of short duration and stationary turbulence. We observe that in this case,
the analytical model yields values of unity for the polarization degree at the peak, larger
than those obtained in previous analytical estimations, and in agreement with the numerical
simulations. Reference [65] studied the case of stationary turbulence, and computed the
resulting GW degree of circular polarization. They also showed different values than previous
analytical estimations for sources forced during larger times (around two Hubble times). It is
unclear whether the discrepancies are due to the long duration of the forcing or due to the
consideration of a single power law for the magnetic spectra. This aspect is left for future
work. The precise form of the polarization degree can be important if one wants to infer
the magnetic helicity from circular polarization measurements of GWs. Cosmological causal
magnetic fields may well be close to fully helical because the magnetic helicity is a conserved
quantity while the magnetic energy decays (and the correlation length increases), so the ratio
always increases until it reaches nearly 100% if the magnetic field dynamically evolves for long
enough, with a fractional helicity growth rate depending quadratically on its initial value:
longer (shorter) period is needed for a field with smaller (higher) initial fractional magnetic
helicity to become fully helical [120].

5.4 Detectability of the GW polarization using space-based GW detectors

Finally, we have explored the potential detectability of the GW signals by future space-based
GW detectors if primordial partially or fully helical magnetic fields were present or produced
at the EWPT. The resulting GW energy densities (shown in figure 11) are detectable by
LISA with a SNR of 10 for magnetic energy densities of 10% of the radiation energy density if
the magnetic field is initially given, and magnetic energy density ratios of at least 3% and 2%
if the magnetic field is initially driven for a short (around 10% of the Hubble time) and a long
duration (about two Hubble times), respectively. Even smaller magnetic amplitudes yield GW
signals that can be detectable with second-generation space-based detectors, e.g., BBO and
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DECIGO. Using the dipole response induced by the proper motion of the solar system in the
LISA interferometer channels, as recently studied in refs. [64, 79], a detectable polarized GW
signal with a SNR of at least 10 requires magnetic energy densities above 10% of the radiation
energy density (as shown in figures 12 and 13), which marginally coincides with the upper
bound imposed by the BBN on the energy densities of additional relativistic components based
on the abundance of light elements [114, 115, 121]. This is consistent with other turbulent
sources; see, e.g., ref. [64], in which they require strong first-order phase transitions (α ∼ 1)
to obtain a SNR of 10; see their figure 8. We can reach a maximum SNR of unity in the limit
of 10% of energy density transformed in magnetic fields only in the case where the magnetic
field is fully helical and forced for a long duration, following the numerical results of ref. [65];
see figure 13. Therefore, using the dipole response function of a planar space-based GW
detector as LISA is not enough to detect the signals computed in the present work, although
we highlight that our investigation is limited by the consideration of sub-relativistic velocities,
which possibly leads to an underestimation of the signal strength [11]. In addition, following
ref. [81], we have computed the power law sensitivity corresponding to a polarized GW signal
by cross-correlating two space-based GW detectors, e.g., LISA and Taiji, which breaks the
coplanarity of the detectors and allows one to detect polarization in the monopole response
functions. We have shown that the GW degree of circular polarization produced by primordial
magnetic fields generated at the EWPT can yield polarization SNR up to 20 if they are
initially driven for a short time (about 10% of one Hubble time) with a maximum magnetic
energy density of 10%, as long as the fractional magnetic helicity is |σM| ≥ 0.3 or, equivalently,
|PM| ≥ 0.5; see figure 12. This is due to the fact that the resulting GW amplitudes are larger
for smaller values of the fractional helicity; see figure 10, which compensates for the decrease
in magnetic helicity. When the magnetic field is initially given, the polarization SNR of the
GW signal stays approximately between 1 and 5, such that its potential detectability is more
challenging.

Data availability. The source code used for the simulations of this study, the Pencil
Code, is freely available [84]. The simulation data are also available at ref. [122]. The
calculations, the simulation data, and the routines generating the plots are also available on
GitHub18 [123].

Acknowledgments

We thank Arthur Kosowsky for useful discussion. ARP is supported by the French National
Research Agency (ANR) project MMUniverse (ANR-19-CE31-0020). Support through the
Swedish Research Council (Vetenskapsrådet), grant 2019-04234, and the Shota Rustaveli
National Science Foundation (SRNSF) of Georgia (grant FR/18-1462) are gratefully acknowl-
edged. We acknowledge the allocation of computing resources provided by the Swedish
National Allocations Committee at the Center for Parallel Computers at the Royal Institute
of Technology in Stockholm, and the A9 allocation of GENCI at the Occigen supercomputer
to the project “Opening new windows on Early Universe with multi-messenger astronomy.”

A Analytical model for polarization

We present in the current section the calculations of the GW spectra, both the symmetric
EGW(k) and the antisymmetric HGW(k) functions, and the degree of circular polarization

18https://github.com/AlbertoRoper/GW_turbulence/tree/master/JCAP_2107_05356.
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PGW(k), for a magnetic field with arbitrary fractional helicity that varies in one spatial
direction, determined by the parameter σ = σM. This model allows one to show analytically
that fully helical magnetic fields induce circularly polarized GW signals, and to predict the
dependence of the GW amplitude and polarization on the magnetic amplitude and fractional
helicity. We start with a transverse magnetic field given as

B(x, t) =
√

2
1 + σ2B0 Θ(t− 1)

 0
σ sin k0x
cos k0x

 , (A.1)

where σ ∈ [0, 1] is a parameter that modifies the helicity of the magnetic field, k0 is the
characteristic wave number, and EM = 1

2〈B
2〉 = 1

2B
2
0 is the magnetic energy density, with B0

the magnetic field amplitude. The Heaviside function Θ(t− 1) is included to indicate that
this field is zero for t ≤ 1. This field is a monochromatic 1D simplification of the general
function used in the turbulence simulations; see equation (2.10). Note that when σ = ±1,
we have a Beltrami (fully helical) field, that was studied in ref. [83] in the context of GW
generation, and used to study numerical accuracy of the Pencil Code simulations. The
vector potential A is defined such that ∇×A = B,

A(x, t) =
√

2
1 + σ2

B0
k0

Θ(t− 1)

 0
sin k0x
σ cos k0x

+ Ag, (A.2)

where Ag is gauge-dependent, and the helicity of the magnetic field is

HM = 〈B ·A〉 = 2σ
1 + σ2

B2
0
k0
, (A.3)

which is not gauge-dependent. The magnetic energy density EM(k) and the helicity HM(k)
spectra are

EM(k, t) = 1
2

∫
Ω1

B̃(k, t) · B̃∗(k, t) dΩ1 = EM Θ(t− 1) δ(k − |k0|), (A.4)

HM(k, t) =
∫

Ω1
B̃(k, t) · Ã∗(k, t)dΩ1 = 2σ

1 + σ2
2EM
k0

Θ(t− 1)|k0| δ(k − |k0|), (A.5)

where Ω1 = 2 is the one-dimensional solid angle and δ(k) is the one-dimensional Dirac’s delta
function. The fractional magnetic helicity is

PM = k0〈B(x, t) ·A(x, t)〉
〈B2(x, t)〉 = k0HM

2EM
= 2σ

1 + σ2 , (A.6)

which reduces to +1, 0, and −1, for σ = +1, 0, and −1, respectively. The stress tensor of the
magnetic fields is

Tij(x, t) = −BiBj + 1
2δijB

2, (A.7)

with

B2(x, t) = 2EM Θ(t− 1)
(

1 + 1− σ2

1 + σ2 cos 2k0x

)
, (A.8)
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and

−BiBj(x, t) = − 2EM
1 + σ2 Θ(t− 1)

 0 0 0
0 σ2(1− cos 2k0x) σ sin 2k0x
0 σ sin 2k0x 1 + cos 2k0x

 . (A.9)

Combining equations (A.8) and (A.9), we obtain the stress tensor

Tij(x, t) = EM Θ(t− 1)

 T11(x) 0 0
0 T22(x) T12(x)
0 T12(x) −T22(x)

 , (A.10)

with

T11(x) = 1 + 1− σ2

1 + σ2 cos 2k0x,

T22(x) = 1 + 1− σ2

1 + σ2 cos 2k0x−
2σ2

1 + σ2 (1− cos 2k0x) = 1− σ2

1 + σ2 + cos 2k0x,

T12(x) = − 2σ
1 + σ2 sin 2k0x, (A.11)

which becomes T11(x) = 1, T22(x) = cos 2k0x, and T12(x) = ∓ sin 2k0x in the fully helical
case (i.e., σ = ±1) studied in ref. [83]. Since GWs are produced by linear perturbations over
the metric tensor, and the stress tensor components are also perturbations over background
fields, constant modes (k = 0) do not produce GWs. For this reason, we can neglect the
terms that are homogeneous in space, and we write

TTT
ij (x, t) = EM

1 + σ2 Θ(t− 1)

 0 0 0
0 (1 + σ2) cos 2k0x −2σ sin 2k0x
0 −2σ sin 2k0x −(1 + σ2) cos 2k0x

 , (A.12)

where we noted that taking T11 to zero, the stress tensor becomes traceless and transverse
(TT), with the + and × modes,

T+(x, t) = EM Θ(t− 1) cos 2k0x, T×(x, t) = EMPM Θ(t− 1) sin 2k0x, (A.13)

where we have used PM, given in equation (A.6). In Fourier space, the resulting stress tensor
components are

T̃+(kx = ±2k0, t) = 1
2EM Θ(t− 1), T̃×(kx = ±2k0, t) = ∓1

2 iEMPM Θ(t− 1). (A.14)

The GW strains h̃+(kx, t) and h̃×(kx, t) are computed from the GW equation (2.2) with initial
condition h+,× = ∂th+,× = 0 at t = 1, and assuming flat non-expanding space-time for the
radiation-dominated epoch (see ref. [83] for more details),

h̃+(±2k0, t) = 3
k0

∫ t

1
T̃+(±2k0, τ) sin[2k0(t− τ)] dτ = 3

4k2
0
EM Θ(t− 1) (1− cos[2k0(t− 1)])

= 3
2k2

0
EM sin2[k0(t− 1)] Θ(t− 1), (A.15)

h̃×(±2k0, t) = 3
k0

∫ t

1
T̃×(±2k0, τ) sin[2k0(t− τ)] dτ

= ∓ 3i
2k2

0
PMEM sin2[k0(t− 1)] Θ(t− 1). (A.16)
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The spectral functions Sh(k, t) and Ah(k, t) are

Sh(2|k0|, t) =
∫

Ω1

[
h̃+(k, t)h̃∗+(k, t) + h̃×(k, t)h̃∗×(k, t)

]
dΩk

= 9
2k4

0

(
1 + P2

M

)
E2

M sin4[k0(t− 1)] Θ(t− 1), (A.17)

iAh(2|k0|, t) =
∫

Ω1

[
h̃+(k, t)h̃∗×(k, t)− h̃∗+(k, t)h̃×(k, t)

]
dΩk

= i
9
k4

0
PME2

M sin4[k0(t− 1)] Θ(t− 1), (A.18)

and zero for all the other values of the wave number k. The spectrum of the characteristic
amplitude hc(k, t), and its total value integrated over k, are

hc(2|k0|, t) =
√
kSh(k, t)

= 3
k2

0

√
|k0|

(
1 + P2

M
)
EM sin2[k0(t− 1)] Θ(t− 1), (A.19)

hc(t) =
(∫

Sh(k, t) dk
)1/2

= 3
k2

0

√
1
2
(
1 + P2

M
)
EM sin2[k0(t− 1)] Θ(t− 1). (A.20)

The characteristic amplitude averaged over oscillations in time is hc = 3
2

√
1
2(1 + P2

M)EM/k
2
0,

and the polarization Ph is
Ph = Ah(2|k0|, t)

Sh(2|k0|, t)
= 2PM

1 + P2
M
. (A.21)

The spectral functions Sḣ(k, t) and Aḣ(k, t) are

Sḣ(2|k0|, t) =
∫

Ω1

[˜̇h+(k, t)˜̇h∗+(k, t) + ˜̇h×(k, t)˜̇h∗×(k, t)
]

dΩk

= 9
2k2

0

(
1 + P2

M

)
E2

M sin2[2k0(t− 1)] Θ(t− 1), (A.22)

iAḣ(2|k0|, t) =
∫

Ω1

[˜̇h+(k, t)˜̇h∗×(k, t)− ˜̇h∗+(k, t)˜̇h×(k, t)
]

dΩk

= i
9
k2

0
PME2

M sin2[2k0(t− 1)] Θ(t− 1), (A.23)

such that PGW = Aḣ(k, t)/Sḣ(k, t) = Ah(k, t)/Sh(k, t) = Ph; see equation (A.21). The GW
spectrum ΩGW(k, t) and the total GW energy density are

ΩGW(2|k0|, t) = kSḣ(k, t)
6 = 3

2|k0|

(
1 + P2

M

)
E2

M sin2[2k0(t− 1)] Θ(t− 1), (A.24)

ΩGW(t) = 1
6

∫ ∞
0

Sḣ(k, t) dk = 3
4k2

0

(
1 + P2

M

)
E2

M sin2[2k0(t− 1)] Θ(t− 1). (A.25)

The GW energy density averaged over oscillations in time is ΩGW = 3
8(1 + P2

M)E2
M/k

2
0. The

energy ratio is ΩGW/EM = 1
2hc

√
1
2(1 + P2

M), which was reported in ref. [83] for the fully
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Figure 14. Functions 1
2 (1 +P2

M) and PM, that appear in the symmetric and antisymmetric functions
of the GW spectra, respectively, and degree of circular polarization PGW = 2PM/(1 + P2

M) obtained
for the 1D analytical model. We obtained the numerical fit PGW ∼ PM in the numerical simulations
of MHD turbulence; see figure 6.

helical field, i.e., PM = ±1. For larger (smaller) values of the fractional magnetic helicity
|PM|, this result predicts larger (smaller) amplitudes of the GW energy density by a factor
1 + P2

M ∈ [1, 2]; see figure 14. In turbulent simulations; see figure 10, we observe that ΩGW is
not noticeably dependent on PM if the magnetic field is initially given, and that it decreases
for larger values of |PM| if the magnetic field is initially driven.

We find that the symmetric functions Sh(k, t) and Sḣ(k, t), and hence the characteristic
amplitude hc(k, t) and the GW energy density ΩGW(k, t), are proportional to the function
1
2(1 + P2

M), while the antisymmetric functions Ah(k, t) and Aḣ(k, t), are proportional to PM.
These functions and the degree of circular polarization are shown in figure 14 compared to
the empirical relation PGW ≈ PM = 2σM/(1 + σ2

M), obtained from the numerical simulations;
see figure 6.

B LISA and Taiji interferometry

B.1 Time-delay interferometry

We derive here some of the expressions that are useful to compute the response functions
and sensitivity curves of LISA and Taiji. Both space-based GW detectors have triangular
configurations with three arms of the same length, L = 2.5 × 106 km for LISA [7], and
L = 3× 106 km for Taiji [124]. The combination of two arms with a common mass at their
vertices is a Michelson interferometer. Hence, the 3 arms of LISA or Taiji lead to three
interferometers that correspond to the physical channels X, Y , and Z. These channels are
linearly combined to obtain the time-delay interferometry (TDI) channels of LISA, commonly
known as A, E, and T [125], and we call C, D, and S, the analogous Taiji channels, as done
in ref. [81]. Following ref. [79], the time delay δt induced by a gravitational wave in each of
the detector arms is

σi = cδt

2L =
∑

λ=+,−

∫
h̃λ(k, t− L/c) eλab(k̂)Qabi (k), (B.1)
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where + and − are the helical polarization modes,19 e±ab(k̂) are the helical polarization basis
tensors,20 i indicates each of the interferometers i = 1, 2, 3, and Qabi (k) are the interferometer
response functions,21

Qab1 (k) = e−ikLk̂·x̂1
[
T (kL, k̂ · Û1) Û

a
1Û

b
1 − T (kL,−k̂ · Û3) Û

a
3Û

b
3

]
,

Qab2 (k) = e−ikLk̂·x̂2
[
T (kL, k̂ · Û2) Û

a
2Û

b
2 − T (kL,−k̂ · Û1) Û

a
1Û

b
1

]
,

Qab3 (k) = e−ikLk̂·x̂3
[
T (kL, k̂ · Û3) Û

a
3Û

b
3 − T (kL,−k̂ · Û2) Û

a
2Û

b
2

]
, (B.2)

with T being the i-th detector transfer function,

T (kL, k̂ · Û i) = e−
1
2 ikL(1+k̂·Û i) sinc

[
1
2kL(1− k̂ · Û i)

]
+ e+ 1

2 ikL(1−k̂·Û i) sinc
[

1
2kL(1 + k̂ · Û i)

]
, (B.3)

where sinc(x) = sin(x)/x. The vectors Û i are the unit vectors following the direction of the
arms, i.e., the vector pointing from spacecraft i to i + 1 (modulo 3), with i = 1, 2, 3. We
can define a reference frame in which the interferometer is located in the xz-plane, with the
three spacecraft located at x1 = (0, 0, 0), x2 = L(0, 0, 1), and x3 = 1

2L(
√

3, 0, 1), chosen for
simplicity. It can be shown that rotations of the plane do not affect the response function after
integrating over all directions in the sky [126]. Hence, the unit vectors along the arms are

Û1 = x̂2 − x̂1 = (0, 0, 1),
Û2 = x̂3 − x̂2 = 1

2(
√

3, 0,−1),
Û3 = x̂1 − x̂3 = −1

2(
√

3, 0, 1). (B.4)

We describe the wave vectors in spherical coordinates,

k = k(cosφ sin θ, sinφ sin θ, cos θ), (B.5)

with φ ∈ [0, 2π] and θ ∈ [0, π], such that the terms k̂ · x̂i that appear in the response functions
Qabi (k); see equation (B.2), are

k̂ · x̂1 = 0, k̂ · x̂2 = cos θ, k̂ · x̂3 = 1
2

(√
3 cosφ sin θ + cos θ

)
, (B.6)

19In the rest of the text we have used the linear + and × polarization modes, instead of the helical +
and − modes. The latter are useful in this section since the GW energy density and the helical spectra,
previously defined in the linear basis; see equations (2.19)–(2.22), can be expressed in the helical basis as
ΩGW(f) = Ω+

GW(f) + Ω−GW(f) and ΞGW(f) = Ω+
GW(f)− Ω−GW(f).

20The helical polarization basis tensors e±ab(k̂) are related to the linear polarization basis tensors e+,×
ab (k̂),

defined in equation (2.1), as [79, 95]

e±ab(k̂) =
√

1
2

(
e+

ab(k̂)± ie×ab(k̂)
)
.

21Reference [79] uses the convention ck = f , while in the present work we use ck = 2πf . Hence, equations (B.2)
and (B.3), when compared to their equivalents in ref. [79], present a factor of 2π dividing k.
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and the products k̂ · Û i that appear in the interferometer transfer functions T ; see equa-
tion (B.3), are

k̂ · Û1 = cos θ,

k̂ · Û2 = 1
2

(√
3 cosφ sin θ − cos θ

)
,

k̂ · Û3 = −1
2

(√
3 cosφ sin θ + cos θ

)
. (B.7)

The signals of the channels A, E, and T ,22 are obtained by linearly combining the X, Y , and
Z interferometer channels (or i = 1, 2, 3, in equation (B.1)),

ΣA = 1
3 (2σX − σY − σZ) , ΣE = 1√

3
(σZ − σY ) , ΣT = 1

3 (σX + σY + σZ) . (B.8)

Combining (B.1) and (B.8), we can define QabO (k) as a function of Qabi (k),

QabO (k) = 1
3

 2 −1 −1
0 −
√

3
√

3
1 1 1

Qabi (k), (B.9)

where O = A, E, and T .

B.2 Signal and response functions

The two-point correlation function of the signals that a stochastic GW background produces
in the time domain in two of the channels, O and O′, can be expanded as a function of the
peculiar velocity of the solar system, v/c = 1.23× 10−3 [79],

〈ΣO(t)ΣO′(t′)〉 = 1
8
∑

λ=+,−

∫
dk
[
Mλ

OO′(k)Sλh(k) cos
[
ck(t− t′)

]
+ v

c
DλOO′(k, v̂)

(
Sλh(k)− kdSλh(k)

dk

)
sin
[
ck(t− t′)

]
+O

(
v2

c2

)]
, (B.10)

where the strain spectral functions S±h (k),23 are defined using the + and − polarization basis,
such that Sh(k) = S+

h (k) + S−h (k) and Ah(k) = S+
h (k) − S−h (k). M±OO′(k) and D±OO′(k, v̂)

are the monopole and dipole quadratic interferometer response functions of the channels O
and O′,

M±OO′(k) = 4
∫ dΩk

4π e±ab(k̂)e±cd(−k̂)QabO (k)QcdO′(−k), (B.11)

D±OO′(k, v̂) = 4i
∫ dΩk

4π e±ab(k̂)e±cd(−k̂)QabO (k)QcdO′(−k) k̂ · v̂, (B.12)

22The following results and discussion are applicable to Taiji using C, D, and S, instead of A, E, and T .
23The autocorrelation function of the signal in equation (B.10) corresponds to equation (21) of ref. [79] in

terms of the spectral functions P±(k), defined as; see their equation (5),

〈h̃±(k, t)h̃±(k′, t)〉 = (2π)6δ3(k − k′)P±(k)
4πk3 .

In the present work we use the spectral functions S±h (k), defined as in equations (2.21) and (2.22), such that
we can relate them to each other with S±h (k) = 2P±(k)/k.

– 35 –



J
C
A
P
0
4
(
2
0
2
2
)
0
1
9

where v̂ is the unit direction of the peculiar velocity, and the wave number is ck = 2πf due
to the GW dispersion relation, such that we can express the response functions in terms
of f . The dipole response function appears due to the anisotropies induced by the proper
motion of the solar system. It depends on the angle α between the orientation of the detector
plane and the peculiar velocity of the solar system. Expressing k in spherical coordinates, see
equation (B.5), we can perform the integral over the directions on the sky,

M±OO′(k) = 1
π

∫ 2π

0
dφ
∫ π

0
e±ab(k̂)e±cd(−k̂)QabO (k)Qcd,∗O′ (k) sin θ dθ, (B.13)

where we have used QcdO′(−k) = Qcd,∗O′ (k) [126]. The product e±ab(k̂)e±cd(−k̂) can be written
as [79]

e±ab(k̂)e±cd(−k̂) = 1
4
(
δac − k̂ak̂c ∓ iεacek̂e

) (
δbd − k̂bk̂d ∓ iεbdek̂e

)
, (B.14)

where δab is the Kronecker delta and εabc is the Levi-Civita tensor. It can be shown that
M+

OO′(f) =M−OO′(f), so the monopole responses to the + and − modes are the same, and
hence, polarization of the GW signals cannot be detected unless we consider the dipole response
or combine more than one GW detector to break the coplanarity, as we do in appendix B.4.
The responses of the LISA channels A and E are the same, i.e.,MEE(f) =MAA(f), and
MTT (f) is much smaller in the low frequency regime, being insensitive to gravitational wave
signals. For this reason, the T channel is known as the “Sagnac” or null channel and it is
used to identify and subtract noisy signals [125]. The response of the combined A and E
channels isMAE(f) = 0 [79]. Note thatMAA(f) corresponds to the LISA geometrical factor
R̃A(f), commonly defined in the LISA community; see, e.g., refs. [81, 110, 127, 128], which
can be well-fit for LISA and Taiji by

R̃(f) = 3
10
[
1 + 0.6 (2πfL/c)2

]−1
. (B.15)

The monopole and dipole response functions of LISA and Taiji are shown in figure 15. The
dipole response function can be expressed as a function of the angle α between the normal of
the detector and the velocity of the proper motion v̂. Since we integrate over all directions of
k̂ in the sky, we can define the vector v in the frame of reference in which we have defined
the detector (in the xz-plane), such that the normal n̂ is in the y-direction, and due to the
symmetry of the integration over k̂, we can neglect the projection of v on the detector plane,
and write v = v(0, cosα, 0), or k̂ · v̂ = cosα sinφ sin θ. This allows us to compute D±OO′(k, α)
as a function of the angle α [79],

D±OO′(k, α) = i

π
cosα

∫ 2π

0
sinφ dφ

∫ π

0
e±ab(k̂)e±cd(−k̂)QabO (k)Qcd,∗O′ (k) sin2 θ dθ. (B.16)

It can be shown that D+
OO′(k, α) = −D−OO′(k, α) for O, O′ = A, E, T , and D±AA(k, α) =

D±EE(k, α) = 0 [79]. Hence, the relevant contributions from the dipole response function
are D+

AE(k, α) = D+
EA(k, α) = −D−AE(k, α) = −D−EA(k, α), and we can write D±AE(k, α) =

±DAE(k) cosα.
At the present time t0, the observed GW energy density, defined in equation (2.14), by

the detector is [94]

ΩGW(t0) = 1
12H2

0
〈ḣphys
ij (x, t)ḣphys

ij (x, t)〉 = π2f2

3H2
0
〈hphys
ij (x, t)hphys

ij (x, t)〉

= 2π2f2

3H2
0
〈h2

+(x, t) + h2
−(x, t)〉, (B.17)
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Figure 15. Monopole response functions (left panel) of the LISA A and E channels,MAA(f), the
Taiji C and D channels,MCC(f), and the LISA T and Taiji S null channels,MTT (f) andMSS(f)
respectively, compared with the analytical fit of the LISA and Taiji geometric function R̃A,C(f).
Dipole response functions (right panel) induced by the peculiar velocity of the solar system in the
LISA correlated A and E channels, DAE(f), and the Taiji C and D channels, DCD(f).

whereH0 = 100h0 km s−1 Mpc−1 and h0 takes into account the uncertainties of the Hubble rate
at the present time [94]. We have used the relation 〈ḣphys

ij ḣphys
ij 〉 = c2k2〈hphys

ij hphys
ij 〉 and the GW

dispersion relation ck = 2πf . The resulting GW spectrum ΩGW(f) = Ω+
GW(f) + Ω−GW(f) is

Ω±GW(f) = 2π2f3

3H2
0
S±h (f), (B.18)

analogous to equation (2.19), defined such that ΩGW(t0) =
∫

ΩGW(f) d ln f .
The time delays induced by the GW background in the interferometers lead to the signal

function SOO′(f) of the channels O and O′, which corresponds to the Fourier transform of the
two-point correlation function of the signals; see equation (B.10), obtained by transforming
t→ f and t′ → f ′, and then setting f = f ′. The signal function, expressed in terms of the
GW energy density polarization spectra Ω±GW(f); see equation (B.18), is [64, 79]

SOO′(f) = 3H2
0

8π2f3

∑
λ=+,−

[
Mλ

OO′(f) Ωλ
GW(f)

− 4iv
c
DλOO′(f, α)

(
Ωλ

GW(f)− f

4
dΩλ

GW(f)
df

)
+O

(
v2

c2

)]
, (B.19)

where theM±OO′(f) and D±OO′(f, α) are the monopole and the dipole response functions in
frequency space, obtained from equations (B.13) and (B.16), using the dispersion relation
ck = 2πf . The signal functions of the LISA A and E channels are

SAA(f) = SEE(f) = 3H2
0

8π2f3MAA(f) ΩGW(f), (B.20)

since D±AA(f, α) = D±EE(f, α) = 0 and M±AA(f) = M±EE(f) = MAA(f) [79]; see figure 15.
The signal functions obtained correlating the A and E channels are

SAE(f) = SEA(f) = −4i 3H2
0

8π2f3
v

c
DAE(f) cosα

(
ΞGW(f)− f

4
dΞGW(f)

df

)
, (B.21)
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where we have used the propertiesM±AE(f) =M±EA(f) = 0 and D+
AE(f, α) = −D−AE(f, α) =

DAE(f) cosα [79]; see figure 15. The helical GW spectrum is ΞGW(f) = Ω+
GW(f)− Ω−GW(f).

B.3 Signal-to-noise ratio and power law sensitivity

The detectability of a GW signal is studied in terms of its signal-to-noise ratio (SNR). The
SNR of the detector to a GW background combining two channels O and O′ is [64, 79, 126]

SNROO′ =
√∫ T

0
dt
∫ ∞
−∞

df S
∗
OO′(f)SOO′(f)
POn (f)PO′n (f) =

√
2
∫ T

0
dt
∫ ∞

0
df S

∗
OO′(f)SOO′(f)
POn (f)PO′n (f) , (B.22)

where T is the duration of the observation and POn (f) is the noise power spectral density
(PSD) of the channel O. The noise PSD Pn(f) of the LISA interferometer channels X, Y ,
and Z is based on the results from LISA Pathfinder; see ref. [129], and refs. [110, 127] for its
explicit derivation,

Pn(f) = Poms(f) +
[
3 + cos

(4πfL
c

)]
Pacc(f), (B.23)

where Poms(f) is the optical metrology system noise and Pacc(f) is the mass acceleration
noise,

Poms(f) = P 2
[ pm
L

]2
Hz−1

[
1 +

(2 mHz
f

)4
]
, (B.24)

Pacc(f) = A2
[ fm
L

]2 [(L/c)
s

]4
Hz−1

[
1 +

(0.4 mHz
f

)2
]

×
[
1 +

(
f

8 mHz

)4]( c

2πfL

)4
, (B.25)

with P = 15 and A = 3 being the LISA noise parameters [129]. For Taiji, these parameters
are P = 8 and A = 3 [124]. The characteristic frequency of LISA is f0 = c/(2πL) = 0.019 Hz
and Taiji’s is f0 = 0.016 Hz. The function Pn(f) corresponds to the noise auto-correlation of
the channels X, Y , and Z, and the noise cross-correlation spectra of two different channels
XY , XZ, and Y Z, are [128]

P cross
n (f) = −1

2 cos
(2πfL

c

)
[4Pacc(f) + Poms(f)] . (B.26)

Using the noise correlations of the interferometer channels, we can compute the noise PSD of
the LISA A, E, and T channels,

PAn (f) = PEn (f) = 2
3 [Pn(f)− P cross

n (f)] , P Tn (f) = 1
3 [Pn(f) + 2P cross

n (f)] . (B.27)

We now define the sensitivities to the GW energy density signal, ΩA
s (f), and to the

helical GW signal, ΞAEs (f), shown in figure 16, as

ΩA
s (f) = 8π2

3H2
0
f3 PAn (f)
MAA(f) , (B.28)

ΞAEs (f) = 4π2

3H2
0
f3

√
PAn (f)PEn (f)

(v/c)|DAE(f)| = 4π2

3H2
0
f3 PAn (f)

(v/c)|DAE(f)| , (B.29)
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Figure 16. Sensitivities and PLS to GW energy density Ωs(f) (left panel) and helicity Ξs(f) (right
panel) of LISA (‘A’), Taiji (‘C’), and the combined LISA-Taiji network (‘comb’); see appendix B.4.
The PLS are computed for a SNR = 10 and T = 4 years of duration of the mission. The polarization
PLS are computed limiting the maximum slope of the power law ΞGW(f) = Cpol

β fβ to βmax = 2 and
3; see figure 17 for larger values of βmax. The sensitivities of the LISA T and Taiji S null channels
are much larger at low frequencies than the other channels, so they are insensitive to GW signals
(left panel). The cross-correlations between LISA and Taiji channels yield a monopole sensitivity to
a polarized GW background; see Ξcomb

s (f), which is smaller than the dipole sensitivity induced in
LISA, ΞAEs (f), and Taiji, ΞCDs (f) (right panel), while their sensitivity to the GW energy density,
e.g., ΩED

s (f), is much larger compared to those of the self-correlations of LISA, ΩA
s (f), and Taiji,

ΩC
s (f) (left panel). The combination of the last two, Ωcomb

s (f), does not enhance significantly the
detectability of a single detector. We show in green dots the PLS reported in ref. [110] (left panel); see
their figure (2), with a SNR of 10 and T = 4 yr. Note that ref. [110] uses the X LISA channel instead
of A.

such that the SNR to a stochastic GW background, defined in equation (B.22), is

SNR =
√

SNR2
AA + SNR2

EE = 2
√
T

[∫ ∞
0

df
(ΩGW(f)

ΩA
s (f)

)2]1/2

. (B.30)

Following ref. [110], we compute the power law sensitivity (PLS) that corresponds to the
power law GW spectrum that leads to a specific SNR, taken to be 10 in the present work, as
suggested in ref. [110]. First, we take ΩGW(f) = Cβf

β and compute, for a large range of β
(e.g., −20 to 20), the value of Cβ that yields a SNR of 10 for a duration of the mission of
4 years (the nominal duration of the LISA mission) [7],

Cβ = SNR
2
√
T

[∫
df f2β

[ΩA
s (f)]2

]−1/2

. (B.31)

Finally, we construct the PLS curve by taking at each frequency the maximum value of the
functions Cβfβ . Note that the previous discussion also applies to Taiji using C and D instead
of A and E in equations (B.28)–(B.31). The resulting PLS of LISA and Taiji are shown in
figure 16.

In the case of parity odd signals, observed via the induced dipole response function due
to our proper motion in the LISA A and E channels, the polarization SNR of a stochastic
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GW background with helical spectrum ΞGW(f) is computed by integrating SAE(f) in time
and frequency; see equation (B.21),

SNRpol =
√

SNR2
AE +SNR2

EA =
√

2SNRAE (B.32)

= 4
√
T1yr

∫ T/(1yr)

0
cos2α(x)dx

∫ ∞
0

df
(

ΞGW(f)− 1
4fdΞGW(f)/d lnf
ΞAEs (f)

)2
1/2

.

The integral in time of cos2 α(t) has been computed in ref. [79] assuming a circular orbit of
LISA, ∫ 1

0
cos2 α(x) dx = 5 + cos 2(θv)

16 ∈ (0.25, 0.375), (B.33)

where θv is the angle of the peculiar velocity. We take the minimum value of the integral, i.e.,
0.25. Introducing this value into equation (B.32), the resulting SNR is

SNRpol = 2
√
T

∫ ∞
0

df
(

ΞGW(f)− 1
4fdΞGW(f)/d ln f
ΞAEs (f)

)2
1/2

. (B.34)

To obtain the PLS of a polarized GW signal, as before, we consider a power law helical
spectrum ΞGW(f) = Cpol

β fβ . We find that a special case is β = 4, for which the polarization
SNR is identically zero, and hence, such a signal is not detectable, independently of its
amplitude. For values β 6= 4, the constant Cpol

β is

Cpol
β = SNRpol

2
√
T |1− β/4|

[∫
df f2β

[ΞAEs (f)]2

]−1/2

. (B.35)

Thus, we construct the PLS by taking the largest value of the function Cpol
β fβ in the range of

β. Note that the same result applies to Taiji using ΞCDs (f) in equations (B.32)–(B.35). The
resulting polarization PLS curves of LISA and Taiji are shown in figure 17. As the value of β
gets close to 4, the denominator in equation (B.35) becomes larger, yielding large amplitudes
of the PLS at a cutoff frequency that becomes smaller as we get closer to 4. We compute the
PLS curves for β ∈ (−20, βmax) with βmax ∈ [2, 4−10−6] and observe a change of slope toward
βmax at the cutoff frequency. For slopes β ≤ 3, the cutoff occurs at a frequency larger than the
sensitivity peak, such that the potential detectability is barely affected by the cutoff. However,
if the helical GW signal has a slope between 3 and 3.95, the SNRpol is close to zero and the
detectability at slightly larger frequencies than the sensitivity peak is more challenging; see
figure 17. At even larger slopes, between 3.95 and 4, the cutoff frequency is below the peak
sensitivity and the SNRpol goes asymptotically to zero. An analogous behavior is obtained
when computing the PLS to GW signals with slopes larger than 4, e.g., by taking a range
β ∈ (−20, 3) ∪ (βmin, 20) with βmin > 4. For slopes βmin ≥ 4.2, the change of slope occurs
at frequencies larger than 5 × 10−3 (same as for βmax = 3). Hence, for slopes β ≥ 4.2, the
potential detectability is again unaffected by the cutoff. The resulting PLS taking βmin = 5 is
shown in the right panel of figure 17, compared to the PLS of ref. [64]; see their figure 7.

In the present work, we used the resulting helical PLS of LISA, ΞAEPLS(f), and Taiji,
ΞCDPLS(f), obtained by taking power law spectra with slopes in the range β ∈ (−20, 3)∪(4.2, 20),
which is valid for helical GW signals with slopes that are not between 3 and 4.2. The resulting
PLS of LISA and Taiji are used in figures 12 and 13 to study the potential detectability of
the polarized GW signals produced by primordial magnetic fields, computed from numerical
simulations of MHD turbulence.
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Figure 17. PLS to helical GW signals of LISA, ΞAE
PLS(f) (left panel), and Taiji, ΞCD

PLS(f) (right panel),
computed for a SNRpol = 10 and T = 4 years of duration of the mission, assuming power law slopes
up to βmax = 2, 3, 3.7, 3.95, 3.999 ≡ 4− 10−3, and 3.999999 ≡ 4− 10−6. The SNRpol is identically 0
when β = 4, such that in the limit β → 4, the helical signal cannot be detected; see equation (B.34).
The PLS that would be obtained ignoring the dΞGW(f)/d ln f term, Ξ0

PLS(f), and the PLS obtained
by combining the cross-correlated channels of the LISA-Taiji network, Ξcomb

PLS (f); see appendix B.4, are
shown for comparison. The horizontal lines correspond to the flat spectra yielding a SNRpol = 10:
h2

0 ΞAEflat = 10−10, h2
0 ΞCDflat = 4.16× 10−11, and h2

0 Ξcomb
flat = 5.1× 10−13; see equations (4.10)–(4.12). The

helical PLS computed in ref. [64]; see their figure (7), is shown in blue dots (right panel), compared
to the PLS obtained considering β ∈ (−20, 2) ∪ (5, 20), which shows a change of slope from β = 2 to
β = 5 around 10−2 Hz.

B.4 LISA-Taiji network
We now consider the possible combination of a network of space-based GW detectors, e.g.,
LISA and Taiji, following ref. [81]. In first place, the total SNR obtained by combining the
self-correlations of the LISA and Taiji channels (i.e., the correlations between two channels of
the same detector) is

SNR =
√

SNR2
AA + SNR2

EE + SNR2
CC + SNR2

DD =
√

2(SNR2
AA + SNR2

CC)

= 2
√
T

[∫
df Ω2

GW(f)
( 1

[ΩA
s (f)]2 + 1

[ΩC
s (f)]2

)]1/2

= 2
√
T

[∫
df
( ΩGW(f)

Ωcomb
s (f)

)2]1/2

, (B.36)

where we have defined the GW sensitivity of the combined LISA-Taiji network Ωcomb
s (f)

(shown in figure 16),

Ωcomb
s (f) =

( 1
[ΩA

s (f)]2 + 1
[ΩC

s (f)]2
)−1/2

= ΩA
s (f) ΩC

s (f)√
[ΩA

s (f)]2 + [ΩC
s (f)]2

. (B.37)

We again construct the PLS of the combined LISA-Taiji network Ξcomb
PLS (f); see figure 16, and

see that the improvement is very small compared to the single detector (i.e., Taiji) PLS.
We now consider the cross-correlation response functions by combining different channels

of LISA and Taiji. Similar to ref. [81], we define the I and V monopole response functions
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Figure 18. Helical response functionsMV
OO′(f) of cross-correlated channels of LISA and Taiji, with

OO′ = AE, AD, EC, and ED, and symmetric response functionMI
ED(f) [81], shown for comparison.

(for the I and V Stokes parameters) as

MI
OO′(f) = 1

2

(
M+

OO′(f) +M−OO′(f)
)
, MV

OO′(f) = 1
2

(
M+

OO′(f)−M−OO′(f)
)
, (B.38)

with O and O′ = A, E, T , C, D, or S, such thatMI
OO′(f) andMV

OO′(f) contribute to the
response functions to the GW energy density spectrum ΩGW(f) = Ω+

GW(f) + Ω−GW(f) and
to the GW helicity spectrum ΞGW(f) = Ω+

GW(f)− Ω−GW(f), respectively. The contributions
to the energy density sensitivity of the cross-correlated symmetric responsesMI

OO′(f) are
negligible, since their response functions are approximately zero at frequencies above 10−3,
and smaller than the self-correlated responsesMV

OO′(f), shown in figure 18 withMI
ED(f) for

comparison. The energy density sensitivity of the cross-correlated channels OO′ = AE, AD,
EC, and ED; see equation (B.28), is

ΩOO′
s (f) = 8π2

3H2
0
f3

√
POn (f)PO′n (f)
MI

OO′(f)
, (B.39)

which is shown in figure 16 with OO′ = ED for comparison, where we can see that its
sensitivity is much larger than the auto-correlation sensitivities ΩA

s (f) and ΩC
s (f) so we can

omit their effect on the SNR and the PLS. Hence, the combination of LISA and Taiji does
not significantly improve the detectability of a stochastic GW background signal ΩGW(f).

We now consider the sensitivity of the combined channels to a polarized GW background
signal ΞGW(f). Figure 18 shows the V response functions obtained by cross-correlating LISA
and Taiji channels, such that the helical sensitivity can be defined as

ΞOO′s (f) = 8π2

3H2
0
f3

√
POn (f)PO′n (f)
MV

OO′(f)
, (B.40)
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with OO′ = AE, AD, EC, and ED. We define the combined LISA-Taiji sensitivity as

Ξcomb
s (f) =

( 1
[ΞACs (f)]2 + 1

[ΞADs (f)]2 + 1
[ΞECs (f)]2 + 1

[ΞEDs (f)]2
)−1/2

= ΞACs (f) ΞADs (f) ΞECs (f) ΞEDs (f)√
[ΞACs (f)]2 + [ΞADs (f)]2 + [ΞECs (f)]2 + [ΞEDs (f)]2

, (B.41)

such that the corresponding polarization SNRpol is

SNRpol =
√

2
(
SNR2

AC + SNR2
AD + SNR2

EC + SNR2
ED

)
= 2
√
T

[∫
df

( ΞGW(f)
Ξcomb

s (f)

)2]1/2

. (B.42)

The resulting helical GW sensitivity and PLS, Ξcomb
s (f) and Ξcomb

PLS (f), respectively, of the
combined LISA-Taiji network are shown in figure 16. We use the resulting PLS to study the
potential detectability of polarized GW signals produced by primordial magnetic fields in
section 4.3; see figures 12 and 13.
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