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Abstract

In this study, we present a compressible test-field method (CTFM) for computing α-effect and turbulent magnetic
diffusivity tensors, as well as those relevant for the mean ponderomotive force and mass source, applied to the full
MHD equations. We describe the theoretical background of the method and compare it to the quasi-kinematic test-
field method and to the previously studied variant working in simplified MHD (SMHD). We present several test
cases using velocity and magnetic fields of the Roberts geometry and also compare with the imposed-field method.
We show that, for moderate imposed-field strengths, the nonlinear CTFM (nCTFM) gives results in agreement
with the imposed-field method. A comparison of different flavors of the nCTFM in the shear dynamo case also
yields agreement up to equipartition field strengths. Some deviations between the CTFM and SMHD variants exist.
As a relevant physical application, we study nonhelically forced shear flows, which exhibit large-scale dynamo
action, and present a reanalysis of low-Reynolds-number, moderate shear systems, where we previously ignored
the pressure gradient in the momentum equation and found no coherent shear-current effect. Another key
difference is that in the earlier study we used magnetic forcing to mimic small-scale dynamo action, while here it is
self-consistently driven by purely kinetic forcing. The kinematic CTFM with general validity forms the core of our
analysis. We still find no coherent shear-current effect, but do recover strong large-scale dynamo action that,
according to our analysis, is driven by incoherent effects.

Unified Astronomy Thesaurus concepts: Astrophysical magnetism (102); Cosmic magnetic fields theory (321);
Astrophysical processes (104)

1. Introduction

Over the past few decades, both local and global numerical
simulations of accretion disks have demonstrated that magnetic
fields can be generated by a dynamo and drive turbulent
accretion through what is believed to be the magnetorotational
instability (Brandenburg et al. 1995; Hawley et al. 1996;
Hawley 2000). Real disks are always stratified about the
midplane, which can lead to kinetic helicity and thereby to an α
effect. Whether or not this really explains what is seen in
numerical simulations is unclear, because there are other,
potentially more powerful alternatives. One of them is the
shear-current (SC) effect. It is a mean-field dynamo effect that
can, in principle, generate large-scale magnetic fields based on
the off-diagonal components of the turbulent magnetic
diffusivity tensor (Rogachevskii & Kleeorin 2003, 2004).
Whether or not this effect can also be responsible for the large-
scale dynamo (LSD) seen in some nonhelically forced shear
flows continues to be debated (see, e.g., the recent papers
Squire & Bhattacharjee 2016; Käpylä et al. 2020; Zhou &
Blackman 2021, with contradictory results for and against). As
we will discuss in this paper, these discrepancies follow from
the different sets of equations used (incompressible, Burgers,
and full (M)HD) and from the different assumptions employed
in the analysis methods that retrieve the turbulent transport

coefficients. This SC dynamo has been proposed to avoid the need
for the more classical helicity-based α effect in situations where
stratification and rotation are inefficient or absent, and hence
neither kinetic helicity nor α effect can arise. One major difficulty
in resolving the aforementioned contradictions has been the lack
of a reliable quantitative measurement device capable of returning
the turbulent transport coefficients for MHD background
turbulence due to a small-scale dynamo (SSD).
The imposed-field method was the first machinery developed

in the 1990s (Brandenburg et al. 1990) for the retrieval of the α
effect and turbulent pumping by imposing uniform magnetic
fields in different directions, measuring the mean (a.k.a.
turbulent) electromotive force (EMF), and solving for the
unknown coefficients. Gradients of the mean field contribute to
the mean EMF via the turbulent diffusivity tensor, hence it is
important to guarantee that they remain weak in the evolving
magnetic field. Therefore, the field has to be reset after suitable
time intervals, and not taking this into account properly has led
to some misinterpretations of the results (see the discussion in
Ossendrijver et al. 2001; Käpylä et al. 2010, and the references
therein). When properly used, this method continues to be a
valuable tool and is also employed in this work to validate the
test-field results in the simplest cases.
The next toolbox was introduced by Brandenburg &

Sokoloff (2002) as a method of moments: To tackle the large
amount of unknown transport coefficients entering the mean
EMF while there are only three equations relating it to the mean
field, additional equations were constructed by forming a
sufficient number of moments. Measuring them from the
numerical models then allows to solve for the coefficents. This
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method can retrieve both the α and the turbulent diffusivity
tensors, but it relies on the mean field, generated in the system,
to be unsteady, typically oscillatory. This method has various
incarnations in many astrophysical contexts (e.g., Squire &
Bhattacharjee 2015; Shi et al. 2016; Simard et al. 2016; Käpylä
et al. 2018). Occasionally, however, it is employed in an
improper way by assuming some of the coefficients to be
negligible; putting them deliberately to zero then renders the
fitting meaningless in the worst case (e.g., Simard et al. 2013;
Squire & Bhattacharjee 2015; Shi et al. 2016).

The third alternative is the test-field method (TFM), introduced
by Schrinner et al. (2005, 2007), where linearly independent test
fields are subjected to the velocity taken from a simulation,
including both its fluctuating and mean constituents. The test
fields are passive, i.e., they do not affect the course of the
simulation itself, except possibly through the time-step control.
The equations for the corresponding fluctuating magnetic fields
are solved, which then allows for the full set of tensor coefficients
to be retrieved (Brandenburg et al. 2008b). If the simulation is
purely hydrodynamic, this approach is kinematic, but if it is an
MHD run, where the generated magnetic field does backreact on
the flow, the method is quasi-kinematic (QKTFM). For both
variants, however, the same procedures apply. This method has
proven immensely successful and has been utilized within a broad
spectrum of astrophysical—stellar, planetary, and disk dynamo—
applications, including the shear dynamo problem (Brandenburg
et al. 2008a). The QKTFM has been applied in Cartesian domains
with horizontal (xy) averaging, with and without shearing-periodic
boundary conditions, as well as in spherical domains, with
longitudinal averaging. The latter type of models (see, e.g.,
Warnecke et al. 2018) has included rotation and stratification and
is hence not optimal for clarifying whether or not the SC effect
can be important. Also, it is not trivial to separate this effect from
others contributing to the turbulent magnetic diffusivity tensor
such as the Rädler effect with its antisymmetric contribution to the
diffusivity tensor. When an SSD is excited in such setups, it is
supposed to boost the SC effect (the scenario proposed by Squire
& Bhattacharjee 2016). The (Q)KTFM however, does not apply:
SSD action generates MHD background turbulence, the magnetic
part of which is not accounted for.

A core machinery toward a TFM, which can take into
account the magnetic background turbulence, was presented by
Rheinhardt & Brandenburg (2010, hereafter RB10), albeit
relying on simplified MHD (SMHD), where pressure gradient
and self-advection of the flow were dropped from the
momentum equation. Another step further was taken in Käpylä
et al. (2020), admitting self-advection, while yet ignoring the
pressure gradient and hence variations of density. This study
has been deemed inconclusive (see, e.g., Zhou & Black-
man 2021), as second-order correlation approximation (SOCA)
calculations of Squire & Bhattacharjee (2016) were interpreted
to indicate a decisive role of the pressure gradient in creating
the magnetic SC effect. In contrast, we argued that the
magnetic SC effect continues to exist in the SMHD in the ideal
limit, albeit with a sign not supportive of a mean-field dynamo.
This paper aims to introduce a method meeting all require-
ments, namely the compressible test-field method (CTFM). We
present test cases to demonstrate the limits of its applicability
and then make a first attempt to apply it to the shear dynamo
problem in the regime of moderate Reynolds number, magnetic
Prandtl number, and shear by measuring the turbulent transport

coefficients and interpreting them in the framework of mean-
field dynamo theory.
We should clarify from the outset that our primary goal in

the calculation of mean-field transport coefficients is, at
present, not to utilize them in more economic mean-field
models of astrophysical dynamos but rather to provide some
understanding of the turbulent processes found in progressively
more realistic simulations of such dynamos. In principle, our
computations can also identify specific targets of what to look
for in future studies. We further note that for the first steps to
understand the SC effect with the CTFM, we use the simplest
possible setup, excluding physically important effects such as
rotation and stratification, thus studying this effect in isolation.
This approach is chosen to gain physical insights into this
effect, although it does not allow us to assess its relevance in
astrophysical objects.

2. Model and Methods

The full MHD (FMHD) system of equations, here with an
isothermal equation of state, is more complex than that of the
SMHD used in earlier TFMs because of the occurrence of the
pressure gradient. Consequently, we need an additional
evolution equation for the density as the counterpart to the
Poisson equation for the pressure in incompressible MHD.
Also, the viscous force is now more complex. Hence, we have

( )h= ´ + + A U B F A, 1A
M

2

( · ) · ( )
( )

r r nr  + = ´ + + - U U J B F P2 ,
2

U
K S

( · ) · ( )r + = - U Uln , 3

where J=∇×B is the current density with the vacuum
permeability set to unity. Furthermore,

ˆ ( )= + A A xSA , 4A
y

ˆ ( )W= + + ´ U U y USU 2 , 5U
x

( )= ¶ + ¶ Sx 6t y

are linear operators. Here, ˆW = Wz is the global angular
velocity vector, Sij= (Ui,j+Uj,i)/2− δij∇ ·U/3 are the com-
ponents of the traceless rate-of-strain tensor S, where commas
denote partial differentiation, and P is the pressure related to
the density via r=P cs

2 with the isothermal sound speed cs.
Terms containing S are due to a linear background shear flow
of the form ˆ( ) =U ySxS . Magnetic diffusivity η, kinematic
viscosity ν, and sound speed are assumed constant. For rc lns

2

(“pseudo-enthalpy”) we shall employ the symbol H.
Throughout, we define mean quantities by horizontal

averaging (over x and y), denoted by an overbar. Hence, the
means depend on z and t only. Fluctuations are denoted
by lowercase symbols or primes, e.g., = -a A A ,
( )´ ¢ = ´ - ´u b u b u b, and = -f F FK,M K,M K,M. The
horizontal average obeys the Reynolds rules, given that U(S)

can effectively be treated as a mean flow. For peculiarities
involved here, we refer to Käpylä et al. (2020), Section 2.3.1.

2.1. Compressible Test-field Method

The starting point for establishing any TFM is the evolution
equations for the fluctuations, here of magnetic vector

2

The Astrophysical Journal, 932:8 (17pp), 2022 June 10 Käpylä, Rheinhardt, & Brandenburg



potential, a, velocity, u, and pseudo-enthalpy, ( )r= ¢h c lns
2 ,

which follow from Equations (1)–(3) as

( ) ( )h= ´ + ´ + ´ ¢ + + a U b u B u b f a, 7A
M

2

[ ( ) ]
· · ( · )

( · )

[ · · ( · ) ] ( )

r

n

n


  

 

  

=- + ´ + ´ + ´ ¢

- - - ¢ +

+ +

+ + + ¢

- u J b j B j b

U u u U u u f

u u

h

h H h c

3

2 8

U
ref

1

K
2

s
2S s s

· · ( · ) · ( )   = - - - ¢ - U u u uh h H h c . 9s
2

In order to avoid the occurrence of triple correlations, we have,
however, modified the momentum equation by replacing the
density in the denominator of the Lorentz acceleration with a
reference density ρref. It is set equal to the volume-averaged
density and is constant in time as mass is conserved. A possible
refinement would consist in using a horizontal average instead,
thus allowing ρref to change in time and to depend on z.

2.1.1. The Zero Problem

In the QKTFM (see Section 2.2), the mean electromotive
force = ´ u b is a functional of only u, U , and B (linear in
B ). However, in the more general case with a magnetic
background turbulence, this is no longer so. To deal with this
difficulty, RB10 added the evolution equations for the back-
ground turbulence ( )( ) ( )u b,0 0 to the equations of the TFM. In
the context of (isothermal) FMHD, we add the evolution
equations for ( )( ) ( ) ( )u b h, ,0 0 0 , which by definition apply for
zero mean field—thus, we name this system the “zero
problem.” Now, let all variables be split into parts independent
of (superscript “(0)”) and vanishing with B (superscript “(B)”),
respectively, like u= u(0)+ u(B), etc. Then

( )

(
)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )h
= ´ + ´ + ´

+ ´ + ´ ¢ +
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0 2
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and the “zero problem” is given by

( ) ( )( ) ( ) ( ) ( ) ( )h= ´ + ´ ¢ + + a U b u b f a , 13A 0 0 0 0
M

2 0

( )
· · ( · )

( · )

[ · · ( · ) ]( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
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= - -
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15
U u
u u

h h H
h c .

0 0 0

0 0
s
2 0

Note that, while Equations (10)–(11) are visibly inhomoge-
neous7 via the terms u(0)× B and J × b(0)+ j(0)× B (both
homogeneous in B ), this also holds true for Equation (12) via
∇ · u(B), which does not vanish for ¹B 0.
In general, = ´ u b can be split into a contribution

( ) ( ) ( )= ´ u b0 0 0 , which is independent of the mean field, and

( )( ) ( ) ( ) ( ) ( ) ( ) ( )= ´ + ´ + ´ u b u b u b , 16B B B B B0 0

where u(B) and b(B) denote the solutions of Equations (10)–(11).
In the presence of an SSD, ( ) 0 is commonly expected to
vanish, hence we do not consider it any further.

2.1.2. The Kinematic Limit

In the kinematic limit, the mean magnetic field evolving in
the main run is too weak to cause any significant deviations of
the fluctuating fields from the background turbulence, that is,
u→ u(0), b→ b(0), and h→ h(0). Correspondingly, to obtain all
unknowns as first-order quantities in B , terms like
( )( ) ( )´ ¢u bB B in Equations (10)–(12) need to be dropped, and
in u× B , j× B , ´J b, the fluctuations u, j, b need to be
replaced by their counterparts from the “zero problem,” u(0),
j(0), b(0). Thus, we obtain

(
) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )h
= ´ + ´ + ´

+ ´ ¢ +
 a U b u B u b

u b a , 17

A B B B

B B

0 0

0 2

[

( ) ]
· ·

( · · )
( · )

[ · ·

( · · ) ] ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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=- + ´ + ´

+ ´ + ´ ¢
- -
- + ¢
+ +

+ +

+ + ¢

- u J b j B

j b j b

U u u U
u u u u

u u

h

h H

h h c

3

2

18

U B B
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ref
1 0 0

0 0

0 0

2

0 0
s
2

S s

s s

( )

· ·
( · · ) ·

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
 

  
=- -

- + ¢ -


19

U u
u u u

h h H
h h c .

B B B

B B B0 0
s
2

This system is an inhomogeneous linear system for the
variables a(B), u(B), and h(B), with its inhomogeneities being in
turn linear and homogeneous in the mean field B . Hence,
disregarding the influence of initial conditions, there are
solutions linear in B and vanishing for =B 0. This qualifies
Equations (17)–(19) directly for being cast into a test-field
procedure. As a caveat, we should mention that this system
may have nonvanishing solutions for =B 0, namely unstable
eigenmodes of its homogeneous part.

7 The more precise term is “heteronomous” as used in the nonlinear
dynamical systems context.
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In the kinematic limit, the mean EMF ( ) B , the mean
ponderomotive force ( ) B , and the “magnetically induced mass
source” ( ) B have likewise to become linear in the fluctuations
b(B), u(B), h(B), so we write

( )( ) ( ) ( ) ( ) ( )= ´ + ´ u b u b , 20B B B0 0

for the contribution to ( ) B from the Lorentz force

( )( ) ( ) ( ) ( )´ + ´j b j b 21B B0 0

(the factor 1/ρref omitted here), for that resulting from self-
advection

· · ( )( ) ( ) ( ) ( ) - -u u u u 22B B0 0

and that resulting from the nonlinear viscous force part

· · ( )( ) ( ) ( ) ( ) +h h . 23B B0 0s s

Finally, from the advective term in the continuity equation, we
obtain

· · ( )( ) ( ) ( ) ( ) ( ) = - - u uh h . 24B B B0 0

2.1.3. Test Fields and Parameterizations

We solve Equations (10)–(12) not by setting B to the actual
mean field resulting from the solutions of Equations (1)–(3) but
by setting it to one out of four test fields B(i), i= 1,K, 4. Those
are

( ) ( ) ( )( ) ( )= =B Bk z k zcos , 0, 0 , sin , 0, 0 , 25B B
1 2

( ) ( ) ( )( ) ( )= =B Bk z k z0, cos , 0 , 0, sin , 0 , 26B B
3 4

where kB is the wavenumber of the test field, being a multiple
of the wavenumber corresponding to the vertical extent of the
computational domain. From the solutions of
Equations (10)–(12) we can construct for each B(i) (superscripts
(i) left out hereafter) the mean electromotive forces

( )( ) ( )= ´ u bB B , the mean ponderomotive forces
( · · )( ) ( )r n = ´ - + j b u u h2B B

ref s , and the

mean mass sources ( · )( ) ( )= - u hB B according to
Equations (32)–(24), and express them in terms of the mean
field by the ansatzes

( )( ) a h= - B J , 27i
B

ij j ij j

( )( ) f y= - B J , 28i
B

ij j ij j

( )( ) s t= - B J , 29B
i i i i

where i, j adopt only the values 1, 2 as a consequence of =J 0z

and setting (the anyway constant) B z arbitrarily to zero. Hence,
each of the four tensors, αij, ηij, fij, ψij, has four components,
and together with the vectors σi and τi, we have 20 unknowns.
αij, fij, and σi are pseudo-quantities, ηij, ψij, and τi true ones.
Note that often the α and η tensors are defined just as the
symmetric parts of our αij and ηij while their antisymmetric
parts are cast into the vectorial coefficients of the γ and δ

effects. The coefficients α, η (or β), γ, and δ describe then, in
turn, the effects of turbulent generation, diffusion, pumping and
the (nongenerative, nondissipative) so-called Rädler effect. In
the presence of shear, the coefficient ηyx plays a prominent role;
see Section 3.2.5. In spite of what could be expected from
the Lorentz force, being quadratic in B, the turbulent

ponderomotive force Equation (28) is with leading order linear
in B . This is because of the effect of the magnetic background
turbulence b(0) via, in the kinematic limit,

( ) ( ) ( ) ( )´ + ´j b j bB B0 0 . A mean mass source ( ) B due to
the nonvanishing vectors σ or τ requires anisotropy of the
turbulence. It is not considered in this work, nor is ( ) B due to
nonvanishing f and ψ.

2.1.4. The Nonlinear Case

In the QKTFM, only the velocity matters for the turbulent
transport coefficients and can hence readily be identified with
one of the “main runs,” i.e., system (1)–(3), solved simulta-
neously with the test problems. Thus, an opportunity to deal
with quenching, i.e. the effect of the evolving mean field in the
main run onto the fluctuating velocity and thus the coefficients,
opens up. Trying to proceed analogously in the CTFM
encounters a threefold difficulty: First, Equations (10)–(12)
are in general nonlinear partial differential equations, thus
conflicting with the requirement that the coefficients measured
by a TFM have to be independent of the amplitude of the test
fields, which implies linearity. Second, even when dropping the
terms quadratic and bilinear in u(B), b(B), and h(B), these
variables would show nonlinear dependences on the amplitude
of B by virtue of terms of the form u(B)× B etc. Third, there is
no obvious channel through which the fluctuating quantities of
the main run, which carry the imprint of the evolving mean
field of the LSD, would enter the system (10)–(12).
All three difficulties can be overcome through a trick: We

identify u, b, and h partly with the corresponding quantities
u(mr), b(mr), and h(mr) of the main run in such a way that the
system (10)–(12) becomes formally linear and its solutions
linear functionals of B . Mathematical rigor, however, is lost as
in general u(mr)≠ u(0)+ u(B), etc. While it is inevitable to
replace u by u(mr) in u× B , b by b(mr) in ´J b, and
j by j(mr) in j× B , there are several choices to re-form the
bilinear and quadratic terms ( ) ( )´ ¢u b B , ( ) ( )´ ¢j b B ,
( · ) ( ) ¢u u B , ( · ) ( ) ¢h Bs , and ( · ) ( ) ¢u h B . For example,
( ) ( )´ ¢u b B can be rewritten as

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
´ ¢ + ´ ¢
´ ¢ + ´ ¢

u b u b

u b u b

or

. 30

B B

B B

mr 0

0 mr

Likewise, one writes the fluctuating Lorentz force as

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
´ ¢ + ´ ¢
´ ¢ + ´ ¢

j b j b

j b j b

or

, 31

B B

B B

mr 0

0 mr

the factor 1/ρref again having been omitted here. The
fluctuating self-advection term and the fluctuating nonlinear
viscous force part, as well as the fluctuating part of the
advective term in the continuity equation, are rewritten in an
analogous way. All these versions are linear in quantities with
the superscript (B). Identifying B with any of the test fields, we
call the systems (17)–(19) and (10)–(12) with any combination
of the above rearrangements applied the test problems and their
solutions the test solutions. As we have five bilinear/quadratic
terms, altogether 32 different versions (“flavors”) of the CTFM
exist, out of which, however, we consider only the 4 already
employed in earlier works. Note that the different flavors have
in general different stability properties. For most of the runs of
this work, we chose to use the respective first versions of
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Equations (30)–(31), etc. This choice corresponds to what is
called the ju flavor; see Table 1 of RB10.

In the kinematic limit B 0, all flavors of the CTFM
converge and thus have to yield identical results up to roundoff
errors.

2.1.5. Construction of Functionals Linear in B

To guarantee that the mean EMF ( ) B , the mean ponder-
omotive force ( ) B , and the mean “magnetically induced mass
source” ( ) B also become formally linear functionals of B , one
proceeds analogously to the treatment of the fluctuating parts of
the bilinear/quadratic terms, e.g.,

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
= ´ + ´
= ´ + ´

 u b u b

u b u b

or

; 32

B B B

B B

mr 0

0 mr

see Equations (29) and (30) of RB10. Henceforth we drop the
superscript “mr” so that quantities without a superscript always
refer to the main run.

2.1.6. Remarks

1. The major advance afforded by the new method is to
provide a tool, which is reliable when magnetic back-
ground turbulence is present and compressibility is fully
taken into account, albeit restricted to isothermality.
However, it deals with nonlinearity in the same way as
the earlier methods for this class of problems.

2. An analogous, yet simpler TFM can be established for
incompressible MHD and the theoretical basis for that
was laid out in Appendix A of RB10.

3. Higher than second-order correlations are already enter-
ing the transport coefficients in the kinematic limit (then
of the fluctuations b(0), u(0), and h(0)) beyond SOCA. It is
one of the strengths of any TFM not to be restricted to a
certain maximal correlation order.

4. Given the lack of mathematical rigor of the nonlinear
version of the method, agreement of all or at least some of
its different flavors may provide a heuristic argument for
correctness.

5. The transport coefficients delivered by the nonlinear
version are dependent on the mean field in the main run,
but not on the amplitude of the test fields. Yet, for the
general case of poor scale separation, the coefficients do
depend on the scale of the test fields kB. Hence, for a
meaningful application to the interpretation of the main
run, it is important to guarantee that the dominant scale
of the mean field observed in it agrees with that of the
test fields. That granted, the coefficients can be
employed to establish a mean-field model of the main
run, the validity of which, however, is limited to just the
observed mean field; see Tilgner & Brandenburg (2008)
for an example illustrating such a limitation. Predicting
correctly a zero growth rate from such a model for a
main run with a saturated mean field on an MHD
background would provide a strong argument for the
correctness of the nonlinear version; see Brandenburg
et al. (2008b) for such a study regarding the QKTFM.
We defer this to future work.

2.1.7. Mean-field Equations

For completeness, we provide here the equations governing
the mean quantities A , U , and H

ˆ ( )h¶ = - + ´ + + A x U B ASA , 33t y
2

ˆ ·
( · ) ·

( )

n n
r

  W
  

¶ = - - - - ´

+ + +
+ ´ + 

U y U U U

U U

J B

SU H

H c

2

3 2

,

34

t x

2
s
2

ref

S

· · ( ) ¶ = - - + U UH H c . 35t s
2

Note that in this most general form, all quantities comprise
“(0)” and “(B)” constituents. Thus, the vorticity dynamo is also
covered, to model which, however, one would need a
parameterization of ( ) 0 and ( ) 0 in terms of ( )U 0 . The CTFM
cannot produce such.

2.2. Quasi-kinematic TFM

We state here for comparison the governing equation for the
QKTFM (see also Schrinner et al. 2005), which is just
Equation (10) with b(0)= 0, while dropping Equations (11)–(12).
Hence Equation (32) reduces simply to

( )( ) ( )= ´ u b , 36B B

and we find the contribution ( ) ( )´u bB 0 missing. Again, for
further details see RB10.

2.3. Resetting

The test problems Equations (10)–(12), being linear, can
have unlimitedly growing solutions, but usually the measured
transport coefficients nevertheless show intervals in which they
are statistically stationary, in other words, they show
“plateaus.” If these are absent altogether, we disregard such a
measurement or try to improve it by lowering the time step or
increasing the resolution. We reset the test solutions after
regular intervals (typically every 15–20 turnover times in this
study); see Hubbard et al. (2009) for a discussion. Each
resetting interval hence contains an initial transient, which we
remove from the analysis. If the coefficients also show
nonstationary behavior toward the end of the resetting interval,
these parts are removed, too.

2.4. Comments on Fluctuations and Averages

The CTFM yields coefficients, which still depend on z and t.
We usually present them as quantities that are additionally
averaged over these coordinates, but we emphasize that the
fluctuations in z and t can themselves be an intrinsic component
of another class of dynamos, for example, the incoherent α–
shear dynamo (Vishniac & Brandenburg 1997). The fact that
the mean-field coefficients, and hence also the mean fields,
fluctuate in those remaining coordinates is a common feature of
mean-field theory in cases lacking strong separation between
the spatiotemporal scales of mean and fluctuating quantities.
Dealing correctly with limited scale separation requires
nonlocal effects to be properly taken into account (Branden-
burg et al. 2008c; Rheinhardt & Brandenburg 2012; Branden-
burg & Chatterjee2018), but this does not at all compromise the
usefulness of mean-field theory. The CTFM, without any
modifications, is capable of dealing with scale dependence
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w.r.t. z by varying the wavenumber kB, and in this paper, we
apply the kinematic CTFM to study scale dependence in the
shear dynamo context. For temporal nonlocality, time-depend-
ence (harmonic or exponential) merely has to be added to the
specification of the test fields, Equations (25) and (26).

2.5. Random Forcing

We utilize the standard random forcing as implemented in
the PENCIL CODE (Pencil Code Collaboration et al. 2021),
which employs white-in-time harmonics. Their wavevectors
are chosen from a thin shell in k space of radius kf, further
requiring that they fit into the computational domain. We also
exclude the case ky= 0 to avoid a mean field or flow to be
directly sustained.

2.6. Suppression of the Vorticity Dynamo

The runs with shear alone (Ω= 0) are prone to a
hydrodynamic instability, leading to the generation of mean
flows and usually referred to as the vorticity dynamo (see, e.g.,
Elperin et al. 2003; Käpylä et al. 2009). As in Käpylä et al.
(2020), we prefer to suppress these flows to focus on studying
the magnetic shear-current effect in isolation. The procedure
adopted there, namely subtracting xy-averaged mean flows, is
not a sufficient measure here as not all the mean flows are
captured. Hence, we turn to another method, namely suppres-
sing the vorticity dynamo by adding a small amount of rotation
to the system. For Ω and S of opposite signs, which is the
standard case in galactic and accretion disks, we would be
limited to the range where q≡−S/Ω<2, as at the upper limit
the flow would become Rayleigh unstable. If we, however,
choose the same sign, hence a negative q, we can avoid this
limitation. Here, we investigate values of q in the range [−40,
K, −10] and choose the maximum value that still suppresses
the vorticity dynamo, but does not yet significantly affect the
test-field measurements; see Section 3.2.1.

2.7. Input and Output Quantities

The simulations are fully defined by choosing shear
parameter S, rotation rate Ω, the forcing amplitude and
wavenumber kf, and the diffusivities ν and η. For normal-
izations we use the length scale -k1

1, with k1= 2π/L, where L is
the extent of the simulation domain in any direction, and the
acoustic timescale ( )t = -c ks s 1

1. The rotation rate Ω and shear
rate S are normalized by the acoustic timescale as ˜ tW = W s and
˜ t=S S s, respectively, and wavenumbers as ˜ =k k k1. The
boundary conditions are periodic in y and z, while shearing-
periodic in x.

For the velocity field, we define a time-averaged rms value
as ⟪= ñ ñuu trms

2 1 2 and a time-dependent variant
urms(t)=〈u2〉1/2. Here, 〈.〉 denotes volume averaging and 〈.〉ξ
averaging over a coordinate ξ. Similarly, we define rms values
for the magnetic field ⟪= ñ ñBB trms

2 1 2 and Brms(t)= 〈B2〉1/2,
while = á ñB Bi i z,rms

2 1 2 are the rms values of the mean-field
components. The magnetic field is normalized by the
equipartition field strength, ⟪r= ñ ñuB teq

2 1 2 . Simulation
results are often shown as functions of the time in units of
turnover time, turmskf.

For diagnostics, we quantify the strength of the turbulence
by the fluid and magnetic Reynolds numbers:

( )
n h

= = =
u

k

u

k
Re , Re Pr Re, 37rms

f
M

rms

f
M

where

( )n
h

=Pr 38M

is the magnetic Prandtl number. The Lundquist number is given
by

( )
h r

=
B

k
Lu . 39rms

f ref

The strength of the imposed shear is measured by the dynamic
shear number

( )=
S

u k
Sh . 40K

rms f

We normalize the turbulent magnetic diffusivity tensor by the
microscopic diffusivity η.

2.8. Interpretation of the Dynamo Instability

As in Käpylä et al. (2020), we compute three different
dynamo numbers describing a 1D mean-field dynamo model,8

in which both the coherent SC effect and the incoherent ones
due to αyy and ηyx fluctuations with zero mean are taken into
account. The coherent shear-current effect is characterized by

( )
h

h hº + +h D
S

k

1
, 41S

z
xy yx

T
2 2

2
⎜ ⎟

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥

where ηT= η+ ηt, ( )h h h= + 2t xx yy , ( )h h= - 2xx yy , and
kz is the dynamo wavenumber. Our standard approach is to
identify this wavenumber from the Fourier mode growing
fastest during the exponential phase of an LSD and we denote it
as kz,kin. The incoherent α-shear-driven dynamo is described by

∣ ∣ ( )a
h

=aD
S

k
, 42S

z

rms

T
2 3

where we consider in αrms only the fluctuations of αyy. Finally,
for a dynamo driven by the incoherent SC effect due to
fluctuations of ηyx and shear,

∣ ∣
( )

h

h
=hD

S

k
43S

yx

z

,rms

T
2 2rms

is relevant. In Käpylä et al. (2020), we derived the marginal
dynamo numbers for a grid of combinations of
( )h a hD D D, ,S S Srms

, and we refer the reader to these results.
For orientation, we note that in the absence of the incoherent
effects, DηS> 1 is required for dynamo action, but DαS> 2.3 in
the absence of the coherent and incoherent SC effects. The
presence of the SC effects increases the value of that critical
DαS, but this influence is mild.

8 In Käpylä et al. (2020) we labeled this model “0D” because the explicit z
dependence can be eliminated by employing the ansatz ( )~A kzexp i .
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3. Results

3.1. Roberts Flow and Field

A simple and reliable way of validating the CTFM is to
restrict oneself to two dimensions (x and y) and compare with
the imposed-field method, where ·a = ´u b B Bxx yy x y, 0 0 ,0

2

and B0 is a uniform field, imposed in either the x or the y
direction. The two-dimensional case corresponds to kz = 0, so
that no turbulent diffusion can act and only the α tensor is
considered. For the flow (or field) geometry, we have chosen
case I of Roberts (1972), which is a vector field of the form
( )- x y x y x ycos sin , sin cos , 2 cos cos having the Beltrami
property. A ponderomotive force is constructed such that
without a magnetic field exactly that geometry is obtained in
the background flow u(0), that is, the distortion by the
u(0) ·∇u(0) term is compensated and the pressure gradient
vanishes as well as the nonlinear part of the viscous force. In
the complementary case of magnetic forcing, an EMF with just
the Roberts geometry is sufficient as due to its Beltrami
property and the linearity of the induction equation the
resulting Lorentz force is zero, no flow is driven, and b(0) has
exactly the Roberts geometry bRob. In Figures 1 and 2 we
show the ReM dependence of αxx= αyy≡ α for kinetic and
magnetic forcing, respectively (αxy,yx= 0). As in RB10, we
have normalized α by α0K=−urms/2 and α0M= 3brms/4,
respectively.

In the kinetically forced case, we compare with the QKTFM
and find perfect agreement, as expected. In the magnetically
forced case, the QKTFM yields the wrong sign of α, as was
already found by RB10 in SMHD, while the corresponding
TFM was found to agree with the imposed-field method.
Comparing their results with those of the CTFM, we find
agreement up to some fixed offset for small values of Lu; see
Figure 2.

In Figure 3 we show the dependence of αxx and αyy on B0 for
the forced magnetic background with Roberts geometry, ν= η
and forcing amplitudes between 0.01 and 100 in units where
ν= η= k1= 1. In these cases, flows are only driven by the
Lorentz force. The velocity is generally small compared with

rB0 ref : It can reach 23% when h r =B k 10 1 ref but is
smaller both for weaker and stronger fields. Note that this test
case, in which the turbulent flow is solely induced by the
interaction of the imposed field with the magnetic background
turbulence b(0), is quite different from the shear dynamo case

studied in the later parts of the paper, as well as from
astrophysical settings in general. The jb, bb, ju, and bu flavors
always give the same results for the aligned component αxx,
also agreeing with those from the imposed-field method, but for
strong imposed fields (in terms of ( )B b0 rms

0 ), the perpendicular
component, αyy, disagrees significantly among the flavors; see
the different lines in Figure 3. We note that this disagreement is
not due to the added compressibility but was present already in
the SMHD case of RB10 and was not noticed there. As
demonstrated in Appendix B, the correctness in αxx is
systematic and extends to arbitrary strengths of B0.
Surprisingly, the slope of the quenching characteristic now

exhibits power −5 while in RB10, −4 had been observed. We
suggest that this difference can be attributed to the inclusion of
pressure gradient and self-advection.

3.2. Shear Dynamos with SSD Magnetic Background
Turbulence

In this section we perform a continuation of the study of
Käpylä et al. (2020), where the SMHD equations were used
(governing so-called burgulence) with kinetic and magnetic
forcing. Now we turn to full MHD, forced, however, only

Figure 1. ReM dependence αxx = αyy ≡ α for the forced Roberts flow,
agreeing perfectly with the results of the imposed-field method.

Figure 2. Lu dependence of α for forced magnetic background with Roberts
geometry bRob and PrM = 1, using FMHD with CTFM (black). Red
dashed: SMHD.

Figure 3. B0 dependence of α for the flow-free magnetically forced
background with Roberts geometry u(0) = 0, b(0) = bRob, and PrM = 1 from
the CTFM. The results from the imposed-field method are shown by the blue
dashed line and agree with all four flavors of the CTFM for αxx. The other
colored solid lines refer to αyy and departures are seen with the bu flavor. The
ju flavor (orange) even gives negative values for ( ) B b 70 rms

0 , while the bb
(red) and jb (green) flavors yield αyy = αxx.
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kinetically with a nonhelical form of the forcing. Hence, in all
experiments, we set fM to zero. We measure the turbulent
transport coefficients from volume- and time-averaged quan-
tities, ignoring the transients and untrustworthy parts of the
time series, as explained in Section 2.3. The incoherent effects
are measured following the same procedure, but rms values are
used: ⟪a a= ñ ñyy trms

2 1 2 and ⟪h h= ñ ñyx trms
2 1 2 . It should be

noted that our values of αrms and ηrms underestimate the actual
ones, which also include the z-dependent fluctuations.

In all the simulations performed in this section, we have used
the ju flavor of the CTFM. This choice is based on test runs
with the full shear dynamo setup—see Appendix A—with
varying magnetic Prandtl numbers (PrM= 5, K, 20) and
S̃ =−0.2. These tests revealed that the ju and bb flavors gave
results in good agreement both in the kinematic and nonlinear
regime with good stability properties of the test solutions. The
jb and bu flavors, however, showed poorer stability properties,
hence runs employing them would have required extremely
small time steps, rendering them unfeasible. The tests indicate
that the nonlinear CTFM (nCTFM) may yield correct results in
the case of the shear dynamo as long as the mean field is at
most slightly above equipartition with the velocity fluctuations.
However, this is no proof of its general applicability.

3.2.1. Vorticity Dynamo

For certain values of PrM, namely for 5 and 10, while not for
1 and 20, we see the generation of strong mean flows. In
Figure 4 we compare cases with and without rotation from

purely hydrodynamical counterparts of our MHD runs. With
such experiments we can verify the presence of the mean flows
due to a vorticity dynamo and not due to the backreaction of
the magnetic field. In the case of W̃ = 0, hence shear alone
(black line in panel (a), and the zt diagram in panel (b)) we see
the generation of a strong mean flow, which first grows
exponentially with a dominating ˜ =k 1z mode and then
saturates, exhibiting oscillatory behavior with complicated
phase migration. In the MHD runs with TFM, the mean flows
perturb the system to the extent that the test solutions start to
grow super-exponentially. The time step becomes prohibitively
small, and no plateaus can be observed anymore in the
transport coefficients. Hence, all these TFM measurements
have been disregarded.
If a very small amount of rotation is added (panels (c) and

(d) of Figure 4), the instability is suppressed, with urms(t)
remaining statistically constant throughout the simulation (blue
and orange lines in panel (a)). We see, however, that the
vertical length scale of the flow is larger in the case of weaker
(d) than in the case of stronger rotation (c). This indicates that
the q=−40 case still has too weak rotation to fully suppress
the vorticity dynamo, while q=−20 brings the vertical scales
close to the forcing scale ˜ =k 10f . The presence of weak mean
flows for q=−40 is also reflected in the slightly larger urms(t)
(orange line slightly above the blue one in panel (a)).
We have run CTFM simulations without shear, but with

rotation rate W̃ = -0.01, and also with a 10 times higher
rotation rate; see Figures 5(a)–(d). One can observe that the
crucial ηyx is very similar in the cases with weak rotation, with

Figure 4. Comparison of the generated mean flows with S̃ = −0.2, W̃ = 0 (black line in (a), zt diagram in (b)), S̃ = −0.2, W̃ = -0.01 (q = −20; (c), blue line in (a)),
and S̃ = −0.2, W̃ = -0.005 (q = −40; (d), orange line in (a)). Panel (a) shows the time evolution of the volume-averaged rms velocity, urms(t). Colors in the zt
diagrams encode U cy s with extrema ±0.7, ±0.014, and ±0.022, in (b)–(d), respectively.
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shear included (orange lines) or excluded (black lines), while
all the other η components are much more strongly affected.
The diagonal components are clearly larger for ˜ =S 0, and ηxy
reverts its sign from strongly positive (with shear) to very low
values fluctuating about zero (without shear).9 From the run
with 10 times faster rotation (blue lines) we observe that with
increasing rotation rate there is a tendency to revert the sign of
ηyx to positive and to increase its magnitude, while reverting ηxy
to negative values, but with weaker magnitude. We conclude
that for q=−20, the rotation rate is still small enough not to
affect the TFM measurements significantly. Hence, we select
q=−20 as the fiducial parameter for our runs.

We use this setup for all Prandtl numbers above unity to
guarantee that no mean flows disturb the measurements. We
note, however, that for PrM= 20, the results are nearly identical
with and without rotation, indicating that the vorticity dynamo
is not active there. This is illustrated in Figure 5(e), where we
show the measurements of the ηyx component with and without
rotation, yielding very similar results in the midranges of the
resetting intervals. The parameters, varied in the henceforth
presented simulations, are the shear rate S̃ , the magnetic Prandtl
number PrM, and the forcing wavenumber kf.

3.2.2. Kinematic Runs

We start by presenting the kinematic CTFM analysis of
some shear dynamo models. We stress that the kinematic
method is generally valid and indispensable in studying the
possibility of large-scale dynamo instabilities with magnetic
background turbulence b(0), which is the main goal of this
paper. We vary PrM and ShK and study the scale dependence of
the turbulent transport coefficients by changing the vertical
wavenumber of the test fields, kB. We change PrM by keeping
the magnetic diffusivity η fixed. Hence, the larger PrM is, the
smaller is Re. The results are summarized in Table 1.

In practice, we ran first only the zero problems until
saturation, and then forked new runs with the rest of the test
problems turned on. The measurements would not be mean-
ingful before saturation, but this strategy also accelerates the
runs. Despite the low Reynolds numbers, the systems are
already prone to chaotic behavior, and any small perturbation
(such as the random seed of the forcing being initialized
differently, or the time step changing slightly when kB is
altered) can lead to different small-scale dynamo solutions (for
an extreme example, compare the entries marked with a star in
Table 1). Hence, to investigate the scale dependence of the
coefficients it is desirable to choose runs that have SSD
solutions as similar as possible.
A general observation is that the stronger the SSD, that is,

the stronger the magnetic background turbulence, the weaker
are ηxx, ηyy, and ηxy, while ηyx is always weak and consistent
with zero within error bars. We can also notice that the fluid
Reynolds number Re is crucial for the magnitude of the η
components and their fluctuations, all growing with Re, which
is clearly visible when comparing sets with PrM= 1 and 20 at
the weakest shear. In these, the SSD is weak, and the main
effect must come from the flow: For PrM= 1, the diagonal
components and ηxy are more than twice, while ηyx and ηrms an
order of magnitude larger. The magnitude of αrms/ηtkf remains
roughly constant, but note that ( )h h h= + 2xx yyt .
Continuing with analyzing the sets with the weakest shear,

˜ = -S 0.05 (i. e., −0.15< ShK<−0.09) in the high-PrM case,
we find the diagonal η components to be roughly equal, i.e.,
isotropic within error bars. The low-PrM cases with ˜ =k 1B

show no anisotropy either, but this is not equally clear for the
higher-kB cases, which show weak anisotropy; this could be
due to insufficient integration time though, as no significant
anisotropy is expected in these weak-shear runs without mean
magnetic fields and stratification. The high-PrM runs show only
weak scale dependence, insignificant within error bars, while
the low-PrM runs show a clearly discernible one, such that the
diagonal components are reduced when kB is increased. ηyx is
first positive, but turns to negative at the highest kB; yet all
values are consistent with zero within error bars. The
fluctuating quantities show no marked scale dependence at
either Prandtl number.
At moderate shear (S̃ =−0.1, resulting in− 0.3

<ShK<− 0.16), the diagonal components show a weak
anisotropy with both Prandtl numbers investigated. However,
for PrM= 1, ηxx is larger than ηyy, while the opposite is true for
PrM= 20. ηyx is negative, but consistent with zero within error
bars for PrM= 20, while significantly positive for PrM= 1, for
all kB. As per the scale dependence, the diagonal η components
and ηxy are decreasing with kB for PrM= 1, while ηyx is
constant. ηrms is decreasing with kB, too. The trends in the set
with PrM= 20 are just opposite for the diagonal components
and ηxy: They increase with kB. These differences must reflect
the larger influence of shear on the flow and the stronger SSD
generated in the case of PrM= 20.
At higher shear (S̃ =−0.2, resulting in−0.6<ShK<−0.23),

the η anisotropy can be observed to get unified: With all the
Prandtl numbers studied, ηxx is systematically larger than ηyy
being statistically significant, especially for PrM= 20. The
diagonal components exhibit only a weak scale dependence in
all sets except PrM= 1, where a clear decrease as a function of
kB is seen. ηyx has a clear tendency of being positive or
consistent with zero. ηxy is the component showing the most

Figure 5. Panels (a)–(d): components of η, measured with CTFM and
normalized to the microscopic diffusivity η. Black: ˜ =S 0, W̃ = -0.01; blue:
˜ =S 0, W̃ = -0.1; orange: S̃ = −0.2, W̃ = -0.01 (q = −20), all for PrM = 10.
The time axes have been made to match at t urmskf = 400 hence orange and
blue curves have been introduced with small offsets (Δt urmskf = 6 and 8,
respectively). Panel (e): ηyx from S̃ = −0.2, PrM = 20 runs with no (black) and
weak (orange) rotation (W̃ = -0.01, q = −20).

9 Note that in the absence of shear but Ω ≠ 0, the off-diagonal elements of η
have to reflect the Rädler effect, hence ηxy = −ηyx. In our results, however, the
signal is drowned out by the fluctuations.
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prominent scale dependence with all PrM used: Its magnitude
decreases from ˜ =k 1B to ˜ =k 3B in all runs, although for
˜ =k 2B , one often finds an increased value in comparison to
˜ =k 1B . Also ηrms is decreasing as function of kB, more
prominently so the smaller PrM is. We also note that with high
shear and ˜ =k 1B , ηxx shows high-frequency oscillations, which
vanish at ˜ =k 3B .

Finally, we have run one set with ˜ = -S 0.3, ShK≈− 0.86,
and PrM= 20. This set has the strongest SSD, but in
comparison to the second largest shear rate, S̃ =−0.2, the
transport coefficients are no longer quenched strongly by it.
Otherwise, the anisotropy and scale dependence of the
measured coefficients are very similar.

To summarize, the main findings in this section are the
follwoing: the SSD quenches the η components up to a certain
point, while more vigorous kinetic turbulence, quantified by
increasing Re, enhances their magnitude. Scale dependence is
evident only in runs with high-enough Re. Strong shear leads to
anisotropy, with ηxx> ηyy. Kinematic calculations show no
evidence for negative values of ηyx within the studied parameter
regime.

3.2.3. Models with Prandtl Number of Unity

We proceed by discussing runs with PrM of unity and forcing
wavenumber ˜ =k 5f , but the main run with the potential of
LSD now included. This choice is motivated by a recent study
by Zhou & Blackman (2021), who highlighted hydrodynamical
weak-shear cases at low to moderate Reynolds numbers and
PrM= 1 to give rise to a negative ηyx, when measured with the
kinematic TFM. Without further analysis, such a result could
be easily interpreted to be favorable for SC-effect dynamos but
contradicts all previously published numerical results that have
not reported a negative ηyx in this regime.
As in Section 3.2.2, we start the measurements only after

saturation of the zero problems and proceed until the saturation
of the evolving mean fields. Runs of this kind are reported in
our tables below with names starting with “n” (nonlinear). The
runs starting with “k” refer to the corresponding kinematic runs
presented in the previous section. We also perform QKTFM
measurements for each run (names starting with “q”). In the “n”
and “q” cases, we compute the turbulent transport coefficients
after the saturation of both types of dynamos (if present).

Table 1
Summary of the Kinematic Models with Variable PrM, Shear Rate, and Vertical Wavenumber of the Test Fields

Run PrM ReM ShK Lu ηxx/η ηyy/η ηyx/η ηxy/η αrms/ηtkf ηrms/η

S005Pm1k1 1 43 −0.09 13 28.794 ± 0.322 28.480 ± 0.227 0.122 ± 0.296 3.413 ± 0.413 0.036 ± 0.012 2.601 ± 0.381
S005Pm1k2 1 44 −0.09 13 26.183 ± 0.317 25.134 ± 0.101 0.468 ± 1.201 3.839 ± 1.100 0.025 ± 0.026 1.282 ± 1.111
S005Pm1k3 1 43 −0.09 12 21.763 ± 0.396 22.083 ± 0.313 −1.707 ± 1.786 1.786 ± 0.556 0.035 ± 0.026 2.241 ± 2.879

S005Pm20k1 20 34 −0.15 16 11.826 ± 0.095 12.100 ± 0.048 0.004 ± 0.091 1.127 ± 0.094 0.039 ± 0.020 0.282 ± 0.158
S005Pm20k2 20 34 −0.15 16 11.754 ± 0.097 11.982 ± 0.051 0.024 ± 0.080 1.112 ± 0.101 0.039 ± 0.021 0.264 ± 0.182
S005Pm20k3 20 34 −0.15 16 11.667 ± 0.366 11.749 ± 0.486 −0.045 ± 0.043 1.189 ± 0.078 0.038 ± 0.024 0.264 ± 0.189

S01Pm1k1 1 47 −0.16 16 36.436 ± 0.354 35.382 ± 0.098 0.435 ± 0.366 8.707 ± 0.718 0.029 ± 0.015 2.839 ± 1.442
S01Pm1k2 1 48 −0.16 15 33.434 ± 0.337 31.845 ± 0.348 0.550 ± 0.201 6.879 ± 0.195 0.030 ± 0.018 2.031 ± 1.251
S01Pm1k3 1 47 −0.16 16 27.735 ± 0.264 26.932 ± 0.335 0.303 ± 0.217 5.271 ± 0.162 0.033 ± 0.019 1.309 ± 0.683

S01Pm20k1 20 32 −0.30 27 7.811 ± 0.139 8.389 ± 0.207 −0.068 ± 0.066 0.908 ± 0.166 0.040 ± 0.018 0.298 ± 0.283
S01Pm20k2 20 32 −0.30 28 7.678 ± 0.283 8.151 ± 0.231 −0.092 ± 0.064 1.063 ± 0.149 0.036 ± 0.020 0.257 ± 0.112
S01Pm20k3 20 32 −0.30 27 8.272 ± 0.255 8.766 ± 0.350 −0.002 ± 0.033 1.000 ± 0.116 0.033 ± 0.018 0.227 ± 0.147

S02Pm1k1 1 66 −0.23 25 70.218 ± 6.340 65.830 ± 6.636 0.717 ± 0.298 32.987 ± 3.260 0.020 ± 0.009 4.164 ± 1.529
S02Pm1k2 1 66 −0.23 25 56.417 ± 3.857 54.361 ± 3.352 −0.094 ± 0.742 22.979 ± 3.578 0.026 ± 0.016 2.663 ± 0.670
S02Pm1k3 1 63 −0.24 24 43.668 ± 2.935 41.674 ± 3.695 −0.132 ± 0.326 14.530 ± 1.093 0.032 ± 0.023 1.478 ± 0.634

S02Pm5k1 5 16 −0.48 17 4.149 ± 1.205 4.317 ± 1.542 0.063 ± 0.071 5.192 ± 0.215 0.043 ± 0.017 0.515 ± 0.143
S02Pm5k2 5 16 −0.48 17 4.765 ± 0.776 4.576 ± 0.919 0.019 ± 0.070 4.993 ± 0.208 0.036 ± 0.017 0.370 ± 0.175
S02Pm5k3 5 16 −0.48 16 5.444 ± 0.515 5.045 ± 0.578 0.043 ± 0.037 3.180 ± 0.381 0.031 ± 0.013 0.259 ± 0.083

S02Pm10k1 10 42 −0.47 45 12.729 ± 0.989 12.197 ± 1.002 0.059 ± 0.109 5.918 ± 0.179 0.030 ± 0.011 0.787 ± 0.475
S02Pm10k2 10 42 −0.47 44 13.203 ± 0.467 12.637 ± 0.611 0.139 ± 0.053 6.440 ± 0.306 0.027 ± 0.011 0.542 ± 0.239
S02Pm10k3 10 42 −0.47 44 13.416 ± 0.481 12.514 ± 0.879 0.154 ± 0.039 5.009 ± 0.320 0.027 ± 0.009 0.468 ± 0.165

S02Pm20k1 20 33 −0.60 45 5.438 ± 0.278 4.808 ± 0.138 0.042 ± 0.103 3.282 ± 0.738 0.046 ± 0.019 0.296 ± 0.061
S02Pm20k2 20 33 −0.60 45 5.503 ± 0.152 4.900 ± 0.141 0.064 ± 0.084 4.462 ± 0.416 0.045 ± 0.023 0.269 ± 0.083
S02Pm20k3 * 20 33 −0.60 44 6.099 ± 0.140 5.372 ± 0.232 0.041 ± 0.013 1.569 ± 0.784 0.046 ± 0.013 0.326 ± 0.084
S02Pm20k3 * 20 33 −0.60 39 6.832 ± 0.077 6.707 ± 0.392 −0.020 ± 0.043 2.255 ± 0.079 0.035 ± 0.018 0.224 ± 0.064

S03Pm20k1 20 35 −0.86 55 5.711 ± 0.559 5.259 ± 0.627 −0.043 ± 0.053 8.692 ± 0.458 0.039 ± 0.022 0.240 ± 0.129
S03Pm20k2 20 35 −0.86 56 5.898 ± 0.230 5.242 ± 0.133 0.076 ± 0.072 7.846 ± 0.820 0.038 ± 0.014 0.202 ± 0.153
S03Pm20k3 20 35 −0.86 56 6.274 ± 0.255 5.359 ± 0.161 0.114 ± 0.052 5.511 ± 0.480 0.039 ± 0.022 0.241 ± 0.129

Note. The run labels are constructed with the pattern SXXPmYYkZ, where XX indicates the magnitude of the negative S̃ , YY the magnetic Prandtl number PrM used,
and Z the vertical wavenumber of the test fields, k̃B. The sets with fixed shear and variable Prandtl number are separated by double horizontal lines. The forcing
wavenumber is ˜ =k 5f for PrM = 1 and ˜ =k 10f for higher PrM. Runs with a star symbol have different SSD solutions.
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We begin by presenting results from two runs without shear
and rotation employing CTFM and QKTFM, integrated over
6000 turnover times; see the first entries in Table 2. For these
setups, an SSD is present, resulting in an initial exponential
growth of the magnetic field, which then saturates at around
400 turnover times. After that, the magnetic energy stays close
to its average saturation value of »Lu 0.25 ReM. We see that
both methods give consistent results: The diagonal elements are
isotropic, i.e., roughly of the same magnitude within error bars,
and the off-diagonal elements are consistent with zero. These
runs were integrated twice as long as any other run, hence their
error bars reflect the minimal level achievable with realistic
computation times. The agreement of CTFM and QKTFM is
not self-evident: Given the weakness of the SSD, we interpret it
as an indication of strong dominance of the contribution

( )´u b B to the mean EMF over ( ) ( )´u b ;B 0 see Section 2.2.
By adding shear, we find that the SSD is enhanced in terms

of its saturation strength, as indicated by the increasing
Lundquist number (Lu) in Table 2. The growth rate also
increases somewhat as a function of the shear rate; for a typical
case, see Figure 7 with the largest shear number in this set. The
rms strength of the total magnetic field reaches »Lu 0.42 ReM
at the highest shear. In all cases, the magnetic fields of the zero
problem and the main run are of similar strength; correspond-
ingly, the mean fields reach maximally a few percent of the
equipartition strength at the highest shear rate. None of the
constituents of the magnetic field show significant growth after
the SSD has saturated; see Figure 6. Obviously, shear and
turbulence have merely the capability of generating short-lived
large-scale patches in B y (see Figure 7), persisting only over a
few tens to maximally a couple of hundred turnover times. The
timescale of persistence is even shorter in B x (maximally a few
tens). The wavenumber of these patches is ˜ =k 1z , which is
used both as the vertical wavenumber of the test fields in all the
measurements and to compute the dynamo numbers for these
runs; see Table 3.

Differences in ηyx between CTFM and QKTFM start to
emerge when shear is increased. As was reported in
Section 3.2.2, the kinematic CTFM (kCTFM) gives consis-
tently positive values for all values of S̃ , although for the
weakest shear, ˜ = -S 0.05, the error bars are too large to be

certain about the positive sign. Results in close agreement are
found beyond kinematics. This is expected as no clear LSD is
operational and thus the two versions of the CTFM have to
agree. The QKTFM, however, yields negative ηyx within error
bars with all shear numbers investigated. Hence, we can

Table 2
Summary of the PrM = 1 Runs with Varying Shear Rate

Run ReM ShK Lu ηxx/η ηyy/η ηyx/η ηxy/η αrms/ηtkf ηrms/η

nS00Pm1 43 0 12 26.491 ± 0.321 26.919 ± 0.463 0.094 ± 0.156 0.233 ± 0.429 0.044 ± 0.016 2.873 ± 0.985
qS00Pm1 43 0 12 27.298 ± 0.207 26.922 ± 0.051 0.110 ± 0.138 −0.159 ± 0.422 0.045 ± 0.016 3.353 ± 1.423

kS005Pm1 43 −0.09 13 28.794 ± 0.322 28.480 ± 0.227 0.122 ± 0.296 3.413 ± 0.413 0.036 ± 0.012 2.601 ± 0.381
nS005Pm1 43 −0.09 13 28.516 ± 0.549 28.158 ± 0.502 −0.151 ± 0.320 4.006 ± 0.125 0.038 ± 0.011 2.810 ± 0.679
qS005Pm1 43 −0.09 13 29.107 ± 0.377 28.621 ± 0.517 −0.543 ± 0.318 4.070 ± 0.302 0.039 ± 0.012 2.987 ± 0.829

kS01Pm1* 47 −0.16 16 36.436 ± 0.354 35.382 ± 0.098 0.435 ± 0.366 8.707 ± 0.718 0.029 ± 0.015 2.839 ± 1.442
nS01Pm1* 43 −0.19 13 27.413 ± 0.291 27.604 ± 0.478 0.552 ± 0.378 6.923 ± 0.129 0.036 ± 0.014 2.401 ± 0.558
qS01Pm1 46 −0.17 18 38.173 ± 0.653 36.291 ± 0.830 −1.033 ± 0.829 11.399 ± 0.924 0.039 ± 0.011 5.107 ± 1.501

kS02Pm1 * 66 −0.23 25 70.218 ± 6.340 65.830 ± 6.636 0.717 ± 0.298 32.987 ± 3.260 0.020 ± 0.009 4.164 ± 1.529
nS02Pm1 * 62 −0.25 28 59.060 ± 3.234 57.019 ± 2.562 0.390 ± 0.554 29.457 ± 2.578 0.020 ± 0.011 3.391 ± 1.806
qS02Pm1 65 −0.24 28 70.091 ± 0.825 70.265 ± 0.564 −0.568 ± 0.277 42.854 ± 0.917 0.027 ± 0.008 5.468 ± 1.317

Note. Runs marked with “q”, “k,” and “n”’ have been analyzed with the quasi-kinematic TFM (QKTFM), the kinematic version of the CTFM (no main run), and the
CTFM including the main run, respectively. Boldfaced: runs most compatible with Zhou & Blackman (2021). We note that they used purely hydrodynamic
simulations with the kinematic TFM, hence retrieving the kinetic contribution to ηyx. Runs marked with * indicate cases where the magnetic background turbulence is
not statistically similar.

Figure 6. Volume-averaged rms values of the velocity (urms(t), black) and the
total magnetic field from the main run (Brms(t), yellow), magnetic zero solution
( ( )( )b trms

0 , orange), rms values of the mean azimuthal (By,rms, red) and radial
(Bx,rms, blue) magnetic fields from Run nS02Pm1, all normalized to urms.

Figure 7. zt diagrams of B y (top) and B x (bottom) from the main run of
qS02Pm1. The main run of nS02Pm1 is identical up to some slight differences
due to different time steps.
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reproduce the results of Zhou & Blackman (2021) of negative
ηyx with the QKTFM, but the results of the CTFM do not lend
support to them.

As per the other η components, we note that the QKTFM
yields larger diagonal components in comparison to the CTFM
with main run, especially in the cases with high shear. Both
methods give positive values of ηxy, but the values retrieved
with the QKTFM are larger than those with CTFM.

We note that in one case, namely with S̃ =−0.1, the
background turbulence, in terms of both the flow and magnetic
field zero solutions u(0) and b(0), is statistically different
between the kinematic and nCTFM runs. We reiterate that such
differences can emerge even in mildly turbulent flows, e.g., due
to differences in the time step. Simultaneously, we observe a
difference in the measured transport coefficients, such that the
diagonal components are larger by about 25% in the kinematic
run. Given the weakness of the mean field, we attribute these
marked differences to the difference in the background
turbulence. In Section 3.2.2 we saw that SSD can diminish
the transport coefficients, while a higher level of kinetic
turbulence enhances them. In the present case, both effects are
present, given the larger ReM and Lu in the kinematic run. This
result suggests that the enhancing effect by more vigorous
kinetic turbulence is stronger than the suppressing effect by the
SSD in this shear regime. In the case S̃ =−0.2, differences in
ReM and Lu can again be observed, again indicative of the
background turbulence being different between the kinematic
and the nonlinear runs. However, these differences are smaller
than for S̃ =−0.1, which explains the weaker impact on the
coefficients (≈15%), although weak mean-field effects cannot
be ruled out either.

We also compute the dynamo numbers, following the
procedure described in Section 2.8, and report them in
Table 3. We note that in the shearless case, DηS is ideally
zero, but not in practice due to the limited accuracy of the
measurements. With all the shear rates investigated, the
dynamo numbers remain subcritical both with respect to the
coherent SC effect and the incoherent ones (for a complete
analysis, see Käpylä et al. 2020). This is in perfect agreement
with the observation of the mean fields remaining weak with
hardly any growth, except for a slight increase in B y. This is

most likely the reason why in the earlier study of Brandenburg
et al. (2008a) employing the QKTFM, which concentrated on
analyzing the regime with generation of strong large-scale
fields, no attention was paid to this parameter regime. We also
regard it to be insignificant for the investigation of dynamos in
shear flows.

3.2.4. Varying Prandtl Number and Moderate Shear

Next we map out a part of the parameter space where the
generation of significant large-scale magnetic fields occurs.
One such regime can be found when ˜ =k 10f and PrM is
increased, while keeping the shear number ShK at moderate
values. The results are summarized in Table 4. For runs with
5� PrM� 20, we find mean magnetic field configurations
closely matching those of Brandenburg et al. (2008a) and
Squire & Bhattacharjee (2015); see Figure 8. In contrast to the
weak, incoherent, and short-lived patches seen in Figure 7, the
mean azimuthal field grows to near equipartition; see Figure 9.
The ˜ =k 1z mode emerging in the nonlinear stage exhibits
phase coherence nearly throughout the whole 5000 turnover
times of the run. Likewise, B x shows faint hints of the same
pattern, but with a sign opposite to B y.
The properties of the obtained SSDs and LSDs are as

follows: The mean azimuthal field always grows to near
equipartition as can be seen from Figure 10. The dynamo
growth rates depend on ReM, hence the SSD grows slowest for
PrM= 5 and faster for PrM= 10 and 20, with nearly equal
growth rates. For PrM= 5, the SSD saturates below equiparti-
tion but very close to it for the higher Prandtl numbers. After
saturation of the SSD, it is mainly B y that continues to grow.
Again, the highest-PrM and -ReM cases show the fastest
growth, which is, however, distinctly slower than that of the
SSD. For PrM= 5, the LSD grows the slowest, and because its
SSD saturation strength was lower,10 growth is seen also in B x.
Its growth rate, however, is different from that of B y, which is
somewhat atypical of “standard” dynamos and could be taken
to be indicative of eigenmodes that consist of only one
component; see Rheinhardt et al. (2014) and Brandenburg &
Chen (2020) for examples. However, for an LSD based on the
coherent effects alone, this can be ruled out here. Eventually,
the B x components grow equally strong in all cases, while the
saturation strength of B y is the highest for the highest PrM, but
this component undergoes semiregular oscillations in all the
runs. The total magnetic field saturation strength is largest in
the highest-PrM runs; see the Lundquist numbers in Table 4.
It is very difficult to disentangle the wavenumber of the

preferentially growing Fourier mode of the LSD, as the SSD
“contaminates” the growth rates: All modes exhibit exponential
growth with the same growth rate as long as LSD and SSD
grow simultaneously (for a more detailed analysis of a similar
system; see Väisälä et al. 2021), and separating the growth rates
of these two instabilities is impossible. Hence, we have to rely
on the following means of separation: We perform a dedicated
set of runs, where we first remove the mean magnetic field at
each time step while letting the SSD grow until saturation.
After that we continue the simulations, but with the mean fields
allowed to grow from very small seeds. Now, only the
eigenmodes of the LSD grow, so we can determine the fastest

Table 3
Dynamo Numbers for the Runs with PrM = 1 and Variable Shear Rate

Run ˜-S k̃z,kin k̃z,sat k̃B DηS hD Srms DαS

nS00Pm1 0 1 1 1 9 × 10−5 0 0
qS00Pm1 0 1 1 1 2 × 10−5 0 0

kS005Pm1 0.05 1 1 1 −0.0135 0.2961 0.7048
nS005Pm1 0.05 1 1 1 0.0169 0.3265 0.6812
qS005Pm1 0.05 1 1 1 0.0585 0.3350 0.6829

kS01Pm1 0.1 1 1 1 −0.0609 0.4168 0.8029
nS01Pm1 0.1 1 1 1 −0.1870 0.5908 1.1218
qS01Pm1 0.1 1 1 1 0.1339 0.6988 1.0811

kS02Pm1 0.2 1 1 1 −0.0542 0.3496 0.4357
nS02Pm1 0.2 1 1 1 −0.0076 0.0973 0.0600
qS02Pm1 0.2 1 1 1 0.0401 0.4317 0.5277

Note. The dynamo numbers are calculated based on the wavenumber kz,kin of
the fastest-growing Fourier mode in the kinematic stage of the LSD. The other
wavenumbers are those of the mode dominating in the saturation stage of the
LSD, kz,sat, and those of the test fields, kB.

10 As we diagnose the mean field in terms of the rms values of Bx y, , high
vertical wavenumber modes enter. Hence, if the SSD is strong and LSD is
weak, these modes will dominate, and the growth of the low wavenumber
modes (the actual mean field) will not necessarily be seen.
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growing among them and extract its wavenumber kz,kin. For
PrM= 5 and 10 we obtain ˜ =k 2z,kin , while ˜ =k 3z,kin for
PrM= 20. As is evident from Figure 8, in the saturated stage,
the mode of wavenumber unity takes over, thus ˜ =k 1z,sat . This
happens in all LSD-active simulations, as can be seen from
Table 5. In this section, we use the former (growth phase)
wavenumber in the kinematic CTFM measurements and the
latter (nonlinear phase) one in the nonlinear counterparts.

From Table 4 we observe that with none of the employed
TFMs is the measured ηyx negative. Hence, it is unlikely that
these dynamos are driven by the coherent magnetic SC effect.

We observe that for the highest PrM investigated, the diagonal
components of η get significantly anisotropic when measured
with the CTFM, such that ηxx is exceeding ηyy. Because this
anisotropy is also recovered with the kinematic version, it
cannot solely be due to the mean magnetic field, but must also
reflect the growing influence of the shear, given that ShK is
growing with PrM. In contrast, we note that the QKTFM does

Table 4
Summary of the Models with Variable PrM and Fixed Shear Rate

Run PrM ReM ShK Lu ηxx/η ηyy/η ηyx/η ηxy/η αrms/ηtkf ηrms/η

kS02Pm5 5 16 −0.48 17 4.765 ± 0.776 4.576 ± 0.919 0.019 ± 0.070 4.993 ± 0.208 0.036 ± 0.017 0.370 ± 0.175
nS02Pm5* 5 16 −0.50 22 4.235 ± 0.181 4.210 ± 0.220 0.173 ± 0.016 0.634 ± 0.136 0.028 ± 0.012 0.194 ± 0.087
qS02Pm5* 5 16 −0.49 18 5.910 ± 1.429 6.034 ± 1.388 0.273 ± 0.125 1.994 ± 1.447 0.025 ± 0.009 0.381 ± 0.315

kS02Pm10 10 42 −0.47 44 13.203 ± 0.467 12.637 ± 0.611 0.139 ± 0.053 6.440 ± 0.306 0.027 ± 0.011 0.542 ± 0.239
nS02Pm10 10 42 −0.47 48 14.832 ± 1.066 14.923 ± 1.042 0.501 ± 0.035 3.710 ± 1.178 0.026 ± 0.011 0.659 ± 0.246
qS02Pm10 10 42 −0.47 49 13.276 ± 1.528 13.541 ± 1.641 0.400 ± 0.077 2.160 ± 1.844 0.030 ± 0.011 0.631 ± 0.376

kS02Pm20 20 33 −0.60 44 6.099 ± 0.140 5.372 ± 0.232 0.041 ± 0.013 1.569 ± 0.784 0.046 ± 0.013 0.326 ± 0.084
nS02Pm20 20 33 −0.60 47 7.356 ± 0.807 5.608 ± 0.486 0.000 ± 0.042 0.874 ± 0.326 0.041 ± 0.020 0.202 ± 0.128
qS02Pm20 20 33 −0.61 47 5.696 ± 0.462 6.008 ± 0.528 0.033 ± 0.021 −1.017 ± 0.533 0.045 ± 0.011 0.228 ± 0.094

Note. Conventions as in Table 2, except for the star indicating different levels of B , while the background turbulence is roughly similar. As per the scale of the test
fields, in the kinematic CTFM runs we use kB corresponding to the one seen in the main run during the growth phase of the magnetic field, while in the nCTFM ones,
˜ =k 1B is used in all cases.

Figure 8. zt diagrams of B y (top) and B x (bottom) from the main run of
qS02Pm20. The main run of nS02Pm20 is identical up to some slight
differences due to different time steps.

Figure 9. As Figure 6, but for Run nS02Pm20.

Figure 10. Volume-averaged rms values of the total magnetic field from the
main run (Brms(t), solid), rms values of the mean azimuthal (By,rms, dashed), and
radial (Bx,rms, dotted) fields from three different runs. Black: qS02Pm5, orange:
qS02Pm20, blue: qS02Pm10.

Table 5
Dynamo Numbers for the Models with Variable PrM and Fixed Shear Rate

Run PrM k̃z,kin k̃z,sat k̃B DηS hD Srms DαS

kS02Pm5 5 2 1 2 −0.1137 2.3003 4.2421
nS02Pm5 5 2 1 1 −1.2616 1.4233 2.9659
qS02Pm5 5 2 1 1 −1.1108 1.5666 2.4237

kS02Pm10 10 2 1 2 −0.3556 1.4004 3.4350
nS02Pm10 10 2 1 1 −0.9868 1.3086 2.9487
qS02Pm10 10 2 1 1 −0.7421 1.5195 3.5596

kS02Pm20 20 3 1 3 −0.1981 1.5581 3.1317
nS02Pm20 20 3 1 1 0.0124 0.8021 2.6719
qS02Pm20 20 3 1 1 −0.1564 1.0812 3.2568

Note. Conventions as in Table 3. For the kinematic CTFM measurements
(label “k,” no main run), the listed kz,kin and kz,sat have been obtained from the
corresponding CTFM run with main run (label “n”).
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not reveal this anisotropy at all. Moreover, for the highest PrM,
the two methods tend to return ηxy with a different sign—still
positive for CTFM, but negative for QKTFM. QKTFM also
shows opposite anisotropy with ηyy exceeding ηxx—albeit
insignificant within error bars.

Although the background turbulence of the kinematic and
the nonlinear (“n” and “q”) runs in this set is satisfactorily
similar, the strength of the mean field may differ within the
latter ones, depending on, e.g., how long the runs have been
integrated, or whether the mean field was removed before the
saturation of the SSD or not. Hence, in Table 4, we indicate the
runs, where the mean-field strength is clearly different with a
star; see the PrM= 5 set. Here, the kCTFM and nCTFM
calculations yield very similar magnitudes of the diagonal η
components, but QKTFM has somewhat larger ones, albeit
with large error bars. In the case of PrM= 10 and 20, the
diagonal η components from the nonlinear runs exceed their
kinematic counterparts. The fluctuating coefficients are nearly
always suppressed in the nonlinear runs.

We can also observe that with the highest PrM, ηyx is
approaching zero with all of the methods used while being
much larger and positive with lower PrM. This could be
indicative of a tendency of ηyx to change sign as PrM is
increased further. We tried to investigate this regime with the
CTFM but observed the test solutions becoming unstable, with
superexponential, likely unphysical, growth. Accordingly, the
measurements become unreliable. Preliminary results from the
QKTFM, indeed indicate a sign change of ηyx to negative, but
without the possibility of properly utilizing the CTFM, we
leave this to be investigated in forthcoming work.

The kinematic dynamo numbers listed in Table 5 clearly
predict positive growth rates for all PrM, as evidenced by the
1D mean-field dynamo model. The nCTFM gives predictions
closer to marginality, slightly subcritical for PrM= 5 and 10,
and clearly critical for PrM= 20. Those returned by the
QKTFM do not predict dynamo action for PrM= 5, but for
larger PrM, they are clearly supercritical, hence more consistent
with the kCTFM measurements. In all cases in this set, the
incoherent effects are sufficient to explain dynamo action, with
often slight, but far from fatal, inhibition by the coherent effect.
We note that for PrM= 20, the nCTFM yields positive dynamo
numbers DηS for the coherent SC effect, but these are clearly
below the critical one; moreover, the corresponding ηyx values
turn out to be insignificant within error bars.

3.2.5. Dependence on the Shear Rate

Here, we investigate the shear rate dependence of the
transport coefficients and the LSD at PrM= 20. We perform
additional sets of runs with shear rates ˜ = - -S 0.05, 0.1, and
−0.3 the main results being presented in Table 6. As per the
efficiency of the LSD, we notice that the strongest mean
azimuthal field B y in terms of equipartition is obtained with
S̃ =−0.2. For that value, roughly 70% of the magnetic energy
is in the mean field. For S̃ =−0.1 the corresponding fraction is
30% and 55% for ˜ = -S 0.3. Topology and coherence of the
mean field in the nonlinear stage do not change as a function of
shear rate: In all runs, we see the dominance of a coherent
˜ =k 1z,sat mode. The modes growing in the kinematic stage
have ˜ =k 2z,kin for the two lower shear rates and ˜ =k 3z,kin for
the two higher ones. By comparing the kCTFM runs with
variable shear rate, we can also observe that shear enhances the
SSD: In the case of the highest shear rate, the values of Lu are
larger than those in any other set, and at times there is even a
super-equipartition b(0) for the two higher shear rates. The
presence of a more vigorous SSD, however, does not seem to
boost the LSD indefinitely with increasing shear, as the fraction
of the energy in the mean field is lower in the ˜ = -S 0.3 case
than in the S̃ =−0.2 one.
The correctness of the nCTFM with Lu as high as for the

highest shear rate, ˜ = -S 0.3, is no longer a given. Hence, for
this shear rate, we report measurements with the QKTFM and
kCTFM; for all other shear rates we judge the method valid and
report full sets of results. The diagonal components of η do not
manifest marked anisotropy until ∣ ˜∣ S 0.2, corresponding to
|ShK| 0.5. Then, the CTFM indicates ηxx> ηyy within error
bars, while the QKTFM rather tends to ηyy> ηxx, yet to be
considered insignificant in view of the error bars. QKTFM
shows a sign change of ηxy when ∣ ˜∣ S 0.1, while the CTFM
yields positive values. The kinematic variant shows increasing
values of ηxy as a function of shear rate, while the nonlinear
variant indicates rather decreasing ones. The most marked
difference in the methods is seen for ηyx: the kCTFM yields
negative, but insignificant, values for weak shear, but then
significant positive values for strong shear. The nonlinear
version, in contrast, shows large positive values with weak
shear, and a much-reduced value at the highest shear to which
this method is applicable. The QKTFM is in rough agreement
with the trends of the nCTFM.

Table 6
Summary of the Runs with Varying Shear Rate and PrM = 20

Run ˜-S ReM ShK Lu ηxx/η ηyy/η ηyx/η ηxy/η αrms/ηtkf ηrms/η

kS005Pm20 0.05 34 −0.15 16 11.754 ± 0.097 11.982 ± 0.051 0.024 ± 0.080 1.112 ± 0.101 0.039 ± 0.021 0.264 ± 0.182
nS005Pm20 0.05 34 −0.15 18 12.036 ± 0.655 12.191 ± 0.630 0.133 ± 0.061 1.297 ± 0.241 0.043 ± 0.013 0.547 ± 0.278
qS005Pm20 0.05 33 −0.15 20 11.116 ± 2.280 11.398 ± 2.113 0.135 ± 0.089 1.013 ± 0.677 0.046 ± 0.020 0.552 ± 0.354

kS01Pm20 0.1 32 −0.30 28 7.678 ± 0.283 8.151 ± 0.231 −0.092 ± 0.064 1.063 ± 0.149 0.036 ± 0.020 0.257 ± 0.112
nS01Pm20 0.1 33 −0.30 28 9.152 ± 1.560 9.506 ± 1.551 0.203 ± 0.121 1.236 ± 0.878 0.040 ± 0.019 0.345 ± 0.233
qS01Pm20 0.1 32 −0.31 35 6.696 ± 0.309 7.097 ± 0.308 0.041 ± 0.011 −0.426 ± 0.115 0.050 ± 0.013 0.297 ± 0.087

kS02Pm20 0.2 33 −0.60 44 6.099 ± 0.140 5.372 ± 0.232 0.041 ± 0.013 1.569 ± 0.784 0.046 ± 0.013 0.326 ± 0.084
nS02Pm20 0.2 33 −0.60 47 7.356 ± 0.807 5.608 ± 0.486 0.000 ± 0.042 0.874 ± 0.326 0.041 ± 0.020 0.202 ± 0.128
qS02Pm20 0.2 33 −0.61 47 5.696 ± 0.462 6.008 ± 0.528 0.033 ± 0.021 −1.017 ± 0.533 0.045 ± 0.011 0.228 ± 0.094

kS03Pm20 0.3 35 −0.86 56 6.274 ± 0.255 5.359 ± 0.161 0.114 ± 0.052 5.511 ± 0.480 0.039 ± 0.022 0.241 ± 0.129
qS03Pm20 0.3 34 −0.87 60 5.813 ± 0.311 5.933 ± 0.333 0.055 ± 0.022 −0.693 ± 0.695 0.039 ± 0.009 0.188 ± 0.062

Note. Conventions as in Table 2.
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The retrieved dynamo numbers (Table 7) indicate slightly
subcritical incoherent dynamos for the lowest shear rate but
clearly supercritical incoherent dynamos for all other shear
rates. The prediction for the coherent SC-effect dynamo is
unfavorable, except for S̃ =−0.1, where a positive, yet still
subcritical DηS is obtained with the kCTFM.

4. Conclusions

This work presents the compressible test-field method
(CTFM) applicable to full MHD with magnetic background
turbulence. We present an extensive set of tests using 2D
velocity and magnetic fields of Roberts geometry, for which it
has long been known that the QKTFM completely fails (giving
even the wrong sign of α) when a (force-free) magnetic
background is forced (RB10). We find agreement in α between
the CTFM and the imposed-field method when the ratio of the
imposed field to the forced magnetic background ( )B b0 rms

0 is
smaller than≈ 7.

Tests with the shear dynamo setup reveal agreement of two
different nonlinear flavors of the CTFM up to Lundquist
numbers of B of at least 25 while ( )B brms rms

0 does not
exceed≈ 0.8. We also compare with the SMHD approach of
our earlier study (Käpylä et al. 2020), which ignores the
pressure gradient, and find some mild discrepancies due to the
previous omission of this term.

We proceed by applying the CTFM to the case of shear
dynamos, where our previous study was limited to SMHD with
magnetic forcing, and was hence deemed inconclusive. In this
work, we use full MHD subject to kinetic nonhelical forcing
only and moderate ReM, yet resulting in vigorous SSD action.
We mostly concentrate on analyzing the kinematic CTFM
results due to their general validity, while also presenting
results of nCTFM within its validity range and QKTFM ones
for comparison. We largely confirm the results of the earlier
study, namely, the finding of LSDs excited by the incoherent
α-shear effect, in the parameter regime of moderate shear
numbers (ShK≈−0.3, K,−0.9) and magnetic Prandtl num-
bers PrM= 5K20. With PrM= 1, where Zhou & Blackman
(2021) measured a negative ηyx (favorable for the coherent SC-
effect dynamo) with the QKTFM, we find uninterestingly weak
LSD, and the CTFM does not confirm the QKTFM
measurements.

Parameter regimes studied in this work are limited to
moderate PrM and ShK. What prevented us from extending our
analysis beyond these limits is the aforementioned enhanced
instability of the test solutions either in the presence of strong
mean flows or very strong magnetic fluctuations. Further
studies in this regime might be enabled by using higher
resolution and even smaller time steps, greatly increasing the
computational challenge, however. Another avenue for future
research would be to assess the importance of the density in
the Lorentz force, where we have replaced it with a constant
reference value. It is conceivable that density variability
becomes important at high Mach numbers, which is a regime
that has not yet received much attention, but see Rogachevskii
et al. (2018) for specific predictions.
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acknowledges support through the Swedish Research Council
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Software: The source code used for the simulations of this

study, the PENCIL CODE (Pencil Code Collaboration et al. 2021),
is freely available on https://github.com/pencil-code/. The DOI
of the code is https://doi.org/10.5281/zenodo.2315093
v2018.12.16 (Brandenburg 2018). The simulation setup
and the corresponding data are freely available on http://www.
nordita.org/~brandenb/projects/CompressibleTestfield/.

Appendix A
Shear Dynamo Test Experiments

Given the results from the experiments with Roberts forcing
where the nCTFM failed to reproduce some of the α
coefficients for imposed fields yielding Lundquist numbers
above 10, it is important to verify whether the nonlinear
method is valid in shear dynamo cases as the generated mean
fields at high shear and PrM reach a strong field regime. In the
case with Roberts forcing, we had a generally valid method,
namely the imposed-field one, to compare the CTFM results
with, but to determine η from a shear dynamo, such an
alternative does not exist. Hence, we must rely on the
comparison of the different flavors of the CTFM, which may
provide an indication for correctness, but no definite proof. We
have rerun many of our shear dynamo runs with the bb flavor
and show in Figure 11 a comparison with the ju flavor in the
nonlinear regime of a typical case with a strong mean field. We
plot the time series of the η components for seven resetting
intervals of the test problems. The diagonal components from
both methods agree very well, as can be seen from the top row
of Figure 11. The agreement of the off-diagonal components
(lower row) is somewhat poorer, but still acceptable. The ηyx
component from the bb flavor shows a slight systematic offset
to more positive values, but as this component is small and its
time average nearly always consistent with zero within error
bars, we conclude that this difference is not significant. The
agreement for ηxy is again rather good.

Table 7
Dynamo Numbers for the Models with Varying Shear Rate and PrM = 20

Run ˜-S k̃z,kin k̃z,sat k̃B DηS hD Srms DαS

kS005Pm20 0.05 2 1 2 −0.0236 0.1952 2.1389
nS005Pm20 0.05 2 1 1 −0.0957 0.3979 2.0790
qS005Pm20 0.05 2 1 1 −0.1110 0.4594 2.4033

kS01Pm20 0.1 2 1 2 0.2891 0.8237 4.5000
nS01Pm20 0.1 2 1 1 −0.4746 0.8095 4.3888
qS01Pm20 0.1 2 1 1 −0.1653 1.1906 6.2656

kS02Pm20 20 3 1 3 −0.1981 1.5581 3.1317
nS02Pm20 20 3 1 1 0.0124 0.8021 2.6719
qS02Pm20 20 3 1 1 −0.1564 1.0812 3.2568

kS03Pm20 0.3 3 1 3 −0.7848 1.4347 2.6384
qS03Pm20 0.3 3 1 1 −0.3848 1.3288 3.4519

Note. Conventions as in Table 3.
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Appendix B
Occasional Correctness of the Nonlinear Method

Consider the equations for a(B), u(B), and h(B) of the main run
with imposed uniform field B0,

( ) ( )

( ) ( )
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where the nonlinear terms are here written in the same way as
described in Section 2.1.4 for the ju flavor of the test problems.
Accordingly, the mean EMF is expressed as

( ) ( ) ( ) ( )= ´ + ´ u b u bB B B 0 . Note, though, that here these
writings represent equivalent rearrangements. Now let us multiply
the equations with a constant factor g and redefine the variables as
a(B) := ga(B), u(B) := gu(B), h(B) := gh(B), and ( ) ( )= g:B B . Of
course, for g≠ 1, a= a(0)+ a(B), etc. no longer hold. We see that
the system is now equivalent to that of flavor ju of the test
problems with the test field BT set equal to the uniform field g B0

(that is, BT=B(1) or B(3) with kB=0 in Equations (25)–(26)).
Inverting the relation ( ) a= Bi

B
ij j

T employing ( ) B derived from
the test solution must hence yield the same result as inverting

( ) a= Bi
B

ij j0, with ( ) B derived from the main run (that is,
employing the imposed-field method). For any other flavor, the
same reasoning can be put forth, so they have to yield identical
results. If B0 is, say, in the x direction, the CTFM with kB= 0
yields thus the correct αix for arbitrary strengths of the imposed
field and hence the nonlinearity. However, αiy cannot correctly be
determined as only one of the test fields can be set proportional
to B0.

Figure 11. Comparison of the ju (orange lines) and bb (black lines) flavors in the nonlinear stage for PrM = 20 and S̃ = −0.2 with Lu ≈ 45 based on the total field
strength, and ≈ 25 based on the mean-field strength, while ( ) =B b 0.78rms rms

0 .
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