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Abstract

Using numerical simulations of helical inflationary magnetogenesis in a low reheating temperature scenario, we
show that the magnetic energy spectrum is strongly peaked at a particular wavenumber that depends on the
reheating temperature. Gravitational waves (GWs) are produced at frequencies between 3 nHz and 50 mHz for
reheating temperatures between 150MeV and 3× 105 GeV, respectively. At and below the peak frequency, the
stress spectrum is always found to be that of white noise. This implies a linear increase of GW energy per
logarithmic wavenumber interval, instead of a cubic one. Both in the helical and nonhelical cases, the GW
spectrum is followed by a sharp drop for frequencies above the respective peak frequency. In this magnetogenesis
scenario, the presence of a helical term extends the peak of the GW spectrum and therefore also the position of the
aforementioned drop toward larger frequencies compared to the case without helicity. This might make a difference
in it being detectable with space interferometers. The efficiency of GW production is found to be almost the same
as in the nonhelical case, and independent of the reheating temperature, provided the electromagnetic energy at the
end of reheating is fixed to be a certain fraction of the radiation energy density. Also, contrary to the case without
helicity, the electric energy is now less than the magnetic energy during reheating. The fractional circular
polarization is found to be nearly 100% in a certain range below the peak frequency range.

Unified Astronomy Thesaurus concepts: Gravitational waves (678)

1. Introduction

There has been significant interest in the production of
helical magnetic fields and circularly polarized gravitational
waves (GWs) from the early universe (Garretson et al. 1992;
Cornwall 1997; Vachaspati 2001; Kahniashvili et al.
2005, 2021; Anber & Sorbo 2006; Campanelli 2009; Durrer
et al. 2011; Durrer & Neronov 2013; Caprini & Sorbo 2014;
Adshead et al. 2016, 2018; Subramanian 2016). Owing to
magnetic helicity conservation, such fields would have had a
better chance to survive until the present time (Christensson
et al. 2001; Banerjee & Jedamzik 2004; Kahniashvili et al.
2016; Brandenburg et al. 2017). The associated electro-
magnetic (EM) stress also drives circularly polarized GWs
(Kahniashvili et al. 2005, 2021; Ellis et al. 2020; Roper Pol
et al. 2021). If the sign and spectral shape of the circular
polarization can in the future be detected, it would provide
important information about the underlying mechanisms
responsible for the generation.

Inflationary magnetogenesis scenarios are particularly attrac-
tive because they have the advantage of producing large-scale
magnetic fields. They tend to amplify magnetic fields from
quantum fluctuations by the breaking of conformal invariance
through a function f such that the Lagrangian density has a term
that takes the form f 2FμνF

μ ν, where Fμν is the Faraday tensor
(Turner & Widrow 1988; Ratra 1992). However, those
mechanisms can only be viable if they avoid some well-known
problems discussed in detail in the literature (Demozzi et al.
2009; Ferreira et al. 2013; Kobayashi & Afshordi 2014;
Kobayashi & Sloth 2019). These problems are avoided by
requiring the function f to obey certain constraints that have
been discussed in detail by Sharma et al. (2017). For some
scenarios, these magnetic fields can lead to the production of

GWs that lie in the sensitivity range of space interferometers,
such as LISA and Taiji, as studied analytically in Sharma et al.
(2020). This magnetogenesis model was also extended to the
helical case (Sharma et al. 2018, hereafter SSS18). A similar
model of helical magnetogenesis was considered by Fujita &
Durrer (2019) and Okano & Fujita (2021). Numerical
simulations have recently been performed for the nonhelical
case (Brandenburg & Sharma 2021, hereafter BS21). The goal
of the present paper is to apply numerical simulations now to
helical magnetogenesis. These models continue to amplify EM
fields during the post-inflationary matter-dominated era after
inflation, but require relatively low reheating temperatures, Tr.
Values of Tr in the range of the electroweak and quantum
chromodynamics (QCD) epochs are often discussed, but do not
have to coincide with them. Here, we consider values of Tr in
the range of 150MeV to 3× 105 GeV, which correspond to
peak frequencies of GWs in the ranges accessible to pulsar
timing arrays (Detweiler 1979; Hobbs et al. 2010; Arzouma-
nian et al. 2020) and space interferometers (Caprini et al. 2016;
Amaro-Seoane et al. 2017; Taiji Scientific Collaboration et al.
2021).
As in Sharma et al. (2017) and SSS18, we assume that f is a

function of the scale factor a with f (a)∝ aα during inflation,
and f (a)∝ a− β during the post-inflationary matter-dominated
era, where α= 2 was fixed and β is an exponent whose value
depends on Tr. The magnetic field becomes unstable and is
rapidly amplified at large length scales, provided the second
derivative of f with respect to conformal time is positive. This
can be the case both for positive and negative exponents, i.e.,
both during and after inflation, but no longer in the radiation-
dominated era, where f= 1 must be obeyed for standard
(conformally invariant) electromagnetism to hold.
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In contrast to BS21, we now consider an additional term
g mn

mnf F F2 ˜ in the Lagrangian density, where γ is a constant and
mnF̃ is the dual of the Faraday tensor. The product is

proportional to E ·B, where E and B are the electric and
magnetic fields, respectively. The term E ·B is proportional to
the rate of magnetic helicity production. The presence of such a
term is common to many scenarios of helical magnetogenesis,
including the chiral magnetic effect (CME; see Vilenkin 1980;
Joyce & Shaposhnikov 1997; Boyarsky et al. 2012, 2015) and
axion inflation (Turner & Widrow 1988; Barnaby et al. 2011;
Fujita et al. 2015; Ng et al. 2015; Adshead et al. 2016; Cheng
et al. 2016; Domcke & Mukaida 2018; Domcke et al. 2020). In
the case of magnetogenesis via axion inflation (Garretson et al.
1992; Adshead et al. 2016), the helical term takes the form

f mn
mn-f F Fm

1 ˜ , where f represents the axion field and fm is a
mass scale associated with the axion field. In our model, f (a) is
constructed such that the model avoids the aforementioned
difficulties discussed in detail by Sharma et al. (2017)
and SSS18.

As in BS21, we employ the PENCIL CODE (Pencil Code
Collaboration et al. 2021) and apply it in two separate steps. In
step I, we solve the Maxwell and GW equations near the end of
the post-inflationary matter-dominated phase when the medium
is still electrically nonconducting and no fluid motions can be
driven by the Lorentz force. Just like the (linearized) GW
equation, the Maxwell equations are linear and are advanced
analytically between two subsequent times steps; see
Appendix C of BS21 for details. In step II, when the
conductivity has become large, we solve the standard
magnetohydrodynamic (MHD) equations. The GW energy
density is always small compared with the radiation energy
density and the EM energy density, which justifies the use of
the linearized GW equation and the neglect of feedback onto
the EM field.

The presence of the helical term proportional to γ leads to a
difference in the growth rates between positively and
negatively polarized fields. Magnetic fields with one of the
two signs of helicities will therefore grow much faster than the
other. Since there is enough time for the magnetic field to grow
over many orders of magnitude, it suffices to consider in step I
only fields of one helicity. This simplifies the computation
somewhat. In step II, however, no such simplification is made.

In this paper, we work with conformal time η, which is
related to physical time t through η= ∫dt/a(t). By adopting
appropriately scaled variables, we arrive at MHD equations that
are similar to those of standard MHD for a non-expanding
universe (Brandenburg et al. 1996). In step I, during the post-
inflationary matter-dominated era, the effective equation of
state is such that the scale factor increases quadratically with
conformal time (and like t2/3 with physical time). Conformal
time is normalized such that it is unity at the beginning of the
subsequent radiation-dominated era. Furthermore, the scale
factor increases linearly with η in the radiation-dominated era.
We assume a spatially flat universe and adopt the normalization
of Roper Pol et al. (2020a, 2020b), where a(η)= 1 at η= 1 and
the mean radiative energy density is then also set to unity.

In Section 2, we present the basic equations applied in steps I
and II. Those for step II are identical to the corresponding ones
used in BS21, but the equations for step I are different owing to
the presence of the magnetic helicity producing term propor-
tional to γ. We then present the results in Section 3 and

conclude in Section 4. We adopt the Heaviside–Lorentz unit
system and set the speed of light equal to unity.

2. The Model

2.1. Polarization Basis and Governing Equations

Any vector field can be decomposed into an irrotational and
two vortical parts that are eigenfunctions of the curl operator
with positive and negative eigenvalues. Here, we employ the
vector potential A in the Coulomb gauge, ∇ · A= 0, so the
irrotational part vanishes. We then consider

òh h= -A k A x xe d, , k xi 3˜ ( ) ( ) · in Fourier space, indicated by
tildae, as a function of conformal time η and the wavevector k,
and write it as

h h h= ++ + - -A k k e k k e kA A, , , , 1˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ( )

where

= e k e k e ki 2 i 21 2˜ ( ) [˜ ( ) ˜ ( )] ( )

is the polarization basis with ´ =  k e eki ˜ ˜ , k= |k| is the
wavenumber and e k1˜ ( ), e k2˜ ( ) represent units vectors orthogo-
nal to k and orthogonal to each other. We assume an additional
helical term in the EM Lagrangian density,

g+mn
mn mnf F F F2 ( ˜ ). As in BS21, we assume

h= = +b-f a a awith 1 4 32( ) ( ) ( )

being the scale factor during the post-inflationary matter-
dominated era with− 1< η� 1. The evolution of the scaled
vector potential, º  fA˜ ˜ , is then governed by the
equation (SSS18; Okano & Fujita 2021)

g + 
¢
-
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There are growing modes for k< k*(η), given by

h b g g b h= + + + +k 2 1 1 2 1 , 62
*( ) ( ) ( ) ( )

where we have considered the upper sign in Equation (4).
Equation (6) reduces to the expression given in Equation (7)
of BS21 for γ= 0. For γ= 1, we have

b b= + +k 1 1 2 1 2*( ) ( ). For β= 7.3, a particular case
considered by BS21, we have k*(1)≈ 18 in the helical case
when γ= 1, which is more than twice the value k*(1)≈ 7.5 for
γ= 0 used by BS21 for the nonhelical case. This shows that
helicity broadens the range of unstable wavenumbers. For
γ=−1, we would have k*(1)≈ 3.2, but this is not relevant in
practice because the fastest growing mode would then have
opposite magnetic helicity, and the results for γ= 1 apply
analogously. Contrary to the case of nonhelical magnetogenesis
(γ= 0), where the growth is fastest for k= 0, it is now fastest
for finite values of k. In fact, as a function of k, the expression
in round brackets in Equation (4) has an extremum for
k= 2βγ/(η+ 1), and would instead be at k= 0 for γ= 0.
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As in BS21, we also solve the linearized GW equations

 + -


=+ ´ + ´ + ´h k
a

a
h

a
T

6
72⎛

⎝
⎞
⎠

˜ ˜ ˜ ( )

for the two polarization modes of the Fourier-transformed
strain + ´h̃ . As in Roper Pol et al. (2020a, 2020b), we have
made use of the fact that the critical energy density at η= 1 is
unity. The GWs are driven by the + and × modes of the
traceless-transverse projected EM stress,

= +f B B E E , 8ij i j i j
2 ( ) ( )T

where E=−∂A/∂η and B=∇×A are the electric and
magnetic fields in real space. We then compute

òh h= -k x xe d, , k x
ij ij

i 3˜ ( ) ( ) ·T T in Fourier space, project out

the transverse-traceless part, and decompose the result into T̃+

and T́̃ , which then enter in Equation (7); see Roper Pol et al.
(2020a, 2020b) for details.

As already explained in BS21, and alluded to in the
introduction, we solve Equations (4) and (7) analytically
between subsequent time steps. Since these equations are
second order in time, the solutions to both equations are at each
moment characterized by a pair of variables ¢  ,( ˜ ˜ ) and

¢+ ´ + ´h h,( ˜ ˜ ), respectively. This implies that both the electric
field and the time derivative of the strain field are readily
available for computing electric and GW energies and energy
spectra.

In step II, we solve the standard MHD equations with the
usual modifications for a radiation-dominated ultrarelativistic
gas; see also BS21. The bulk motions with velocity u are
nonrelativistic, but include second order terms in the Lorentz
factor (see Brandenburg et al. 1996, 2017, for details). As
stated before, the mean radiation energy density is set to unity
at η= 1. The new parameters in this step are the electric
conductivity σ and the kinematic viscosity ν. As in BS21, we
always assume the magnetic Prandtl number to be unity, i.e.,
νσ= 1.

2.2. Diagnostics and Initial Conditions

Important output diagnostics are energy spectra, Eλ(η, k),
where λ= E, M, K, and GW, for electric, magnetic, kinetic,
and GW energy spectra. The symbols for the spectra are only
used with these four subscripts and are not to be confused with
the components of the electric field vector E. The corresp-
onding energy densities are given by the k integrals over these
spectra, i.e., òh h=l l E k dk,( ) ( ) . The spectra are normalized
such that = á ñ E 2E

2 , = á ñ B 2M
2 , = á ñ u 2K

2 ,
and = á ¢ + ¢ ñ+ ´ h h 6GW

2 2 .
We emphasize that EGW(k) denotes the GW energy density

per linear wavenumber interval, normalized to the radiation
energy density at η= 1. To obtain the GW energy density per
logarithmic wavenumber interval, normalized to the critical
energy density today, one has to multiply kEGW(k) by the
dilution factor a a H Hr 0

4
r 0

2( ) ( ) , where the subscripts “r” and
“0” refer to the scale factor a and the Hubble parameter H at the
end of reheating and today; see Roper Pol et al. (2020b) for
details regarding the normalization. This leads to the quantity

W = ´ -h k g kE k1.6 10 1000
2

GW
5

r GW( ) ( ) ( ), where gr is the
number of relativistic degrees of freedom at the beginning of
the radiation-dominated era.

The simulations usually start at the initial time ηini=− 0.9,
which implies a(ηini)= 2.5× 10−3. In some cases (Runs C and
D below), we used ηini=−0.99, so that a(ηini)= 2.5× 10−5.
As discussed in BS21, the initial magnetic field usually has a
spectrum EM(k)∝ k3 for k< k*(ηini). The value of k*(ηini) then
lies between the smallest and largest wavenumbers in the
computational domain, k1 and kNy, respectively, where
kNy= k1nmesh /2−1 is the Nyquist wavenumber and nmesh is
the number of mesh points in the domain of size 2π/k1. In this
paper, we use nmesh= 512 and we treat k1 as an input parameter
that is usually chosen to be unity, but sometimes we also
consider smaller and larger values between 0.2 and 10,
respectively.
The transition from step I to step II is discontinuous, as has

already been discussed in BS21. This may be permissible when
the change from zero conductivity to a finite and large value
occurs rapidly; see Appendix D of BS21. In addition, while in
step II we have f= 1, and therefore ¢ =  =f f 0, the values of
¢f f and f″/f at the end of step I are small, but finite, which can

cause artifacts. BS21 noted the occurrence of oscillations
shortly after transitioning to step II, but the results presented for
our GW spectra are always averaged over the statistically
steady state and are therefore independent of the oscillations
caused by the discontinuities of these two ratios. In the present
case of helical magnetogenesis, there is also another effect on
the spectral slope of the GW energy density that will be
addressed below.
Let us emphasize at this point that in step II, when σ is large,

magnetic helicity, 〈A ·B〉, is well conserved. This is not the
case in step I, which is the reason why a helical magnetic field
can be produced. Indeed, the magnetic helicity then grows at
the same rate as the magnetic energy.

2.3. Parameters of the Magnetogenesis Model

To avoid backreaction and strong coupling problems of
magnetogenesis during inflation, SSS18 assumed the function f
to grow in a particular fashion. In the beginning, it grows as aα,
starting from the value unity. To recover the standard EM
theory at the end of reheating, f is further assumed to continue
evolving as f∝ a−β in the post-inflationary era, which is
assumed to be matter dominated. The procedure to obtain the
value of β for a particular value of the reheating temperature Tr
is the same as explained in Appendix A of BS21. The only
difference lies in Equation (A1) of BS21, which is obtained by
demanding that the total EM energy density, is a certain
fraction EM of the background energy density at the end of the
post-inflationary matter-dominated era. Details are given in the
Appendix.
In the model of SSS18, α= 2 was chosen to have a scale-

invariant magnetic energy spectrum during inflation. However,
in the post-inflationary era, when f decreases, the part that
provides a scale-invariant spectrum during inflation decays and
the next order term becomes dominant, giving an EM∝ k3

spectrum in the superhorizon limit. In this case, when α= 2,
the maximum possible value of the reheating temperature is
approximately 50 GeV. This value is different from the value
given by SSS18, which was 4000 GeV. This difference is due
to the fact that in SSS18, the extra amplification due to the
presence of the helical term was not considered in the post-
inflationary matter-dominated era.
In BS21, we focused on two sets of runs—one for a

reheating temperature of around 100 GeV and another for
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150MeV. The corresponding values of β then 7.3 and 2.7,
respectively. We begin with similar choices of β here, too. It
turns out that for 150MeV, the appropriate value is now
β= 2.9, but for the standard scenario with α= 2, for the
reasons explained above, models for 100 GeV would not be
allowed in the helical case because they would lead to strong
backreaction, which forces us to choose≈ 10 GeV instead. In
that case, the appropriate value would be β= 7.7; see Table 1
for a summary of parameter combinations and the Appendix for
further details. To facilitate comparison with BS21, we have
reduced the value of Tr to 8 GeV, which then corresponds
to β= 7.3.

In this paper, we also explore the possibility of a smaller
value of α. This allows for higher reheating temperature scales
without having any backreaction problem in the post-inflation
matter-dominated era. For the case α= 1, the value of the
reheating temperature is 3× 105 GeV when the Hubble
parameter during inflation is Hf= 1014 GeV and the total EM
energy density is 1% of the background energy density at the
end of reheating. These large values of Hf and Tr were not
possible for the case when α= 2. This case is listed in the last
row of Table 1 along with other relevant parameters.

We also consider the model of Okano & Fujita (2021),
where f (a)∝ a−3 both during inflation and in the post-
inflationary era, i.e., β= 3=−α. In their model, the product
βγ was found to be 7.6 so as to have maximum magnetic field
strength for the case when the total EM energy density is 1% of
the background energy density; see Equation (2.19) of Okano
& Fujita (2021). This corresponds to γ= 2.5. In that case, the
initial magnetic field had a scale-invariant spectrum propor-
tional to k−1 in the superhorizon limit.

For the magnetogenesis model at energy scales before the
electroweak era, there may be additional constraints from
baryogenesis in the presence of helical magnetic fields around
the electroweak phase transition (Kamada & Long 2016) and
from isocurvature perturbations in the cosmic background
radiation (Kamada et al. 2021). These constraints would
disfavor such models and should be revisited in future work.

Quantum fluctuations alone would not introduce a preference
of one sign of helicity over the other, so both + and -
would grow at the same rate if γ= 0. However, if the magnetic
field was fully helical to begin with, only one of the two signs
of helicity would grow, i.e., either + or - , so the field might
remain helical even though γ= 0 and both solutions would still
be equally unstable. In the following, we allow for such a
possibility in some of our simulations.

3. Results

3.1. Growth of the Magnetic Field and GW Energy

In Figure 1, we show the growth and subsequent decay of
the rms magnetic field Brms during steps I and II, and compare

with a simulation of nonhelical inflationary magnetic field
generation (similar to Run B1 of BS21). The pair of helical and
nonhelical runs shown here are referred to as Runs B and Bn,
respectively. They have β= 7.3 and correspond to reheating
temperatures of 8 GeV in the helical case and 100 GeV in the
nonhelical case; see Table 1 for a summary of parameter
combinations. The growth is still approximately algebraic, but,
as expected, it is now faster than in the nonhelical case. This is
caused by the extra amplification resulting from the helical
term proportional to γ. This term is reminiscent of the CME,
which causes, however, exponential magnetic field amplifica-
tion (Joyce & Shaposhnikov 1997). The CME has been
invoked in the study of GW production from the resulting
magnetic field both analytically (Anand et al. 2019) and
numerically (Brandenburg et al. 2021c, hereafter BHKRS21).
The difference in the temporal growth of Brms and GW between
the CME and helical magnetogenesis is demonstrated in
Figure 1. Here, we have also overplotted two versions of
Run B1 of BHKRS21. (We stress that this Run B1 is different
from the Run B1 of BS21.)
During the subsequent decay phase, Brms is approximately

equally large for both inflationary and CME runs. This is just
because of our choice of parameters. However, owing to the
smaller length scales on which the CME operates, the
corresponding GW energy is now much smaller than for
inflationary magnetogenesis. On the other hand, we also see
that the growth, being exponential, is much faster for the CME
runs than for both the helical and nonhelical inflationary
magnetogenesis models. This implies that the CME can reach
saturation with an arbitrarily weak initial seed magnetic field.
The saturation amplitude does, however, depend on the
assumed initial imbalance of left- and right-handed fermions,
and may, in reality, be much smaller than what has been
assumed in the models of BHKRS21. By contrast, the
maximum field strength from inflationary magnetogenesis is
determined by demanding that the total EM energy density is
some fraction of the background energy density at the end of
reheating, so that there is no backreaction.
In Table 2, we summarize quantitative aspects of our new

runs, Runs A–D, as well as two nonhelical ones, Runs Bn and
Dn, where γ= 0. We list the reheating temperature Tr in
gigaelectronvolts, the amplitude parameter B0 for the initial
magnetic field, the aforementioned parameters β, γ, k 1

*
( ), and ν,

as well as the output parameters M, EM ≡E +M, the ratio
M/EM, the values of GW and the rms strain

= á + ñ+ ´h h hrms
2 2 1 2, as well as two different efficiency

parameters qM and qEM, defined below.
As in BS21, varying the initial magnetic field strength B0

always resulted in a purely quadratic change of M, and a
quartic change of GW. It therefore suffices to present, for each
combination of parameters β and γ, only one value of B0,
typically such that EM is roughly in the expected range of
between 0.01 and 0.1.
Comparing helical with nonhelical runs for similar values of

M, the GW energies and strains are smaller than in the earlier
cases without helicity (see also Figure 1). This may suggest that
GW production from helical inflationary magnetogenesis is
somewhat less efficient than for the nonhelical case. However,
while the values of M are the same, the total EM energies,

= +  EM E M, are not. In fact, we see that the ratio E/M is
typically 0.3–0.5, i.e., the electric energy contribution is
subdominant during the post-inflationary matter-dominated

Table 1
β for Different Values of Tr, α, and γ

Tr (GeV) EM α β γ EM(ηini, k)

10 0.07 2 7.7 1 ∝k3

8 0.01 2 7.3 1 ∝k3

0.15 0.01 2 2.9 1 ∝k3

460 0.01 −3 3 2.5 ∝k−1

3 × 105 0.01 1 1.7 1 ∝k5
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era. For nonhelical magnetogenesis, by contrast, the electric
energy is dominant, typically with =  10 30E M – for β
between 2.7 and 7.3.

As already noted, for fixed values of β and γ, the different
values of M, EM, GW, and hrms are directly related to the
initial amplitude parameter B0. To compare runs with different
parameters β and γ, we must therefore compute normalized
efficiencies. Earlier work (Roper Pol et al. 2020b; Brandenburg
et al. 2021b) suggested that = q kGW M M c

2( ) , where qM is
the efficiency and kc is a characteristic wavenumber. In analogy
to their work, we now postulate an analogous relation, but with
EM instead of M, i.e.,

= q k , 9GW EM EM c
2( ) ( )

where qEM is a new efficiency parameter, and for kc we always
take the value kc= k*(1), just like in BS21. We recall that in
Equation (9), GW and EM are in units of the radiation energy
density at η= 1 and kc is in units of Hr/c.

For nonhelical magnetogenesis, BS21 found that qM was
proportional to β. Since k*(1) was also proportional to β, this
meant that the effect of dividing by k*(1) was effectively
canceled, and therefore a good scaling was obtained by just
plotting GW versus M

2, suggesting that the 1/kc scaling may
not have been real. However, our new results for helical
magnetogenesis now show that this is not the case for qEM. In
fact, looking at Table 2, where we present both qM and qEM, we
see that qM shows significant variations (1.4 qM 32), while
qEM changes comparatively little (1 qEM 2). This suggests
that the GW energy is indeed governed by qEM, and is then
only weakly dependent on the value of β.

Among the four runs, Runs A–D, Runs A and B have the
same values of α and γ, their initial spectra are the same (see
Table 1), and only the values of β are different. For Runs C and
D, on the other hand, the values of γ and α were also different.
In the following, therefore, we focus on presenting Runs B–D
in more detail.

3.2. Energy Spectra

Next, we compare Runs B, C, and D by looking at the GW
and magnetic energy spectra for step I during−0.9� η� 1,
where we also compare with electric energy spectra. As
in BS21, we try to collapse the spectra on top of each other by

plotting the functions

f k h h= +l l
- +l E k1 , , 10p 1( ) ( ) ( ) ( )( )

where λ= E, M, or GW for electric, magnetic, and GW
energies, respectively, pλ are exponents characterizing the
growth, and

k h h= k k 11*( ) ( ) ( )

is a time-dependent wavenumber where the EM energy spectra
peak. We show the result in Figure 2, where we plot both Eλ(k,
η) and fλ(κ) for Run B in panels (a) and (b), Run C in panels
(c) and (d), and Run D in panels (e) and (f). The values of pλ
are listed in Table 3 for Runs A–Dn. We see that the tendency
of the lines to collapse on top of each other is better for the GW
spectra than for the electric and magnetic spectra. This shows
that those latter two are not shape invariant. This is clearly
different from the nonhelical case; see the corresponding Figure
3 of BS21.
Interestingly, except for the GW spectra, which show power-

law scalings with EGW(k)∝ k for k< 2k*(1) and
EGW(k)∝ k−46 for k> 2k*(1) (for Run B), the EM spectra
deviate from power-law scaling and show a more peaked
spectrum for k< k*(1). The growth is fastest in the model with
β= 7.3, as is indicated by the spectra spanning about 40 orders
of magnitude and by the large values of pM and pGW; see
Table 3 for Run B. For Runs C and D, the spectra are
progressively more shallow.
For the GW spectrum of Run D, there is a dip at κ≈ 0.17

(and at decreasing values of k as time increases). This coincides
with the wavenumber where k2= a″/a and thus, where the
solution to Equation (7) changes from oscillatory to temporally
growing behavior. This feature is now very prominent because
the growth of the magnetic field for Run D is much slower than
for Runs B and C.
Visualizations of the magnetic field on the periphery of the

computational domain are shown in Figure 3 for Runs B–D.
We see that the typical length scales increase with time, but
again faster for Runs B and C than for Run D.
To study the temporal growth of specific values of k, we

show in Figure 4 the dependencies of EE(η, k), EM(η, k), and
EGW(η, k) separately for k= 2 and 10 for Run C, where the
departure from shape-invariant behavior appears to be the

Figure 1. Evolution of (a) Brms and (b) GW for Runs B (with helicity, red lines) and Bn (without helicity, blue lines), both with β = 7.3, compared with two versions
of Run B1 of BHKRS21 with CME and different initial field strengths. The two orange lines denote Run B1 of BHKRS21 with the original and a 1012 times weaker
initial field. Note that for the helical growth, the slopes change with a(η), which is a consequence of the helical term.
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strongest. We can clearly see that the growth of EGW(η, k) is the
same for all values of k. This is in agreement with the visual
impression from Figure 2. It is also the same at early and late
times. This is not the case for the electric and magnetic spectra,
where we have a growth proportional to a7.5 for k= 2 and small
values of a, but a faster growth ∝a16 for k= 10 and a(η)> 0.1.

When the mode corresponding to a certain wavenumber k is
well outside the horizon, the f″/f term within the round brackets
of Equation (4) dominates over the other two terms, and the
amplitude of the mode grows in time. Once the mode is about
to enter the horizon, the second term also comes into the picture
and further enhances the growth rate for γ= 1. This behavior is
shown in Figure 4.

To understand the nearly shape-invariant scaling of EGW(η,
k), it is important to look at spectra of the stress. This is done in
Figure 5, where we show spectra of the stress, decomposed into
tensor, vector, and scalar modes (Mukhanov et al. 1992). The
tensor mode is the transverse-traceless contribution to the
stress, while the vector and scalar modes are composed of
vortical and irrotational constituents, respectively; see Bran-
denburg et al. (2021b) for such a decomposition of data from
earlier GW simulations. We see that at all times during step I,
the scalar and vector modes are subdominant. In particular, the
peak of the stress spectrum is, to a large fraction, composed of
the tensor mode only. As expected from the work of
Brandenburg & Boldyrev (2020), its spectrum follows a k2

subrange to high precision.
Comparing the different models, we see that for κ= 1, we

reproduce the initial scalings fM∝ κ3 for Run B and∝ κ5 for
Run D, with a shallower scaling by a factor κ2 for the electric
fields, in particular, the fE∝ κ−3 scaling for Run C. For κ? 1,
we have a progressively shallower decline∝ κ−46, κ−20, and
κ−4 as we go from Run B to Runs C and D.

3.3. Spectra in Step II

In step II, a velocity field emerges, driven by the Lorentz
force. This causes the magnetic field to develop small-scale
structure, as can be seen from Figure 6(a). This leads to a
turbulent cascade that has here a spectrum proportional to k−3

for large k; see Figure 6(b). Contrary to BS21, the new GW
spectrum now shows a flat power-law scaling for k< 2k*(1)
with EGW(k)∝ k0, i.e., kEGW(k)∝ k1. Such a scaling has
already been found by Roper Pol et al. (2020b). The reason for
this lies in the direct correspondence with the relevant magnetic
stress for the blue-tilted magnetic energy spectrum, where
EM(k) has an increasing slope with an exponent larger than 2,
which corresponds to a white noise spectrum. In that case, this
stress itself always has a white noise spectrum and cannot be
steeper than that. This was shown by Brandenburg & Boldyrev
(2020), who just considered the stress spectrum and ignored

temporal aspects, i.e., they did not consider solutions to the
GW equation.
As in BS21, the GW spectrum shows a marked drop by

about six orders of magnitude for Run B, which is slightly more
than what was found in BS21 and also in Brandenburg et al.
(2021a). We return to this in Section 3.4, but we note at this
point that for k? 2k*(1) in Runs B and C, the spectral GW
energy beyond the drop, which is very small already, becomes
even smaller as time goes on. This is indicated by the arrow in
Figure 6(d). Eventually, the spectrum settles at a level close to
the thick blue lines in Figure 6, which mark the last time.
Furthermore, at late times, Figure 6(b) shows clear inverse
cascading with the peak of the magnetic spectra traveling
toward smaller k; see the red dashed lines in Figure 6. The
height of the peak is expected to stay unchanged (Brandenburg
& Kahniashvili 2017), but our present runs show a small
decline with time. This is predominantly a consequence of the
conductivity still not being high enough. Larger conductivity
would require larger numerical resolution, which would begin
to pose computational memory problems.
In step II, the GW spectrum is now fairly flat, EGW∝k0 for

Runs B and C, and with a slight rise∝ k for Run D. Therefore,
the GW energy per logarithmic wavenumber interval, normal-
ized by the critical energy density for a spatially flat universe, is
ΩGW∝ kEGW∝ k1 for Run B, and perhaps even slightly
shallower for Run C, and ∝k2 for Run D. Thus, as already
seen in many earlier numerical simulations of turbulence-
driven GWs (Roper Pol et al. 2020b, BHKRS21), this is
shallower than the previously expected k3 scaling (Gogoberidze
et al. 2007; Okano & Fujita 2021). In the present case, during
the onset of MHD turbulence, the spectrum changed from a k1

spectrum to a k0 spectrum. As explained in Appendix F
of BS21, this is associated with the discontinuous behavior of
¢f f and f″/f. They concluded that the change from a k1

spectrum to k0 occurs when the growth of EM energy has
stopped. This is at the same time when ¢ =  =f f 0, but it is
not a direct consequence of the discontinuity at η= 1 and
therefore not an artifact.
We see clear inverse cascading in the magnetic energy

spectra with the peak of the spectrum moving toward smaller k.
This has been investigated in detail in many earlier papers
(Hatori 1984; Biskamp & Müller 1999; Kahniashvili et al.
2013); see Brandenburg & Kahniashvili (2017) for a
demonstration of the self-similarity of the magnetic energy
spectra. The conservation of mean magnetic helicity density,
〈A ·B〉, implies a growth of the correlation length and a
corresponding decay of the mean magnetic energy density such
that xá ñ »  »A B B constrms

2
M· for fully helical turbulence,

where the two signs apply to positive and negative helicities,
respectively.

Table 2
Summary of Simulation Parameters and Properties

Run Tr (GeV) B0 β γ k 1
*
( ) ν M EM M/EM GW hrms qM qEM

A 0.15 5 × 10−10 2.9 1 7.2 1 × 10−4 0.012 0.023 0.51 1.2 × 10−5 9.1 × 10−3 2.1 1.07
B 10 4 × 10−24 7.3 1 17 2 × 10−4 0.050 0.11 0.48 6.6 × 10−5 3.6 × 10−3 2.9 1.37
Bn 10 3 × 10−18 7.3 0 7.5 2 × 10−4 0.007 0.19 0.04 1.0 × 10−3 2.4 × 10−2 32 1.30
C 460 1 × 10−27 3.0 2.5 15 1 × 10−4 0.014 0.017 0.80 1.6 × 10−6 8.1 × 10−4 1.4 1.14
D 3 × 105 5 × 10−6 1.7 1 4.3 5 × 10−4 0.016 0.025 0.64 8.5 × 10−5 7.6 × 10−3 2.5 1.58
Dn 3 × 105 1 × 10−3 1.7 0 1.9 2 × 10−4 0.016 0.052 0.30 2.8 × 10−3 5.7 × 10−2 6.6 1.98
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3.4. Observable Spectra

In Figure 7, we show the final spectra of ΩGW and hc versus
temporal frequency fphys= kHr/2πa0 for the present time. The
frequency fphys is not to be confused with the function f (a),
defined in Equation (3), which does not carry any subscript. In
principle, such spectra should have been computed from a
temporal Fourier transform. The equivalence between spatial
and temporal Fourier spectra was demonstrated by He et al.

(2021), who also showed that there are significant differences
when the dispersion relation is modified by a finite graviton
mass. However, temporal spectra tend to be more noisy owing
to smaller statistics, which is why those are not used here. Both
the strain and energy spectra are scaled for the corresponding
values of Tr between 150MeV and 3× 105 GeV. We have
indicated spectra for the nonhelical case as dashed lines.
The spectra in Figure 7 show different shapes of the ΩGW

spectra for helical and nonhelical runs. This may, to some
extent, be caused by the larger values of k*(1) in these helical
runs. The drop beyond the peak here is actually weaker than in
the nonhelical case. This was different from what was found in
previous simulations (Roper Pol et al. 2020b; Brandenburg
et al. 2021a), and may be related to the presence of a weaker
forward cascade in favor of a stronger inverse cascade in
helical turbulence (Pouquet et al. 1976). Note also that for
Run B with the largest value of β, the change from the scaling

Figure 2. EM(k) (red lines), EE(k) (orange lines), and EGW(k) (blue lines) for (a) Run B, (c) Run C, and (e) Run D, together with the associated collapsed spectra fM(κ)
(red lines), fE(κ) (orange lines), and fGW(κ) (blue lines) for (b) Run B, (d) Run C, and (f) Run D. The spectral GW energy increases at a rate that is independent of k,
but the exponent characterizing the growth of EM(k) does depend on k.

Table 3
Values of β, pM, and pGW for Runs A–Dn

Run A B Bn C D Dn

β 2.9 7.3 7.3 3 1.7 1.7
pM 12 30 28 16 4.0 3.8
pGW 22 62 53 29 4.9 4.6
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ΩGW∝ fphys is much sharper in the case with helicity than
without, where the spectra are much rounder.

In the model with Tr= 150MeV, we compare the GW
spectra generated both before and after the QCD phase
transition, where gr changes by a factor of about 4 from 62
to about 15. This leads to a decrease in frequency by a factor
µgr

1 2 of about 2, and an increase in GW energy by a factor
µgr

1 3 of about 1.6.
We see that the high Tr model is different from the other

models with lower Tr in several respects. The drop in GW
energy above the maximum is now absent and the inertial range

slope is no longer∝ fphys, but µfphys
2 . This is mainly caused by

the small value of β, which results in a slower growth. At the
same time, the spectral peak at k*(η) still moves to smaller
values, as before. This causes the slope for k> 2k*(1) to be
shallower than in the other models with larger values of β. The
slope is then also inherited in step II, and it is then no longer
affected much by the emerging turbulence.
The model of Okano & Fujita (2021) with Tr= 460 GeV

corresponds to our Run D. They also studied GW production,
but they did not include the turbulent phase after reheating.
Comparing our Figure 7 with Figure 5 of Okano & Fujita
(2021), we see that the peak values are slightly different. Our
spectral peak is at approximately W » -h 100

2
GW

11, while their

Figure 3. Visualizations of Bz for Runs B (top), C (middle), and D (bottom) on the periphery of the computational domain for η = −0.8, −0.5, 0, and 1 during step I.
The color scale is symmetric about zero and adjusted with respect to the instantaneous extrema.

Figure 4. Temporal dependence represented through a(η) of spectral energies
at k = 2 (solid lines) and k = 10 (dashed lines) for Run C with EM(η, k) (red
lines), EE(η, k) (orange lines), and EGW(η, k) (blue lines).

Figure 5. Spectra of the total stress at η = −0.2, 0.1, 0.5, and 1, decomposed
into tensor (solid black), vector (dashed red), and scalar modes (dotted blue) for
Run B of Figure 2.
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peak value without the h0
2 factor is ΩGW≈ 10−12. Furthermore,

as we saw already from Figure 6, the slope of EGW(k) was
slightly negative close to the peak. Therefore, the
ΩGW(k)∝ kEGW(k) is now nearly flat. This is quite different
from Figure 5 of Okano & Fujita (2021), which had a clear
ΩGW(k)∝ k3 range below the peak. The frequency corresp-
onding to the peak is also slightly different, but this is to some
extent explained by their frequency lacking a 2π factor.

3.5. Circular Polarization

In Figure 8(a), we plot the time-averaged fractional circular
polarization spectrum of GWs,  kGW( ), for Run B. It is defined
as (see Equation B.17 of Roper Pol et al. 2020a)

ò ò= W + W+ ´ + ´ k h h k d h h k d2 Im . 12k kGW
2 2 2 2*( ) ˜ ˜ (∣ ˜ ∣ ˜ ∣ ) ( )

In Figure 8(b), we show the fractional magnetic helicity
spectrum,

= k kH k E k2 , 13M M M( ) ( ) ( ) ( )

where HM(k) is the magnetic helicity spectrum, normalized
such that ∫HM(k)dk= 〈A ·B〉. Unlike the GW spectrum, which
is statistically stationary and we can take a long-term average,
the magnetic field develops a forward cascade and decays at the
same time. During that time, the kinetic energy density has a
maximum, which marks the moment when the turbulent
cascade has developed. We have therefore decided to take a
short-term average of the magnetic helicity and energy spectra
around the time when the kinetic energy density is within about
70% of its maximum value.
We also compare with the corresponding spectrum from

Run B1 of BHKRS21 with CME (not to be confused with

Figure 6. Early times in the beginning of the radiation-dominated phase for (a) Run B (η = 1.06, 1.2, 1.4, 1.6, and 2.1), (c) Run C (η = 1.06, 1.9, 2.7, 3.3, and 4.1),
and (e) Run D (η = 1.6, 2.1, 3.6, and 6.1). EM(k), EK(k), and EGW(k) are shown as dashed red, dotted green, and solid blue lines, respectively. The last times are shown
as thick lines. Later times are shown separately for (b) Run B (η = 2, 6, 16, and 52), (d) Run C (η = 11, 26, and 52), and (f) Run D (η = 11, 26, 51, 101, and 213). The
red and blue vertical dashed–dotted lines go through k*(1) and 2k*(1), respectively. Again, thick lines denote the last time. The arrow in panel (d) shows the direction
of time, where EGW(k) declines at large values of k.
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Run B1 of BS21). Except for a hundredfold shift toward larger
k, the shapes of  kGW( ) are similar in that both have a plateau
with » k 1GW( ) and a similar decline toward smaller values
of k.

Toward larger values of k, we see a drop in  kGW( ) that is
superficially similar to the drop in GW energy—at least for the
present runs. In the runs driven by the CME, such a drop is
absent. However, the drop in the GW energy spectra for large k
is probably not related to the drop seen in the polarization
spectra, where it appears for a larger k value of nearly 4k*(1).
Furthermore, at about k= k*(1), we rather see that  kGW( )
declines toward smaller k values, i.e., for k< 2k*(1).

We have confirmed that the decline below k= k*(1) is not
related to the finite domain size. We have also performed a
simulation with a five times larger domain, where k1= 0.2
instead of k1= 1. By comparing these two runs, we recovered
essentially the same  kGW( ) profile. This is shown in Figure 8
as the red solid line, which agrees with the blue dotted one for
not too small k values. In particular, we see that there is

evidence for a linear scaling of the fractional polarization, i.e.,
µ k kGW( ) .

Comparing with the fractional magnetic helicity spectrum,
 kM( ), we see that it also declines toward smaller k, but this
happens more slowly. In fact, for Run B, where  kGW( ) already
declines,  kM( ) is just reaching its maximum. For larger values
of k, we see that  kM( ) already declines for Run B, while
 kGW( ) is still at its plateau. However, for the CME runs, no
decline in  kM( ) is seen.

3.6. Present Day Values

The values of M listed in Table 2 gave the magnetic energy
fraction of the radiation energy at η= 1. To obtain the
comoving rms magnetic field in Gauss, we set

p p= B g k T c8 30rms
2

M
2

0 B 0
4 3( )( ) ( ) , where g0= 3.38 and

T0= 2.7 K is the present day temperature, kB is the Boltzmann
constant, and ÿ is the reduced Planck constant. By using

= 0.01EM in all cases, we can compute M by taking the
M/EM ratios from Table 2 for Runs A–D. Likewise, we use
Equation (9) with the qEM values listed in that table and

Figure 7. (a) Wh f0
2

GW phys( ) and (b) hc( fphys) for Runs A–D Tr ranging from 150 MeV to 3 × 105 GeV. In (a), dashed lines denote nonhelical runs and dashed–dotted

lines show the result for gr = 62. In (b), the dotted lines denote ´ W- h f1.26 10 1 Hz18
0
2

GW phys( ) (Maggiore 2000), and are labeled as “from ΩGW.”

10

The Astrophysical Journal, 922:192 (13pp), 2021 December 1 Brandenburg, He, & Sharma



compute Wh0
2

GW from GW by multiplying with the appropriate
dilution factor.

At η= 1, the typical magnetic correlation length is taken to
be ξM= c/Hrk*(1). To compute the present values, we assume
turbulent inverse cascading at constant magnetic helicity until
the matter-radiation equality using h= -B Brms

eq
rms
r

eq
1 3 and

x x h=M
eq

M
r

eq
2 3, where x x= a aM

r
0 r M( ) and superscripts “r”

and “eq” indicate comoving values at reheating and matter–
radiation equality, respectively. The value of ηeq is obtained by
using =g a T g a Teq

1 3
eq eq r

1 3
r r, implied by the adiabatic evol-

ution of the universe and aeq= ηeq, where we take Teq= 1 eV
and geq= 3.94. The results are listed in Table 4.

We emphasize here that, unlike the magnetic field, which
can have much larger length scales owing to inverse cascading
(Pouquet et al. 1976), this is not the case for GWs. This is
because GWs are governed by the imprint from the time when
the stress was maximum.

4. Conclusions

The present work has demonstrated that helical inflationary
magnetogenesis modifies the nonhelical case in such a way that
the electric and magnetic power spectra become strongly
peaked at a finite wavenumber, corresponding typically to
about a tenth of the horizon scale at η= 1. Such a distinct
wavenumber does not exist in the nonhelical case. Except for
the scale-invariant scaling in Run C at superhorizon scales, this
leads to extremely blue spectra of electric and magnetic fields.
Nevertheless, the total stress still always has a purely white
noise spectrum and therefore also the GW field has a white
noise spectrum below its peak value. Furthermore, for runs

with large values of β, the onset of the drop toward larger
frequencies is much sharper in runs with helicity than without.
These aspects can have observational consequences. In
particular, there would be more power at small wavenumbers
and frequencies. On the other hand, for a certain magnetic
energy, helical magnetogenesis produces somewhat weaker
GWs than nonhelical magnetogenesis. However, as we have
shown here, the appropriate scaling is not with M, but with
EM, and therefore this conclusion is reversed. In fact, the
fractional contribution of electric fields to the stress is much
weaker in the helical case than without.
When studying GW generation from the CME, it was

anticipated that some general features or behaviors would carry
over to other magnetogenesis scenarios. In magnetogenesis
from the CME, the GW energy was well described by the
relation = q kGW M M c

2( ) , where the efficiency qM depended
on the value of the conductivity and it also depended on which
of the two possible regimes one is in. The possibility of two
different regimes seems to be a special property of the CME
that has not yet been encountered in other magnetogenesis
scenarios. Also the presence of a conservation law of total
chirality in the CME has no obvious counterpart in inflationary
magnetogenesis, where magnetic helicity conservation is not
obeyed during magnetogenesis in step I.
On the other hand, both the CME and helical inflationary

magnetogenesis can produce circularly polarized GWs. How-
ever, the CME operates only on very small length scales that
are in practice much smaller than what is shown in Figure 8,
where an unphysically large chiral chemical potential was
applied, just to see what GW strengths would then be possible.
This naturally raises the question of whether some combination

Figure 8. (a)  kGW( ) and (b)  kM( ) for Run B with k1 = 1 (blue dotted lines) and a corresponding run with k1 = 0.2 (red solid lines), as well as for Run B1
of BHKRS21 (orange dashed line). The vertical dashed–dotted lines mark the positions of k*(1) in (a) and (b) and of 2k*(1) in (a).

Table 4
Present Day Values for Runs A–D using Parameters from Table 2 as Input, Always Assuming = 0.01EM

Run Tr (GeV) ηeq xM
r (Mpc) xM

eq (Mpc) Brms
r (G) Brms

eq (G) GW Wh0
2

GW

A 0.15 3.8 × 108 5.8 × 10−8 3.0 × 10−2 3.0 × 10−7 4.2 × 10−10 2.2 × 10−6 4.3 × 10−11

B 10 2.8 × 1010 3.2 × 10−10 2.9 × 10−3 2.9 × 10−7 9.6 × 10−11 5.3 × 10−7 9.2 × 10−12

C 460 1.4 × 1012 8.0 × 10−12 9.9 × 10−4 3.8 × 10−7 3.4 × 10−11 5.3 × 10−7 8.5 × 10−12

D 3 × 105 9.0 × 1014 4.5 × 10−14 4.2 × 10−4 3.4 × 10−7 3.5 × 10−12 1.4 × 10−5 2.2 × 10−10
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of CME and inflationary magnetogenesis could produce either
stronger or larger scale magnetic fields. A problem lies in the
fact that the CME requires electric conductivity. It could
therefore only be an effect that operates after inflationary
magnetogenesis and during the radiation-dominated era. It
could then enhance the magnetic field, but the resulting
additional magnetic field would then only be of short length
scales. Nevertheless, the preceding inflationary stage could lead
to somewhat stronger fields and could thereby also produce
stronger GWs. Another interesting effect could be the
intermediate production of an imbalance of fermions from the
magnetic field produced by inflationary magnetogenesis. This
aspect has recently been explored by Hirono et al. (2015), and
in particular, by Schober et al. (2020), who showed that this
effect is indeed only an intermediate one because at late times,
the chiral imbalance always gets converted back into magnetic
fields.

When comparing a plot of GW versus M from inflationary
magnetogenesis, the work of BS21 has shown that a scaling of
the form GW∝M

2 was obtained. Our new results for helical
inflationary magnetogenesis explicitly confirm a 1/kc depend-
ence, but here with = q kGW EM EM c

2( ) , where qEM shows
only a very weak dependence on β. Here, kc= k*(1) has been
used (as in BS21), and qEM= 1–2 has been found as a fit
parameter. Note, however, that the formula for GW in terms of
EM is entirely empirical. It would be important to produce a
more robust analytic justification or refinements to this
expectation.

Of observational interest may also be the profile and slope
with which  kGW( ) increases at low k. Interestingly, the
fractional polarization continues to be nearly 100% for a range
of wavenumbers around the GW peak at 2k*(1), but shows a
decline for small k.

We thank the referee for insightful remarks and Tina
Kahniashvili and Kandaswamy Subramanian for useful dis-
cussions on the subject of this paper. Norditaʼs support during
the program on Gravitational Waves from the Early Universe in
Stockholm in 2019 is gratefully acknowledged. This work was
supported through grants from the Swedish Research Council
(Vetenskapsrådet, 2019-04234). We acknowledge the alloca-
tion of computing resources provided by the Swedish National
Allocations Committee at the Center for Parallel Computers at
the Royal Institute of Technology in Stockholm and
Lindköping.

Software and Data Availability. The source code used for the
simulations of this study, the PENCIL CODE (Pencil Code
Collaboration et al. 2021), is freely available on https://github.
com/pencil-code/. The DOI of the code is https://doi.org/10.
5281/zenodo.2315093 v2018.12.16 (Brandenburg 2018).
The simulation setup and the corresponding data are freely
available on doi:10.5281/zenodo.5137202; see also https://

www.nordita.org/~brandenb/projects/
HelicalMagnetoGenesisGW/ for easier access to the same
material as on the Zenodo site.

Appendix
Relation between β and the Reheating Temperature

We discussed in Section 2.3 various combinations of model
parameters β and γ for a chosen value of Tr. For the nonhelical
case with γ= 0, details were already given in Appendix A
of BS21. The expression corresponding to Equation (A1)
of BS21 is obtained as follows.
Details of the helical magnetogenesis model are explained

in SSS18. The expressions below their Equations (23) and (29)
represent the solution for the scaled vector potential h during
inflation and the matter-dominated era, respectively, and are
given by

h h=
pa

a a

-

+
e

k
W ik

2
2 , A1h

h

i h1

2

, 1
2

( ) ( ) ( )

z z z= +b b b b- + + d M ik d M ik2 2 . A2h i h i h2 1 2 , 2 2 2 ,21
2

1
2

( ) ( ) ( ) ( )( )

Here, h=± 1, ζ is a time variable during the matter-dominated
era defined in SSS18 as ζ≡ η− 3ηf, where ηf is the value of
conformal time at the end of inflation, and W and M represent
the Whittaker functions of the first and second kind. The
coefficients d1 and d2 are obtained by the matching º A fh h

and its derivatives at the end of inflation. In SSS18, only theh

in the superhorizon limit during the matter-dominated era was
considered. Since this solution does not incorporate the extra
growth of the modes when they start entering the horizon (as
evident from Figure 2), we consider the full solution given in
Equation (A2) in the present paper. By considering the full
solution, we obtain d1 and d2 and, further using Equation (29)
in Equations (17) and (18) of SSS18, we obtain the magnetic
and electric energy densities during the matter-dominated era.
Demanding that the total EM energy be smaller than the
background energy density at the end of inflation, we calculate
the value of the Hubble parameter during inflation, Hf, for
given values of Tr, α, and EM. Further, using these values, we
estimate the value of β≡ 2N/Nr, where N and Nr are the
number of e-folds during inflation and the post-inflationary
matter-dominated era, respectively. We provide these values in
Table 5 along with the initial magnetic field spectrum in the
superhorizon limit during the matter-dominated era and the
value of the relativistic degrees of freedom at the beginning of
the radiation-dominated era, gr.

ORCID iDs

Axel Brandenburg https://orcid.org/0000-0002-7304-021X

Table 5
Model Parameters for Different Values of Tr

Tr α γ EM Hf (GeV) Nr N β gr EM(ηini, k)

10 GeV 2 1 0.07 2.3 × 10−11 8.1 31.1 7.7 86 ∝k3

8 GeV 2 1 0.01 2.8 × 10−11 8.6 31.1 7.3 86 ∝k3

120 MeV 2 1 0.01 1.2 × 10−3 26.5 35.5 2.7 20 ∝k3

150 MeV 2 1 0.006 2.7 × 10−4 24.5 35.1 2.9 61.75 ∝k3

460 GeV −3 2.5 0.01 1.7 × 10−8 7.3 32.9 3 106.75 ∝k−1

3 × 105 GeV 1 1 0.01 1014 32.1 53.4 1.7 106.75 ∝k5
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