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ABSTRACT

Radiation transport plays an important role in stellar atmospheres, but the effects of turbulence are being obscured by other effects such as
stratification. Using radiative hydrodynamic simulations of forced turbulence, we determine the decay rates of sinusoidal large-scale tempera-
ture perturbations of different wavenumbers in the optically thick and thin regimes. Increasing the wavenumber increases the rate of decay
in both regimes, but this effect is much weaker than for the usual turbulent diffusion of passive scalars, where the increase is quadratic for
small wavenumbers. The turbulent decay is well described by an enhanced Newtonian cooling process in the optically thin limit, which is
found to show a weak increase proportional to the square root of the wavenumber. In the optically thick limit, the increase in turbulent decay
is somewhat steeper for wavenumbers below the energy-carrying wavenumber of the turbulence, but levels off toward larger wavenumbers.
In the presence of turbulence, the typical cooling time is comparable to the turbulent turnover time. We observe that the temperature takes a
long time to reach equilibrium in both the optically thin and thick cases, but in the former, the temperature retains smaller scale structures
for longer.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0065485

I. INTRODUCTION

An important property of turbulence is the mixing of fields that
are advected by the flow. The simplest example is that of a passive sca-
lar, a quantity that does not backreact on the flow. The magnetic field
is another popular example, because for weak field strengths, it can be
treated as a passive vector field, making the mathematics more
straightforward compared to the fully nonlinear case. Even the flow
itself is mixed by the turbulence, which is a much harder problem.
This leads to turbulent viscosity, which acts as an enhanced molecular
viscosity, although there can be additional important effects if the tur-
bulence is anisotropic. Examples of additional effects occur in stratified
flows in the presence of rotation. Such flows can become differentially
rotating through what is called the K effect.1 It is a nondiffusive effect,
analogous to the a effect in mean-field dynamo theory.2,3 These non-
diffusive effects have led to significant attention in astrophysics.
Scalars, active or passive, have received comparatively less attention,

because nondiffusive effects are generally less profound, but see R€adler
et al.4 for the slow-down of turbulent diffusion in certain compressive
flows.

Prandtl suggested that turbulence has a smoothing effect—just
like molecular diffusion. The molecular diffusion coefficient is gener-
ally proportional to the product of the typical velocity of the molecules,
which is essentially the sound speed, and the typical mean-free path
between collisions. Prandtl generalized this to turbulence by using the
product of the typical velocity of the turbulent eddies and their correla-
tion length, which he referred to as the mixing length. Important
applications of turbulent mixing in astrophysics include turbulent con-
vection in the Sun and stars, as well as mixing of chemicals in the
galaxy. The latter is a typical case of a passive scalar, while in the for-
mer case, the quantity that is being mixed is the specific entropy,
which is an active scalar, because it affects the density in the momen-
tum equation and can lead to buoyancy. Furthermore, the resulting
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turbulent diffusion is an enhancement not of molecular diffusion, but
of photon diffusion, which is also referred to as radiative diffusion.

Radiative diffusion comes in two different forms: optically thick
and optically thin. Optically thick is the usual case, where the mean-
free path of photons is short compared to the typical scales of the flow.
Optically thin, by contrast, means that the photons can propagate over
large distances before they are absorbed and re-emitted again.
Radiative diffusion ceases to exist in this case and we have to deal
instead with an essentially nonlocal process. The effect of radiation
now decreases with increasing mean-free path of the photons, contrary
to the diffusive case where it increases. The relevant process, in this
case, is Newtonian cooling,5 where the cooling rate is directly propor-
tional to the radiation energy density rather than the divergence of its
gradient. The cooling timescale is the ratio of mean-free path to some
relevant photon speed, rather than turbulent diffusion, whose coeffi-
cient is proportional to the product of mean-free path and the relevant
photon speed.

In astrophysics, one usually thinks of optically thin processes
being those that happen above the photosphere of a star, where pho-
tons can travel all the way to infinity. However, even below the photo-
sphere, a process can be optically thin if we look at small length scales,
because then the photon mean-free path again exceeds the relevant
scale of the flow structures. In this paper, we are interested in the
effects of turbulence, especially in this limit.

There is actually a curious analogy between the optically thin
limit, where cooling becomes less efficient at small length scales,6 and
turbulent diffusion, which also becomes less efficient at small length
scales,7,8 although this concerns here the length scales of the mean
fields. This is because turbulent diffusivity is not just a coefficient, but
an integral kernel in a convolution with the mean temperature.9 The
Fourier transformation of this kernel falls off with wavenumber
approximately like a Lorentzian, which is analogous to the case of radi-
ative transfer in the optically thin case.10 We may therefore ask: how
does the combined effect of turbulence and small optical thickness
modify turbulent diffusion at small length scales?

We begin by reviewing some basics about the cooling time as a
function of mean-free path in Sec. II, following which we describe our
numerical simulations in Sec. III, and finally present our results in Sec.
IV. Our conclusions and scope for future work are given in Sec. V.

II. THE COOLING CURVE

In compressible hydrodynamics, the energy equation can be writ-
ten in terms of the specific entropy sðx; tÞ as

qT
Ds
Dt
¼ �$ � Frad þ 2q�S2; (1)

where q is the density, T the temperature, D=Dt ¼ @=@t þ u � $ the
advective derivative, Frad the radiative flux, � the viscosity, and S the
traceless rate-of-strain tensor with the components
Sij ¼ ð@iuj þ @juiÞ=2� dij$ � u=3. The negative divergence of Frad is
calculated as the imbalance of the intensity and the source function
integrated over all frequencies ~� and all directions,11 i.e.,

�$ � Frad ¼
ð1
0

j�q
þ
4p
ðI~� � S~� Þ dX d~�; (2)

where j~� is the opacity per unit mass, I~� ðx; t; n̂Þ is the specific inten-
sity corresponding to the energy that is carried by radiation per unit

area, per unit time, in the direction n̂, per unit solid angle dX, and
S~� ðx; tÞ is the source function. Throughout this work, we make the
gray approximation and thus work with frequency-integrated quanti-
ties, which amounts to dropping the subscript ~� . In the gray approxi-
mation, Iðx; t; n̂Þ obeys the radiative transfer equation,

n̂ � $I ¼ �jq ðI � SÞ; (3)

which is solved along a set of rays in different directions n̂ using the
method of long characteristics.12 The source function is here written
as S ¼ ðrSB=pÞT4, where rSB is the Stefan–Boltzmann constant. The
photon mean-free path is ‘ ¼ ðjqÞ�1 and j is a suitably averaged
“gray” opacity.

By assuming infinitesimally small temperature perturbations,
Spiegel13 linearized Eqs. (1) and (3) and found that for perturbations
of the form proportional to exp ðik � x þ ktÞ, the inverse relaxation (or
cooling) time k of the temperature perturbations, or decay rate, is
given by

k ¼ cc
‘

1� arctan k‘
k‘

� �
; (4)

where k ¼ jkj is the wavenumber,

cc ¼ 16rSBT
3=qcp (5)

is the characteristic velocity of photon diffusion,14 and cp the specific
heat at constant pressure. The dependence kðk‘Þ is what we call in this
paper the cooling curve. A useful form of the above expression can be
obtained under the Eddington approximation,15 where one expands
Eq. (3) in terms of moments of n̂ under the closure assumption thatÞ
n̂in̂jI dX ¼ 1

3 dij
Þ
I dX. This yields a closed equation 1

3 ð‘rÞ
2J

¼ J � S for the mean intensity J ¼
Þ
I dX=4p. The cooling rate is then

k � cc
‘

k2‘2=3

1þ k2‘2=3
: (6)

It is convenient to introduce now the radiative diffusivity, v ¼ cc‘=3,
which also clarifies why cc is called the characteristic velocity of photon
diffusion.

Equations (4)–(6) apply to the case of three-dimensional (3-D)
variations of the temperature. In our 3-D numerical experiments,
however, we restrict ourselves to one-dimensional (1-D) variations of
the mean temperature profile. In that case, the relevant version of Eq.
(6) becomes14

k � cc
‘

k2‘2=3

1þ k2‘2
1-D perturbationsð Þ: (7)

The corresponding version of Eq. (4) then takes the form

k ¼ cc
‘

1� arctan
ffiffiffi
3
p

k‘ffiffiffi
3
p

k‘

 !
1-D perturbationsð Þ: (8)

In Fig. 1, we compare kðk‘Þ obtained from the exact equation (red
curve) with the approximate kðk‘Þ obtained under the Eddington
approximation (black curve) for the relevant 1-D Eqs. (7) and (8). Our
numerical solution for k, which is based on only six rays, depends on
the choice of weight factors used in the angular integration. The weight
factors have been chosen such that our numerical results (plus signs)

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 095125 (2021); doi: 10.1063/5.0065485 33, 095125-2

VC Author(s) 2021

https://scitation.org/journal/phf


agree with the Eddington approximated solution.14 The basic question
we want to answer is how the cooling curve gets modified in the pres-
ence of turbulence. We expect the effective k to be enhanced, atleast in
the optically thick limit, where k‘� 1; however, we do not know
what to expect in the optically thin case, where k‘� 1, and how it
depends on the scale of the turbulent eddies. To address these ques-
tions, we now perform turbulence simulations. We are particularly
interested in the regime of moderate temperatures, where the radiation
pressure can be ignored.

III. TURBULENCE SIMULATIONS
A. Comments on astrophysical conditions

The conditions in the Sun are extremely inhomogeneous owing
to tremendous stratification. The density changes by nearly six orders
of magnitude across the convection zone and the temperature by a fac-
tor of about 300. This fact alone can introduce new phenomena such
as the spontaneous formation of magnetic flux concentrations.16,17 At
a more elementary level, the addition of gravity leads to convection
and thereby to turbulent motions, which have been the subject of
numerous simulations for a long time.11,18 Newtonian cooling also
plays important role in the atmospheres of planets,19 where turbulence
is not always explicitly invoked and therefore the role of turbulence
needs to be parameterized.20

In the Sun, the microphysical viscosity is about twelve orders of
magnitude smaller than the estimated turbulent viscosity, and over
eight orders of magnitude smaller than the radiative diffusivity near
the surface. Numerical simulations have therefore routinely employed
numerical tools that allow the simulations to proceed by dissipating
sufficient energy in local regions where necessary. This precluded the
study of turbulent Newtonian cooling, because the small-scale turbu-
lent motions have already been altered by such numerical modeling.21

An additional complication is partial ionization, which tends to make
the transition from the deeper optically thick layers to the surface very
sharp in a stratified system. However, one could imagine it to intro-
duce new effects of its own if we arranged the average temperature of
the domain such that it lies exactly in the middle between those of a
fully ionized and a neutral medium, as has been done in some other
recent experiments.22 In those cases, however, Newtonian cooling
does not necessarily play any obvious role.

To accomplish our goal of identifying turbulent effects in opti-
cally thin and thick turbulent flows, we resort to the study of a mini-
mal system where isotropic homogeneous turbulence is produced by a
stirring force instead of convection. The viscosity is kept constant, but
we consider different values to assess the dependence of our results on
the Reynolds number. Partial ionization effects are ignored and other
complications from adopting a realistic equation of state are not
included. We also restrict our attention to the study of vortical forcing.
The concept of turbulent mixing is likely to be similar also for irrota-
tional forcing, but other poorly understood features of such turbulence
such as a pileup of kinetic energy near the dissipative subrange (bottle-
neck effect) are known to occur in such cases.23 It may play a role in
interstellar turbulence,24 which motivates a more extended future
study of turbulent Newtonian cooling for irrotational forcing.

B. Basic equations and thermodynamic relationships

For the purpose of our present study, we restrict ourselves to
studying a turbulent flow in a triply periodic domain of size L3 by
applying plane wave forcing throughout the domain. We therefore
solve the equations,

q
Du
Dt
¼ �$pþ qf þ $ � ð2q�SÞ; (9)

D ln q
Dt

¼ �$ � u; (10)

where p is the pressure, u the velocity, and f the forcing function. In
Eq. (9), we have ignored the radiation force ðqj=cÞ Frad, where c is the
speed of light, as mentioned above. This term is unimportant for the
temperatures considered in this work. Nevertheless, the coupled set of
equations (1), (9), and (10) makes sðx; tÞ an active scalar, because it is
related to p and q through

s ¼ cv ln p� cp ln qþ s0; (11)

where cv is the specific heat at constant volume and s0 is an irrelevant
constant. This equation follows from the first law of thermodynamics,
written in the form Tds ¼ deþ pdðq�1Þ, where e ¼ cvT is the inter-
nal energy for a perfect gas, and the ideal gas equation relating the
temperature to p and q through

ðcp � cvÞT ¼ p=q: (12)

We then have ds ¼ cv d lnT � ðcp � cvÞ d ln q. Using the differenti-
ated ideal gas equation, d lnT þ d ln q ¼ d ln p, we arrive at
Eq. (11) after integration. For the ratio of specific heats, c ¼ cp=cv,
we assume c ¼ 5=3, which is appropriate for a monatomic gas such
as fully ionized hydrogen at the temperatures considered here
(T � 40 000 K).

In our numerical work, we use dimensionful quantities, where
length is measured in megameters (Mm), speed in km s�1, and temper-
ature in kelvin. We also use the symbolrad ¼ 1� 1=c ¼ 0:4, which is
the adiabatic value of what is in astrophysics commonly referred to as
the double logarithmic temperature gradient, r � d lnT= d ln p.25

Using this, cp can then be written as cp ¼ R=ðlradÞ, where we have
used cp � cv ¼ R=l, with R ¼ 8:314	 107 cm2 s�2 K�1 being the
universal gas constant and l ¼ 0:6 the mean molecular weight. We
then find cp ¼ 0:035 km2 s�2 K�1.

FIG. 1. The analytic cooling curve (black), the cooling curve under the Eddington
approximation (red), and the results from numerical simulations (plus signs).
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C. Turbulent forcing

To simulate a turbulent flow, we apply nearly monochromatic
forcing with an average forcing wavenumber kf . The forcing function
changes abruptly from one time step to the next, i.e., hf ðx; tÞf ðx; t0Þi
is proportional to dðt � t0Þ, where d is the Dirac d function. The forc-
ing is then said to be d correlated in time. The smallest wavenumber
in the cubic domain of side length L is k1 ¼ 2p=L. The ratio kf=k1 is
the scale separation ratio, for which we consider the values 1.5 and 10.

For the forcing function f, we select randomly at each time step a
phase �p < u 
 p and the components of the wavevector k from
many possible discrete wavevectors with lengths in a certain range
around a given value kf . In this way, the adopted forcing function,

f ðx; tÞ ¼ RefN ~f ðk; tÞ exp ik � x þ iu½ �g; (13)

is white noise in time and consists of plane waves with average wave-
number kf . Here, x is the position vector and N ¼ f0ðcs0kfdtÞ1=2 is a
normalization factor, where dt is the time step and f0 is an amplitude
factor. In this formulation, the averaged forcing is independent of dt.
To ensure that ~f is solenoidal, i.e., perpendicular to k, we write is as

~f ðkÞ ¼ ðk 	 êÞ= k2 � ðk � êÞ2
� �1=2

; (14)

where ê is an arbitrary unit vector that is not aligned with k. Note that
jf j2 ¼ 1 km4 s�4 Mm�2. The coefficient f0 is chosen such that the
velocity is about 10% of the sound speed.

D. Initial temperature profile and parameters

We adopt a sinusoidal temperature perturbation and write
Tðx; t ¼ 0Þ in the form

Tðx; t ¼ 0Þ ¼ T0 þ T1 sin kx; (15)

where k ¼ k1 ¼ 1Mm�1 is chosen. This implies that L ¼ 2pMm
� 6:28Mm. We choose cs0 ¼ 30 km s�1, so that T0 � 40 000K and
cc ¼ 3:9 km s�1. The temperature perturbation is taken to be
T1 ¼ 2000K, and periodic boundary conditions are assumed for all
quantities.

We define the Mach and Reynolds numbers as

Ma ¼ urms=cs0; Re ¼ urms=�kf : (16)

For a forcing amplitude f0 ¼ 0:01 km2 s�2 Mm�1, we have
urms � 2:2 km s�1, so that Ma � 0:08. Using � ¼ 10�3 Mmkm s�1

and kf ¼ 10Mm�1, we have Re � 230, while for kf ¼ 1:5Mm�1, we
have Re � 1200. To determine the microphysical Prandtl number in
the optically thick regime, we define

Pr0 ¼ 3�k1=cc; (17)

so that the Prandtl number is �=v ¼ Pr0=ðk1‘Þ. Here we have used
v ¼ cc‘=3 for the radiative diffusivity. Following earlier work,14 we
choose for the mean density the value q0 ¼ 4	 10�4 g cm�3.

We determine the effective k from the time evolution of the
decay of the sinusoidal perturbation, which we monitor by taking the
difference between the maximum and minimum temperatures at each
time. This turns out to be reasonably accurate and we use a time inter-
val during which the decay is exponential.

E. Numerical technique

We perform numerical simulations with the PENCIL CODE

(https://github.com/pencil-code), which is a public MHD code that is
particularly well suited for simulating turbulence.26 We solve Eqs. (1),
(9), and (10) with sixth-order finite differences.27 Equation (3) is
solved with second-order accurate finite differences along the coordi-
nate directions and the diagonals, i.e., altogether 26 rays. The radiation
transport has been parallelized in the PENCIL CODE by splitting the
calculation into parts that are local and nonlocal with respect to each
processor.28 Two parts are compute-intensive but require no commu-
nication, and one part is nonlocal but does not require waiting for any
computation to be done and is therefore fast. We use the third-order
time-stepping scheme of Williamson.29

The code’s local cooling and heating properties have been veri-
fied,14 and its cooling time has been compared with the analytic cool-
ing time obtained by Spiegel.13 It is this cooling time that determines
the relevant time step constraint for radiation simulations,6,30 and not
some generalization of the usual Courant condition.31 The latter would
erroneously imply a limiting time step that is proportional to the mesh
spacing, when it is actually quadratic in the mesh spacing in the
optically thick limit and independent of mesh spacing in the optically
thin limit.

The code has been applied to sunspot simulations,32 and to a
range of more idealized problems of atmospheric stability14 and mag-
netic spot formation.17,22 It should be emphasized that our calculations
classify as direct numerical simulations in the sense that the equations
are solved as stated, albeit with unrealistically large viscosity and unre-
alistically small opacities compared with solar conditions. By compari-
son, most simulations of solar convection are performed using large
eddy simulations.18,30,33

F. Comment on numerical convergence and accuracy

The fact that the PENCIL CODE uses sixth-order finite differences
and a third-order time-stepping scheme does not tell us much about
the actual accuracy and convergence of our results. For example, the
longer a simulation, the more numerical errors should accumulate, but
this is not normally seen. This was recently addressed in a study com-
paring the numerical accuracy of turbulence and waves.34 In that
study, it was concluded that the existence of a forward cascade in tur-
bulence prevents the systematic loss of energy at small scales, where
discretization errors are the largest. This is not the case for waves,
which therefore need to be solved with much more care. Another such
example was a recent three-dimensional study of electromagnetic
waves.35 In this and the previous case, it proved advantageous to use
an exact time integration under the assumption that the turbulent
source is unchanged between two time steps. This approximation is
justified because at high wavenumbers, the relevant timescale of waves
is much shorter than that of turbulence.34

Furthermore, radiation can introduce short time scales. As
already alluded to in the beginning, the cooling time can be very short
and severely restrict the relevant time step constraint.6,30 This makes
the simulations very costly,31 but we are not aware of any reports on
loss of accuracy in such cases. Furthermore, in the present studies, we
are probably not affected by this constraint, because turbulent
Newtonian cooling only plays a role when the turbulent time scales
are short compared with radiative ones. This is here not the case.
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IV. RESULTS
A. Range of simulations and qualitative aspects

In this section, we present the results for k obtained using various
values of the forcing wavenumber kf and the wavenumber k of the ini-
tial perturbation. The Reynolds number varies between 20 and 1200,
and the number of mesh points, N3, is varied between 643 and 2563;
see Table I. The values of Pr0 are then small, as is also expected for the
Sun, and they are 8	 10�3 for our runs with 643 mesh points (small
Reynolds numbers) and 8	 10�4 for 2563 mesh points (larger
Reynolds numbers). For each series of runs, we perform simulations
where we vary the opacity j and thereby ‘; see Fig. 2 for visualizations
of T on the periphery of the computational domain for runs of Series
A for k‘ ¼ 0:1, 1, and 10 and at different times (in kiloseconds [ks]).
We see that the large-scale temperature contrast (wavenumber k¼ k1)
decreases the fastest for k‘ ¼ 1, and more slowly for k‘ ¼ 0:1 and 10.
For k‘ ¼ 10, however, which is the optically thin case, the temperature
retains smaller scale structures for longer.

B. Kinetic energy spectra

In spite of the forcing being monochromatic, the resulting turbu-
lence is excited over a broad range of scales. This is demonstrated in
Fig. 3, where we plot kinetic energy spectra, EKðkÞ ¼

Ð
j~uj2k2dXk, for

Series A and C. Here, ~u is the Fourier transformation of u, and dXk is
the solid angle differential in wavenumber space. The spectra are nor-
malized such that

Ð
EKðkÞ dk ¼ u2rms=2. In the case of Series C, where

Re ¼ 1200 and kf=k1 ¼ 1:5, there is a short inertial range / k�5=3

together with a bottleneck, i.e., a shallower spectrum near the dissipa-
tive subrange.36,37 We note that the bottleneck effect is physical, but
much weaker in the one-dimensional spectra that are accessible to lab-
oratory and atmospheric measurements.38 It is also seen in the highest
resolution turbulence simulations today.39

In the simulations with larger scale separation (Series A), how-
ever, the spectrum is more peaked around k ¼ kf . This occurrence of
this spike at kf is partially explained by the smaller Reynolds number
(Re ¼ 230 in this case).

In general, higher scale separation allows us to see more clearly
the various mean-field effects. In this connection, we must remember
that the standard concept of turbulent diffusion does require sufficient
scale separation and that the lack of scale separation requires one to
study the full scale dependence, in which case turbulent diffusion cor-
responds to an integral kernel in real space, or a multiplication with a
k-dependent diffusivity in Fourier space.7 For this reason, we also dis-
cuss the aspect of scale dependence below.

C. Quantitative results for turbulent cooling

In Fig. 4, we plot k vs k‘ and compare with the laminar case
shown in Fig. 1. In all the cases, we see that k is enhanced relative to
the laminar curve. Varying the viscosity, and thereby changing Re
from 20 (Series A0) to 230 (Series A), has a very minor effect; compare
the dotted and solid blue lines for k=kf ¼ 0:1 in Fig. 4. Decreasing
kf=k1 from 10 to 1.5, that is, increasing k=kf from 0.1 (Series A) to 0.7
(Series B), has a more significant effect, and k is seen to increase by a
factor that is between 4 and 8, depending on the value of k‘.

Keeping the value of kf unchanged and increasing k=kf (for
Series C and D), i.e., making the scale separation poorer, results in a
weak decline of k. Theoretically, we would expect the turbulent decay
rate to be k ¼ vtk

2, where vt ¼ vt0 � urms=3kf is the nominal turbu-
lent diffusivity in the case of perfect scale separation. For poor scale
separation, however, we expect vt ¼ vt0=½1þ ðk=kf Þ2�. We see from
the short lines overplotted on the left y axis of Fig. 4 that the actual
decay rates are somewhat larger.

We note that in Fig. 4, the decay rates of lines having different
values of k (but the same value of kf ) are all separated by factors that
are close to k itself. To demonstrate that this is mostly the result of
normalizing k=cc by k, we show in Fig. 5 the result of normalizing
k=cc by k1, which is the same for all runs. The lines are now no longer
so strongly separated for different values of k. Note that the abscissa is
also scaled by k1 instead of k. Consequently, the small peaks in k values
near k1‘ ¼ 1 occur at similar positions.

D. Scale dependence

The standard concept of turbulent diffusion with a diffusion
operator of the form vtr2 requires one to have sufficient scale separa-
tion, as is the case for our runs of Series A. If scale separation is poor,
the operator vtr2 has to be replaced by a convolution in real space.7

This subject continues to attract significant attention, especially in
plasma physics40 and astrophysics.41,42

In Fig. 6, we summarize the results for k=ðcck1=3Þ as a function
of k=kf for k‘ ¼ 0:01 (optically thick regime), and k‘ ¼ 100 (opti-
cally thin regime). Neither of the two regimes exhibits a k2 depen-
dence, as would be expected for a turbulent diffusion process with
k=kf � 1, i.e., when the turbulent diffusivity is approximately scale-
independent. In the optically thick case, k increases approximately
linearly with k for small values of k and then reaches a maximum. In
the optically thin case, on the other hand, k increases with k approxi-
mately like k1=2.

E. Analogy with passive scalar diffusion

In the optically thick regime, k‘� 1, where the radiative diffu-
sion approximation should be applicable, we might expect some anal-
ogy between turbulent diffusion of active scalars (such as temperature)
and passive scalars (such as chemical concentrations). For the latter,
the scale dependence has previously been investigated,8 and it was
found to be similar to that for magnetic fields7 in that both had a
Lorentzian shape. In these papers, the microphysical and turbulent dif-
fusivities were referred to as j and jt for the passive scalar

8 (not to be
confused with the opacity in the present paper) and g and gt for the
magnetic diffusivity.7 They have the same meaning as v and vt in the
present paper. In these cases, we plot the timescale on which a large-

TABLE I. Summary of the parameters for the series of runs presented in this paper.
Within each series of runs, j and ‘ are varied.

Series k=k1 kf=k1 urms=cc Pr0 Re N3

A0 1 10 0.50 8	 10�3 20 643

A 1 10 0.59 8	 10�4 230 2563

B 1 1.5 0.62 8	 10�3 160 643

C 3 1.5 0.46 8	 10�4 1200 2563

D 6 1.5 0.46 8	 10�4 1200 2563
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scale sinusoidal profile of the passive scalar or the magnetic field gets
diffused away.

We reproduce in Fig. 7 the result from the test-field method for
passive scalars.8 These authors also studied the effects of rotation and
magnetic fields, but those results were not used for the present com-
parison. Their passive scalar diffusivity jt obeyed a Lorentzian fit such
that

jtðkÞ ¼
urms=3kf

1þ ðak=kf Þ2
; (18)

where a¼ 0.62 is an empirical parameter. The corresponding
decay rate, jtk2, is normalized by urmsk1=3 and shows a clear
quadratic growth for small k and levels off near k ¼ kf , as
expected.

FIG. 2. Temperature on the periphery of the computational domain for k‘ ¼ 0:1 (left column), k‘ ¼ 1 (middle column), and k‘ ¼ 10 (right column), for
t ¼ 0:3 ks; t ¼ 1 ks; t ¼ 2 ks, and t ¼ 3 ks (top to bottom). The (x, y, z) coordinates are indicated in the first panel and the approximate 1Mm scale is shown in the second panel.
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Similar Lorentzian fits have been found over a broad range of dif-
ferent applications to turbulent magnetic diffusion: values of a � 0:5,
a � 0:7, and a � 0:2 were found for isotropic turbulence,7 anisotropic
turbulence with shear,43 and passive scalar diffusivity with shear,44

respectively.

V. CONCLUSIONS

Our work has demonstrated that the concept of turbulent diffu-
sion carries over to radiative turbulent diffusion as well, in both opti-
cally thick and thin limits. While this was expected for the optical
thick limit, it was not obvious how this would be modified in the opti-
cally thin limit, which is not a diffusion process. Instead, the optically
thin case is characterized by Newtonian cooling, which then turns into
turbulent Newtonian cooling. Both processes are shown to be scale-
dependent, i.e., they are really described by integral kernels.

We can now also answer the question regarding the combined
effect of decreased turbulence and small optical depth on the cooling
at small length scales. As we have seen, turbulence always enhances
the microphysical cooling rates. Thus, at small length scales where
radiative diffusion is replaced by the much less efficient Newtonian
cooling, turbulence speeds up this effect again. Mathematically, this
process is still treated like Newtonian cooling, but now with a cooling
time that is no longer given by ‘=cc, but by the turbulent turnover

FIG. 3. Kinetic energy spectra for Series A (dashed blue) and Series C (solid red).
The k�5=3 slope is overplotted for comparison.

FIG. 4. Effective turbulent decay rate k vs k‘ for Series A0 (dotted blue), A (solid
blue), B (solid orange), C (dotted orange), and D (dashed orange). The short lines
on the left y axis, with line types matching those of the curves in the plot, give the
theoretical expectations explained in the text. The curve for the laminar case is
shown in red.

FIG. 5. Similar to Fig. 4, but the abscissa is scaled with k1 instead of k, and the
ordinate is divided by k1 instead of k. Again, Series A0 and A are denoted by dotted
and solid blue lines, respectively, and Series B, C, and D are denoted by solid, dot-
ted, and dashed orange lines, respectively. The curve for the laminar case is shown
again in red.

FIG. 6. Dependence of k=ðcck1=3Þ on k=kf for k‘ ¼ 0:01 (blue, optically thick),
and k‘ ¼ 100 (red, optically thin). The later obeys a k1=2 scaling. For comparison,
we also show the linear scaling in k (blue) and the quadratic scaling (green).

FIG. 7. Dependence of the passive scalar diffusion rate jtðkÞk2 on k=kf for scale
separations kf=k1 ¼ 3 and 8.
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time ðurmskf Þ�1. Radiation no longer enters explicitly, except through
the condition k‘ > 1 for turbulent Newtonian cooling, as opposed to
k‘ < 1 for turbulent radiative diffusion.

As for the scope of future work, independent verifications of our
results would certainly be desirable. In particular, it is conceivable that
one can develop a test-field method similar to that employed for pas-
sive scalars.8 It would also be useful to study the effects of turbulent
radiative diffusion and turbulent Newtonian cooling by comparing
direct numerical simulations with mean-field models. This could be
particularly insightful in more realistic situations involving stratifica-
tion, turbulence, and magnetic fields, which could give rise to interest-
ing phenomena such as magnetic spot formation.16,17
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