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Abstract

This study aimed to identify an appropriate simple mathematical model to fit the number of
coronavirus disease 2019 (COVID-19) cases at the national level for the early portion of the
pandemic, before significant public health interventions could be enacted. The total number
of cases for the COVID-19 epidemic over time in 28 countries was analysed and fit to several
simple rate models. The resulting model parameters were used to extrapolate projections for
more recent data. While the Gompertz growth model (mean R2 = 0.998) best fit the current data,
uncertainties in the eventual case limit introduced significant model errors. However, the quad-
ratic rate model (mean R2 = 0.992) fit the current data best for 25 (89%) countries as determined
by R2 values of the remaining models. Projection to the future using the simple quadratic model
accurately forecast the number of future total number of cases 50% of the time up to 10 days in
advance. Extrapolation to the future with the simple exponential model significantly overpre-
dicted the total number of future cases. These results demonstrate that accurate future predic-
tions of the case load in a given country can be made using this very simple model.

Introduction

On 11 March 2020 the World Health Organization (WHO) declared the novel coronavirus
outbreak (severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causing corona-
virus disease 2019 (COVID-19)) a pandemic [1] more than three months after the first
cases of pneumonia were reported in Wuhan, China in December 2019 [1]. From Wuhan
the virus rapidly spread globally, currently leading to tens of millions of confirmed cases
and over a million deaths around the world. Although coronaviruses have a wide range of
hosts and cause disease in many animals, SARS-CoV-2 is the seventh named member of
the Coronaviridae known to infect humans [2]. An infected individual will start presenting
symptoms an average of five days after exposure [3] but it has been reported that 42% of
infected individuals remain asymptomatic [4, 5]. In early November 2020, 2.5% people offi-
cially diagnosed with COVID-19 had died [6] while treatment and vaccine options for
COVID-19 were limited [7]. A report from April 2020 noted 78 active vaccine projects, and
some of the more recent results are quite promising with a number of vaccines being widely
deployed in early 2021, although full worldwide distribution will likely still take several years
[8–10]. Fortunately, aggressive contact tracing [11] and social isolation methods [7, 12, 13] as
well as pharmaceutical interventions such as the steroid dexamethasone [14] and convalescent
plasma [15] have shown some efficacy against the disease. As the virus is transmitted mainly
from person to person, prevention measures include social distancing, self-isolation, hand
washing and use of masks. Strict measures of quarantine have been shown to be the currently
most effective mitigation measures, reducing up to 78% of expected cases compared to no
intervention [12]. Nevertheless, to evaluate the actual effectiveness of any mitigation measure
it is necessary to accurately predict the expected number of cases in the absence of intervention
as an accurate number will better inform decisions about relaxing the mitigation measures
which can be both economically and politically costly.

While there has been some early concern about the ability of SARS-CoV-2 to spread at
an apparent near exponential rate [16, 17], limitations in available resources (i.e. susceptible
population, sub-optimal mixing of infected and susceptible populations [18] etc.) will
reduce the spread of any real (non-theoretical) disease to a logistic (sub-exponential)
growth rate [19]. Logistic growth produces a sigmoidal curve over time (Fig. 1) where
the total number of cases (N ) eventually (barring new births [20]) asymptotically
approaches the population carrying capacity (NM), which for viral epidemics is analogous
to the fraction of the population that will be infected before ‘herd immunity’ is achieved
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[21–23]. This is represented in derivative form by the general-
ised logistic function (Equation 1):

dN
dt

= rNa 1− N
NM

( )b
[ ]g

(1)

where α, β and γ are the mathematical shape parameters that define
the shape of the curve and r is the general rate term, analogous to
the standard epidemiological parameter, R0 [22, 24]. For a logistic
curve where α =½ and β = γ = 0, one gets quadratic growth [25]
with N = (rt/2)2. For α =½ and β = γ = 1, we have quadratic growth
with saturation (Supplemental Appendix 1) while for α = β≠γ = 1,
this equation can be re-arranged to quadratic form (Equation 2)
[19] and integrated (Equation 3):

dN
dt

= −rN2

NM
+ rN (2)

N(t) = N0NM

(NM − N0)e−rt + N0
(3)

where N0 represents the initial number of cases within the
population. The shape parameters of logistic functions magnify
the uncertainty in fitting these curves especially during the early
part of the epidemic. These difficulties are further exacerbated by
the additional uncertainty in estimation of R0 for SARS-CoV-2,
which is directly linked to the current uncertainty in the popula-
tion carrying capacity NM. And while the basic logistic function
gives rise to a symmetrical sigmoidal curve, asymmetrical curves
such as the Gompertz growth function (Equation 4) [26, 27]:

N(t) = N0e
(ln (NM/N0)(1−e(−rt))) (4)

which emerges [19] from Equation 1 for α = γ = 1, where r is
replaced by βr and β approaches zero. For Gompertz growth, the

rate of spread slows significantly after passing the mid-point result-
ing in long-tailed epidemics (Fig. 1).

Traditionally, the number of cases that will occur in an epi-
demic like COVID-19 is modelled with an SEIR model
(Susceptible, Exposed, Infected, Recovered/Removed), in which
the total population is divided into four categories: susceptible –
those who can be infected, exposed – those who are in the
incubation period but not yet able to transmit the virus to others,
infectious – those who are capable of spreading disease to the
susceptible population and recovered/removed – those who have
finished the disease course and are not susceptible to re-infection
or have died. For a typical epidemic, the ability for infectious
individuals to spread the disease is proportional to the fraction
of the population in the susceptible category. ‘Herd immunity’
[21, 22] and extinction of the epidemic occurs once a limiting
fraction of the population has entered into the Recovered/
Removed category [22]. However, barriers to transmission, either
natural [28] or artificial (i.e. quarantines, vaccines) [22] can
extinguish the epidemic before the community is fully
infected. Artificial barriers such as mandatory quarantining in
China [29, 30] or aggressive contact tracing in South Korea [11]
seem to have largely stemmed the spread of SARS-CoV-2 during
the early portion of the pandemic. Numerous political, social and
material factors hamper the implementation of either of these
responses in many other countries [13], but it should be possible
to find alternative approaches which can be equally effective. For
an epidemic as serious as COVID-19, it behooves medical, scien-
tific and policy experts to determine as rapidly as possible which
community responses are effective and achievable within different
populations. However, predictive underestimation will dampen
response efforts while overestimation of the expected number of
cases will make neutral or even harmful responses appear incor-
rectly to be effective when those overestimated cases fail to
occur. Thus, accurate prospective predictions (i.e. before knowing
the actual outcome) are preferable to retrospective analysis in
which effectiveness is gauged after the results of the prescriptive
actions are known [31, 32].

This study aimed to evaluate if a simple model was able to cor-
rectly fit the total number of confirmed cases and if that could be
used to extrapolate to the total number of cases at a future date
[23]. We found that fitting the case data from the early portion
of the pandemic to a quadratic (parabolic) rate curve [25] for
the early days of the individual national epidemics was easy, effi-
cient and able to accurately estimate the number of cases at future
dates despite significant national variation in the start of the infec-
tion, mitigation response or economic condition.

Methods

Data on the number of COVID-19 cases was downloaded from
the European Centre for Disease Prevention and Control
(ECDC) on 1 June 2020 and 10 October 2020 [33]. Countries
that had reported the highest numbers of cases in mid-March
2020 (and Russia) were chosen as the focus of our analysis to min-
imise statistical error due to small numbers (although we were
able to get good fits to data in both Australia and Malaysia
which had less than 5000 total cases before the effect of interven-
tions had become obvious). The total number of cases for each
country was calculated as a simple sum of that day plus all previ-
ous days including days before the start of the fitting curve. Days
that were missing from the record were assigned values of zero.
The early part of the curve was fit and statistical parameters

Fig. 1. Illustrative comparison of exponential, quadratic, generalised logistic and
Gompertz growth curves. The Gompertz growth curve (Equation 4, solid black line)
representing the progress of a theoretical epidemic for a disease with an arbitrarily
chosen R0 value of 3.4 (r = 0.045, N0 = 1, NM = 70%, dotted line). The solid grey line
is an equivalent logistic curve, note that while the midpoint for both logistic curves
is the same, the Gompertz curve reaches the population carrying capacity more
slowly, resulting in a long-tailed epidemic. The initial part of the Gompertz curve
(including time points until 5% of the population has been infected) was fit to the
simple exponential (red dashes), quadratic (blue dashes) and simple square (green
dashes) models. It is apparent from these curves how quickly the exponential
curve overestimates the rate of growth for the epidemic as compared to the quadratic
and simple square fit curves and how the quadratic model more closely follows the
Gompertz growth curve, evidenced by the smaller Sy.x value for the quadratic fit in
Table 1.
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were generated using Prism 8 (GraphPad) using the method of
least squares as implemented in the non-linear regression module
using the program standard centred second-order polynomial
(quadratic), exponential growth and the Gompertz growth
model as defined by Prism 8, and a simple user-defined simple
square model (N = At2 + C) where N is the total number of
cases, A and C are the fitting constants and t is the number of
days from the beginning of the epidemic curve. The beginning
of the curve was defined manually from among the first days in
which the number of cases began to increase regularly without
interruption by any days with zero officially reported cases.
Typically, this occurred when the country had reported less
than 100 total cases. Model fitting used at least five days of data
at a minimum. The specific starting fit day for each country is
given in Figures 2 and 3. The early part of the curve was defined
by manual examination looking for changes in the curve shape
and later confirmed by R2 values for the quadratic model
(Fig. 2). Projections for the number of cases at the end of the
fit were generated by fitting the total number of COVID-19
cases for each day starting with day 5 and then extrapolating
the number of cases using the estimated model parameters to esti-
mate the number of cases for the final day for which data were

available at the time (1 June 2020) or to the last day before signifi-
cant decrease in the R2 value (R2 < 0.95) for the quadratic fit. Fit
parameters for the Gompertz growth model were not used for
projections if the fit itself was ambiguous. The incidence (number
of new cases per day) was calculated by subtracting the total num-
ber of cases on the previous day, examined over several day inter-
vals. Estimates of the total future accuracy of the four models was
estimated by predicting forward by 60 days for each of the four
models when compared to the actual reported number of total
cases using the fit parameters calculated as above (in many cases
beyond the original final day of 1 June 2020). A prediction was
judged to be successful if the total number of cases was within
the range calculated from the 95% confidence interval (CI) fit
values. Successful predictions were given a scoring reward of one
point divided by half the width of the prediction interval in cases,
while unsuccessful predictions were given zero points (Fig. 3).
Instances of when the Gompertz model failed to fit all the para-
meters for the estimate of total accuracy were given a score of
zero for that day. The bias was calculated as the amount of over
or under prediction compared to the actual number of cases. The
width was calculated as the difference between the limits of the
95% CI and normalised to the actual number of cases for that day.

Table 1. Average statistical fit parameters for the quadratic, simple square, simple exponential and Gompertz growth models for the early course of the epidemic in
each country

Mean Std. Dev Median

Quadratica (N = 28)

R2 0.9917 0.0044 0.9930

Sum of squares 2.2 × 1010 1.06 × 1011 8.71 × 107

Sy.x 5612.9 15 068.7 1250.0

AICc 822.1 504.3 703.15

Prediction error −4839 104 721 −1776

Simple square (N = 28)

R2 0.9780 0.0159 0.9821

Sum of squares 4.47 × 1010 2.03 × 1011 1.74 × 108

Sy.x 8572.1 21 235.6 1591.5

AICc 871.6 535.2 737.9

Prediction error −31 663 75 958 −3365

Simple exponential (N = 28)

R2 0.9568 0.0215 0.9548

Sum of squares 1.03 × 1011 5.23 × 1011 4.67 × 108

Sy.x 11 257.0 32 734.8 3067.0

AICc 899.5 530.2 777.7

Prediction error 4.1 × 1018 2.2 × 1019 5.2 × 107

Gompertz growth (N = 26)

R2 0.9978 0.0028 0.9991

Sum of squares 2.05 × 109 9.58 × 109 1.48 × 107

Sy.x 1699.2 4598.3 459.7

AICc 711.2 436.8 584.7

Prediction error 7 × 1011 3.8 × 1012 502 689

aBecause fit parameters were unable to be obtained for the Gompertz model for two countries, the statistical parameters were calculated from the remaining 26 countries (indicated by N =
26). The generalised logistic model failed to adequately determine fit parameters in every case so is not included in this table. The prediction error is the mean difference between the
prediction for the final day of the curve and the actual total number of cases for that day in each country.
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Fig. 2. The development of COVID-19 cases over time in 28 nations. The total number of cases as of 1 June 2020 is indicated by black circles while the early part of
the curve is indicated by orange triangles. A quadratic fit curve based on the early part of the curve extrapolated into the future is shown as an orange dashed line.
The first day of each fit curve is listed for each country. The black circles are obscured in those countries which had not begun to effectively reduce SARS-CoV-2
spread by 1 June 2020. The range of possible values corresponding to the 95% confidence interval around the predicted number of cases is indicated with dashed
grey lines [58].
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Results

A simple exponential growth model is a poor fit for the
SARS-CoV-2 pandemic

The cumulative number of confirmed cases for the early portion
of the epidemic in each of 28 countries was plotted with time and
several model equations were fit to the early part of the data
before the mitigating effects from public health policies arrested
disease spread. We expect that changes in the trajectory of the
cumulative number of cases over time would indicate the efficacy
of these mitigation effects. In total, 20 (71%) countries showed an
obvious change in the curvature of the trajectory of the total
number of cases by 1 June 2020 (Fig. 2). When the early portion
of the data (with an unchanged trajectory) was examined for all
28 countries, the Gompertz growth model had the best statistical
parameters (mean R2 = 0.998 ± 0.0028, Table 1) although an
overall fit could not be obtained for the data from two countries
and many of the fit values for NM were unrealistic compared to
national populations (e.g. China and India had fit NM values
corresponding to 0.014 and 0.33% of their populations,
respectively [33] (SI Table 1)). Fitting was also incomplete for
the generalised logistic model for all 28 countries underlining
the difficulty in applying this model. On the other hand, the
simple models were able to robustly fit all the current data,
with the quadratic (parabolic) model performing the best
(mean R2 = 0.992 ± 0.004) and the exponential model the worst
(mean R2 = 0.957 ± 0.022) (Table 1). In only three (11%) coun-
tries did the exponential model have the best overall R2 value
among the simple models. Furthermore, the trend of the overall
superiority of the Gompertz model followed by the quadratic
was observed in the sum of squares, AICc and the standard
error of the estimate statistics. The sum of squares is smallest
for the Gompertz model in 24 of the 28 countries (86%), while
the quadratic model is the best of the remaining three models
in 25 of the 28 countries (89%). The Gompertz model had the
best AICc in 24 of the 28 countries (86%) and again the quadratic
model was the best of the remaining three models in 22 of 28
countries (79%). This was also reflected in the average values of
the AICc among all countries (Table 1). The mean standard

error of the estimate (Sy.x, analogous to the root mean-squared
error for fits of multiple parameters) value for the 28 countries
was 1699 for the Gompertz model, 5613 for the quadratic
model, 8572 for the simple square model and 11 257 for the expo-
nential model (Table 1). Likewise, plots of the natural log of the
total number of cases in the early parts of the epidemic (ln N )
with time are significantly less linear (as determined by R2)
than equivalent plots of the square root of the total number of
cases (N1/2) (SI Table 2, SI Figs 1 and 2).

Quadratic growth models provide improved fits to the early
portion of the epidemic courses

While logistic growth models have been widely used to model epi-
demics [26, 34, 35], uncertainties in estimates of R0 (and therefore
the population carrying capacity NM) make modelling the epi-
demic difficult [24, 34]. (Fig. 4, Table 2, SI Table 3). For most
countries, projection from the simple exponential model mas-
sively overpredicted the cumulative number of future cases.
Projections generated more than 14 days prior to the final date
suggested more than double the actual number of cases for 17
(61%) countries examined. In fact, for 15 (54%) countries, the
exponential model gave at least one projection that differed
from the eventual final day case number by a factor of greater
than 10 000 fold, while the quadratic and simple square models
made no final day overprediction by more than a factor of 3.3
and 2.1, respectively (i.e. using the first 10 days of data from
Portugal projection using the exponential model projects 34 mil-
lion cases while the quadratic, simple square and Gompertz
growth models projects 24 957, 20 358 and 18 953 cases, respect-
ively, while 23 683 total cases were actually observed on the final
day. The total population of Portugal in 2018 was 10.3 million
[33]). When using the quadratic fit model to project the number
of new daily cases (incidence) [18, 23], the actual number of cases
for the final day was within the limits established by the 95% CI
from the fit parameters was successfully predicted on average 63%
of the time for all 28 countries when a 7-day prediction window
was examined (Table 3).

Fig. 3. Binary scoring of total future predictions
from the four models. (a) Median success rate
for the number of days in the future for every
fit data point (the orange points in Fig. 2) for
predictions within the 95% CI for the fit para-
meters. (b) Mean normalised width of the 95%
CI predictions for all 28 countries for up to 60
days in advance. (c) Mean prediction bias
among all 28 countries for all four models. (d)
Reward score for all 28 countries for all four pre-
diction methods.
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Fig. 4. Comparison of the errors in final day prospective predictions for COVID-19 case numbers for different growth models for 28 countries for the simple expo-
nential model (red triangles), the simple square model (green squares), the quadratic model (black circles), the Gompertz growth model (blue triangles) and the
basic logistic growth model (purple diamonds). The first day of each fit curve is listed for each country. Note the log scale for the vertical axis which indicates the
ratio of the predicted to observed number of cases. In each graph the fit values for each model using only data up to that day are used to predict the number of
expected cases for the last day for which data are available (or the last day before significant curve deviation is observed, see Fig. 2). Days on which the fit was not
statistically sound for the Gompertz model were omitted from the graph.
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Projections using the quadratic and simple square models
much more closely matched the observed final day case numbers.
Only in four (14%) countries did the quadratic model ever over-
predict the final number of cases by more than a factor of 2, while
the simple square model overpredicted by a factor of 2 or greater
for only one (4%) country (SI Table 3). For the quadratic model,
the mean maximum daily overprediction was a factor of 1.6-fold
(median 1.3-fold), while for the simple square model the mean
maximum daily overprediction was 1.3-fold (median 1.1-fold).
Both of these models produced much more accurate projections
than the simple exponential model (Table 2). We also estimated
the total accuracy of these simple models by assigning a binary
success/failure score to predictions up to 60 days in advance for
each day of the originally fit data and examining the width and
bias towards over and underprediction for each model [36, 37]
as well as using a simple scoring metric (Fig. 3). Both the quad-
ratic and exponential models made fairly accurate predictions
up to 10 days in advance, although the quality of forecasts from
the exponential model quickly deteriorates further into the future
and this is more obvious when the scoring metric is applied. The
exponential model also produces much larger ranges of predici-
tions within the 95% CI than the other models and quickly begins
to significantly over predict the number of future total cases. Both
the quadratic and exponential model tended to overpredict the
number of future cases, while the simple square model tended
to underpredict up to 10 days in advance but overpredict further
into the future, while the Gompertz model generally underpre-
dicted the total number of cases. Likewise, while all the models
had a generalised expansion of their 95% CI prediction ranges
more than 15 days in the future, this expansion was most signifi-
cant for the exponential model.

Discussion

The start of the global SARS-CoV-2 pandemic has resulted in an
unprecedented set of national responses. These responses have
varied considerably from a strict lockdown in China [16], to
aggressive contact tracing in South Korea [38], to mandatory
shelter in place restrictions in France [39], to giving citizens infor-
mation and allowing them more freedom to make choices as in
Sweden [40] and to other countries which appeared to be consid-
ering attempts to accelerate their progress towards herd immunity
[41, 42]. The variety in these national prescriptions is a result of

the different political and socioeconomic situations in individual
countries which have to take into account not only the costs of
these efforts both monetarily and in terms of lives, but also
what can be reasonably achieved depending on the relationship
between individual governments and their citizenry. Additionally,
the spread of SARS-CoV-2 has been putatively linked to several
inherent factors within a country, such as average population dens-
ity [43], normal social behaviours [13] and even weather may have
an effect [44]. The efficacy of similar prescriptions can also vary in
pairs of neighbouring countries (i.e. the UK or Ireland). Therefore,
it behooves every national government to review the results of its
own policy prescriptions in order to make necessary course
adjustments as quickly and accurately as possible.

While predictions about the future course of an epidemic,
especially one as novel as COVID-19 are difficult under the best
of circumstances, the severity of the pandemic has resulted in
an unprecedented amount of epidemiological data being pro-
duced with daily frequency making it clear that the spread of
cases is not well-modelled by simple exponential growth
equations [17, 23, 45, 46]. This is not unprecedented as
sub-exponential growth has been noted previously in a number
of disease outbreaks [35, 47–49]. In fact, early observations of
COVID-19 in China also observed sub-exponential growth rates
for provinces other than Hubei (which had a more complex
rate pattern) [50]. This point is further demonstrated by statistical
analysis of, and the poor projections made by the exponential
model for the future number of cases as compared to the quad-
ratic (parabolic) model [25]. However, the simple exponential
model does not generate entirely terrible fit statistics in these
countries (Table 1), and this may account for the conflation of
the course of the pandemic with truly exponential growth. That
the exponential growth constant term, k, is constantly decreasing
after day 10 in 10 (68%) countries and generally decreasing overall
in all but one country (SI Fig. 4) further indicates the overall util-
ity of logistic models, which were explicitly developed to model
the constantly decreasing rate of growth due to consumption of
the available growth resource (i.e. the susceptible population
pool of the SIR model) [26]. However, while logistic models are
very good epidemic growth models [23, 31, 35], they are difficult
to accurately fit during the early portion of a novel epidemic like
COVID-19 due to inherent uncertainties in the mathematical
shape parameters (Equation 1) of the curve itself and the popula-
tion carrying capacity for SARS-CoV-2, NM, which still has a sig-
nificant uncertainty as the virus has only recently moved into the
human population. The population carrying capacity for an epi-
demic (‘herd immunity’) is defined as 1–1/R0, and since current
estimates for R0 vary from 1.5 to 6.5 [24] which implies that
33–85% of the population will need to have contracted the disease
and developed immunity in order to terminate the epidemic
(assuming a theoretical, static population with no new births or
migration over the time course of the epidemic [20]). A discrep-
ancy of this size will significantly affect projections based on logis-
tic growth models.

Here we note the utility of the quadratic (parabolic) model to
predict more than a month in advance the number of cases on an
arbitrary final day using data from the early portion of a
COVID-19 epidemic: here, early means up to when the total
number of cases has reached about 40% of the population carry-
ing capacity, based on the shape of the curves for an uninter-
rupted epidemic growing at a logistic rate (Fig. 1), or before
public health prescriptions have largely stemmed the spread of
the disease. The other models have some weaknesses compared

Table 2. Results of prospective predictions for total case load made using the
various models for final day predictions

Meana minimum
normalised
projection

(observed/actual
total cases)

Mean maximum normalised
projection (observed/actual

total cases)

Simple
exponential

1.11 ± 0.09 (1.14) 8.9 × 1014 ± 4.7 × 1015 (5 × 104)

Quadratic
(parabolic)

0.25 ± 0.29 (0.09) 1.55 ± 0.64 (1.33)

Simple
square

0.42 ± 0.34 (0.24) 1.26 ± 0.35 (1.12)

Gompertz
growth

0.14 ± 0.24 (0.02) 3.8 × 108 ± 2.0 × 109 (2 × 102)

aAll data given are mean results ± the sample standard error. Median values are given in
parentheses.
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to the quadratic model. The simple square model poorly predicts
the future number of cases when a total prediction is made
(Fig. 3). The simple exponential model vastly overpredicts the
number of cases for the final day and for total predictions (Figs
2 and 3, Table 2). The Gompertz growth model, while often mak-
ing largely correct projections often generates wildly inaccurate
estimates of the population carrying capacity NM (SI Table 1),
and both it and the generalised logistic model often simply fail
to produce a statistically reliable result with the currently available

data (i.e. the Gompertz model failed to completely fit all its para-
meters for any day of the total prediction for Denmark).
Overestimation of the future number of cases may be problematic
because the failure of the number of predicted cases to materialise
could be erroneously used as evidence that poorly implemented
and ineffective policy prescriptions are reducing the spread of
SARS-CoV-2, which may lead to political pressure for premature
cessation of all prescriptive measures and inevitably an increase in
the number of cases and excess and unnecessary morbidities.
Fortunately, projection using the quadratic model produces accur-
ate, prospective predictions of the number of cases (Figs 3 and 4,
Table 2) and despite being an exceedingly simple model performs
relatively well in comparison to more complex models (Table 3, SI
Table 4, SI Fig. 4, SI Appendix 2). The quadratic model does a
fairly decent job in predicting the future number of cases up to
8 weeks in advance despite its simplicity. For five of the 8
weeks, its predictions are between the first and fourth quartile
of the distribution of all the predictions for that week, better
than 9 of the other 18 predictive models. The average percentage
error for the predictions for the quadratic model was 30.2%, rank-
ing it better than 8 of the other 18 predictive models. It should be
noted that the performance of the quadratic model is likely more
due to the fact that the COVID-19 epidemic in the United States
was poorly controlled during that time period as this model is not
able to predict when the current wave of the epidemic will end,
but only how many cases can be expected if it is unaffected by
the current set of public health interventions. In fact, the quad-
ratic model is only capable of identifying the ebbing of an epi-
demic wave when it fails and we fully expect poor forecasts if
there is a significant gap between waves such as occurred in the
UK and Spain (SI Fig. 5). Advance knowledge of the expected
number of COVID-19 cases is not without merit, however, and
this method could readily serve as a baseline ‘climatological fore-
cast’ for the early portion of future outbreaks [36].

One of the main benefits of the quadratic model is its simpli-
city as it is directly calculated using common spreadsheet pro-
grams and can be implemented without much difficulty or
technical modelling expertise. In theory, this model can also be
applied to smaller, sub-national populations, although the smaller
number of total cases in these regions will undoubtedly give rise
to larger statistical errors. And, of course, this analysis has focused
on the early portion of the epidemics in these countries, colloqui-
ally referred to as the ‘first wave’. More recent reporting has indi-
cated that newer outbreaks of COVID-19 cases are occurring in
countries that have already mitigated the original outbreak with
appropriate, effective public and political behaviours, such as
Spain, or those that have shown a second acceleration of the
case trajectory without an apparent end to the initial outbreak,
such as the United States and Poland (SI Fig. 5).

In no way does the empirical agreement between the quadratic
model and empirical data negate the fact that the growth of the
SARS-CoV-2 epidemic is logistic in nature in all 28 countries
(Table 1, SI Table 1). We expect the suitability of these empirical
quadratic fits is related to either the fact that quadratic form of the
slope of the generalised logistic function allows an estimate to be
made by extrapolation of tangents, or the limitation of the virus to
a physical radius of infectivity around infectious individuals, or
that it was still early in the pandemic and no country had yet offi-
cially logged even 1% of its population as having been infected, or
all three [17, 18]. In fact, the simple existence of exposed, infected
and removed populations in the SEIR model alone will reduce the
size of the susceptible population (Equation 1) and reduce the rate

Table 3. Fraction of successful predictions of the incidence of new cases of
COVID-19 using the quadratic model. The incidence (number of new cases
per day) was calculated by subtracting the total number of cases on the
previous day

Country 5 day 7 day 12 day

Australia 1.00 1.00 1.00

Austria 0.79 1.00 1.00

Belgium 0.48 0.48 0.56

Brazil 0.47 0.43 0.46

Canada 0.33 0.36 0.47

China 0.92 0.96 1.00

Denmark 0.87 0.90 1.00

France 0.54 0.67 0.82

Germany 0.49 0.66 0.80

India 0.46 0.46 0.52

Iran 0.35 0.36 0.36

Ireland 0.58 0.71 0.88

Israel 0.57 0.61 1.00

Italy 0.53 0.53 0.71

Malaysia 0.78 0.87 0.92

Netherlands 0.53 0.51 0.58

Norway 0.58 0.83 1.00

Philipines 0.41 0.48 0.66

Poland 0.45 0.45 0.52

Portugal 0.56 0.62 0.79

Russia 0.36 0.38 0.43

South Korea 1.00 1.00 1.00

Spain 0.71 0.76 1.00

Sweden 0.33 0.27 0.30

Switzerland 0.79 0.92 1.00

Turkey 0.68 0.72 0.96

UK 0.34 0.34 0.35

USA 0.31 0.32 0.35

Mean = 0.58 0.63 0.73

Median = 0.53 0.61 0.80

Std. dev. = 0.21 0.24 0.26

Results are given as the fraction of successful predictions. A prediction was judged to be
successful if the total number of cases (actual) fell between the limit values of the
prediction using the totals generated by the 95% CI from the fit parameters using the sum of
predictions with 5, 7 and 12 day intervals calculated for all possible intervals for each
country using the same days as from the regular quadratic model fits (Fig. 2).
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of transmission due to either the overall reduction of the popula-
tion capable of being infected or due to local depletion in an
imperfectly mixed real-world epidemic [18]. Because this method
is focused on the rate of case growth over time certain caveats are
worth noting. First, the true number of COVID-19 cases is a mat-
ter of debate as there is speculation that a significant fraction of
infections are not being identified [23, 51, 52]. While this implies
that the true number of COVID-19 cases is higher than confirmed
cases, the true number of cases is highly unlikely to be signifi-
cantly smaller than the reported count meaning the confirmed
case count is close to a minimum estimate of the true number
of cases. Second, the undercounting rate is likely variable, espe-
cially during periods of intense case increases and due to the sig-
nificant number of asymptomatic cases [5, 52]. Third, because
this method utilises cumulative cases counts, errors in measure-
ment will propagate over time [18]. While these factors are not
insignificant, it is important to remember here that this method
is a simple fitting of a derivative tangent to a curve and we do
not purport a clear relationship between the determined empirical
fit parameters and fundamental properties of the virus.

Instead, we are explicitly fitting our models to growth in the
empirically determined confirmed case number. While this is
related to a number of other important public health metrics
such as the case fatality rate, the infection fatality rate and hospital
usage statistics, other factors which are not inherent to the virus,
such as economic factors and population demographics also influ-
ence these metrics [32, 39, 40, 53–55]. Furthermore, the con-
firmed case numbers are at best a minimum count of the total
number of infections which is undoubtedly higher given imper-
fect detection methods and not insignificant number of asymp-
tomatic cases of COVID-19 reported [4, 18, 20, 23, 34, 51, 52,
56]. Here we sought to find a simple model that could be widely
employed to identify how many confirmed cases would be
expected in the near future. The continuation of the epidemic
in some countries despite the decrease in the average number of
new cases per day suggests that the quadratic tangent model
could be a better model of the future case load (SI Fig. 5). Here
we largely focus on the quadratic model rather than the simple
square model for the previously mentioned reasons, we must
also note that quadratic curve fitting is natively implemented in
most common spreadsheet software while the simple square
model is often not. By monitoring the R2 values for the quadratic
models, it is a simple task to identify when the current wave of the
epidemic is beginning to subside within a country (i.e. ‘bending the
curve’). Using this metric we can define the waves by a string of
days during which the cumulative confirmed COVID-19 case
count is increasing at a quadratic rate; the wave ends when number
of cumulative cases no longer follows this quadratic rate. We rec-
ommend the use of an empirical R2 value of 0.985 for identifying
when the rate of infection is beginning to subside, but more con-
servative estimates can also be made by lowering this threshold.
This does not preclude using AIC as an alternative metric, although
R2 is more widely implemented in common spreadsheet programs.

Examination of the data collected here suggests that early,
aggressive early measures have been most effective at reducing
disease burden within a country. Countries that initially adopted
less stringent measures (such as the US, UK, Russia and Brazil)
are currently more heavily burdened than those countries that
started with more intense prescriptions (such as China, South
Korea, Australia, Denmark and Vietnam) [57]. Poland, had very
few cases in the spring of 2020 when it enacted a strict lockdown,
but many cases in that autumn after restrictions were eased. On

the other hand, Vietnam which took early aggressive action
against viral spread [7, 57] did not have a large enough case
load to be noted or analysed here. The effectiveness of aggressive
measures may be due to the apparent quadratic rate of growth of
total cases with time (Equation 2); while growth in proportion to
the square of the number of days is fast, it is not as fast as expo-
nential growth. Early reductions in the number of infected indivi-
duals and the number of interactions they have with susceptible
individuals clearly pays compounded dividends in future case
reductions as advantage can be taken of this slower spreading rate.

Conclusions

Quadratic modelling of the cumulative number of COVID-19
cases within national boundaries is a simple and effective model
for the growth in the total number of cases of COVID-19. This
empirical observation can obviate the difficulty in estimating
the effect of human behaviours on these predictions and instead
focus on the available data. Until vaccines can be fully distributed,
social distancing, contact tracing and other aggressive quarantine
measures are the most effective tools to combat the spread of
SARS-CoV-2 and it is imperative to monitor whether these
measures are being effectively implemented for this and future
epidemics. Accurate modelling of the future number of cases
within countries will help to minimise the social costs and
financial burdens of these necessary mitigation measures.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821000649.
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