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Abstract

The possibility of explaining shear flow dynamos by a magnetic shear-current (MSC) effect is examined via
numerical simulations. Our primary diagnostics is the determination of the turbulent magnetic diffusivity tensor η.
In our setup, a negative sign of its component ηyx is necessary for coherent dynamo action by the SC effect. To be
able to measure turbulent transport coefficients from systems with magnetic background turbulence, we present an
extension of the test-field method (TFM) applicable to our setup where the pressure gradient is dropped from the
momentum equation: the nonlinear TFM (NLTFM). Our momentum equation is related to Burgers’ equation and
the resulting flows are referred to as magnetized burgulence. We use both stochastic kinetic and magnetic forcings
to mimic cases without and with simultaneous small-scale dynamo action. When we force only kinetically,
negative ηyx are obtained with exponential growth in both the radial and azimuthal mean magnetic field
components. Using magnetokinetic forcing, the field growth is no longer exponential, while NLTFM yields
positive ηyx. By employing an alternative forcing from which wavevectors whose components correspond to the
largest scales are removed, the exponential growth is recovered, but the NLTFM results do not change
significantly. Analyzing the dynamo excitation conditions for the coherent SC and incoherent α and SC effects
shows that the incoherent effects are the main drivers of the dynamo in the majority of cases. We find no evidence
for MSC-effect-driven dynamos in our simulations.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamical simulations (1966); Astrophysical
magnetism (102)

1. Introduction

In recent years, there has been a lot of interest in the
possibility of large-scale dynamo (LSD) action through the
shear-current effect (Rogachevskii & Kleeorin 2003, 2004) in
flows where more conventional dynamo effects, such as the α
effect arising through stratification and rotation, cannot operate.
In turbulence lacking helicity due to, say, the absence of
rotation or stratification in density or turbulence intensity, the α
tensor vanishes. The turbulent magnetic diffusivity tensor η,
however, is always found to have finite and positive diagonal
components. Its off-diagonal components are in general also
finite if there is rotation or shear. Rotation alone gives rise to
theΩ×J or Rädler effect (Rädler 1969a, 1969b) and shear
alone to the shear-current (SC) effect. For a suitable sign of the
relevant off-diagonal component of η, the latter effect can lead
to dynamo action even without rotation, but the former would
not do so without shear. Both the Rädler and SC effects have
been discussed as additional or even major dynamo effects in
stars (Pipin & Seehafer 2009), accretion disks (Lesur & Ogilvie
2008; Blackman 2010), and galactic magnetism (Chamandy &
Singh 2018).

Astrophysical flows are also subject to vigorous small-scale
dynamo (SSD) action, which should occur in any flow where
the magnetic Reynolds and Prandtl numbers are large enough.
The SSD produces strong, fluctuating magnetic fields at scales
smaller than the forcing scale of the turbulence, on timescales
short in comparison to the LSD instability (see, e.g., Brandenburg
et al. 2012). Usually, the SSD is thought to be detrimental to
α-effect-driven dynamos, where dynamo action can be strongly

suppressed in regimes with high magnetic Reynolds number
(e.g., Cattaneo & Vainshtein 1991; Vainshtein & Cattaneo 1992),
unless the system can get a rid of small-scale magnetic helicity by
interacting with its surroundings through helicity fluxes (e.g.,
Blackman & Field 2001; Brandenburg 2001; Brandenburg &
Subramanian 2005). In the absence of magnetic background
turbulence it has not yet been possible to verify the existence of a
dynamo driven by the SC effect (Brandenburg et al. 2008; Yousef
et al. 2008b; Singh & Jingade 2015). Failure to understand the
origin of large-scale magnetic fields in these numerical works in
terms of the SC effect, together with the findings of significant α
fluctuations in Brandenburg et al. (2008), provided enough
motivation to explore the possibility of LSD action driven solely
by a fluctuating α in shearing systems. Such an incoherent
α-shear dynamo was studied analytically in a number of previous
works, suggesting a possibility of generation of large-scale
magnetic fields due to purely temporal fluctuations in α in the
presence of shear (Heinemann et al. 2011; Mitra & Brandenburg
2012; Sridhar & Singh 2014).
It has been claimed, however, that in the presence of forcing in

the induction equation, mimicking magnetic background turbu-
lence provided, e.g., by the SSD, a thus magnetically driven SC
dynamo effect exists (Squire & Bhattacharjee 2015a, 2015b,
2016). In their analytic study, under the second-order correlation
approximation (SOCA), Squire & Bhattacharjee (2015a) argued
for a significant magnetic contribution of the type leading to
coherent dynamo action in systems with both shear and rotation
with typical q=−S/Ω values for galactic or accretion disks,
while in the regime of shear dominating over rotation, relevant
to our current study, such contribution was found to be weak. In
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Squire & Bhattacharjee (2016), it was furthermore argued that the
magnetic shear-current (MSC) effect “arises exclusively from the
pressure response of the velocity fluctuations.” As we demonstrate
in Appendix C, based on an analytical calculation, a magnetic
contribution to ηyx exists even when the pressure term is dropped,
but then it likely has a sign that is unfavorable for dynamo action.
However, since these analytic results suffer from many
simplifications, they cannot provide a conclusive picture. Hence,
it is important to study this issue numerically, which is one of our
aims in this work.

In their numerical studies, Squire & Bhattacharjee (2015b,
2016) reported the generation of a large-scale magnetic field,
usually on the scale of the computational domain, with
magnetic forcing, while in the case of kinetic forcing only,
the generated patterns were reported to be temporally more
erratic and spatially less coherent. For a flow in the y direction,
sheared in x, an attempt was made to measure the turbulent
transport coefficients using the second-order cumulant expan-
sion method of Marston et al. (2008), and the results indicated
negative ηyx and ηxx in the presence of magnetic forcing (Squire
& Bhattacharjee 2015b). Incidentally, if confirmed in this case,
a negative ηxx could also imply dynamo action (Lanotte et al.
1999; Devlen et al. 2013). At that time, however, a suitable
test-field method (TFM), providing another measurement tool
for the turbulent transport coefficients, was not yet available.

Here, we present first steps toward such a toolbox, extending
the method developed by Rheinhardt & Brandenburg (2010,
hereafter RB10) to include the self-advection term and rotation,
albeit still limited to simplified MHD (SMHD) equations, with
the pressure gradient term being dropped. Although this
method does not yet provide a completely suitable tool for
the systems studied by Squire & Bhattacharjee (2015b, 2016),
it does provide a working solution for simplified shear
dynamos with magnetic forcing, mimicking SSD, and can be
envisioned to enable important scientific insights. In this paper,
we present the method, referred to as the “nonlinear test-field
method” (NLTFM), and tests against previously studied cases,
along with other validation results. As our major topic, we
analyze runs with SMHD equations that exhibit dynamo action
in the same parameter regime as previously claimed to host
MSC-effect dynamos.

2. Model and Methods

We perform local Cartesian box simulations with shearing-
periodic boundary conditions to implement large-scale shear as
a linear background flow imposed on the system. The shear
occurs in the x direction, which could represent, e.g., the
direction from the rotational center of a cosmic body. Here, y is
the streamwise, or azimuthal, direction, and z points into the
vertical direction. The magnitude of the shearing motion is
described by the input parameter S such that the imposed linear
shear flow is ˆ=U ySx .S The rotation of the domain,
Ω=(0,0,Ω), is described by the input parameter Ω, the
magnitude of the angular velocity. In the simulations reported
in this paper, however, rotation is neglected, as here we
concentrate on studying the possibility of the SC effect alone.
We will, however, retain rotation in the model equations for
completeness. Our boxes have edge lengths Lx=Ly, and Lz
with aspect ratio = L Lz x chosen equal to one in many
cases, but we consider also vertically elongated boxes with

= 4, 8, 16. All calculations were carried out with the
PENCIL CODE. see, e.g., Brandenburg et al. (2020).

2.1. Simplified MHD

As stated in the introduction, the equations of SMHD as
defined here are similar to those of MHD but lack the pressure
gradient. Correspondingly, the density ρ is held constant. We
solve the equations for the magnetic vector potential A and the
velocity U,

( )h= ´ + + A U B F A, 1A
M

2
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( · ) ( )
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=- + ´ +
+ +

 U U U J B F

U U 3 2
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with the linear expressions

ˆ ( )= + A A xSA , 3A
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( ) ˆ ( )W= + ´ + U U ySU2 4U
x

( )= ¶ + ¶ Sx . 5t y

B=∇×A is the magnetic field, J=∇×B is the current
density in units where the vacuum permeability is unity, FK

and FM are kinetic and magnetic forcing functions, respec-
tively, η is the (molecular) magnetic diffusivity, and ν is the
kinematic viscosity, both assumed constant. Equation (2) can
be considered a three-dimensional generalization of Burgers’
equation, which is why one refers to its turbulent solutions as
“burgulence”; see the review by Frisch & Bec (2000) on
such flows.
The main advantage of using SMHD is to avoid the necessity

of dealing with density fluctuations and corresponding effects
in the mean quantities. However, as self-advection U·∇U is
no longer discarded, we are here more general than RB10, the
models of which suffered, in physical terms, from the implied
assumption of slow fluid motions, that is, small Strouhal
numbers (St=1) or Reynolds numbers ( Re 1). Completely
neglecting the self-advection term is inadequate in the present
context given that shear plays its essential role just via this
term. So merely the terms arising from an additional mean flow
and from the fluctuating velocity alone could be dropped.
Neglecting the latter, however, would be equivalent to
restricting the method to SOCA with respect to the self-
advection term, which is not desirable.

2.2. Full MHD

The full MHD (FMHD) system of equations, here with an
isothermal equation of state, is more complex because of the
occurrence of the pressure gradient, as a result of which we
need an additional evolution equation for the density. Also the
viscous force is more complex, hence
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3
are the components of

the traceless rate-of-strain tensor S, where commas denote
partial differentiation, and p is the pressure related to the
density via r=p cs

2 , with =c consts being the isothermal
sound speed.
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2.3. Test-field Methods

Throughout, we define mean quantities by horizontal aver-
aging, i.e., averaging over x and y, denoted by an overbar. So the
means depend on z and t only. Fluctuations are denoted by
lowercase symbols or a prime, e.g., = -a A A , = -u U U ,
( )´ ¢ = ´ - ´u b u b u b, and = -f F FK,M K,M K,M. The
horizontal average is normally taken to obey the Reynolds rules.
In situations with linear overall shear though, the complication
arises that ¹U US S (when US is defined to be ∝x, the mean
even vanishes), being hence not a pure mean, while ¶ Ui j

S is
spatially constant, hence a pure mean. So the Reynolds rule
“averaging commutes with differentiating” is violated. However,
( · ) · ¢ =U UG gS S for an arbitrary quantity = +G G g.
This is a consequence of ·  =U G 0S and ·  =U gS

( )ò ò ò ò¶ = ¶ =Sx g dxdy Sx g dy dx 0y y , the latter because
of periodicity in y. Thus, US can effectively be treated as a mean
flow.

The evolution equations for the fluctuations of the magnetic
vector potential, a, and the velocity, u, follow from
Equations (1) and (2) as

( ) ( )h= ´ + ´ + ´ ¢ + + a u B U b u b f a, 7A
M

2
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2.3.1. Nonlinear TFM

In the quasi-kinematic test-field method (QKTFM) (see
Section 2.3.2), the mean electromotive force = ´ u b is a
functional of only u, U , and B (linear in B ). However, in the
more general case with a magnetic background turbulence, this
is no longer so. To deal with this difficulty, RB10 added the
evolution equations for the background turbulence (u0, b0),
which are similar to Equations (7) and (8), but for zero mean
field, to the equations of the TFM. In general, = ´ u b can
be split into a contribution = ´ u b0 0 0 that is independent of
the mean field and

( )¯ ¯ ¯ ¯ ¯= ´ + ´ + ´ u b u b u b , 9B B B B B0 0

where ¯uB and ¯bB denote the solutions of Equations (7) and (8)
without forcing (called “test problems”), which are supposed to
vanish for vanishing B . Thus, ¯= +u u uB0 , ¯= +b b bB0 . ¯B

can be written in two equivalent ways as

( )¯ ¯ ¯ ¯ ¯= ´ + ´ = ´ + ´ u b u b u b u b. 10B B B B B0 0

Both become linear in quantities with subscript B when b and
u are identified with the fluctuating fields in the “main run,”
which is the system (1) and (2) solved simultaneously with the
test problems. In this way, we have recovered the mentioned
linearity property of [ ] B of the QKTFM. Likewise, one writes
that part of the mean ponderomotive force ¯B that results from
the Lorentz force as

( )¯ ¯ ¯ ¯´ + ´ ´ + ´j b j b j b j bor 11B B B B0 0

and that resulting from self-advection as

· · · ·
( )

¯ ¯ ¯ ¯   - - - -u u u u u u u uor ;
12

B B B B0 0

see Equations (29) and (30) of RB10. Corresponding
expressions can be established for the fluctuating parts of the
bilinear terms, ( )´ ¢u b , ( )´ ¢j b , and ( · ) ¢u u , occurring in
Equations (7) and (8). We recall that these different formula-
tions result in different stability properties of the test problems;
see also the test results presented in Appendix B.1. Here, we
chose to use in Equations (10)–(12), and in the aforementioned
expressions for the fluctuating parts of the bilinear terms, the
respective first version, that is, ¯ ¯ ¯= ´ + ´ u b u bB B B 0 ,
( ) ( ) ( )¯ ¯´ ¢ = ´ ¢ + ´ ¢u b u b u bB B 0 etc. This choice forms
what is called the ju method; see Table 1 of RB10.7

The given alternative formulations become equivalent when
the mean quantities, possibly evolving in the main run, are too
weak to have a marked influence on the fluctuating fields.
Then, u→u0 and b→b0, which defines the kinematic limit.
Employing this means dropping terms like ¯ ¯´u bB B in mean
EMF and mean force, which is the correct way to obtain the
latter as quantities of first order in B . Then all possible versions
of the NLTFM (which actually ceases to be nonlinear) give
identical results up to roundoff errors.
We solve Equations (7) and (8) not by setting B to the actual

mean field resulting from the solutions of Equations (1) and (2),
but by setting it to one of four test fields, BT. Those are

( ) ( ) ( )( ) ( )= =B Bk z k zcos , 0, 0 , sin , 0, 0 , 13B B
1 2

( ) ( ) ( )( ) ( )= =B Bk z k z0, cos , 0 , 0, sin , 0 , 14B B
3 4

where kB is the wavenumber of the test field, being a multiple
of 2π/Lz. From the solutions of Equations (7) and (8) we can
construct the mean electromotive force, = ´ u b, and the
mean ponderomotive force, ·r = ´ - j b u u, which
are then expressed in terms of the mean field by the ansatzes

( )a h= - B J , 15i ij j ij j

( )f y= - B J , 16i ij j ij j

where i,j adopt only the values 1,2 as a consequence of setting
Bz, which is constant anyway, arbitrarily to zero. Hence, each
of the four tensors, αij, ηij, fij, ψij, has four components, i.e.,
altogether we have 16 unknowns. Note that often the α and η

tensors are defined as just the symmetric parts of our αij and ηij
while their antisymmetric parts are cast into the vectorial
coefficients of the γ and δ effects. The coefficients α, β, γ and
δ describe in turn the effects of turbulent generation, diffusion,
pumping, and the (nongenerative, nondissipative) so-called
Rädler effect. In the presence of shear, the coefficient ηyx plays
a prominent role; see Section 3.3. In spite of what could be
expected from the Lorentz force, being quadratic in B, the
turbulent ponderomotive force Equation (16) is linear in B .
This is because of the presence of the magnetic background
turbulence b0 via, in the kinematic limit, ¯ ¯´ + ´j b j bB B0 0 .

7 The methods are named after the fluctuating fields, which are taken over
from the main run; thus the four possible combinations of the expressions in
Equations (10) and (11) yield ju, jb, bb, and ub. Including Equation (12) would
produce more combinations with three-letter names such as juu etc.
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2.3.2. Quasi-kinematic TFM

We state here for comparison the governing equations for the
QKTFM (see also Schrinner et al. 2005, 2007). They consist of
just Equation (7) with fM=0, but not Equation (8), and
Equation (15). Then, Equation (10) reduces simply to

( )¯ ¯= ´ u b , 17B B

and we find the contribution ¯ ´u bB 0 missing. Again, for
further details see RB10.

2.3.3. Resetting

The test problems Equations (7) and (8) are often unstable,
but this does not necessarily affect the values of the resulting
turbulent transport coefficients: They usually show statistically
stationary behavior over limited time spans although the test
solutions are already growing. For safety reasons, we always
reset them to zero in regular intervals (typically every 0.5
viscous times); see Hubbard et al. (2009) for a discussion. To
mask the initial transient, we also remove 20% of the data from
the beginning of each resetting interval.

2.4. Forcing

The standard forcing, implemented in the PENCIL CODE,
employs white-in-time “frozen” harmonic plane waves, here
restricted to be nonhelical. Their wavevectors are randomly
selected from a thin shell in k space of radius kf such that they
fit into the periodic computational domain (for details see, e.g.,
Käpylä et al. 2020). In most of our simulations, we apply this
recipe for both kinetic and magnetic forcings in Equations (1),
(2), (7), and (8). The wavevectors are further selected such that
no mean field or mean flow is directly sustained, that is, the
case ky=0 is excluded.8 However, due to roundoff errors, it is
unavoidable that averages over harmonic functions deviate
slightly from zero. We call this effect “leakage of the forcing
into the mean fields.” Strong shear could produce a linearly
growing By out of a small Bx due to such leakage. This is why
we checked its effect in purely magnetic runs and found the
growth of By to be limited and both components to stay within
margins close to numerical precision. Nevertheless, as will be
discussed in Section 3.1, with this magnetic forcing setup, the
mean magnetic fields very quickly (in a few turnover times)
reach dynamically effective strengths without showing a clear
exponential stage.

Hence, another forcing setup was designed, referred to as
“decimated forcing.” In addition to ensuring that ky=0 is
excluded, we took out all those wavevectors for which
∣ ∣ =k k k2x y z, , min 1. As will be discussed in the results section,
the decimated forcing has the advantage of reducing the
amplitude of the mean fields generated during the initial stages,
thus allowing us to determine the growth rate of an
exponentially growing dynamo instability. While the standard
choice is expected to provide a good approximation to
homogeneous isotropic velocity turbulence, isotropy could be
lost in the decimated case, given that all wavevectors are
parallel or almost parallel to the spatial diagonals of the box.

However, as is discussed in Appendix A, the generated
turbulence does not markedly deviate from that by the standard
forcing in terms of isotropy. Also, repeating the kinetically

forced runs (fM= FM=0) with decimated forcing does not
significantly alter the dynamo solutions.

2.5. Mean Flow Removal

In every case, be it full or simplified MHD, the first
instability to be excited is the generation of a mean flow with
horizontal components. These are most likely signatures of the
vorticity dynamo (see, e.g., Elperin et al. 2003; Käpylä et al.
2009). As it can destabilize the test problems, we have decided
to suppress the mean flow by subtracting it from the solution U
in every time step, which also avoids leakage of the forcing into
U . With respect to a possible effect on the magnetic field, we
refer to Yousef et al. (2008a), who reported, for a very similar
simulation setup to that used here, that the presence of U did
not significantly change the properties of the shear dynamo; see
their Section 3.4.

2.6. Input and Output Quantities

The simulations are fully defined by choosing the shear
parameter S, the forcing setup, amplitude, and wavenumber, kf,
the kinematic viscosity ν, and the magnetic diffusivity η. For
normalizations we use the horizontal length scale -k1

1, with
k1=2π/Lx, which is connected to the vertical length scale

=- k kz1
1

1, and the viscous time scale ( )n=n
-T k1

2 1. The
boundary conditions are (shearing) periodic in all three
directions. The following quantities are used as diagnostics.
We quantify the strength of the turbulence by the fluid and
magnetic Reynolds numbers

( )
n h

= = =
u

k

u

k
Re , Re Pr Re, 18rms

f
M

rms

f
M

where

( )n
h

=Pr 19M

is the magnetic Prandtl number. The Lundquist number and its
ratio to ReM are given by

( )
h r r

= =
B

k

B

u
Lu ,

Lu

Re
, 20rms

f M

rms

rms

which is only used in SMHD, where r = const. The strength
of the imposed shear is measured by the dynamic shear number

( )=
S

u k
Sh . 21K

rms f

As in earlier work, we normalize the turbulent magnetic
diffusivity tensor by the SOCA estimate

( )h = u k3 220 rms f

or the molecular diffusivity η.
We define the rms value of the magnetic field as Brms =

〈B2〉1/2 while = á ñB Bi i z,rms
2 1 2 are the rms values of the mean

field components. 〈.〉 denotes volume averaging and 〈.〉ξ
averaging over a coordinate ξ. The magnetic field is normalized
by the equipartition field strength, Beq = 〈〈ρu2〉1/2〉t. For the
velocity field, we define a time-averaged rms value urms=
〈〈u2〉1/2〉t. Kinematic dynamo growth rates λ are defined as
á ñd Blogt trms or á ñd Blogt i t,rms .

8 Without shear, only those with kx=ky=0 had to be excluded, but due to
shear-periodicity, 2π/kx is no longer an integer fraction of Lx.
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3. Results

The naming of the runs is such that the first letter, F or S,
indicates full or simplified MHD, while the second and third
refer to the forcing regime: K and KM referring to purely
kinetic and combined kinetic and magnetic forcing (henceforth
magnetokinetic) with equal with amplitudes equal up to a factor
of ρ−1/2 in the magnetic force. The number following the
letters indicates the vertical aspect ratio of the box. A trailing
letter “d” stands for “decimated forcing.” In FMHD, the sound
speed was set to 100/k1 Tν.

3.1. Overall Behavior of the Main Runs

As our starting point, we defined a setup, related to one from
Squire & Bhattacharjee (2015b), with marginal dynamo
excitation (in incompressible MHD) and an aspect ratio

= 8. We denote this run as FK8a, and tabulate ReM, the
growth rate of the initial kinematic stage, λ, and the η
components measured by QKTFM in Table 1. As reported by
Squire & Bhattacharjee (2015b), we also observe an initial
decay of the rms and mean magnetic fields, but later we find
temporary saturation at very low values, after which a very
slow decay is observed, indicative of a nearly marginally
excited dynamo state. Because of the finite Bx present at all
times, a much stronger (roughly 40 times) By is maintained due
to the shear, but as the dynamo is nearly marginal, these mean
fields remain at very low strengths. We note that most of the
magnetic energy is in the mean fields, while only a small
fraction (less than 20%) is in the fluctuations.

Next, we repeat this run, but with SMHD, which yields
RunSK8a in Table 1. Now rms and mean fields grow, the mean
radial and azimuthal components showing exponential growth at
the same rate, albeit still very slow. Nevertheless, the dynamo

instability is somewhat easier to excite than in FMHD. The
azimuthal component is again much stronger than the radial one
with the ratio By,rms/Bx,rms similar to the FMHD case.
We continue by repeating these runs with decreased

magnetic diffusivity, resulting in roughly six times larger
magnetic Reynolds number, ReM (Runs FK8b and SK8b). In
both simulations we observe exponential growth of the rms and
mean magnetic fields, somewhat faster with SMHD than with
FMHD. The ratio of the mean field energy to the energy in the
fluctuations remains unchanged with respect to the runs with
lower ReM (and PrM). We also determine the fastest growing
dynamo mode and its vertical wavenumber kz and list them in
Table 3; the fastest growing mode is nearly the same with
kz/k1z=9 in both models. Hence, we can conclude that going
from FMHD to SMHD retains the dynamo mode, but changes
its excitation condition and growth rate somewhat.
As the dynamo growth is slow, simulations with = 8 are

too costly to be run until saturation. Hence, to investigate
whether with reduced the dynamo mode could be retained, we
repeated the runs with = 1 (Runs FK1a, FK1b, SK1a, and
SK1b). As is evident from Tables 1 and 3, these runs behave
very much like their tall-box counterparts, the low-ReM FMHD
model being slightly subcritical and the high-ReM one super-
critical, while the SMHD runs are both supercritical. The fastest
growing mode now has kz/k1=1, corresponding to kz/k1z=8
in the tall box. We also perform a set of runs in SMHD with

= 4; see RunsSK4a and SK4b. The former exhibits a very
slowly decaying solution instead of a growing one, which is an
anomaly in the SMHD set, but the latter one again exhibits a
growth rate very similar to the cubic (SK1b) and tall-box (SK8b)
cases, both with a wavenumber kz/k1z=4. All in all, the “b”
runs give rather clear evidence that the cubic simulation domains
retain the same dynamo mode as the taller ones.

Table 1
Summary of the Runs with Constant Shear and Forcing Wavenumber

Run ReM ( )l h k0 f
2 ηxx/η0 ηyy/η0 ηyx/η0 ηxy/η0 αrms/η0kf ηrms/η0

FK1a 2.1 −0.0354 0.557±0.006 0.547±0.007 0.048±0.001 0.351±0.009 0.018±0.009 0.054±0.013
FK1b 11.9 0.0140 0.608±0.015 0.598±0.014 0.023±0.001 0.419±0.032 0.022±0.011 0.031±0.012
FK8a 2.1 −0.0008 0.572±0.010 0.563±0.011 0.044±0.002 0.378±0.009 0.001±0.002 0.048±0.014
FK8b 12.7 0.0166 0.641±0.019 0.634±0.017 0.023±0.001 0.473±0.024 0.009±0.005 0.026±0.009

SK1a 2.0 0.0006 0.367±0.001 0.393±0.002 −0.003±0.000 0.279±0.002 0.021±0.004 0.009±0.001
SK1b 12.3 0.0183 0.440±0.004 0.412±0.001 −0.011±0.002 0.461±0.009 0.020±0.009 0.017±0.009
SK4a 2.1 −0.0042 0.367±0.003 0.390±0.003 −0.004±0.000 0.279±0.003 0.008±0.002 0.006±0.001
SK4b 13.3 0.0185 0.334±0.037 0.339±0.044 −0.004±0.005 0.239±0.073 0.008±0.004 0.007±0.008
SK8a 2.1 0.0033 0.367±0.003 0.390±0.004 −0.003±0.000 0.274±0.003 0.006±0.002 0.005±0.002
SK8b 12.8 0.0192 0.401±0.005 0.424±0.005 −0.015±0.000 0.367±0.010 0.007±0.002 0.017±0.004

SKM1a 1.9 L 1.794±0.039 1.278±0.045 0.200±0.025 −0.725±0.083 0.010±0.055 0.250±0.090
SKM4a 2.1 L 2.012±0.179 1.191±0.014 0.221±0.012 −0.560±0.015 0.046±0.017 0.230±0.072
SKM8a 1.8 L 3.054±0.625 1.481±0.131 0.338±0.064 −0.186±0.045 0.036±0.011 0.352±0.213
SKM16a 2.0 L 2.238±0.552 1.215±0.010 0.249±0.062 −0.580±0.055 0.022±0.008 0.260±0.191

SKM1ad 2.1 0.0103 1.228±0.214 1.326±0.074 0.247±0.043 0.237±0.117 0.149±0.062 0.441±0.212
SKM4ad 1.9 0.0315 1.279±0.150 1.455±0.066 0.222±0.022 0.369±0.072 0.081±0.017 0.270±0.119
SKM8ad 1.5 0.0948 1.688±0.165 2.040±0.150 0.516±0.061 0.383±0.154 0.111±0.069 0.543±0.260
SKM16ad 1.9 0.0344 1.231±0.070 1.589±0.019 0.364±0.116 0.279±0.026 0.033±0.015 0.292±0.015

Note. For all runs, kf/k1=5 (k1=2π/Lx) and S=−25/Tν, yielding a roughly invariable ShK of −1.6. In runs with labels “a,” the magnetic Prandtl number PrM is
10/3, while for “b” it is 20. The integer in the run name indicates the aspect ratio , and the letter “d” at the end refers to “decimated forcing.” The number of grid
points in the = 1 models was 1443, while the number of grid points in the vertical (z) direction was increased as increased, so that 288, 576, and 1152 grid points
in z were used for = 4, 8, and 16, respectively. The Mach number in the simulations was around 0.03 and 0.04 for runs with low and high ReM, respectively. Due to
the low ReM in all the models investigated, no small-scale dynamo could get excited, because for flows with low Mach number the critical ReM for this instability is
around 30 (see, e.g., Haugen et al. 2004).
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The time evolution of the rms and mean fields from the cubic
runs, integrated until saturation, is shown in the top panel of
Figure 1 with solid and broken lines, respectively. The growth
rate of the SMHD run is somewhat larger, but the saturation
strength is lower than in FMHD. The ratio By,rms/Bx,rms,
however, is the same. We also show the mean fields in a zt
diagram in Figure 2, top panel. We see the emergence and
saturation of the Fourier mode with wavenumber kz/k1 = 1 in
both the radial and azimuthal components, where each negative
(positive) patch of By is accompanied by a much weaker
positive (negative) patch in Bx. The patches disappear and
reappear quasi-periodically, and also their vertical position is
not constant. Our kinetically forced FMHD runs reproduce
earlier results of similar systems (compare the upper leftmost
panel of our Figure 2 to Figure 7 of Brandenburg et al. 2008)
with rather coherent patches in By, while the SMHD counter-
part (middle left panel of Figure 2) shows a somewhat more
erratic pattern; here, however, we must note that the time series
of the SMHD run is much longer. These results are in
disagreement with the purely kinetically forced, incompressible
runs of Squire & Bhattacharjee (2015b, their Figure 9(a)),
which show a much more erratic pattern than what we observe
in either FMHD or SMHD.

Finally, we repeat the simulations, labeled “a” (PrM=10/3),
with the same parameters, but using the magnetic forcing in

addition to the kinetic one, so that the same rms velocity is
obtained as in the kinetically forced cases. This set of parameters
should very closely correspond to the case studied in Figure 9(d)
of Squire & Bhattacharjee (2015b). As seen there, too, we
observe a nearly immediate appearance (during the first five
turnover times) of a strong By as is shown for RunSKM1a in
Figure 1, lower panel. Although Squire & Bhattacharjee (2015b)
did not show the evolution of Bx, our results indicate that By

arises due to the action of the strong shear on Bx. After the initial
rapid growth, we do not see any further increase of Bx, while
linear growth up to turmskf≈170 and quasi-regular oscillations
occur in By. Hence, we are not able to report a growth rate for
RunSKM1a in Table 1, and also not for the larger- runs
SKM4a, SKM8a, and SKM16a for the same reason. We note
that now the energy in the magnetic fluctuations is dominating
over the energy in the mean field, with roughly 70% of the total
contained in the former.
From Figure 2, middle panel, we see that, again, the kz/k1 = 1

vertical Fourier mode is the preferentially excited one, although
the patterns seen in the zt plots are much more short-lived and
erratic in time than in the kinetically forced counterpart SK1a
(same figure, top panel). Remarkably, there is no kinematic
stage, but the large-scale pattern appears nearly instantly. (Note
that the whole time range shown for Run SKM1a is roughly as
long as the kinematic range exhibited by Run SK1b.) The
appearance and evolution of By also disagree with the results of
Squire & Bhattacharjee (2015b), who observed a much less
erratic pattern to arise in a closely matching parameter regime—
see their Figure 9(d).
The rapidly emerging mean fields in the magnetokinetically

forced runs are related to the standard forcing scheme used in
all the simulations presented so far. Even if this scenario could
be regarded as a genuine dynamo instability, its investigation is
out of the scope of our current numerical setup, because
obviously much higher cadence in time should be used in an
attempt to follow the possible kinematic stage. Also, the
simulations should be started from a fully matured turbulent
MHD background state, because currently the mean-field
growth occurs during the initial transient state, where even
turbulence itself is not yet saturated.
Hence, instead of fully dwelling on the cause of the rapid

initial growth, we turn to using the decimated forcing with
/ =k k 2min 1 , and repeat RunSKM1a as a decimated version,

now denoted SKM1ad and shown in the lower panel of
Figure 1 (blue lines). We still see the rapid appearance of the
mean fields, but their magnitudes are now much lower than in
the case of our standard forcing, plotted with black lines in the
same figure for comparison. After the rapid excitation phase,
we observe a slow exponential growth of both Bx and By,
reminiscent of the dynamo instability seen in the FK and SK
runs. The growth rate is now larger than in the kinetically
forced counterparts FK1a and SK1a—see Table 1; when
compared with the higher-ReM runs FK1b and SK1b, as can be
seen from the upper panel of Figure 1, the growth rates are
nearly equal. We further produced three more runs with
varying aspect ratio  (SKM1ad, SKM8ad, and SKM16ad),
and notice that the growth rate is increasing with up to 8, but
then decreases again. We further performed a magnetokineti-
cally forced FMHD run, where rapidly emergent mean fields
are seen in spite of using the decimated forcing (see the bottom
panel of Figure 2, showing Run FKM1bd, with parameters
corresponding roughly to Runs FK1b and SKM1ad). The

Figure 1. Time evolution of rms and mean magnetic field strengths from
different runs. Top: comparison of a higher-ReM FK (black) and SK (orange)
run, and a lower-ReM decimated SKM run (blue). Bottom: comparison of SKM
runs with = 1, with standard (black, Run SKM1a) and decimated (blue,
Run SKM1ad) forcing. Solid—Brms, dotted—By,rms, dashed—Bx,rms.
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emerging large-scale field structures are very similar to those in
the magneto-kinetically forced SMHD cases, but less coherent
than in the kinetically forced FMHD case. Similar to the
SMHD cases with standard forcing, the growth rates are
difficult to estimate, but we do note that the dynamo is now
easier to excite than in the kinetically forced FMHD case,
where the large-scale field emerged only at 600 turnover times
instead of a few tens. Hence, we cannot confirm the finding of
Squire & Bhattacharjee (2015b) that more coherent structures
emerge when one goes from kinetic to magnetic forcing, as was
the case in their incompressible study.

Based on these runs with different forcings, we propose that
the slow dynamo instability could have been drowned by the
stronger initial mean fields when forced with the standard
forcing. Although the growth rate of the dynamo instability is
similar to the kinetically forced cases, and the wavenumber of
the dynamo instability is the same in both cases, the change of

the growth rate as a function of the aspect ratio of the box
indicates that some key properties of the dynamo instability do
change when magnetic forcing is used. In the next section we
make an attempt to investigate what exactly has changed by
measuring the turbulent transport coefficients in the systems
with the relevant TFM variant.

3.2. Turbulent Transport Coefficients

3.2.1. Cases of Strong Shear

In this subsection we compare cases of strong shear in
kinetically forced FMHD and SMHD, and magneto-kinetically
forced SMHD, measured with the appropriate variant of the TFM.
We choose S=−25/Tν, which, with the selected amplitude of
the forcing, results in the shear number ShK≈−1.6, indicating a
strong influence of shear on the system. This setup closely

Figure 2. Butterfly (zt) diagrams of By (upper plot in each panel) and Bx (lower plot in each panel). RunFK1b is kinetically forced FMHD, RunSK1b is kinetically
forced SMHD, SKM1a magnetokinetically forced SMHD, SKM1ad its counterpart with decimated forcing, and FKM1bd is a magnetokinetically forced run in
FMHD, with parameters close to SKM1ad and FK1b and decimated forcing.
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matches the cases investigated by Squire & Bhattacharjee
(2015b).

First we use the QKTFM to measure the turbulent transport
coefficients in the kinetically forced FMHD cases, the results
being presented in Table 1. We measure zero mean in all α
components, hence we tabulate only the rms values of the α

fluctuations: a a= á ñij trms
2 1 2. The same applies to all other runs

studied here. In the low-ReM cases (FK1a, FK8a) we measure
relatively isotropic diagonal components of the η tensor,
positive and somewhat smaller values of ηxy, and much smaller
positive values of ηyx. In these cases, no indication of LSD
instability is seen.

In the high-ReM cases (FK1b and FK8b), the diagonal
components of η have, as expected, higher magnitudes,
showing only mild anisotropy, as in the low-ReM cases, such
that ηxx somewhat exceeds ηyy. ηxy is increased with respect to
the diagonal components, reaching roughly 75% of their
magnitudes. ηyx is still positive, and decreases in magnitude. In
these cases we see LSD action, but with ηyx being positive it
seems unlikely that the dynamo is of SC-effect origin in
agreement with previous numerical studies (Brandenburg et al.
2008; Yousef et al. 2008b; Singh & Jingade 2015). They did
not consider as large values of the shear parameter as here, so
we can now extend this conclusion to the strong-shear regime.
This is consistent with a series of earlier analytical works that
treated shear non-perturbatively and found no evidence of SC-
assisted LSD (Sridhar & Subramanian 2009a, 2009b; Sridhar &
Singh 2010; Singh & Sridhar 2011). We analyze the possible
dynamo driving mechanism in more detail in Section 3.3.

Next we turn to the kinetically forced SMHD cases, analyzed
with both the QKTFM and NLTFM, yielding consistent results,
as discussed in Appendix B.2. The biggest difference from
FMHD is that all η components are systematically smaller in
SMHD, and moreover, ηyx has changed sign to negative values,
being statistically significant within errors; see Table 1. Also,
the rms α values are similar or a bit larger. In the face of the
turbulent transport coefficients, it seems understandable that for
the low-ReM cases the LSD is excited in SMHD but not in
FMHD, because the diffusive coefficients are smaller while the
inductive ones are larger. Also, the sign of ηyx would now be
favorable to enable the SC effect to support an LSD. Further, it
is noteworthy that the diagonal components of η become more
notably anisotropic, but now ηyy mostly exceeds ηxx. In
Figure 3, we show for RunSK1b the probability density

distributions of all tensor components. The diagonal α
components exhibit larger values than the off-diagonal ones,
αxx being especially strong. The off-diagonal components are
very similar to each other. The diagonal η components are close
to being isotropic. ηyx is fluctuating tightly around zero, and
exhibits a very small negative mean. The distribution of ηxy is
broad, but always positive.
Lastly, we turn to the magnetokinetically forced SMHD

cases, analyzed with the NLTFM. In the low-ReM runs, all
components of η show larger magnitudes than in the kinetically
forced cases. Its diagonal components now show very strong
anisotropy, with ηxx being again dominant over ηyy as in the
FMHD cases. ηxy has changed sign to negative values, while
ηyx is again positive. The rms values of α and η are (mostly)
increased, in particular those of the latter. The probability
density functions of the transport coefficients, shown in the
right column of Figure 3, clearly demostrate the anisotropy of
the diagonal components of η and the sign change of ηxy to
large negative values, with ηyx now exhibiting a clearly positive
mean with some negative values as well. The α components are
very similar to the kinetically forced SMHD case, with αxx

attaining much larger values than αyy and the off-diagonal
components. The positive sign of ηyx rules out the existence of
an SC-effect dynamo in these cases. As will be discussed in
detail in Section 3.3, the α and η fluctuations then remain as
possible candidates to provide the necessary ingredients for
an LSD.

3.2.2. Dependence on the Shear Parameter

In this section we report on the dependence of the turbulent
transport coefficients on the shear number ShK in runs with
magnetokinetic forcing. We list our runs, their basic diagnos-
tics, and the turbulent transport coefficients measured with the
NLTFM in Table 2. As the standard forcing was used here, we
did not see any exponential growth in the evolution of the mean
fields; see Section 3.1 for a reasoning. Hence, no growth rates
are reported, and we note that all the transport coefficients are
measured from a stage where the mean magnetic fields are
dynamically significant. As can be seen from the listed Lu,
these runs are all strongly magnetically dominated, likely
because the small-scale magnetic fields are primarily generated
by the magnetic forcing. Our purpose is to scan a wider range
of shear strengths for possible occurrences of a negative ηyx as a
function of ShK, which could enable an SC-driven LSD. The

Figure 3. Probability density functions of all turbulent transport coefficients. Top: αij, bottom: ηij. Left: kinetically forced SMHD RunSK1b, right: magneto-
kinetically forced SMHD RunSKM1a.
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results are depicted in Figure 4, where we present the η
components in two different normalizations. As can be seen,
with weak shear (|ShK|<0.5), the diagonal components of η
are isotropic, while with stronger shear, anisotropy develops
such that in the SOCA normalization, ηxx increases linearly
while ηyy decreases linearly. Normalizing to molecular
diffusivity, both components are decreasing linearly, ηxx less

steeply than ηyy. For weak shear, ηyx adopts small positive
values, which keep increasing linearly with shear in the SOCA
normalization. The linear trend is less clear in the molecular
diffusivity normalization. Furthermore, ηxy attains weakly
negative values for weak shear, and increasingly negative ones
for strong shear. The trend is very close to linear when
molecular diffusivity is used for normalization. Hence, we find

Table 2
Summary of the Runs with Varying Shear

Run ShK ηxx/η0 ηyy/η0 ηyx/η0 ηxy/η0 αrms/(η0kf) ηrms/η0

SKM1a001 −0.094 2.125±0.028 2.129±0.012 0.030±0.016 0.001±0.009 0.094±0.015 0.137±0.050
SKM1a002 −0.187 2.126±0.024 2.131±0.009 0.045±0.009 −0.023±0.003 0.101±0.029 0.142±0.066
SKM1a003 −0.278 2.120±0.023 2.123±0.015 0.061±0.006 −0.035±0.009 0.092±0.034 0.137±0.036
SKM1a004 −0.369 2.123±0.011 2.121±0.013 0.088±0.005 −0.063±0.017 0.096±0.014 0.153±0.043
SKM1a005 −0.458 2.122±0.020 2.109±0.013 0.093±0.017 −0.084±0.009 0.081±0.033 0.147±0.047
SKM1a006 −0.547 2.101±0.013 2.074±0.003 0.107±0.017 −0.125±0.005 0.088±0.032 0.164±0.071
SKM1a007 −0.649 2.077±0.025 2.051±0.007 0.120±0.018 −0.177±0.024 0.091±0.027 0.173±0.068
SKM1a008 −0.719 2.084±0.004 2.046±0.023 0.133±0.022 −0.173±0.014 0.084±0.019 0.173±0.081
SKM1a009 −0.808 2.116±0.048 2.049±0.016 0.165±0.013 −0.218±0.024 0.077±0.032 0.196±0.074
SKM1a01 −0.873 2.057±0.033 1.962±0.016 0.164±0.023 −0.237±0.031 0.081±0.034 0.196±0.083
SKM1a011 −0.947 2.053±0.037 1.932±0.006 0.165±0.008 −0.275±0.019 0.080±0.031 0.197±0.073
SKM1a015 −1.226 1.968±0.014 1.775±0.027 0.193±0.019 −0.391±0.033 0.074±0.027 0.219±0.094
SKM1a02 −1.582 1.963±0.070 1.622±0.015 0.219±0.010 −0.535±0.007 0.067±0.018 0.233±0.068
SKM1a021 −1.623 1.911±0.011 1.553±0.008 0.220±0.025 −0.542±0.018 0.064±0.030 0.238±0.103
SKM1a025 −1.709 1.769±0.026 1.303±0.012 0.207±0.018 −0.549±0.055 0.058±0.030 0.223±0.083
SKM1a031 −1.985 1.676±0.058 1.150±0.011 0.228±0.012 −0.628±0.053 0.056±0.024 0.238±0.069
SKM1a0325 −2.057 1.662±0.103 1.114±0.024 0.224±0.002 −0.663±0.110 0.050±0.014 0.236±0.035
SKM1a035 −2.156 1.630±0.062 1.060±0.004 0.238±0.013 −0.686±0.023 0.052±0.012 0.248±0.083

Note. Forcing wavenumber kf/k1=5. The magnetic Reynolds number, ReM, varies from 1.4 (for weak shear) to 2.1 (for strong shear), and the Lundquist number, Lu,
from 4.2 (for weak shear) to 4.8 (for strong shear). = 1 in all the runs.

Figure 4. Dependence of the turbulent diffusivity tensor components, measured with NLTFM, on the shear number in the magneto-kinetically forced cases. In the big
plots we normalize to the SOCA estimate η0, while in the insets to the molecular diffusivity η.
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no possibility for an MSC-effect-driven dynamo at any shear
number investigated.

The dependences of ηij on shear, as obtained here, are in
broad agreement with the results of Singh & Sridhar (2011)
based on an analytical study in which arbitrarily large values of
the shear parameter S could be explored; see references therein
for more discussion. The two off-diagonal components ηxy and
ηyx were found to start from zero at zero shear and, while the
more relevant ηyx increases with |S| to remain positive, ηxy
behaves in a more complicated manner than found here,
exhibiting both signs depending on the value of S: it decreases
with increasing |S| to become negative up to a certain value of
shear, as in the present work; we refer the reader to Singh &
Sridhar (2011) for more detail on its behavior at larger |S|.

3.2.3. Dependence on the Aspect Ratio

We have studied the dependence of the turbulent transport
coefficients on the aspect ratio  of the domain in the three
different cases (FMHD, SMHD with kinetic or magnetokinetic
forcing) with fixed shear parameter S=−25/Tν. The mea-
sured growth rate of the rms magnetic field, which coincides
with those of Bx and By except for standard magnetic forcing,
and the measured turbulent transport coefficients are listed in
Table 1; see runs with labels 4, 8, and 16, indicating .

In the kinetically forced FMHD and SMHD cases, the growth
rate of the magnetic field is largely independent of the aspect
ratio of the box, indicating that always one and the same dynamo
mode is growing. We also measure the vertical wavenumber kz
of the fastest growing dynamo mode in the kinematic stage (see
Table 3), which supports this conclusion, as we see kz/k1z
increasing proportional to. The turbulent transport coefficients
do not show a marked dependence on  either.

In SMHD with standard magnetokinetic forcing, the
situation is somewhat different. As we cannot draw conclusions
on the growth rate of the magnetic field in these cases, we use
the corresponding cases with decimated forcing as a guideline.

The latter (see Table 1, runs with label ending in “d”) show that
the growth rate is increasing with  up to 8 and then decreases
again in the tallest box. In Figure 5 we show ηyx as a function of
. It can be seen that the magnitudes of the turbulent transport
coefficients change somewhat as a function of the aspect ratio,
although the magnitudes seem to saturate for the tallest box.
The diagonal components grow in magnitude, ηxx somewhat
more than ηyy, making the anisotropy in the turbulent
diffusivity even larger. The negative values measured for ηxy
tend to get weaker in taller boxes. The positive values of ηyx
increase with , hence we see no tendency for larger boxes to
be more favorable for the SC dynamo. The fluctuating α and η
behave similarly, with their magnitudes first increasing, but
then decreasing for the tallest box. The decimated forcing cases
show a similar trend for = 4, 8, and 16 (SKM4ad, SKM8ad,
and SKM16ad) while the case = 1 (SKM1ad) shows higher
values of the transport coefficients not agreeing with this trend.
As the number of grid points is proportional to  at fixed

resolution, resource limitations dictated to integrate the large-
runs only over significantly shorter time spans. However, as we
have discussed above, the mean fields grow initially very
rapidly in all runs with standard forcing, irrespective of the
aspect ratio. Hence, an effect of the different integration times
on the values of transport coefficients can be ruled out.
One could also speculate that some spatio-temporal non-

locality (see, e.g., Rheinhardt & Brandenburg 2012) might come
into play with magnetic forcing, but when choosing our forcing
wavenumbers, we have taken care of kf being scaled with respect
to the vertical extent of the computation domain such that the
forcing wavenumber remained constant. Our procedure, how-
ever, does not take into account nonlocal effects in any way.
The dependence of the growth rate on the aspect ratio could

also be due to different dynamo modes being excited in boxes
of different size. This was found by Shi et al. (2016) in a
similar context, but including rotation, in which case the
turbulence was self-sustained (i.e., not driven as in our study)
by the magnetorotational instability (MRI).9 They found the
dynamo to be more efficient in taller boxes, and interpreted this

Table 3
Dynamo Numbers for the Runs in Table 1

Run kz/k1z DηS hD Srms DαS

FK1a 1* −1.4 1.6 2.8
FK1b 1 −3.9 5.3 19.2
FK8a 9* −1.0 1.1 0.7
FK8b 9 −2.8 3.2 4.7

SK1a 1 0.1 0.3 2.9
SK1b 1 2.7 4.2 25.5
SK4a 4 0.1 0.2 1.5
SK4b 4 1.3 2.6 14.6
SK8a 4 0.5 0.7 8.2
SK8b 9 2.1 2.4 3.6

SKM1a 1* −2.7 3.3 6.8
SKM4a 4* −2.9 3.0 3.0
SKM8a 4* −12.2 12.7 13.1
SKM16a 9* −9.4 9.9 7.5

SKM1ad 1 −4.0 7.2 19.6
SKM4ad 4 −3.4 4.1 9.8
SKM8ad 8 −5.7 6.1 6.8
SKM16ad 15 −4.7 4.9 5.1

Note. Runs marked with * are not dynamo-active, hence the wavenumber of the
growing dynamo mode is extracted from other runs of similar aspect ratio.

Figure 5. Dependence of ηyx on the aspect ratio  for SMHD cases with
standard magnetokinetic forcing.

9 Note that in the case of the MRI there is no background turbulence, not even
a kinetic one, because the whole turbulence is “created” by the MRI due to the
presence of a large-scale field (see, e.g., Brandenburg et al. 1995). Thus, a
magnetic SC effect as defined by Squire & Bhattacharjee (2015a) that has its
sole cause in a magnetic background turbulence b0 cannot exist.
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by having “cut out” some modes in the smaller boxes.
However, determining the vertical wavenumber of the fastest
growing mode in the kinematic stage for the decimated forcing
runs, we find no evidence for this. As the turbulence in the
cases with standard and decimated forcing is different though,
we cannot regard this as completely conclusive evidence that
rules out this scenario.

3.3. Interpretation of the Dynamo Instability

For SC-effect-driven dynamos, the dispersion relation from
linear stability analysis for solutions, exponential in time, reads
(see, e.g., Brandenburg et al. 2008)
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with ηT=η+ηt, ( )h h h= + 2xx yyt , ( )h h= - 2xx yy . A
necessary and sufficient condition for growing solutions is that
the radicand is positive, and larger than hT

2 . In other words (for
ò≈0),
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which is often further simplified by ignoring the contribution
from ηxy, because it is considered negligible in comparison to
S kz

2. This also holds for the systems studied here, but we note
that in all our cases, ηxy is much larger than ηyx, and in the
kinetically forced cases it is even comparable to the diagonal
components. Hence, setting it to zero, as has been done in some
fitting experiments to determine the turbulent transport
coefficients (see, e.g., Shi et al. 2016), is not justified.
Especially in the magneto-kinetically forced cases with strong
shear, the assumption ò≈0, made in those fitting experiments,
breaks down, too.

For incoherent α-shear-driven dynamos, the relevant
dynamo number reads (see, e.g., Brandenburg et al. 2008)

∣ ∣ ( )a
h

=aD
S

k
, 25S

z

rms

T
2 3

where usually only the fluctuations of αyy are considered for
αrms. Brandenburg et al. (2008) determined the critical DαS to
be ≈2.3 for white-noise α fluctuations. They also reported that
the diagonal and off-diagonal components of the α tensor were
nearly equal. In the SMHD cases studied here, this is no longer
the case, as is shown in Figure 3, where αxx dominates.

Brandenburg et al. (2008) also discussed the possibility of a
contribution from an incoherent SC effect by fluctuations of ηyx
with vanishing mean. They studied a model where both
incoherent effects were acting together, the incoherent α effect
mainly through αyy while the incoherent SC effect through ηyx
is described by the dynamo number

∣ ∣
( )

h

h
=hD

S

k
. 26S

yx

z

,rms

T
2 2rms

They found that for small hD Srms
the critical dynamo number,

detected for the incoherent α effect alone, was not much
altered, while for higher values that critical number could be
clearly reduced. Hence, to decide which dynamo effect is at

play in systems with large fluctuations, one should always
consider the dynamo numbers for both incoherent effects
simultaneously.
Moreover, the presence of an additional coherent SC effect can

alter the dynamo excitation condition, which we now account for
by adding a term from a coherent ηyx to the simplified zero-
dimensional (0D) dynamo model of Brandenburg et al. (2008);
see their AppendixC. The equation solved is the linear mean-field
induction equation

( )h¶ = - + -A x JSA , 27t y^

where the mean EMF now reads

( ) ( ( ) ) ( )a h h d= - + t B t J . 28i ij j yx yx i x,inc ,inc 2

The incoherent effects are modeled with δ-correlated noise in
time having zero means, and standard deviations equal to the
respective rms values, while the coherent contribution from ηyx
is constant. By the ansatz ( )~A ik zexp z , Equation (27) turns
into the 0D model, with governing parameters DαS, DηS, and
hD Srms

, defined above.
We have verified that dynamo action in this model without

any incoherent effects takes place when DηS is exceeding unity,
as expected from the stability criterion (24). We compute new
stability maps in the hD Srms

–DαS plane for a series of dynamo
numbers DηS in the range [–1.5,2]. These values are similar in
magnitude to those realized in our simulations, although not
covering the extremal values obtained in the magnetokinetic
forcing cases. These are shown in Figure 6, where panels (d)
and (e) closely match the stability map of the incoherent effects
alone (compare with Figure 12 of Brandenburg et al. 2008). As
expected, adding a coherent SC effect with a positive DηS

enhances the dynamo instability, especially by lowering the
critical dynamo number for the incoherent α-shear dynamo.
This is seen through the shift of the stability line (white
contours in Figure 6) to the left (toward smaller values of DαS)
from (f) to (i). The incoherent SC dynamo threshold is also
lowered, but the effect is more subtle, as seen through the much
less dramatic shift of the stability boundary downward (toward
smaller values of hD Srms

) in Figures 6(f)–(i). For DηS>1, the
coherent SC effect alone would result in the excitation of a
dynamo, but the presence of the incoherent effects causes small
islands in which dynamo action is suppressed; see the dark red
areas surrounded by the white contour in Figures 6(g) and (h).
In the dynamo numbers (24)–(26) we also need the vertical

wavenumber kz of the dynamo mode, which we determined
from Fourier analysis of the mean fields during the kinematic
phase of the dynamo. For those runs that are not dynamo-
active, we used kz from a corresponding dynamo-active run
with higher ReM (for kinetically forced runs) or a different
forcing function (for magneto-kinetically forced runs), but the
same aspect ratio (see Table 1), and we denote those runs for
which we obtained kz from elsewhere with an asterisk in
Table 3. We also note that, if the dynamo enters saturation, the
kinematically preferred mode is not necessarily any longer
present. Independent of the aspect ratio of the box, all the
saturated models exhibit a magnetic field at the scale of the box
or, in other words, at the smallest permissible wavenumber.
In the FMHD cases, we obtain negative DηS and incoherent

SC dynamo numbers of similar magnitude, with DαS tending to
be larger than hD Srms

, especially in RunFK1b. In the case of
RunFK8a, no dynamo action is seen, and none of the dynamo
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numbers predicts a dynamo either. In the other case without
dynamo, RunFK1a, the η-related dynamo numbers predict
no dynamo action, while DαS alone would do so (DαS=
2.8>DαS,crit=2.3). Its critical value, however, can be
increased in this case, mainly by the presence of the rather
strong coherent SC effect with a negative dynamo number. The
two dynamo-active cases have DαS clearly above the critical
value. Hence, the presence of moderate suppressing factors
cannot prevent the dynamo instability. It clearly seems to be the
incoherent α-shear one in the FMHD cases, because hD Srms

is
far too small in this case.

In the kinetically forced SMHD cases, however, ηyx is
negative, allowing for the possibility of a coherent SC-effect
dynamo. All our runs of this type are dynamo-active, but only
the high-ReM cases exhibit supercritical DηS (>1). Except for
the case of RunSK4a, the DαS and hD Srms

values indicate

supercriticality for the incoherent dynamo instabilities, explain-
ing again most of our findings. RunSK4a has a low positive
DηS, but also the incoherent effects are well below their critical
dynamo numbers. The coherent SC effect could therefore assist
the dynamo, but this effect should be negligible according to
the 0D model. Hence, this dynamo remains unexplained with
any dynamo scenario. Dynamo excitation is easier in the
SMHD models than in the FMHD ones, which might indicate
that the coherent SC effect assists dynamo action, but the
SMHD simplifications could also be the cause.
In the magnetokinetically forced SMHD cases, the dynamo

numbers indicate stability against the MSC effect, but are all,
according to individual 0D model runs (not presented here),
supercritical for the incoherent dynamo effects, the incoherent
SC effect being even more pronounced now than in the
kinetically forced cases. Although the cases with standard

Figure 6. Stability diagrams for different values of DηS: from top left to bottom right, −1.5, −1.0, −0.5, −0.1, 0.1, 0.5, 1.0, 1.5, and 2.0. White: zero-growth-rate
contour. Color scales: λ/ηTk

2
z .
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forcing do not show exponential growth, their decimated
forcing counterparts do so. Hence our interpretation here is that
a dynamo is present in all the cases with magnetokinetic
forcing. Even though the coherent SC effect now exhibits
larger negative dynamo numbers we find, by running
individual 0D models, that in all cases it should not be able
to damp down the dynamo instability. Hence, again, the most
likely mechanism for exciting the dynamo is the incoherent α-
shear effect, with supercritical DαS in all cases. However, we
cannot rule out the coexistence of an incoherent SC effect, as
some runs also indicate supercriticality against it.

4. Conclusions

We have studied different types of sheared MHD systems
with the quasi-kinematic (QKTFM) and nonlinear (NLTFM)
test-field methods. In those cases studied with the NLTFM, we
simplified the MHD equations neglecting the pressure gradient
in the momentum equation, which allows us to ignore the
equation for the fluctuating density in the test-field formulation,
simplifying it somewhat. In the case of the full MHD equations
studied with the QKTFM, we extend the previous results to
even stronger shear, but still find no evidence for negative
values of the ηyx component that could lead to LSD action
through the SC effect.

In kinetically forced magnetized burgulence (SMHD), we
measure negative values of ηyx. Indeed, dynamo action with
both radial and azimuthal magnetic field components growing
exponentially at the same rate is found. The dynamo numbers
for the coherent and the incoherent effects, based on the
measured turbulent transport coefficients, however, when
employed in a simplified 0D dynamo model, indicate that
even in this case the dynamo is mainly driven by the incoherent
α effect and shear, possibly assisted by the coherent SC effect.

In the case of systems with standard magnetokinetic forcing,
we do not find exponential growth of the mean magnetic field.
When we repeat this experiment with a decimated forcing
function, removing the smallest wavenumber components,
exponential growth is recovered. Hence, in our interpretation,
there is still a dynamo instability in the magneto-kinetically
forced cases, but it becomes engulfed by the rapid growth of
the mean field due the presence of these low wavenumbers in
the forcing, preventing us from seeing the exponential growth
of the mean field. The measured ηyx are again positive and
increasing as a function of the magnitude of shear and the
aspect ratio of the box, and are therefore incapable of driving a
dynamo through the MSC effect. This finding is compatible
with our analytical derivation predicting a positive contribution
to ηyx in the case when the pressure term is neglected, albeit
restricted to ideal MHD; see Appendix C. The computed
dynamo numbers, compared against the 0D model, again
indicate the most likely driver of the dynamo to be the
incoherent α effect with shear.

We note that we have not investigated the magnetic Prandtl
number (PrM) dependence of the magnetokinetically forced cases
although, according to the study of Squire & Bhattacharjee
(2015a), PrM has an influence on the magnitude of ηyx (in their
case always negative) such that its modulus decreases when PrM is
increasing. Their model includes both rotation and shear, and in
addition they do not specify how ReM and Re changed when PrM
was changed. Hence, the applicability of these results to our case
is uncertain, but studying the PrM dependence is an important
future direction. We also acknowledge that the simplified MHD

equations used here prevent our conclusions from being generally
applicable. Hence we cannot fully reject the postulated possibility
of a dynamo driven by the MSC effect. The measurements should
be repeated with the full MHD equations, analyzed with a fully
compressible TFM, also solving for the density fluctuations.

We acknowledge fruitful and inspiring discussions with Dr.
Jonathan Squire and Prof.Amitava Bhattacharjee in the Max
Planck Princeton Center for Plasma Physics framework. M.J.K.
and M.R. acknowledge the support of the Academy of Finland
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project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (Project UniSDyn, grant
agreement No. 818665). A.B. acknowledges supported through
the Swedish Research Council, grant 2019-04234, and the
National Science Foundation under the grant AAG-1615100.

Appendix A
Comparison of Standard and Decimated Forcing

To investigate the possible anisotropy due to the removal of
all ∣ ∣ k k k kx y z, , 1 min 1 from the forcing (decimation), we
perform two hydrodynamic simulations without shear. Both
runs were performed with 643 grid points and kf/k1=5, one
without decimation and one with, using =k k 2min 1 . All other
parameters were the same and urms was similar in the two cases,
with Mach number Ma=urms/cs=0.002 and =Re 0.04. In
Figure 7 we show probability density functions (PDFs) of
the three components of u from a snapshot of each run. These
PDFs are normalized such that ∫P(ui)dui=1. We find that the
PDFs of ux, uy, and uz are in both cases on top of each other,
suggesting that the stochastic flows are nearly isotropic, at least
in a statistical sense. Let us define the kurtosis, kurt x, of the
distribution P(x) as

( ) ( ) ( )òs
= - -

-¥

¥
x x x P x dxkurt

1
3, A1

4
4

where x and σ are its mean and variance, respectively. We find
that the kurtoses for all three velocity components are nearly
zero, suggesting Gaussian distributions.
Furthermore, we define a dimensionless quantity ( )z q f =,
( · ˆ)á ñu n u2

rms, useful to assess the degree of anisotropy,
with ˆ ( )q f q f q=n sin cos , sin sin , cos , and the polar and
azimuthal angles θ and f, respectively, as in a spherical
coordinate system. For the two runs discussed just above, we
show in Figure 8 distributions of ζ(θ,f) that reveal anisotropic
features, both in the standard (undecimated) and the decimated
cases, at two different times. However, at least in the
undecimated case the flows are expected to be statistically
isotropic when data from a large number of snapshots are
combined, as there is no preferred direction in the system. We
show the variation of ζ as a function of f at two fixed values of
θ (45° and 90°) in Figure 9, after performing an average over
eight snapshots. As expected, the degree of anisotropy
decreased compared to a single snapshot; it is below 7% as
inferred from the values of ζ in Figure 9. We also notice an
azimuthal m=2 modulation, which is more pronounced in the
decimated case, likely due to gaps in the thin k shell around kf.
The statistical isotropy of the flow is expected to be improved
further at higher resolution and when data from a longer time
series are combined.
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Appendix B
Validation of the NLTFM

B.1. Comparison of the Different Variants of the NLTFM

As is described in RB10, with respect to the terms u×b and
j×b there are four possibilities to define the NLTFM,

depending on how one combines the fluctuating fields from
the main run, u, b, j, with the test solutions uB , bB , jB . These
variants were denoted as ju (using j and u in the pondero- and
electromotive forces, respectively), jb (using j and b), bu (using
b and u), and bb (using b in both). Further variants due to the
term u·∇u are not considered here. Previously it was

Figure 7. PDFs of all three velocity components from 643 shearless hydrodynamic runs with kf/k1=5, discussed in Appendix A. (a) Standard, (b) decimated forcing
with =k k 2min 1 . All pdfs are nearly Gaussians with kurtosis ∼0.

Figure 8. Distribution of ( · ˆ)z = á ñu n u2
rms in the θf plane at times n =k t 25f

2 (top) and 27.5 (bottom); from the two hydrodynamic runs discussed in
Appendix A. Left: standard; right: decimated with =k k 2min 1 .

Figure 9. Variation of ζ with the azimuthal angle f at polar angles θ=45° (left) and 90° (right), after averaging over eight snapshots from the runs discussed in
Appendix A. Solid/black: standard; dashed/red: decimated with =k k 2min 1 .
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concluded that the ju method would be the most stable one
(RB10). Here we examine how the different variants behave in
SMHD with standard (random) forcing. The results for
RunSKM1a007 are listed in Table 4 and depicted in
Figure 10, showing the ηxx component obtained with all four
variants. We can see that jb and bb produce measurements that
are nearly identical at any phase of the simulation. The
measurements with bu deviate from these occasionally, but the
largest deviations occur for ju. While the three former variants
tend to produce turbulent transport coefficients that clearly
grow within the resetting intervals, ju produces plateaus, this
difference being especially pronounced in Figure 10, top panel.
This is indicative of the test problems becoming unstable
during the resetting interval, which can lead to overestimation
of and increased uncertainties in the measured transport
coefficients. With the resetting time of 0.5 Tν in most of our
simulations, however, the measured differences between the
variants were very small, but nevertheless we observed a

tendency of the tensor components to be larger in magnitude
when jb and bb were used; see also Table 4. Hence, throughout
the paper we use the ju variant, which produces measurements
with clearer plateaus in the turbulent transport coefficients.

B.2. Kinetically Forced SMHD Analyzed with QKTFM and
NLTFM

To further validate the NLTFM, we perform runs of
kinetically forced SMHD, and measure the turbulent transport
coefficients with both QKTFM and NLTFM. We compare
them in two regimes: one where the magnetic field is very weak
and another where the magnetic field is already dynamically
significant. We choose the setup SK4b, and show our results in
Figure 11 in terms of ηyx as function of time. Although some
differences due to the randomness of the forcing have to be
expected, we observe a very good agreement between the two
methods.

Table 4
η Tensor Components Measured with the Different Variants of NLTFM from RunSKM1a007

Method ηxx/η0 ηyy/η0 ηyx/η0 ηxy/η0

ju 2.110±0.023 2.089±0.007 0.112±0.026 −0.208±0.028
jb 2.276±0.152 2.106±0.020 0.124±0.009 −0.212±0.018
bb 2.297±0.144 2.116±0.018 0.129±0.018 −0.188±0.017
bu 2.155±0.047 2.127±0.017 0.113±0.014 −0.212±0.022

Figure 10. Time evolution of ηxx from RunSKM1a007 with the four variants of the NLTFM. Black: ju, blue: bb, orange: bu, red: jb. Upper panel: early stages, lower
panel: late stages of the simulation. Note that the jb results are almost completely on top of the bu ones.
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Appendix C
An Analytical Estimate for ηyx

To obtain an analytical estimate for ηyx in the absence of the
pressure term, we assume ideal MHD (η=ν=0) and
constant density, neglect terms quadratic in the fluctuations
(SOCA), assume vanishing mean flow, except for U(S), and
vanishing initial conditions of those parts of the fluctuations
that are due to the influence of shear and B . Then we have,
restricting the mean EMF to be of first order in B ,
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where ξ=y+Sx(τ−t), ( )x t¢ = + ¢ -y Sx t etc., and the
arguments x and z were dropped. The magnetic field is in units
of /r1 2, and ( )( ) ( )u b,00 00 is the background turbulence (i.e., for

=B 0) without influence of shear (S= 0), hence
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Remarkably, there is no contribution from u(00) to ηyx and only
( ) ¹b 0x
00 is necessary for ηyx≠0. To zeroth and first order in S

we obtain
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where (C6) vanishes in isotropic background turbulence
because of ( ) ( )( ) ( ) t dá ñ µb y t b y, ,i j xy ij

00 00 . Integration by parts
in (C7) yields
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in which the first term on the right vanishes under averaging
over y. Hence, for the terms (C7)–(C9) we obtain
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Because of isotropy and mirror symmetry of the background
turbulence, the correlator ( ) ( )( ) ( ) tá ¶ ñb y t b y, ,i k j xy

00 00 vanishes
∀i,j,k. Hence, it is only the factor x in (C12) that possibly
prevents this term from vanishing, in contrast to (C5), which is
based on a correlator, usually assumed positive definite.
On the other hand, truly Galilean-invariant turbulence should

not exhibit an explicit x dependence. Given that the forcing in
our simulations indeed obeys Galilean invariance, deviations
from it in u and b can only emerge due to the “memory” of the
turbulence, which is made “everlasting” by the absence of
dissipative damping. Thus, for the purpose of interpreting our
numerical results, we may disregard (C12) and assume that
only (C5) determines the sign of ηyx.

Figure 11. Time evolution of ηyx from RunSK4b with QKTFM (orange) and NLTFM (black). Measurements are from a stage when the dynamo field is still weak
(left) and dynamically significant (right).
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Comparing with Squire & Bhattacharjee (2015a) by setting
ν=η=0 in their Equations (32)–(35),10 we find the
following agreements:

1. no contribution from u(00) (or Wu in their terms) to ηyx,
only from b(00) (or Wb),

2. ηyx has the opposite sign to S and is thus unfavorable for
the MSC effect dynamo (for this we have to assume a
positive correlation ( ) ( )( ) ( ) tá ¢ ñb y t x z b y x z, ; , , ; ,x x xy

00 00 ).

In summary, our analytical result is in qualitative accordance
with the numerical ones for the magnetokinetic forcing cases.
For the purely kinetic ones, however, the analytics predicts
vanishing ηyx, while the numerical experiments do produce it,
even with a favorable sign for dynamo action, albeit too weak
to be its main driver, and also weaker than in comparable
magneto-kinetic forcing setups. As vanishing ηyx is in
agreement with the ideal limit of Squire & Bhattacharjee
(2015a), we conclude that a nonzero contribution to ηyx from
kinetic fluctuations and shear (their ( )hyx u

S) requires the
presence of dissipative terms, most likely η≠0, as their result
(32) suggests. It also reveals that there must be an “optimal”
magnitude of η that maximizes ∣( ) ∣hyx u

S because it vanishes
again in the limit η→∞. To be too far from the optimal η in
numerical setups might explain the absence of a dynamo,
enabled by ( )hyx u

S.
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