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Motivated by a scenario of magnetogenesis in which a homogeneous magnetic field is generated during
inflation, we study the magnetohydrodynamic evolution of the primordial plasma motions for two kinds of
initial conditions—(i) a spatially homogeneous field with an unlimited correlation length, and (ii) a zero
flux scale-invariant statistically homogeneous magnetic field. In both cases, we apply, for a short initial
time interval, monochromatic forcing at a certain wave number so that the correlation length is finite, but
much smaller than the typical length scale of turbulence. In particular, we investigate the decay of
nonhelical and helical hydromagnetic turbulence. We show that, in the presence of a homogeneous
magnetic field, the decay of helical and nonhelical small-scale fields can occur rapidly. This is a special
property of a system with a perfectly homogeneous magnetic field, which is sometimes considered as a
local approximation to a slowly varying background field. It can never change and acts as an imposed
magnetic field. This is in sharp contrast to the case of a statistically homogeneous magnetic field, where
we recover familiar decay properties: a much slower decay of magnetic energy and a faster growth of the
correlation length, especially in the case with magnetic helicity. The result suggests that a homogeneous
magnetic field, if generated during inflation, should persist under the influence of small-scale fields and
could be the origin of the large-scale magnetic field in the Universe.

DOI: 10.1103/PhysRevD.102.023536

I. INTRODUCTION

One of several open problems in cosmology and astro-
physics is the understanding of the origin of large-scale
magnetic fields in the Universe [1,2]. There are two
widely considered approaches to understand the origin

of intercluster, large-scale correlated magnetic fields—
(i) an astrophysical scenario [3], where weak seed fields
generated by local sources are amplified and transferred to
large scales by various astrophysical processes, and (ii) a
cosmological (or primordial) scenario [4], where a strong
seed magnetic field generated in the early Universe evolves
through magnetohydrodynamic (MHD) coupling with
the primordial plasma. Neronov and Vovk [5] used the
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nonobservation of GeV photons from TeV blazars to put a
lower limit on the strength of magnetic fields on extra-
galactic scales, obtaining a lower bound of ∼10−15 G at
1 Mpc. The limits were later revised to ∼10−18 G after
considering that the observation period of the sources was
limited to only a few years [6,7]. The Fermi-LAT and the
VERITAS collaborations have improved this limit again to
∼10−15 G at 1 Mpc [8,9], based on ten years of observa-
tions of the TeV blazar emission spectra. These observa-
tional limits favor the cosmological (primordial) scenario
of magnetogenesis [10]; see Ref. [11] for discussions on
possible uncertainties in these lower limits based on blazar
spectra and Refs. [12,13] on possible impacts of plasma
instabilities.
There are several scenarios for generating primordial

magnetic fields in the early Universe; see Ref. [14] for a
review. Here we consider two main ideas. First, magnetic
fields can be generated during inflation or through proc-
esses related to it, like reheating or preheating. Reheating
is the epoch at the end of inflation when the energy in the
hypothesized inflaton field decays into the fields of the
standard model and the temperature of the Universe rises
sufficiently. The decay of the inflaton into bosons can be
very rapid owing to processes such as a parametric
resonance or a tachyonic instability. Such a rapid decay
is called preheating. Primordial magnetic fields can also
be generated during cosmological phase transitions. The
evolution of these primordial fields in the expanding
Universe has been studied by several authors by solving
the MHD equations for the magnetic field, the density,
and the velocity of the plasma; see Ref. [15] for a brief
review and references within. The fields used are generally
modeled either as homogeneous, or as statistically homo-
geneous and isotropic random Gaussian stochastic fields.
Statistical homogeneity implies that the two-point corre-
lation function of the magnetic field is independent of the
position in space. In this paper, we show that these two
approaches can result in very different dynamics of the
induced turbulent motions in the early Universe. In par-
ticular for the former case, small-scale helical and non-
helical fields decay in a way very different from the case of
statistically homogeneous fields, as discussed below.
While therewere earlier ideas suggesting the presence of a

homogeneous magnetic field [16–18], those papers study
just cosmological consequences without specifying or dis-
cussing a generation mechanism. While Ref. [19] discusses
the generation of a homogeneous magnetic field, it assumes
the existence of “protogalaxies” with angular momentum in
the radiation dominated epoch, which contradicts with the
current understanding of our Universe. Reference [20] also
discusses a generation mechanism but it assumes a tachyonic
mass for a gauge field, which means that the corresponding
Higgs field is a ghost and thus the model is unstable. While
the model in Ref. [21] is similar to gauge-flation or chromo-
natural inflation, what is called a magnetic field there is

simply due to the nonlinear part of the field strength and is
thus actually an electric field, if a part of the non-Abelian
gauge field is projected onto an Abelian gauge field via a
spontaneous symmetry breaking [e.g., SUð2Þ × Uð1Þ →
Uð1Þ] or if their ansatz of the gauge potential is applied
to an Abelian gauge field. As far as the authors know, no
stable generation mechanism of homogeneous magnetic
fields has been proposed until recently. (In open
Universes, while one might hope to find such a mechanism
through supercurvature modes, but it is known that there is
actually no supercurvature mode for vector fields [14].)
However, the lack of a generation mechanism does not
necessarily mean a lack of interest in homogeneous magnetic
fields. Indeed, as already mentioned above, the studies of
cosmological consequences of a homogeneous magnetic
field date back to the seminal works by Zel’dovich,
Doroshkevich, and Thorne in the 1960s.
Recently, one of the authors [22] proposed a stable

generationmechanismof homogeneousmagnetic field, based
on aUð1Þ gauge theory of electromagnetism with a coupling
to Horndeski type scalar-tensor gravity, where gravity is
described by the metric tensor field and an additional scalar
field.1 During inflation, the model admits a stable (quasi)de
Sitter solution with a homogeneous magnetic field as an
attractor of the system. Therefore the model provides a
classical generation mechanism of homogeneous magnetic
fields during inflation. After inflation and the stabilization of
the scalar field at the minimum of its potential, on the other
hand, gravity is effectively described by general relativity.
Later in the present paper, we show that the action after
inflation is the Einstein-Maxwell action, supplementedwith a
nonminimal coupling between curvature and electromagnet-
ism. We also show that, upon imposing observational con-
straints, the nonminimal coupling can be ignored for the
analysis of the magnetic field evolution. This in particular
means that the nonminimal coupling does not introduce new
instabilities in the homogeneous magnetic field background
in the late-time cosmology.
It was already known that in the additional presence of

primordial small-scale turbulence, the magnetic energy
spectrum changes only very little at large length scales
[24]. This led one of the authors [22] to expect that this also
applies to the case of a homogeneousmagnetic field, but this
remained to be verified by numericalMHD simulations. It is
therefore important to study the MHD evolution of primor-
dial plasma motions in the presence of these homogeneous
magnetic fields, which is what we focus on in this work.
We are particularly interested in the evolution of mag-

netic helicity, which is known not to be conserved in a
periodic domain in the presence of a homogeneous mag-
netic field [25]. However, if we were to consider a perfectly
homogeneous magnetic field as a local approximation
to a slowly varying background magnetic field, magnetic

1See, e.g., [23] for more details about scalar-tensor gravity.
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helicity conservation would be restored. To illuminate the
remarkable properties of a perfectly homogeneous mag-
netic field, we also discuss the alternative approach of
working instead with a statistically homogeneous magnetic
field, which does not impose any constraints on the
magnetic helicity evolution. The presence of magnetic
helicity substantially changes the decay rate for MHD
turbulence [26]. In this paper we compare the decay
dynamics for homogeneous and statistically homogeneous
magnetic fields with a scale-invariant spectrum. In previous
works, we have studied only statistically homogeneous
magnetic fields induced by the turbulence dynamics [27]
but did not include the turbulence in the presence of a
homogeneous magnetic field.
This paper is arranged as follows. The model is

described in Sec. II, where we discuss the formalism
for how a spatially homogeneous magnetic field is
realized during inflation, and after that until recombina-
tion. In Sec. III, we describe in detail the setup of our
simulations, discussing, in particular, various initial con-
ditions to examine peculiar features associated with the
use of an imposed magnetic field. We present numerical
solutions in Sec. IV and in Sec. V we present our
conclusions. Throughout this paper we work in natural
units where ℏ ¼ c ¼ 1, and our metric signature is
ð−;þ;þ;þÞ. For the electromagnetic quantities we use
Lorentz-Heaviside units.

II. HOMOGENEOUS MAGNETIC FIELDS

In this section we briefly describe a theoretical frame-
work in which a spatially homogeneous magnetic field
background can be realized during and after inflation in
the early Universe. In the inflationary stage, the back-
ground spacetime is not only homogeneous but also
isotropic despite the existence of the preferred spatial
direction defined by the homogeneous magnetic field.
This is made possible by a nonlinear kinetic action for the
Uð1Þ gauge field nonminimally coupled to a scalar-tensor
theory of gravity. In the postinflationary stage, on the
other hand, the scalar field is stabilized around a mini-
mum of a potential and thus the theory is reduced to
the Einstein-Maxwell theory supplemented with the
Horndeski’s nonminimal coupling. Therefore, after infla-
tion the spacetime becomes anisotropic and the homo-
geneous magnetic field adiabatically decays. If we are
interested in the postinflationary evolution of the Uð1Þ
gauge field at subhorizon scales for timescales sufficiently
shorter than the cosmological time then the gravitational
effects of and on the gauge field can be neglected and
the system is described by the standard Maxwell theory
expanded around the homogeneous magnetic field back-
ground in Minkowski spacetime. As we shall see in the
next sections, the existence of the homogeneous magnetic
field significantly affects the evolution of the gauge field
at subhorizon scales.

A. General action

We consider a metric gμν, a Uð1Þ gauge field Aμ and a
scalar field ϕ in four-dimensional spacetime described by
the action

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Lþ L3 þ L4 þ L5 þ LH�; ð1Þ

where L ¼ Lðϕ; X;W; Y; ZÞ is an arbitrary function of ϕ,

X ≡ −
1

2
gμν∂μϕ∂νϕ; W ≡ −

1

4
F μνF μν;

Y ≡ F μνF̃
μν; Z≡ F ρμF ρ

ν∂μϕ∂νϕ; ð2Þ

F μν and F̃ μν are defined by

F μν ≡ eϕFμν; F̃ μν ≡ eϕF̃μν;

Fμν ≡ ∂μAν − ∂νAμ; F̃μν ≡ 1

2
ϵμνρσFρσ; ð3Þ

and ϵ0123 ¼ −1= ffiffiffiffiffiffi−gp
;

L3 ¼−G3ðϕ;XÞ□ϕ;

L4 ¼G4ðϕ;XÞRþG4Xðϕ;XÞ½ð□ϕÞ2− ð∇μ∇νϕÞð∇ν∇μϕÞ�;

L5 ¼G5ðϕ;XÞGμν∇μ∇νϕ−
1

6
G5Xðϕ;XÞ½ð□ϕÞ3

− 3ð□ϕÞð∇μ∇νϕÞð∇ν∇μϕÞ
þ 2ð∇μ∇νϕÞð∇ν∇ρϕÞð∇ρ∇μϕÞ� ð4Þ

are Horndeski scalar terms [28,29]; and

LH ¼ ξðϕÞF̃ μνF̃ ρσRμνρσ ð5Þ

is a simple modification of Horndeski’s nonminimal
coupling of the Uð1Þ gauge field to the Riemann tensor
Rμ
νρσ of the metric gμν [30]. Here, the scalar field ϕ and the

gauge field Aμ are normalized so that their mass dimensions
are zero,G3;4;5ðϕ; XÞ are arbitrary functions of ϕ and X, the
subscript X denotes derivativewith respect to X, and ξðϕÞ is
an arbitrary function of ϕ. The action is invariant under the
Uð1Þ gauge transformation,

Aμ → Aμ þ ∂μλ; ð6Þ

where λ is an arbitrary function, and the equations of
motion are second-order differential equations. In principle
it is possible to consider a more general form of L that
depends on the second covariant derivatives of ϕ and Aμ

without introducing higher derivatives in the equations of

PRIMORDIAL MAGNETIC HELICITY EVOLUTION WITH A … PHYS. REV. D 102, 023536 (2020)

023536-3



motion. For simplicity, however, we restrict our consid-
eration to the above form of L that depends on only up to
first derivatives of ϕ and Aμ. Also, the inclusion of the
factor eϕ in the definitions of F μν and F̃ μν is redundant
since we allow for the explicit ϕ-dependence of
Lðϕ; X;W; Y; ZÞ and ξðϕÞ. We nonetheless adopt the above
definitions of F μν and F̃ μν including the factor eϕ in order
to make it easy to implement a scaling-type symmetry for
the description of the system during the inflationary stage
[see Eqs. (7) and (8) in the next subsection].

B. Stealth magnetic field during inflation

Following the discussion in Sec. Vof [22], we suppose
that the main source of curvature perturbations is not ϕ
but something else. For example, one can introduce
another scalar field as an inflaton or a curvaton. For
simplicity we approximate the geometry during in-
flation by a de Sitter spacetime. Then the effective
cosmological constant induced by the field responsible
for curvature perturbations simply amounts to a constant
shift of Lðϕ; X;W; Y; ZÞ.
In order to simplify the analysis and also to allow for

an exact solution that represents a de Sitter spacetime
with a homogeneous magnetic field, we require that the
action is invariant under not only the Uð1Þ gauge trans-
formation (6) but also the following scaling-type global
transformation for the range of ϕ that is relevant for the
inflationary epoch:

ϕ → ϕþ ϕ0; Aμ → e−ϕ0Aμ; ð7Þ

where ϕ0 is an arbitrary constant that is not too large to
eject ϕ from the inflationary range. Then for the range
of ϕ, the explicit ϕ-dependence of the functions
Lðϕ; X;W; Y; ZÞ, G3;4;5ðϕ; XÞ and ξðϕÞ is forbidden
so that

Lðϕ; X;W; Y; ZÞ ¼ L̄ðX;W; Y; ZÞ;
G3;4;5ðϕ; XÞ ¼ Ḡ3;4;5ðXÞ;

ξðϕÞ ¼ ξ̄; ð8Þ

where L̄ðX;W; Y; ZÞ is an arbitrary function of (X, W,
Y, Z), Ḡ3;4;5ðXÞ are arbitrary functions of X and ξ̄ here
is a constant. We also impose the parity invariance
so that the function L̄ðX;W; Y; ZÞ is even with respect
to Y:

L̄ðX;W; Y; ZÞ ¼ L̄ðX;W;−Y; ZÞ: ð9Þ

This is the system studied in [22,31].

For this system, we adopt the ansatz of the form

gμνdxμdxν ¼ −NðtÞ2dt2
þ aðtÞ2½e4σðtÞdx2 þ e−2σðtÞðdy2 þ dz2Þ�;

ϕ ¼ ϕðtÞ;

At ¼ 0; Ax ¼
Z

t Nðt0Þe4σðt0Þ
aðt0Þ Eðt0Þdt0;

Ay ¼
1

2
Bz; Az ¼ −

1

2
By; ð10Þ

where B is a constant. It was found in [22] that the
equations of motion admit solutions of the form

H ¼ const > 0; Σ ¼ const; χ ¼ const > 0;

E ¼ const; B ≠ 0; ð11Þ

where

H ≡ _a
Na

; Σ≡ _σ

N
; χ ≡ eϕe2σ

a2
: ð12Þ

By tuning one parameter in the action, the solution is
reduced to a de Sitter spacetime with magnetic field but
without electric field [22], i.e.,

H ¼ const > 0; Σ ¼ 0; χ ¼ const > 0;

E ¼ 0; B ≠ 0: ð13Þ

The reason why fine-tuning of just one parameter leads to
two equalities, Σ ¼ 0 and E ¼ 0, is that we have imposed
the discrete symmetry (9). Reference [22] also found the
condition under which the de Sitter solution with magnetic
field but without electric field is an attractor of the system
within the ansatz (10). Reference [31] then analyzed
general linear perturbations around the attractor solution
and found the condition under which the system of linear
perturbations is free from instabilities.
In the present paper we consider the stable attractor de

Sitter solution with magnetic field but without electric field
as the origin of magnetic fields that are observed in the late-
time Universe. We denote the (approximately) constant
value of H during inflation as Hinf .

2

C. Postinflationary system

Following again the discussion in Sec. V of [22], we
suppose that the scaling-type global symmetry (7) is not
respected for the range of ϕ that is relevant for the
postinflationary epoch so that the scalar field ϕ is stabilized
at a local minimum of a potential, which we denote as ϕf.
The action of the system is still supposed to be of the

2In Refs. [22,31] it was denoted as H0.
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general form considered in Sec. II A. Assuming that the
mass of ϕ around the local minimum of the potential is
large enough, we integrate out ϕ by setting ϕ ¼ ϕf (and
thus X ¼ 0 and ∇μ∇νϕ ¼ 0) in the general action. We then
end up with the following action for the system after
inflation:

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½G4ðϕf; 0ÞRþ Lðϕf; 0;Wf; Yf; 0Þ

þ ξðϕfÞe2ϕfFμνFρσRμνρσ�; ð14Þ

where

Wf ≡ −
1

4
e2ϕfFμνFμν; Yf ≡ e2ϕfFμνF̃μν: ð15Þ

By Taylor expanding Lð0;Wf; Yf; 0Þ with respect to Wf

and Yf up to first order and using the discrete symmetry (9),
we obtain the low-energy effective action,

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
ðR − 2ΛÞ − 1

4
FðpostÞ
μν FðpostÞμν

þ λ

4M2
Pl

F̃ðpostÞ
μν F̃ðpostÞ

ρσ Rμνρσ

�
; ð16Þ

where we have assumed that

G4ðϕf; 0Þ > 0; LWðϕf; 0; 0; 0; 0Þ > 0; ð17Þ

and introduced

MPl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G4ðϕf; 0Þ

q
; Λ≡ −

Lðϕf; 0; 0; 0; 0Þ
M2

Pl

;

λ≡ 4M2
PlξðϕfÞ

LWðϕf; 0; 0; 0; 0Þ
;

FðpostÞ
μν ¼ eϕf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LWðϕf; 0; 0; 0; 0Þ

q
Fμν; ð18Þ

and

F̃ðpostÞ
μν ≡ 1

2
ϵμν

ρσFðpostÞ
ρσ : ð19Þ

Here, the subscript W denotes partial derivative with
respect to W. So far, we have not yet fixed the overall
normalization of Fμν except that the mass dimension of Aμ

is zero. We now fix the normalization as

e2ϕfLWðϕf; 0; 0; 0; 0Þ ¼ M2
Pl; ð20Þ

so that

λ≡ 4e2ϕfξðϕfÞ; FðpostÞ
μν ¼ MPlFμν: ð21Þ

The postinflationary system described by the action (16) is
nothing but the Einstein-Maxwell system supplemented
with the Horndeski’s nonminimal coupling.
Hereafter, we omit the superscript “(post)” so that the

action for the postinflationary system is

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
ðR − 2ΛÞ − 1

4
FμνFμν

þ λ

4M2
Pl

F̃μνF̃ρσRμνρσ

�
: ð22Þ

D. Observational bounds on λ, Hinf, and σ

In Ref. [22], assuming that the stabilization of ϕ to the
constant value ϕf occurs immediately after inflation and that
the reheating process is instantaneous, the present amplitude
of the large-scale magnetic field was estimated as

Btoday ≃ e−ϕf jbj × 10−6 G; ð23Þ

where b≡ B=Hinf . Also, [31] found several examples of
parameters for which the system of linear perturbations is
free from instabilities. In those examples, both b and gh are
nonvanishing and of order unity, where

gh ≡ ξ
H2

inf

M2
Pl

; ð24Þ

and ξ is the constant value of ξðϕÞ for the range of ϕ relevant
for the inflationary epoch as already stated around (8).
Under the assumption of immediate stabilization of ϕ after
inflation, we have ξðϕfÞ ¼ ξ. Combining all these and the
definition of λ given in (21), one obtains

λ ≃ 4 ×

�
Btoday

jbj × 10−6 G

�
−2
�
Hinf

MPl

�
−2
gh: ð25Þ

The upper bound on the large scale magnetic field is
roughly 10−9 G [32] and the lower bound from the blazar
observations is roughly

10−15 G≲ Btoday ≲ 10−9 G: ð26Þ

On the other hand, constraints on λ can be obtained by
demanding that the nonminimal coupling term is less
important than the standard Maxwell term [33].
Reference [34] applied this idea to neutron stars and found
a conservative bound on λ as

jλj ≪ 1070: ð27Þ

Combining (27) with (25), one obtains a lower bound on
the inflation scale,
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Hinf ≫ jbjjghj1=2
�

Btoday

10−9 G

�
−1

× 10−15 GeV: ð28Þ

For the range (26) of Btoday and Oð1Þ values of b and gh,
this is not a strong constraint. Under the assumption of
instantaneous reheating (Treh ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPlHinf

p
), Eq. (28) can be

rewritten as a lower bound on the reheating temperature:

Treh ≫ jbj1=2jghj1=4
�

Btoday

10−9 G

�
−1=2

× 100 GeV: ð29Þ

One can also obtain limits on the parameter σ which
characterizes the degree of axisymmetry of the Bianchi-I
spacetime from its contribution to the quadrupole compo-
nent C2 of the power spectrum of temperature anisotropies
of the cosmic microwave background (CMB). This con-
tribution can be written as C2 ¼ 16πðσdec − σ0Þ2=25 (see
Ref. [35] for an outline of the calculation), where σdec and
σ0 are values of σ at the decoupling and at the present,
respectively. From the observed CMB quadrupole of
Cobs
2 ¼ 230 μK2=T2

0, where T0 is the CMB temperature
today. We can always normalize our coordinates such
that σ0 ¼ σðt0Þ ¼ 0 so that C2 provides an upper bound
on jσdecj,

jσdecj≲ 4 × 10−6: ð30Þ

E. Subhorizon description of postinflationary system

In general the effects of the nonminimal coupling can be
ignored if

ðcurvatureÞ
M2

Pl

≪
1

jλj : ð31Þ

For the Friedmann-Lemaître-Robertson-Walker (FLRW)
cosmology, we have ðcurvatureÞ ∼ T4=M2

Pl, where T is
the temperature of the Universe, and thus the nonminimal
coupling can be ignored if

T ≪
���� λ

1070

����
−1=4

× 10 GeV: ð32Þ

Therefore, imposing the conservative bound (27), we
conclude that the evolution of the FLRW background
cosmology during and after nucleosynthesis can be
described by the standard Einstein-Maxwell theory without
the nonminimal coupling. For a local magnetic field with
the amplitude Blocal, the induced curvature is of order
ðcurvatureÞ ∼ B2

local=ð8πM2
PlÞ and thus the nonminimal

coupling can be ignored if

Blocal ≪
���� λ

1070

����
−1=2

× 1021 G: ð33Þ

Assuming that the conservative bound (27) is satisfied, the
right-hand side is larger than 1021 G and thus the maximum
amplitude of the magnetic field in the simulations studied
in the next sections satisfies this condition. Therefore, we
can safely ignore the effects of the nonminimal coupling
and the theory is reduced to the standard Einstein-Maxwell
theory without the nonminimal coupling.
For the standard Einstein-Maxwell theory in a radiation

dominated Universe without the nonminimal coupling, the
propagation speed of all physical degrees of freedom is of
order unity and the Jeans scale is of order the Hubble
scale. If we are interested in phenomena whose length and
timescales are sufficiently shorter than the Jeans scales
and the cosmological scales then the evolution of the
system can be well described without taking into account
the metric perturbation and the background cosmological
expansion. On these scales, the system is well described
by the standard Maxwell theory expanded around the
homogeneous magnetic field background in Minkowski
spacetime.

III. MAGNETIC FIELD EVOLUTION

In the previous section, we have discussed how a
spatially homogeneous magnetic field can be realized
during inflation, and more importantly, after the end of
inflation. We now turn our attention to the study of the
MHD evolution of such fields.

A. Basic equations

We study the time evolution in the presence of a
homogeneous magnetic field right after inflation. In par-
ticular, we study the evolution of an additional field with
some typical wave number k�, which we induce by a
random forcing term present during a short initial time
interval. In the radiation dominated era, the primordial
plasma is a relativistic, isothermal gas with energy density ρ
and equation of state w ¼ 1=3. In Lorentz-Heaviside units,
the MHD equations for such a gas are [36–38]

∂ ln ρ
∂t ¼ −

4

3
ð∇ · uþ u · ∇ ln ρÞ

þ 1

ρ
½u · ðJ × BÞ þ ηJ2�; ð34Þ

∂u
∂t ¼ −ðu ·∇Þuþ u

3
ð∇ · uþ u ·∇ ln ρÞ

−
1

4
∇ ln ρþ 3

4ρ
J ×Bþ 2

ρ
∇ · ðρνSÞ

−
u
ρ
½u · ðJ ×BÞ þ ηJ2� þF 0; ð35Þ

∂B
∂t ¼ ∇ × ðu ×B − ηJÞ þ E0; ð36Þ
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where Sij ¼ 1
2
ðui;j þ uj;iÞ − 1

3
δij∇ · u are the components

of the traceless rate-of-strain tensor, ν is the kinematic
viscosity, η is the magnetic diffusivity, F 0 ¼ F 0 f and
E0 ¼ E0 f are forcing terms, and

f ðx; tÞ ¼ RefN f̃ ðk; tÞ exp½ik · xþ iϕ�g ð37Þ

is a forcing function that consists of random, white-in-time,
plane waves with a certain average wave number k� [39].
Here, x is the position vector and N ¼

ffiffiffiffiffiffiffiffiffi
c3sk�

p
is a

normalization factor with cs ¼
ffiffiffiffi
w

p ¼ 1=
ffiffiffi
3

p
being the

speed of sound; see Ref. [39] for details. At each time
step, we select randomly the phase −π < ϕ ≤ π, the
direction of a unit vector ê, and the components of the
wave vector k from many possible discrete wave vectors in
a certain range around a given value of k�. The Fourier
amplitudes are

f̃ ðkÞ ¼ R · f̃ ðkÞðnohelÞ with Rij ¼
δij − iσϵijkk̂ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σ2
p ; ð38Þ

where the parameter σ characterizes the fractional helicity
of f , and

f̃ ðkÞðnohelÞ ¼ ðk × êÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ðk · êÞ2

q
ð39Þ

is a nonhelical forcing function. We use only those ê
that are not aligned with k. Note that jf̃ j2 ¼ 1. We consider
both σ ¼ 0 and σ ¼ 1, corresponding to the nonhelical and
maximally helical cases. The forcing is only enabled
during the time interval 0 ≤ t ≤ t�. In this sense, this
forcing procedure can be considered as part of the initial
condition.
In this section and henceforth, we use t to refer to

conformal time, as opposed to coordinate time in Sec. II.
All other quantities are comoving quantities, scaled by
exploiting the conformal symmetry of Maxwell’s equa-
tions; see [36] for details. We solve Eqs. (34)–(36) using the
PENCIL CODE, a public MHD code,3 which is well suited for
studying and simulating turbulence. The simulations are
performed in a periodic domain of size L. Except for the
homogeneous imposed magnetic field at wave number
k ¼ 0, the smallest nonvanishing wave number in the
domain is k1 ≡ 2π=L. Spatial derivatives are computed
using sixth order accurate finite differences and a third
order accurate time stepping scheme is used. The magnetic
vector potential is advanced in time to preserve solenoi-
dality (the divergence-free condition) of the magnetic field.
We use a numerical resolution of 11523 meshpoints for all
simulations presented in this paper.

B. Peculiarities connected with imposed fields

In a periodic domain, the case of an imposed magnetic
field is in many ways pathological, since it will always be
present and can never decay. It can be amplified linearly
in time by a flow—even in two dimensions where no
dynamo effect is possible [40]. In addition, magnetic
helicity associated with the induced magnetic field based
on the deviations of the magnetic field from the imposed
field is not conserved [25]. This is because it interacts
with the imposed field, which, owing to its constancy in
space, cannot have magnetic helicity. On the other hand,
if we replace the imposed field by a large-scale field with
zero net flux, the magnetic helicity becomes well defined.
The total field can now decay to zero, and the magnetic
helicity is then a perfectly defined quantity that obeys
the usual conservation law. We can therefore ask how
the presence of a large-scale magnetic field affects the
evolution of magnetic helicity of a field of much smaller
length scale.
To better understand the aforementioned peculiarities,

we note that in the presence of an imposed magnetic field, a
generalized quantity can be defined that is still conserved
[41], but that quantity is not gauge invariant and hence not
uniquely defined [42]. Let us discuss this here in more
detail. In the presence of an imposed field, B0 ¼ const, one
splits the magnetic field into a mean and a fluctuating
component, B ¼ B0 þ b. The mean of b is vanishing.
Using b ¼ ∇ × a, the time derivative of the volume-
averaged quantity ha · bi, is found to have a term
−2αB2

0, in addition to the Spitzer term −2ηhj · bi; see
Appendix for the derivation. Here, α refers to the α
effect and it models the component of the electromotive
force, E ¼ hu × bi, parallel to the mean magnetic field.
The α effect is responsible for the fact that the mean
magnetic helicity density HM ¼ ha · bi is no longer
conserved [25].
The presence of an imposed magnetic field was found to

influence the sign of the magnetic helicity and the inverse
cascade [43]. For weak (or zero) imposed fields, magnetic
helicity and energy cascade strongly from the forcing scale
to large length scales, and the magnetic helicity has an
opposite sign to the kinetic helicity. For stronger fields, the
inverse cascade of magnetic helicity to larger scales is
suppressed, and the sign of the magnetic helicity flips over.
The threshold strength of the imposed magnetic field
depends inversely on the square root of the magnetic
Reynolds number. This is understood to be a consequence
of the α effect.
It was also found that, in the presence of an imposed

magnetic field, the induced magnetic field can undergo a
certain enhancement around the forcing wave number.
Furthermore, small-scale dynamo action helps to lower
the energy density in the inertial region in k-space [43]. In
addition, during the initial time interval 0 ≤ t ≤ t�, we drive
turbulence either through the F 0 or E0 terms.3https://github.com/pencil-code.
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C. Initial conditions

We consider the following types of initial conditions.
First, we consider a homogeneous (imposed) magnetic field
[43], where the corresponding correlation length is infinite.
Second, we consider the case with no imposed field, but
with a zero flux initial scale-invariant magnetic field, so the
correlation length is finite, but much longer than the scale
of turbulence.4 We construct such a field in Fourier space as

B̃iðkÞ ¼ Biniðδij − k̂ik̂j − iσϵijlk̂lÞgjðkÞjkj−3=2; ð40Þ

where gðkÞ is the Fourier transform of a Gaussian
distributed random vector field that is δ-correlated in all
three dimensions. The degree of helicity is controlled by
the parameter σ, which is �1 for maximally helical fields
with positive or negative helicity, and zero in the nonhelical
case. The magnetic field in real space is given by BðxÞ ¼R
B̃ðkÞeik·xd3k=ð2πÞ3. In all cases, we have initially

ρ ¼ const.
The forcing applied during 0 ≤ t ≤ t� consists of mono-

chromatic forcing (see, for example, Ref. [44]) at a wave
number k ¼ k⋆. This forcing wave number corresponds to a
fraction of the Hubble scale H⋆ after inflation. One can
think of this as the epoch of reheating.
In either case, we consider the relativistic fluid to have an

initial turbulent velocity field uðxÞ. Physically, turbulence
can be induced at reheating by energy injection from the
inflaton into the standard model particles and fields, or
from bubble collisions during some (yet unknown) phase
transition—the spectral energy density EMðkÞ has a k4

subinertial range at large scales due to causality require-
ments (see Refs. [45,46]), while in the inertial range, it
tends to have a Kolmogorov spectrum proportional
to k−5=3.
We recall that, in the absence of a large-scale magnetic

field, a small-scale helical magnetic field undergoes inverse
cascading such that the magnetic energy at small wave
numbers increases with time [47,48]. The characteristic
length scale of the turbulence, ξM, increases with time like
t2=3, and the magnetic energy EM decreases like t−2=3,
which is slower than in the nonhelical case where EM ∝ t−1

and ξM ∝ t1=2.
One often considers the magnetic field evolution in a

diagram of EM versus ξM. The nonobservation of GeV
cascade photons from the interaction of TeV photons
from blazars with the extragalactic background light, as
mentioned above, has often been argued to imply the
presence of a lower limit on the product EMξM of about
ð10−15 GÞ2 Mpc. In a diagram of EM versus ξM, the line
corresponding to this lower limit has a slope of−1, which is

also the slope of the line representing the magnetic field
decay in the fully helical case, because EM ∝ t−2=3 ∝ ξ−1M .
For a nonhelical field, on the other hand, we have
EM ∝ t−1 ∝ ξ−2M . For this reason, a nonhelical field will
eventually drop below the line demarcating the lower
observational limit [38]. We now study how these decay
properties are affected by the presence of either an imposed
or an initial large-scale magnetic field.

D. Parameters and analysis tools

By default, we measure lengths in units of k−11 ¼ L=2π
and wave numbers in units of k1. Since c ¼ 1, time is
measured in units of the light travel time, ðck1Þ−1, and
viscosity or magnetic diffusivity are measured in units of
c=k1. Furthermore, since ρ ¼ 1 initially, the magnetic field
is measured in units of c=

ffiffiffi
ρ

p
. Our main control parameters

are k�, the amplitudes of the imposed or initial fields, B0

and Bini, respectively, the amplitudes of the forcing
functions E0 and F 0, and the values of ν and η. For k�,
we consider the values 60 and 180, B0 and Bini are varied
between 0 and 1, while E0 and F 0 are varied 0 and 0.02,
such that the energy density of the turbulence does not
exceed the radiation energy density by more than 10% after
the duration of turbulent driving, which we have chosen to
be t� ¼ 5 in the normalized units defined below. In all
cases, we use a resolution of 11523 meshpoints and we
found that ν ¼ η ¼ 10−5 is sufficiently small to dissipate
the energy of the turbulence at the smallest length scale.
A summary of parameters of all runs is given in Table I.
It is sometimes convenient to express time in units

of the Alfvén time, τA ¼ ðvAk�Þ−1, where v2A ¼ B2
0=ð43 ρÞ

for cases with an imposed magnetic field and v2A ¼
B2
ini=ð43 ρÞ for cases with a zero flux large-scale magnetic

field. To specify the strength of the fluctuating magnetic
field in cases with B0 ≠ 0, we also specify the quantity
vmax
A;f ¼ jB −B0j=ð43 ρÞ1=2. The kinetic and magnetic energy

densities are defined as EK ¼ hρu2i=2 and EM ¼ hB2i=2,
respectively, and the kinetic and magnetic energy spectra,
EKðk; tÞ and EMðk; tÞ, are normalized such that

Z
EKðk; tÞdk ¼ EK and

Z
EMðk; tÞdk ¼ EM; ð41Þ

respectively. We define the magnetic correlation length
ξM as

ξMðtÞ ¼
Z

k−1EMðk; tÞdk=
Z

EMðk; tÞdk: ð42Þ

Finally, we define the instantaneous exponents describing
the growth of ξMðtÞ and the decay of EMðtÞ as

qiðtÞ ¼ d ln ξi=d ln t; piðtÞ ¼ −d ln Ei=d ln t: ð43Þ
4The finite value of the correlation length is determined by the

cutoff scale imposed to the scale-invariant spectrum at the low
wave numbers region [37].
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Those play important roles in describing the nature of the
turbulence in different cases [27].
The various solutions are characterized by certain lines

in the pq diagram. It was found that the point ðp; qÞ
ultimately settles somewhere on what was called the self-
similarity line [27], where

p ¼ 2ð1 − qÞ: ð44Þ

Moreover, this evolution occurs along a line with

β ¼ p=q − 1 ¼ const; ð45Þ

where the value of β is determined by the nature of certain
relevant conservation laws. Eliminating p from Eqs. (44)
and (45), we find β ¼ 2=q − 3, where q can be obtained
from dimensional arguments in terms of the dimensions of
length L and time T. We recall that q characterizes the
scaling of the correlation length with time as ξM ∼ tq.
Magnetic helicity has dimensions L3T−2, so q ¼ 2=3,
and therefore β ¼ 0. The mean squared vector potential,
which is arguably relevant to magnetically dominated
turbulence [49], has dimensions L4T−2, so q ¼ 1=2,
and therefore β ¼ 1. The Saffman integral [50] has

dimensions L5T−2, so q ¼ 2=5, and therefore β ¼ 2, while
the Loitsiansky integral [51] has dimensions L7T−2, so
q ¼ 2=7, and therefore β ¼ 4.
Under certain conditions, the evolution may not be

self-similar for extended periods of time. In fact, for finite
resolution and finite domain size, a truly self-similar
behavior is generally difficult to obtain. A prolonged
evolution along the line p ¼ const ≈ 0.58 was obtained
[52] when there is a complex interplay between kinetic and
current helicities. In the present work, we find examples of
several of the aforementioned relations.

IV. RESULTS

A. Helical and nonhelical decay with imposed field

We consider decaying turbulence produced during a
short initial period through forcing at small scales with
k� ¼ 60 together with an imposed magnetic field. We find
that in the subinertial range, the magnetic energy spectrum
goes approximately as k2, while the kinetic energy spec-
trum is shallower. In Figs. 1(i) and 1(ii), we show the
evolution of the magnetic and kinetic energy spectra for
the nonhelical and helical cases, respectively. We see that
the winding up of the initially uniform field by turbulence

TABLE I. Summary of the parameters of the simulations discussed in this paper. Some characteristic parameters, including the final
values of p and q as defined below and the direction of evolution in the pq diagram are also indicated.

Panel Initial field B0 Bini vmax
A F 0 E0 σ k� τA p q Evolution along

(i) Homogeneous 0.1 0 0.08 0.02 0 0 60 0.19 10=7 2=7 β ¼ 4 to ðp; qÞ → ð10=7; 2=7Þ
(ii) Homogeneous 0.1 0 0.08 0.02 0 1 60 0.19 10=7 2=7 β ¼ 4 to ðp; qÞ → ð10=7; 2=7Þ
(a) Homogeneous 0.03 0 0.46 0 0.0005 1 180 0.21 2 0 β ¼ 4 to ðp; qÞ → ð2=3; 2=3Þ
(b) Homogeneous 0.10 0 0.41 0 0.0005 1 180 0.06 2 0 p ¼ 2ð1 − qÞ to ðp; qÞ → ð2; 0Þ
(c) Homogeneous 0.16 0 0.31 0 0.0005 1 180 0.04 4 0 β ¼ 1–2 to ðp; qÞ → ð1; 0.5Þ
(d) Homogeneous 0.20 0 0.25 0 0.0005 1 180 0.03 4 0 β ¼ 3–4 to ðp; qÞ → ð0.1; 0.8Þ
(e) Homogeneous 1.00 0 0.21 0 0.0005 1 180 0.006 4 0 β ¼ 3–4 to ðp; qÞ → ð0; 0Þ
(A) 1=k spectrum 0 10−3 0.47 0 0.0005 1 180 6.4 0.6 0.6 β ¼ 0 to ðp; qÞ → ð0.6; 0.6Þ
(B) 1=k spectrum 0 3 × 10−2 0.37 0 0.0005 1 180 0.22 0.2 0.2 β ¼ 0 to ðp; qÞ → ð0.2; 0.2Þ

FIG. 1. The evolution of the magnetic (red) and kinetic (blue) energy spectra for (i) nonhelical and (ii) helical turbulence. The thick
lines are the configurations at the latest times. Panels (i) and (ii) correspond to runs (i) and (ii) in Table I.

PRIMORDIAL MAGNETIC HELICITY EVOLUTION WITH A … PHYS. REV. D 102, 023536 (2020)

023536-9



causes a Saffman spectrum for the magnetic energy of the
form EM ∼ k2, which is shallower than the Batchelor k4

spectrum. There is no inverse cascade in the sense that,
even at small k, the magnetic energy always decays. The

decay is faster at larger k, which causes ξM to increase, but
this is not due to the usual inverse cascade.
To quantify the decay further, we now show in Figs. 2(i)

and 2(ii) the evolution of the instantaneous scaling

FIG. 2. pq diagrams for the cases of nonhelical (i) and helical (ii) turbulence. The dots denote the instantaneous values of ðp; qÞ for
the magnetic (red) and kinetic (blue) fields. Bigger circles denote later times. Panels (i) and (ii) correspond to runs (i) and (ii) in Table I.
The solid lines correspond to the self-similarity line, p ¼ 2ð1 − qÞ, the dotted lines denote β ¼ const, and the dashed lines denote
p ¼ const ≈ 0.58, whose relevance is explained in the text.

(a)

(c) (d)

(b)

FIG. 3. Dependences of ξMðtÞ, EMðtÞ, EMðtÞ=vA, and EMðtÞ against ξMðtÞ. In the last panel, the slope EM ∝ ξ−2=3M is shown for
comparison. The time interval 0 ≤ t ≤ t� ≡ 5 is marked with thin lines, while later times are marked with thick lines. Blue (red) lines
denote cases with a perfectly homogeneous (statistically homogeneous) magnetic field. Solid (dashed) lines correspond to cases with a
weak (strong) magnetic field; compare labels (a)–(d) with the corresponding runs in Table I. The filled symbols on each curve denote the
five instances for which the spectra below are shown.
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exponents piðtÞ versus qiðtÞ for i ¼ M and K, where Ei is
the energy density and ξi is the integral length scale for the
magnetic and fluid fields. We see that for both the helical
and the nonhelical cases, the evolution of the point ðp; qÞ
tends to be close to the β ¼ 4 line, which implies the
conservation of the Loitsiansky integral [51]. This evolu-
tion is similar to that of nonhelical and nonmagnetic
turbulence, which is quite surprising: in the presence of
a sufficiently strong constant magnetic field, magnetic
helicity seems to have no effect, and the decay is very
different from that in magnetically dominated turbulence,
where β ¼ 1–2 has been found [27,49].

B. Inverse cascade

We know that, in the absence of a large-scale magnetic
field, a small-scale helical magnetic field decays more
slowly than a nonhelical one, and also its correlation length
increases faster than for a nonhelical field. It is therefore of
interest to study how the magnetic decay is affected by the
presence of this large-scale magnetic field. One may also
ask whether some of the magnetic energy of this large-scale
field can be transferred to the smaller scale field.

In all cases, we produce a small-scale helical magnetic
field by driving the system with a turbulent small-scale
electromotive force for a short time interval 0 ≤ t ≤ t� ¼ 5.
This driving is then turned off, leaving the system to
decay freely, except for the presence of the imposed
magnetic field. The runs are summarized in the lower part
of Table I.
The time evolution of ξMðtÞ and EMðtÞ is shown in

Figs. 3(a) and 3(c). In Fig. 3(b) we plot the evolution
ξðt=τAÞ versus normalized time Fig. 3(d). Our results allow
us to show EMðtÞ against ξMðtÞ in a parametric fashion;
see Fig. 3. Note that we have not included in EMðtÞ the
additional presence of the imposed magnetic field, i.e., the
magnetic energy is defined solely based on the magnetic
field with nonvanishing wave numbers.
In Figs. 4 and 5, we present magnetic energy spectra

for cases with an imposed and an initial magnetic field,
respectively. In both cases, we see inverse cascading of the
magnetic energy when the imposed or initial magnetic
fields are weak. However, when the field is increased, the
inverse cascade eventually stalls; see especially Fig. 4(c),
where inverse cascading has stopped after the peak of the
spectrum traversed the k axis by about a factor of 10.

(a) (b)

(c) (d)

FIG. 4. Magnetic (red) and kinetic (blue) energy spectra for k�=k1 ¼ 180 with an imposed field, B0 ¼ 0.03, 0.1, 0.16, and 0.2 in
panels (a)–(d), respectively. These panels correspond to runs (a)–(d) in Table I. Dotted, dashed, solid, dash-dotted, and dash-triple-dotted
lines indicate later times, denoted by filled symbols in Fig. 3. The last time is also shown as a fat line.
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Interestingly, in the presence of an initial (nonimposed)
magnetic field, the evolution of EMðtÞ versus ξMðtÞ follows
the same line in Fig. 3(d). This line corresponds to EM ∝ ξ−1M
and its height in that diagram characterizes the strength of
magnetic helicity [38]. Although the magnetic field was
initially of small scale only, at the end of the evolution, it has

reached the scale of the system. This is true for both weak
and strong initial (nonhelical) magnetic fields.
For an imposed magnetic field, on the other hand, the

magnetic field is always below the line EM ∝ ξ−1M , which
corresponds to the evolution of a fully helical magnetic
field. This is simply because magnetic helicity is no longer

(a) (b)

FIG. 5. Similar to Fig. 4, but for an initial large-scale field, Bini ¼ 10−3 and 3 × 10−2 in panels (a) and (b), respectively.

(a) (b)

(c) (d)

FIG. 6. pq diagrams for the magnetic field (red) and the velocity field (blue) for k�=k1 ¼ 180 with an imposed field, B0 ¼ 0.03, 0.1,
0.16, and 0.2 in panels (a)–(d), respectively. Again, these panels correspond to runs (a)–(d) in Table I. Later times are shown as larger
symbols. The arrows in each panel indicate the tentative direction of evolution.
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conserved in that case; see the blue lines in the last panel
of Fig. 3. The marked segregation between the blue and red
lines in all panels of Fig. 3 is an impressive and very visual
demonstration of the tremendous difference between the
cases of an initial and an imposed magnetic field. Only
when the imposed magnetic field is weak enough are the
two cases in mutual in agreement with each other; compare
the red (A) and blue (a) lines in all panels of Fig. 3.
Finally, we show in Figs. 6 and 7 the evolution of

the instantaneous scaling exponents pðtÞ and qðtÞ in a pq
diagram. We see that in the case with an imposed magnetic
field of moderate strength in panel (a) the point ðp; qÞ
appears to evolve along the line p ¼ 2ð1 − qÞ toward
ðp; qÞ ¼ ð2; 0Þ. This is indeed consistent with Fig. 3, where
EMðtÞ is seen to decay like t−2 and ξMðtÞ is approximately
flat. For a stronger imposed field in panel (b), there seems
to be an evolution along β ¼ 3–4 toward ðp; qÞ → ð0; 0Þ,
but this is not consistent with Fig. 3, where EMðtÞ is seen
to decay like t−4, while ξMðtÞ is still approximately flat.
Indeed, the points in Fig. 6(b) have a similar size,
suggesting that the evolution along the line β ¼ 3–4
is an intermediate stage before later evolving toward
ðp; qÞ → ð4; 0Þ, which is obviously outside the plot range.
On the other hand, for an additional large-scale non-

helical magnetic field, in addition to the small-scale
helical one, the evolution of the point ðp; qÞ always occurs
along the β ¼ 0 line. As time goes on, the point ðp; qÞ
evolves further along the β ¼ 0 line toward the left to
smaller values of pðtÞ and qðtÞ. For the weak large-scale
magnetic field of panel (c), the evolution stalls near
the point ðp; qÞ ¼ ð0.6; 0.6Þ. Several intermediate points
cluster along the line p ¼ 0.58, which was identified in
earlier work [52], but this may be coincidental. Indeed,
for the stronger large-scale magnetic field of panel (d), the
evolution continues toward the point ðp; qÞ ¼ ð0.2; 0.2Þ.
For sufficiently weak imposed magnetic fields, the cases
of imposed and initial magnetic fields again agree with
each other; compare Fig. 6(a) for run (a) with Fig. 7(a)
for run (A).

These investigations have demonstrated the dramatic
difference between imposed and initial large-scale mag-
netic fields. When the imposed fields are weak, it only
affects the evolution of the small-scale helical magnetic
field at later times once its field strength approaches the
value of the imposed field. In the presence of a large-scale
nonhelical magnetic field—here one with a k−1 spectrum—
the inverse cascade is not suppressed. Both for weak and
strong magnetic fields, there is a spectral peak moving from
large to small wave numbers; see Fig. 5. Also the evolution
in the pq diagram is along the β ¼ 0 line in both cases;
see Fig. 7.
We emphasize again that the presence of an imposed

field is pathological, if the interest is to simulate an
approximation to the case with a large-scale magnetic
field. We have demonstrated this here with an irregular
large-scale field with a k−1 spectrum. Starting with an
initially sinusoidal magnetic field is probably similar in
many ways, but this would introduce anisotropies, which
have not yet been studied in the context of decaying
turbulence.

V. CONCLUSIONS

We have discussed the viability of a homogeneous
magnetic field after inflation. Our work therefore extends
the earlier work of one of the authors [31], which addressed
only the stability of the magnetic field in the inflationary
stage. In this work, we have addressed the phenomenology
of the primordial plasma after inflation in the presence of a
homogeneous magnetic field. Our results apply to the early
epochs of the Universe all the way from the time when the
inequality in Eq. (32) is satisfied until matter radiation
equality.
Our simulations have verified that, in the presence of an

imposed magnetic field, magnetic helicity is not conserved.
Moreover, and this was not previously known, our results
demonstrate that the decay of magnetic energy in the
fluctuations is faster the stronger the imposed magnetic

(a) (b)

FIG. 7. Similar to Fig. 6, but for an initial large-scale field, Bini ¼ 10−3 and 3 × 10−2 in panels (a) and (b), respectively.
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field. We have also compared the magnetic field evolution
with an alternative way of simulating a cosmological large-
scale magnetic field, namely to treat it as a statistically
homogeneous field with a scale-invariant spectrum. It is no
longer the stealth magnetic field considered in the scenario
of [22], but one that could emerge at the end of inflation.
Such a magnetic field can be either helical [37,46] or
nonhelical [24]. In these cases, magnetic helicity conser-
vation is unaffected by the large-scale magnetic field, and it
decays just like without imposed magnetic field and thus
much more slowly than with a constant imposed mag-
netic field.
Conservation of magnetic helicity (and correspondingly

its presence until recombination) can have important
observational consequences. In particular, primordial mag-
netic helicity (as a manifestation of the possible violation
of parity in the early Universe) can leave traces in (i) the
cosmic microwave background fluctuations, resulting in
nonzero temperature B-polarization, and E- and B-
polarization cross correlations (see [53,54] and references
therein), and (ii) the circular polarization of gravitational
waves generated in the early Universe through helical
hydrodynamical and MHD turbulence (see [55] and refer-
ences therein).
As for the backreaction of small-scale fields to the

background magnetic field at large scale, a priori there
could be three possibilities: (i) small-scale fields inverse
cascade and deplete the background magnetic field at large
scale; (ii) small-scale fields inverse cascade and enhance
the background magnetic field at large scale; or (iii) small-
scale fields do not affect the background magnetic field at
large scale. The result of the present paper suggests that
(iii) is the case. Therefore, a homogeneous magnetic field,
if generated during inflation, should persist [i.e., simply
decay as ∝1=a2, as assumed in the derivation of (23)] under
the influence of small-scale fields and could be the origin
of the large-scale magnetic field in the Universe today.
Depending on the strength of the background magnetic
field, however, the small-scale magnetic field can be
significantly suppressed. The low power at small scales
(see the blue lines in Fig. 3) means that the homogeneous
background may dominate the magnetic fields in the
Universe not only at large scales but also at small scales.
This implies that, depending on its strength, the back-
ground magnetic field may be responsible not only for the
blazar observations, but also for the seeds of MHD
processes at astrophysical scales such as galactic dynamo.
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APPENDIX: MAGNETIC HELICITY
EVOLUTION IN THE PRESENCE OF

A HOMOGENEOUS MAGNETIC FIELD

The purpose of this Appendix is to recall why magnetic
helicity is not a conserved quantity in the presence of a
homogeneous or imposed magnetic field, B0. We write
B ¼ B0 þ b, where b ¼ ∇ × a, with a being the vector
potential of b. Equation (36) can then be written in terms
of a as

∂a
∂t ¼ u × B0 þ u × b − ηjþ E0: ðA1Þ

We consider times t > t� when E0 ¼ 0. Making use of the
periodic boundary conditions for a, the evolution equation
for ha · bi is then

d
dt

ha · bi ¼ 2hðu ×B0Þ · bi − 2ηhj · bi: ðA2Þ

Evidently, the first term on the right-hand side of Eq. (A2)
breaks magnetic helicity conservation in the limit η → 0,
because

hðu ×B0Þ · bi ¼ −hu × bi ·B0 ¼ −αB2
0 ≠ 0 ðA3Þ

for a helical magnetic field, where α ≠ 0. We recall an
important result from mean-field electrodynamics [56,57],

hu × bii ¼ αijhBji þ βijk∂hBji=∂xk þ… ; ðA4Þ

which reduces to hu × bi ¼ αB0 for periodic boundary
conditions. Here, the ellipsis refers to higher order terms.
The nonconservation of magnetic helicity is not an artifact
of having adopted periodic boundary conditions, because
they are just a tool for us to compute averages over
infinitely large length scales.
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